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Abstract—Feature extraction is an essential process in the
intelligent fault diagnosis of rotating machinery. Although ex-
isting feature extraction methods can obtain representative fea-
tures from the original signal, domain knowledge and expert
experience are often required. In this paper, a novel diagnosis
approach based on evolutionary learning, namely automatic
feature extraction and construction using genetic programming
(AFECGP), is proposed to automatically generate informative
and discriminative features from original vibration signals for
identifying different fault types of rotating machinery. To achieve
this, a new program structure, a new function set and a new
terminal set are developed in AFECGP to allow it to detect
important subband signals, extract and construct informative
features, automatically and simultaneously. More importantly,
AFECGP can produce a flexible number of features for classi-
fication. Having the generated features, k-Nearest Neighbors is
employed to perform fault diagnosis. The performance of the
AFECGP based fault diagnosis approach is evaluated on four
fault diagnosis datasets of varying difficulty and compared with
fourteen baseline methods. The results show that the proposed
approach achieves better fault diagnosis accuracy on all the
datasets than the competitive methods and can effectively identify
different fault conditions of rolling bearing, gear, and rotor.

Index Terms—Genetic Programming, Feature Extraction, Fea-
ture Construction, Fault Diagnosis, Rotating Machinery

I. INTRODUCTION

ROTATING machinery, such as electric motors, turbine
generators, and aero engines, are the important com-

ponents of modern industry and have been widely used in
the aspects of production and daily life [1]. Because these
machines often work under unstable loads and extreme op-
erating temperatures, the critical parts of which inevitably
have various faults, such as bearing damage, gear breakage,
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and rotor imbalance. Damaged parts can prone to cause the
machines to be scrapped, leading to huge economic losses
and even serious accidents [2]. Therefore, fault diagnosis and
condition monitoring of rotating machinery are important for
reducing operation and maintenance costs, ensuring production
safety, and prolonging the life of machines.

A fault diagnosis and condition monitor system generally
contains three steps: data acquisition, feature extraction, and
pattern recognition [3]. Because the acquisition of vibration
signals can be easily achieved by installing speed or accel-
eration sensors on the outer surface of a machine, vibration
signal based diagnostic and monitor methods have gained
much attention. Due to the influence of transmission path
and noise, the collected vibration signals are often non-linear
and of multi-component, and need to be preprocessed to
extract effective features for performing pattern recognition.
Decomposing the vibration signals into multiple subband sig-
nals can reduce the difficulty of analysis. Wavelet Transform
and Wavelet Packet Transform can decompose signals into
a set of wavelet details, but the performance is affected by
the predefined wavelet basis and levels [4]. The recursive
decomposition methods on the basis of the signal waveforms,
such as Empirical Mode Decomposition (EMD), Intrinsic
Time-scale Decomposition, Local Mean Decomposition, and
their improved versions [5], [6], [7], [8], [9], [10], have
been developed and used to decompose signals. But the most
obvious flaw of these methods is prone to modal aliasing.
To address this problem, Variational Modal Decomposition
[11], [12], Swarm Decomposition [13], [14], and Time Varying
Filtering-Based EMD [15], [16] have been developed and
applied to rotating machinery fault diagnosis. Although these
methods are effective in decomposing the complex vibration
signals into simple subband signals, not all the information of
subband signals is important and useful for fault diagnosis.
Therefore, expert experience is often need to verify and
manually tune these signals to find the important ones.

To accurately describe the dynamic characteristics of the
machines under different operation states, it is necessary to
generate effective features from the decomposed vibration sig-
nals. Time-domain statistic features (i.e., mean value, standard
deviation, skewness, and kurtosis), frequency-domain statistic
features (i.e., mean frequency, standard deviation frequency,
frequency centre, and root mean square frequency), have been
used to represent vibration signals and achieved promising
results in fault diagnosis of bearing and rotor [17], [18]. Be-
cause the characteristics of the mechanical equipment changes
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with the occurrence of faults, the entropy index can be used
to detect the dynamic changes. Fuzzy Entropy (FE), Sample
Entropy (SE), Permutation Entropy (PE), Symbolic Dynamic
Entropy (SDE), and Dispersion Entropy (DE), have been
adopted to characterize vibration signal for fault diagnosis
[19], [20], [21], [22], [23]. These entropy indexes estimate
the complexity or irregularity of the vibration signals using
a single scale. Multi-scale analysis has been introduced and
multi-scale entropy based methods (i.e., multi-scale SE, multi-
scale FE, multi-scale PE, multi-scale SDE, and multi-scale
DE [24], [25], [26], [23], [27]) have been proposed to extract
multi-scale features from the vibration signals. Because there
is typically information redundancy between multiple features,
feature selection techniques, such as Laplacian score, ReliefF
and Max-relevance and Min-redundancy, have been introduced
to reduce the number of features to ensure that diagnostic
performance is not significantly affected by redundant infor-
mation [17], [18], [27], [28]. The extracted or selected features
are fed into a classification algorithm to train a classifier for
classification. Machine learning classification algorithms, such
as k-Nearest Neighbours (KNN), Support Vector Machine
(SVM), Multilayer Perception (MLP), Decision Tree (DT),
and Logistic Regression (LR), have been applied to fault
diagnosis of rotating machinery [17], [18], [29], [30], [31].
Besides, Deep Neural Networks (DNNs) based methods have
also been developed to fault diagnosis tasks [32], [33], [34].

Although many methods have been developed for fault
diagnosis of rotating machinery, they still have drawbacks.
These drawbacks are summarized as follows.

1) Most existing fault diagnosis methods need multiple in-
dependent steps, such as signal preprocessing, feature ex-
traction and feature selection, to generate effective features
for fault diagnosis. The results of the previous step often
significantly affect the results of the later step. For example,
if the extracted features are not effective for a task, feature
selection may not be helpful as well.

2) Most existing fault diagnosis methods have poor adaptabil-
ity and robustness [1], which may only be effective for a
certain fault diagnose task.

3) The DNN based fault diagnosis methods have poor inter-
pretability and often require a large number of training
instances. However, in many application of rotational ma-
chinery, it is very difficult to obtain a large number of
training instances.

4) Rich domain knowledge are often required in the process
of fault diagnose, such as the determination of useful
subband signals, the selection of informative features and
the determination of the number of features.

Genetic Programming (GP) is an evolutionary algorithm,
which can automatically evolve computer programs for dealing
with tasks without human intervention and domain knowledge
[35]. GP can evolve tree-based solutions with variable lengths
and the solutions often provide high interpretability. The solu-
tions evolved by GP are often creative and even not considered
by human experts. GP has been successfully applied to many
tasks, including symbolic regression, job shop scheduling and
image analysis, and achieved promising results [36], [37], [38],

[28], [39], [40]. Many successful applications show that GP
has a great potential to simultaneously perform information
detection, feature extraction, feature selection and feature
construction for classification [41], [42], [43]. Although GP
has been applied to various fields, very few work apply GP
for fault diagnosis [44], [45]. To the best of our knowledge,
GP has not been applied to automatically and simultaneously
detect useful subband signals from the original signals, extract
features from the detected subband signals and construct high-
level features for effective fault diagnosis.

The overall goal of this paper is to develop a new intel-
ligent fault diagnosis approach based on GP for automatic
feature extraction and construction in identifying different
fault types of rotating machinery. To achieve this, a new
program structure/architecture, a new function set and a
new terminal set are developed for AFECGP to generate
informative and discriminative features from raw signals by
automatically evolving solutions with multiple transformation
functions, i.e., decomposition, rescaling, feature extraction,
feature construction, and feature combination functions. The
AFECGP approach can generate variable numbers of fea-
tures for classification for different fault diagnosis tasks. The
performance of AFECGP will be examined on four fault
diagnosis tasks/problems of varying difficulty and compared
with fourteen benchmark methods.

The main contributions of this paper are summarized in the
following four aspects.
1) A new rotating machinery intelligent fault diagnosis ap-

proach based on GP, i.e., AFECGP, is proposed. This
approach can automatically and simultaneously extract
and construct informative discriminative features from the
vibration signals under different running states. AFECGP
can evolve (nearly) optimal solutions not considered by
domain experts. The learning process of AFECGP does
not need extra domain expertise or human intervention.

2) A new program architecture is designed based on a tree-
based representation that contains seven function layers,
i.e., an input layer, a decomposition layer, a rescaling layer,
a feature extraction layer, a feature construction layer, a
feature combination layer, and an output layer. Based on
this, AFECGP can adaptively achieve the detection of use-
ful subband signals, features extraction and construction,
and determination of the number of features.

3) Extensive experiments are conducted to show the effective-
ness of the proposed AFECGP approach in comparisons
with fourteen baseline methods for fault diagnosis. Com-
pared with the methods using manually extracted features
and the other GP based methods, the AFECGP approach
can achieve better performance on all the four different
diagnosis datasets of varying difficulty. The results also
show that the AFECGP approach has high flexibility and
adaptability to different fault tasks/problems in diagnosis
of rotating machinery.

4) Further analysis is conducted to deeply understand the
proposed AFECGP approach. The solutions evolved by
AFECGP can be easily visualized to provide insights on
which part of the input signal is representative, which
features are extracted and used to construct high-level
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features, and how many features are needed to represent
the input signals. In addition, the constructed high-level
features are also visualized to show why AFECGP can
achieve better performance.

II. RELATED WORK

A. Genetic Programming (GP)

GP is an evolutionary learning algorithm, which inherits
the basic idea of Darwin’s theory of natural evolution, that is,
breeding offspring by selecting good individuals from their
parents [35]. An individual of GP is typically a computer
program expressed using a tree structure, which is a variable-
length encoding scheme. A GP tree is composed of internal
nodes and leaf nodes. The internal nodes are functions or
operators selected from the function set and the leaf nodes are
arguments/features and constants selected from the terminal
set. Fig. 1 shows an example program of GP, which represents
a mathematic expression (y−2×x)+(x+6). In this program, the
internal nodes, such as +, − and ×, belong to the function set,
and the leaf nodes, such as arguments x and y and constants
2 and 6, belong to the terminal set.

+

-

y

+

6x×

x2

Fig. 1. An example tree of GP.

GP can automatically evolve trees/solutions to deal with a
task. The overall process of GP starts with randomly initial-
izing a population of computer programs in the search space.
Each individual (program) in the population is evaluated by
a fitness function and assigned with a fitness value. During
the evolutionary process, a new population of individuals
is generated through the Elitism, Crossover, and Mutation
operations, at each generation. The Elitism operation copies
the best individuals from the current generation to the next
generation. Based on the Selection operation, the individuals
with better fitness values have a higher chance to be chosen
for the Crossover and Mutation operations. The Crossover
and Mutation operations are illustrated in Fig. 2 and Fig. 3,
respectively. As it can be seen from Fig. 2, in the Crossover
operation, the subtrees (marked by red color) of parent 1 and
parent 2 are exchanged to generate offspring 1 and offspring
2. As it can be seen from Fig. 3, the Mutation operation is
that randomly selecting a mutation node, the original subtree
(marked by red color) at this node is deleted and a new subtree
(marked by yellow color) is grown from this node. The process
of fitness evaluation is executed on all the individuals of
each generation. The overall evolutionary process is terminated
when a termination criterion is satisfied. After the evolutionary
process, the optimal/best individual is obtained and returned.

GP contains two types of program structure, including
Loosely Typed GP (LTGP) and Strongly Typed GP (STGP)
[46]. The input and output types of LTGP tree nodes are the
same, which do not need to be specified. In contrast, the input
and output types of STGP tree nodes are typically different
and need to be specified. In STGP, if the output type of a
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Fig. 2. Crossover operation.

Parent Offspring

+

×

x

÷

6 2

yx

3

+

×

x

-

6 4 y

Fig. 3. Mutation operation.

subtree and the input type of its parent node are incompatible,
the trees with such a connection are not allowed.

B. GP for Feature Extraction and Construction

In recent years, feature extraction methods based on GP
have been successfully proposed and applied to different tasks,
such as image classification [36]. Benefiting from the flexible
representation of GP, many image-related operators, such as
the convolution operator, histogram of orientated gradient, the
mean filter, the Gaussian filter, the Gabor filter, and the Sobel
filter, have been integrated into the GP programs as functions
to extract/learn informative features from raw images [43],
[47]. Atkins et al. [48] proposed a three-tier GP method, where
the mean, max, min, median, and standard deviation of image
pixel values are extracted as features for image classification.
Al-Sahaf et al. [49] proposed a two-tier GP method to extract
features from the image region of line, square, rectangle, or
circle shape. Bi et al. [50] proposed a multi-layer GP method
for binary image classification. This method can perform
region detection, feature extraction, feature construction and
image classification, simultaneously. Bi et al. [43] proposed a
GP method by selecting and combining five image descriptors
to extract global/local features for image classification. To the
best of our knowledge, very few work has been reported on GP
based feature extraction methods for fault diagnosis of rotating
machinery. Guo et al. [44] and Xuan et al. [45] applied GP
based feature extraction methods to fault diagnosis of rolling
bearing and gear, where the high order of moments and the
frequency features of raw vibration signals are manfully ex-
tracted. However, neither of them have considered the features
of certain frequency bands of signals, which are typically
more effective for fault diagnosis than the features of full-
band signals.

The feature space transformation is useful for improving
the performance of a classification algorithm [51]. Feature
construction is one type of feature transformation, which can
map the original features into another space for representation
[52]. In [44], [45], [53], one high-level feature was constructed
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by GP using the original features and the experimental results
showed that the constructed feature can improve the classi-
fication accuracy. In [54], [55], [56], GP was employed to
construct multiple features and the results showed that the
constructed features achieve better classification performance
than the methods using the original features and the single
constructed feature. However, when constructing multiple fea-
tures, it is necessary to set the number of constructed features,
which requires domain knowledge.

Motivated by the above limitations, this study develops
a new GP based approach to automatically extracting and
constructing a flexible number of features for fault diagnosis
of rotating machinery. The new approach will be described in
the next section.

III. PROPOSED APPROACH

In this section, a new GP based approach, i.e., AFECGP,
is proposed to automatically and simultaneously extract and
construct features from raw signals for identifying different
fault types of rotating machinery. The proposed AFECGP
approach, i.e., the new program structure, the new function
set, the new terminal set, and fitness evaluation, are introduced
in detail. The detailed process of the AFECGP based fault
diagnosis approach is presented.

A. Algorithm Overview

The overall algorithm of AFECGP is described in
Algorithm 1. The input of AFECGP is the training set, having
the raw signals X signal and the class labels X label.
The output of AFECGP is the best program/individual, i.e.,
Best tree. Pg represents the population of the gth generation.
g starts from 0 and increases by 1 with the generation.
The AFECGP algorithm begins with randomly generating the
initial population P0 according to the program structure, the
function set and the terminal set. Each individual i of the pop-
ulation is evaluated using a fitness function and assigned with
a fitness value. At each generation, the best individuals Qg

are selected from Pg through the Elitism operation and copied
to the next generation. Based on the Selection operation, the
individuals Sg with better fitness values in Pg are chosen as
parents for breeding offspring. The offspring Og are obtained
by performing the Crossover and Mutation operations. Qg and
Og are combined to form the new population of the next
generations. The new population Pg will be evaluated and
evolved again. The best solution is updated at each generation.
When g is equal to the maximal number of generations Ngen,
the evolutionary process stops and the best solution Best tree
is returned as the output of AFECGP.

B. Program Structure

To achieve simultaneous feature extraction and construction
in a single GP program, a new program structure is developed
based on STGP for handling multiple data types. The left part
of Fig. 4 shows the new program structure and an example
program that can be evolved by the AFECGP approach. The
nee program structure has the input, decomposition, rescaling,

Algorithm 1: Algorithm framework of AFECGP
Input: The training set: X signal and X label
Output: The best individual: Best tree

1 begin
2 g ← 0;
3 P0 ← Randomly generate the initial population;
4 for Each i in P0 do
5 fi ← Calculate the fitnees value of i;
6 end
7 Update Best tree according to P0;
8 while g < Ngen do
9 Qg ← Copy the best individuals from Pg by Elitism;

10 Sg ← Select individuals from Pg as parents for breeding
offspring by Selection;

11 Og ← Generate offspring from Sg by Crossover and
Mutation;

12 P
′
g ← Qg + Og ;

13 g ← g + 1;
14 Pg ← P

′
g ;

15 for Each i in Pg do
16 fi ← Calculate fitnees value of i;
17 end
18 Update Best tree according to Pg ;
19 end
20 end
21 Return Best tree.
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Fig. 4. The program structure of AFECGP and an example program that can
be evolved by AFECGP.

feature extraction, feature construction, feature combination,
and output layers. These layers are connected in the bottom-
up manner. Except for the input and output layers, the other
layers have many specific functions for different purposes. The
input layer takes raw signals as inputs. The decomposition
layer contains filter functions, which operate on the raw
signal to reduce noise interference and obtain useful subband
signals. The rescaling layer is to change the ranges of the
subband signal amplitude and enhance the data characteristics
by using transformation functions. The feature extraction layer
is to extract statistical features from the subband signals.
The feature construction layer is to construct the extracted
features into high-level features. The feature combination
layer is to generate a feature vector, which contains multiple
features and can describe the input signal comprehensively.
The output layer returns the generated features as outputs for
fault diagnosis.

C. Function Set

The new function set of AFECGP has decomposition func-
tions, rescaling functions, feature extraction functions, and
feature combination functions for the corresponding layer.
Table I summarizes the functions of each layer and their
inputs, outputs and descriptions.
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TABLE I
FUNCTION SET

Function Input Output Description
HPF 1 signal, fh 1 signal Perform high pass filtering to signal
LPF 1 signal, fl 1 signal Perform low pass filtering to signal

BPF 1 signal
fpu, fpl

1 signal Perform band pass filtering to signal

BEF 1 signal
feu, fel

1 signal Perform band stop filtering to signal

Abs 1 signal 1 signal Return abs(x) for each x in the signal

ReLu 1 signal 1 signal Return max(0, x) for each x in the sig-
nal

Sqrt 1 signal 1 signal Return
√
x for each x in the signal.

Return 0 if x < 0.
Square 1 signal 1 signal Return x2 for each x in the signal
Cube 1 signal 1 signal Return x3 for each x in the signal
Min 1 signal 1 feature Calculate minimum of the signal
Max 1 signal 1 feature Calculate maximum of the signal
Std 1 signal 1 feature Calculate standard deviation of the signal
Mean 1 signal 1 feature Calculate average value of the signal
KthM 1 signal 1 feature Calculate kth-oder moment to signal
+ 2 features 1 feature Add two features
− 2 features 1 feature Subtract two features
× 2 features 1 feature Multiply two features

÷ 2 features 1 feature Divide two features. Return 0 if the divi-
sor is 0.

Fcom2 2 features 1 vector Concatenate two features into a vector

FcomM 2 vectors or
1 vector/feature

1 vector Concatenate two vectors or a vector and
a feature into a vector

1) Decomposition Functions: Four functions, i.e., High-
Pass Filter (HPF ), Low-Pass Filter (HLF ), Band-Pass Filter
(BPF ), and Band-Elimination Filter (BEF ) [57], are used in
the decomposition layer. The inputs of these functions are the
raw signals and the function parameters. These filter functions
can be used to split the original signal into the subband signals
and reduce the noise in the original signal. These filtering
functions are implemented based on the Butterworth filter
[58]. The HPF function has the parameters of the high-pass
cutoff frequency fh. The HLF function has the parameters
of the low-pass cutoff frequency fl. The BPF function has
the parameter of the lower and the upper cutoff frequencies
(fpl and fpu) of the passband. The BEF function has the
parameter of the lower and the upper cutoff frequencies (fel
and feu) of the stopband. These parameters (i.e., fh, fl, fpu,
fpl, feu and fel) are designed as the terminals of AFECGP, and
their optimal values can be automatically learned/determined
during the evolutionary process.

2) Rescaling Functions: The rescaling layer contains the
Abs, ReLu, Sqrt, Square, and Cube functions that can
change the value range of the input signal. The Sqrt function
is protected by returning 1 if the signal value is negative. The
input of each rescaling function is the decomposed signal.

3) Feature Extraction Functions: The Max, Min, Std,
Mean, and NthM functions are used to calculate the sta-
tistical features of the signal at the feature extraction layer
of AFECGP. The inputs of these functions may be the signal
processed by the decomposition functions, or the signal pro-
cessed by both decomposition and rescaling functions. This
design allows AFECGP to produce effective features that can
describe the signal comprehensively. The output of the Max,

TABLE II
TERMINAL SET

Terminal Type Description
Signal Array Raw signal with a length of M

n Integer Order parameter of the NthM function. It is in the
range of n ∈ [2, 4]

fl, fh Integer
Cutoff frequency of HPF and LPF . Its value is in the
range of [0, f

′
s] with a step of floor(f

′
s/100)

fpl, fpu Integer
Upper and lower frequency of BPF . Its value is in the
range of [0, f

′
s] with a step of floor(f

′
s/100). If fpl

>fpu, swap fpl and fpu

fel, feu Integer
Upper and lower frequency of BEF . Its value is in the
range of [0, f

′
s] with a step of floor(f

′
s/100). If fel

>feu, swap fel and feu

Min, Std, Mean, and KthM functions, is the maximum,
minimum, standard deviation, average and kth-order moment
(i.e., m(k)

x = 1
N

∑N
i=1 x

k
i ) [44] of the signal, respectively. These

features may be used directly to describe the signal or further
constructed to generate high-level features for fault diagnosis.

4) Feature Construction Functions: The +, −, ×, and
÷ functions are used to construct high-level features at the
feature construction layer. The functions are the commonly
used functions in GP for feature construction [55]. The inputs
of these functions may be the features obtained from the
feature extraction layer or the constructed features obtained
from the feature construction layer. That is, the constructed
features can be used to construct various levels of features.
This design allows AFECGP to construct complex high-level
features that are effective for addressing the task.

5) Feature Combination Functions: The Fcom2 and
FcomM functions are used to combine the extracted or
constructed features into a feature vector at the feature com-
bination layer. The Fcom2 function has two child nodes,
which can be the feature extraction functions or the feature
construction functions. The FcomM function also has two
child nodes, which can be the feature extraction functions, the
feature construction functions or the Fcom2 function. If one
single feature can accurately describe the signal, these two
feature combination functions will not be used in a GP tree.
With this design, the outputs of a feature construction layer
may be one single feature or a vector of multiple features.
This design allows AFECGP to produce a dynamic number of
features for fault diagnosis.

D. Terminal Set

In AFECGP, eight terminals are employed in the terminal
set as listed in Table II. The Signal terminal represents the
input raw signal, which is a 1-D array with a length of m. The
n terminal represents the order of the KthM function, which
is an integer in the range of [2, 4]. The 1st-order moment is
equal to Mean. The fh, fl, fpu, fpl, feu, and fel terminals
represent the parameters of the HPF , LPF , BPF , and BEF
filter functions, respectively. They are integers in the range of
[0, f

′

s] with a step of floor(f
′

s/100). fs is the sample frequency
determined by different fault datasets. f

′

s represents the half
of fs, i.e., f

′

s = fs/2. The values of these terminals except
for Signal are automatically selected/determined from their
ranges during the evolutionary process.
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E. Fitness Evaluation

The fitness value of a program/individual is obtained from
the fitness evaluation process, indicating the performance of
each evolved individual. In the fitness evaluation process,
KNN is employed to evaluate the classification/diagnosis
performance of the features generated by AFECGP. KNN
is a simple classification algorithm and easy to implement,
which has been widely used [59], [60]. Compared with other
classification algorithms, such as SVM, MLP, DT, and LR,
KNN treats each feature equally without any feature weighting
or selection. With the use of KNN, the proposed GP approach
can automatically extract and construct important features, and
avoid redundant or irrelevant features.

The evaluation process starts with using the individuals of
AFECGP to transform each signal in the training set into
features. To ensure the classification performance of KNN is
not affected by singular values or feature bias, the min-max
normalization method is used to transform the values of these
features into the range of [0, 1]. In addition, the stratified 5-
fold cross-validation method is employed for improving the
generalization ability of the features constructed by AFECGP.
That is, these normalized features and their labels are split into
five folds with a (nearly) equal size. Then one fold is used
as the test set and the remaining four folds are used as the
training set. KNN is fed using the training set and evaluated
using the test set. This process repeats five times until all the
five folds are used as the test set exactly once. The average
test classification results of the five folds is used as the fitness
value of the individual of AFECGP.

F. Overall AFECGP Based Fault Diagnosis Approach

In order to accurately identify different fault types of
rotating machinery, a novel fault diagnosis approach based
on AFECGP is proposed to automatically and simultaneously
extract and construct high-level features from the original
vibration signals for fault classification. Fig. 5 shows the
flowchart of the AFECGP based fault diagnosis approach,
which has three steps as follows.
1) Signal collection and dataset formulation. The vibration

signals of different running states are collected from the
rotating machines. Randomly selecting a part of vibration
signals to form the training set, and the remaining signals
are used as the test set.

2) AFECGP based feature extraction and construction. The
signal features are extracted and constructed from the orig-
inal signals using AFECGP. In AFECGP, each individual
can produce a flexible number of constructed features for
fault diagnosis. The AFECGP approach searches for the
best individual that can achieve the best performance on
the training set using a population of individuals via an
evolutionary process. The evolutionary process includes
the processes of fitness evaluation and population genera-
tions using genetic operators, which have been introduced
in previous subsections. The overall evolutionary process
stops when the termination criterion (i.e., reaching the
maximal number of generations) is satisfied. When the
evolutionary process is terminated, the best individual is
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Fig. 5. Flowchart of the AFECGP based rotating machine fault diagnosis.

returned. The vibration signals of the training and tests
sets are transformed into features using the best individual
found by AFECGP.

3) Rotating machinery fault diagnosis. These features ex-
tracted and constructed by AFECGP are normalized into
the range of [0, 1]. The training set with the transformed
features and the corresponding class labels (running states)
are fed into KNN as the training set and the class label of
each instance in the test set can be predicted by finding the
nearest neighbors via KNN.

IV. EXPERIMENT DESIGN

In this section, the proposed AFECGP approach is examined
on four rotating machinery datasets, i.e., two bearing fault
datasets, one gearing fault dataset and one rotor fault dataset.
To show the effectiveness of AFECGP, fourteen baseline
methods are used for comparisons. The detailed experiment
design, i.e., fault datasets, baseline methods and parameter
settings, are presented in this section.

A. Fault Datasets

CWRU is a rolling bearing fault dataset collected by Case
Western Reserve University (CWRU) [61]. The CWRU dataset
has been widely used to validate the effectiveness of the
diagnosis methods. Vibration signals are collected by the
accelerometers placed at the motor drive end of test rig under
four different load conditions: i.e., 0, 1, 2, and 3 HP. Four
kinds of healthy bearings, i.e., Normal (NOR), Inner Ring
Fault (IRF), Outer Ring Fault (ORF), and Rolling Element
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Fault (REF), are used in the experiments. Each fault type
contains three different fault levels, i.e., 0.007, 0.014 and 0.021
inches, respectively. Ten health states (i.e., NOR, IRF with
three different levels of severity, ORF with three different levels
of severity, and REF with three different levels of severity) of
vibration signals under each load are collected with a sampling
frequency of 12,000 Hz. In this paper, the same fault type
under different load conditions is treated as one class. That
is, the fault diagnosis of CWRU is a classification task of ten
classes.

DIRG is another rolling bearing fault dataset collected by
Politecnico di Torino [62]. It contains vibration signals in
seven running conditions, i.e., normal, inner ring fault with
three different levels of severity, and rolling element fault with
three different levels of severity. These signals are collected
with a sampling frequency of 51,200 Hz. Therefore, the fault
diagnosis of DIRG is a classification task of seven classes.

CWRU and DIRG only contain the vibration signals under
different running conditions, which need to be divided into
a number of instances to form the training and test sets for
conducting the experiments. For CWRU, the first 102,400 data
points of vibration signals under each class are divided into
50 instances on average and there is no overlap between each
instance [18]. The vibration signals of four different loads
under each class are divided into instances (i.e., each class
contains 200 (4×50) instances). That is, the CWRU dataset
contains 2,000 (10×200) instances, where each instance is
a vibration signal containing 2,048 data points. For DIRG,
the first 51,200 data points of vibration signals under each
class are divided into 50 instances on average and there is
no overlap between each instance either. That is, the WHU
dataset contains 350 (7×50) instances, where each instance is
a vibration signal containing 1,024 data points.

UCOON [63] is a gear fault dataset collected by University
of Connecticut (UCONN). It has nine types of gear vibration
signals in different health states, i.e., normal, missing tooth,
root crack, spalling, and chipping tip with five different levels
of severity. These signals are collected by an accelerometer
with a sampling frequency of 20,000 Hz. UCOON is a fault
diagnosis task of nine classes. Unlike the CWRU dataset,
UCOON has 104 instances (i.e., a vibration signal contains
3,600 data points) under each running condition. That is, the
UCOON dataset contains 936 (9×104) instances.

WHU [64] is a rotor fault dataset collected by Wuhan Uni-
versity (WHU). This dataset has four types of rotor vibration
signals in different health states, i.e., normal, contact-rubbing,
unbalance, and misalignment. These signals are collected by
an accelerometer with a sampling frequency of 2,048 Hz.
The fault diagnosis of WHU is a classification task of four
classes. Each class contains 45 instances (i.e., a vibration
signal contains 2,048 data points). That is, the WHU dataset
contains 180 (4×45) instances.

For the CWRU, DIRG and UCOON datasets, 50% instances
of each class are randomly selected to form the training set
and the remaining instances are used as the test set. For the
WHU dataset, 23 instances of each class are randomly selected
to form the training set and the remaining instances are used
to form the test set. Table III lists the detailed information of

TABLE III
DATASET DESCRIPTION

Name
Instance
length

Number of
classes

Number of
training instances

Number of
test instances

CWRU 2,048 10 1,000 (10×100) 1,000 (10×100)
DIRG 1,024 7 175 (7×25) 175 (7×25)
UCOON 3,600 9 468 (9×52) 468 (9×52)
WHU 2,048 4 92 (4×23) 88 (4×22)

these four fault datasets, i.e., the number of fault types/classes,
the length of the instance, the numbers of instances in the
training and test sets.

B. Baseline Methods

To show the effectiveness of the AFECGP based fault
diagnosis approach, 14 different methods are used for compar-
isons. These methods can be divided into three categories. The
first category are five classical classification algorithms using
Raw Signal Amplitude (RSA), i.e., RSA+KNN, RSA+SVM,
RSA+LR, RSA+CART, and RSA+MLP. These classification
algorithms take the amplitude values of the raw signals as
inputs to train classifiers for classification. The purpose of
comparisons is to investigate whether the features extracted
and constructed by AFECGP from raw signals are more
effective than RSA for fault diagnosis.

The second category includes five methods using differ-
ent manually extracted/designed features for fault classifica-
tion. These features are Time-Domain Features (TDF) [17],
Frequency-Domain Features (FDF) [17], Multi-Domain Fea-
tures (MDF) [18], Modified Multi-scale Symbolic Dynamic
Entropy (MMSDE) [23], and Improved Multi-scale Dispersion
Entropy (IMDE) [27]. The feature numbers of TDF, FDF,
MDF, MMSDE, and IMDE are 12, 4, 37, 20, and 20, re-
spectively. These methods use KNN to perform classification,
which is the same as AFECGP. The purpose is to investigate
whether the features extracted and constructed by AFECGP
can beat these manually extracted/designed features on fault
diagnosis.

The third category are four GP based feature construction
methods (i.e., GP-SF, GP-MF, GP-OSF, and GP-OMF) for
fault classification. In these methods, KNN is used for classifi-
cation, which keeps the same as AFECGP. The GP-SF method
constructs one high-level feature for classification. The GP-MF
method constructs multiple high-level features for classifica-
tion. The number of constructed features is set as the number
of classes, according to [56]. The GP-OSF method constructs
one high-level feature but uses the constructed feature and
the original features together for classification. The GP-OMF
method constructs multiple features (the feature number is the
same as the class number [56]) but uses the constructed fea-
tures and the original features together for classification. These
four GP based methods use the commonly used functions for
feature construction, i.e., +, −, ×, and protected ÷ (return 0 if
the divisor is 0). In these methods, the terminal set include the
TDF features and random constant. The reason for using TDF
features as the terminal set is AFECGP only extracts features
from the signal in time-domain. KNN is employed for fitness
evaluation. For fair comparisons, these methods use the same
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TABLE IV
FAULT DIAGNOSIS ACCURACY (%) OF AFECGP AND 14 COMPARISON METHODS ON FOUR FAULT DATASETS

Method
CWRU DIRG UCOON WHU

Max Avg±Std Max Avg±Std Max Avg±Std Max Avg±Std
RSA+KNN 15.00 15.00±0.00+ 40.00 40.00±0.00+ 80.98 80.98±0.00+ 82.95 82.95±0.00+
RSA+LR 19.60 19.60±0.00+ 27.43 27.43±0.00+ 96.79 96.79±0.00+ 35.23 35.23±0.00+
RSA+SVM 15.70 15.70±0.00+ 28.00 28.00±0.00+ 96.79 96.79±0.00+ 34.09 34.09±0.00+
RSA+CART 23.20 21.91±0.62+ 22.29 17.39±2.28+ 67.95 64.99±1.06+ 67.05 57.46±4.26+
RSA+MLP 32.20 30.00±0.78+ 32.57 26.19±3.26+ 96.79 96.19±0.31+ 77.27 74.85±1.70+
TDF 93.80 93.80±0.00+ 42.29 42.29±0.00+ 91.03 91.03±0.00+ 89.77 89.77±0.00+
FDF 85.30 85.30±0.00+ 56.00 56.00±0.00+ 92.52 92.52±0.00+ 67.05 67.05±0.00+
MDF 97.20 97.20±0.00+ 61.14 61.14±0.00+ 100.0 100.0±0.00- 77.27 77.27±0.00+
MMSDE 87.50 87.50±0.00+ 34.86 34.86±0.00+ 94.02 94.02±0.00+ 60.23 60.23±0.00+
IMDE 97.80 97.80±0.00+ 53.71 53.71±0.00+ 100.0 100.0±0.00- 97.73 97.73±0.00+
GP-SF 89.40 83.94±2.31+ 49.71 43.09±3.05+ 89.74 86.07±1.96+ 89.77 83.94±3.09+
GP-MF 98.90 98.17±0.59+ 61.14 55.81±3.16+ 96.15 91.70±2.32+ 98.86 96.40±1.86+
GP-OSF 98.40 98.02±0.25+ 65.14 61.71±1.58+ 82.26 81.37±1.33+ 96.59 94.85±1.85+
GP-OMF 98.80 98.80±0.06+ 64.00 60.17±2.13+ 87.39 86.12±0.77+ 96.59 94.62±0.88+
AFECGP 100.0 99.83±0.16 98.86 90.19±3.89 100.0 99.71±0.26 100.0 99.96±0.20
Overall 14+ 14+ 12+, 2- 14+
Rank 1/15 1/15 3/15 1/15

run time parameters as AFECGP. The purpose of comparisons
is to investigate whether AFECGP can achieve better diagnosis
performance than the other GP based baseline methods for
feature construction.

C. Parameter Settings

The parameters of AFECGP are set according to the com-
mon settings in the GP community [40]. The initial population
is generated using the ramped half-and-half method. The
population size is set as 100 and the maximal number of
generations is set as 50. Tournament selection with size 7 is
used to select individuals for Crossover and Mutation. The
rates of crossover, mutation, and elitism are 80%, 19% and
1%, respectively. The maximal and minimal tree depths are
set as 8 and 2, respectively.

The GP based methods and classification algorithms are
implemented using the DEAP (Distributed Evolutionary Al-
gorithm Package) [65] and scikit-learn [66] packages, re-
spectively. The number of neighbors in KNN is set as 3
according to [59], [67]. The parameters in the classification
algorithms are the default values of the scikit-learn package.
The parameter values of the methods using manually extracted
features are set according to the corresponding references [17],
[18], [23], [27], [67]. The experiments of all the methods on
each dataset run 30 times independently to reduce the bias
and randomness. The fault diagnosis results of the test sets
are reported.

V. RESULTS AND DISCUSSIONS

A. Classification Results

In this section, the fault diagnosis results of the AFECGP
method on the four fault diagnosis datasets are discussed and
compared with the 14 baseline methods. The results of these
methods are listed in Table IV. The results are the maximum
(Max) accuracy, the average (Avg) accuracy, and the standard
deviation (Std) of the 30 runs. The best classification results
of each dataset are highlighted in bold. In addition, the signif-
icance of the difference in results between AFECGP and each

of the baseline methods is evaluated by the Wilcoxon rank-
sum test with a 5% significance level. The symbols “+”, “-”
or “=” in Table IV represent the performance of AFECGP is
significantly better, worse than or similar to the corresponding
baseline method, respectively. The fault diagnosis performance
ranking of the AFECGP approach among all the methods on
each dataset are listed in the final row of Table IV.

The first five rows of Table IV list the diagnosis results
of five traditional classifiers using RSA. It can be found
that AFECGP obtains significantly better performance in all
the comparisons (4 datasets × 5 baseline methods). Since
the features generated by AFECGP are fed into KNN for
fault diagnosis, we should pay more attention to the results
of KNN using RSA. The diagnosis accuracy difference is
the largest on the CWRU dataset, where the maximal and
average accuracy of KNN using RSA are 15%, which are
75% and 74.83% lower than that of AFECGP, respectively.
The diagnosis accuracy difference is the smallest on the WHU
dataset, where the maximal and average accuracy of KNN
using RSA are 82.95%, which are 17.05% and 17.01% lower
than that of AFECGP, respectively. These results show that
the features extracted and constructed by AFECGP are more
effective for fault diagnosis than the methods using original
signal amplitudes.

Rows 6 to 10 of Table IV are the diagnosis results of the
KNN classifier using manually extracted/designed features,
i.e., TDF [17], FDF [17], MDF [18], MMSDE [23], and IMDE
[27]. The results show that AFECGP achieves significantly
better performance in 18 comparisons out of the total 20 com-
parisons (4 datasets × 5 baseline methods). For the CWRU,
DIRH, and WHU datasets, the best maximal and average accu-
racies of AFECGP are better than that of these methods using
manually extracted features. The diagnosis accuracy difference
is the largest on the DIRG dataset, where the best maximal and
average accuracies of these methods using manually extracted
features are 61.14%, which are 37.72% and 29.05% lower
than that of AFECGP, respectively. On the UCOON dataset,
the maximal accuracy of using MDF, IMDE, and AFECGP are
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100%, and the average accuracy of MDF and IMDE is 0.29%
higher than that of AFECGP. Although AFECGP achieves
worse performance than the methods using the MDF or IMDE
features on UCOON, the best result achieved by AFECGP is
the same as them, and AFECGP achieves significantly better
performance than them on the remaining three datasets. These
results show that the features generated by AFECGP perform
better on classifying various types of vibration signals, while
the manually extracted features may only be effective for
classifying a certain type of signal. In summary, the features
extracted and constructed by AFECGP are more discriminative
and effective than the manfully extracted/designed features for
these fault diagnosis problems.

Rows 11 to 14 of Table IV are the diagnosis results obtained
the GP based feature construction baseline methods, i.e., GP-
SF, GP-MF, GP-OSF, and GP-OMF. The results show that
the AFECGP based diagnosis approach achieves significantly
better performance in all the comparisons. The diagnosis
accuracy difference is the largest on the DIRG dataset, where
the best maximal and average accuracy of these traditional GP
based methods are 65.14% and 60.17%, which are 33.72% and
30.02% lower than that of AFECGP, respectively. The fault
diagnosis accuracy difference is the smallest on the CWRU
dataset, where the best maximal and average accuracy of the
GP based baseline methods are 98.9% and 98.8%, which are
1.1% and 1.03% lower than that of AFECGP, respectively. The
diagnosis accuracy of GP-MF on all the datasets is better than
that of GP-SF, which demonstrates that constructing multiple
features is more effective for fault diagnosis than constructing
a single feature. However, the performance of GP-OMF is
only better than the other traditional GP based methods on
the CWRU dataset, which demonstrates that more features do
not necessarily improve classification accuracy. According to
above results, the reasons of AFECGP achieves higher fault
diagnosis accuracy than these four GP based methods can be
summarized as follows: 1) AFECGP can automatically detect
the useful subband signals, extract and construct effective
features from the subband signals; 2) AFECGP can automat-
ically determine the number of features for solving a fault
diagnosis task. In summary, AFECGP can adaptively identify
useful subband signals to extract and construct discriminative
features, and automatically determine the optimal number of
features to achieve effective fault diagnosis.

To sum up, AFECGP achieves significantly better results in
54 comparisons out of the total 56 comparisons (4 datasets
× 14 baseline methods). On the CWRU, WHU and UCOON
dataset, AFECGP achieves the maximal diagnosis accuracy of
100% and the average diagnosis accuracy of above 99%. On
the DIRG dataset, AFECGP achieves the maximal diagnosis
accuracy of 98.86% and the average diagnosis accuracy of
90.19%. The diagnosis performance of AFECGP ranks the
first among all these 15 methods on the CWRU, DIRG, and
WHU datasets and ranks the third on the UCOON dataset.
The results show that the AFECGP based diagnosis approach
has excellent fault diagnosis ability and high adaptability. As
a result, the AFECGP approach is an effective and promising
approach to fault diagnosis of rotating machinery.

B. Convergence Behaviour

The GP methods are evolutionary learning algorithms. To
show the learning ability of these GP based methods for
feature extraction and construction, we analyse and compare
the convergence curves of these five GP based methods,
including the proposed AFECGP approach. Fig. 6 shows the
evolution plots on the four datasets, where the horizontal axis
of each sub-figure represents the number of generations and
the vertical axis represents the average value of the best-of-
generation diagnosis accuracy of the 30 runs. Each sub-figure
has five colored lines representing GP-SF, GP-MF, GP-OSF,
GP-OMF, and AFECGP, respectively. As shown in Fig. 6,
the convergence performance of AFECGP is superior to that
of GP-SF, GP-MF, GP-OSF, and GP-OMF on the four fault
diagnosis datasets. On the CWRU, DIRG, UCOON, and WHU
datasets, AFECGP takes 8, 25, 4, and 2 generations to obtain
the optimal diagnosis accuracy, respectively, which is faster
than the other four GP based methods. In addition, the optimal
diagnosis accuracy of AFECGP is better than the other four
GP based methods on the four fault diagnosis datasets.

To conclude, the comparisons show that AFECGP has a
faster convergence speed and can find better solutions than
the other GP based feature construction methods on these four
fault diagnosis datasets. The main reasons are the designs of
the new program structure, the function set and the terminal
set in AFECGP. These new designs allow AFECGP to find
better solutions to achieve higher diagnosis performance than
the compared GP methods.

C. Computational Time

The computational time of AFECGP includes two parts,
i.e., the evolutionary learning time and the fault diagnosis
time. The evolutionary learning time is the time needed for
conducting the evolutionary process (i.e., the time needed in
the second step shown in Fig. 5). Since the non-GP based
methods do not have the evolutionary process, the evolutionary
learning time of AFECGP is only compared with the GP based
methods. Table V lists the average learning time (in second)
of the 30 runs of the GP based methods. From this table, it
can be found that AFECGP uses about 1,007s, 195s, 607s,
and 205s on the CWRU, DIRG, UCOON, and WHU datasets
respectively to search for the best solutions. Compared with
the other four GP methods, AFECGP uses a longer learning
time to find the best solutions. Compared with these four GP
methods, the solutions of AFECGP is more complex in order
to achieve useful subband signal detection, feature extraction
and construction. The sophisticated solutions of AFECGP need
more computational time during the fitness evaluation process
than the other four GP methods, which use simple trees to
construct features from a set of manually extracted features.
Although AFECGP needs more time than the other GP based
methods, it is noted that the learning time of AFECGP is not
long in general, i.e., 17 minutes at most, which is affordable.

The fault diagnosis time is the time for classifying the
instances in the test set (i.e., the time needed in the third step of
Fig. 5). Table VI lists the average fault diagnosis time of the 30
runs in seconds on the four datasets. It is clear that the methods
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Fig. 6. Convergence curves of the GP based methods.

TABLE V
EVOLUTIONARY LEARNING TIME (SECONDS) OF GP-BASED METHODS

ON FOUR FAULT DIAGNOSIS DATASETS

Method
CWRU DIRG UCOON WHU

Avg±Std Avg±Std Avg±Std Avg±Std
GP-SF 492.4±104.9 93.4±26.4 228.0±66.29 55.9±13.7
GP-MF 568.6±146.5 111.9±23.2 241.7±73.2 60.4±13.4
GP-OSF 566.3±107.7 105.3±22.5 283.9±55.7 52.6±12.2
GP-OMF 667.8±164.5 122.2±28.7 294.8±48.4 64.9±12.3
AFECGP 1007.7±358.9 195.4±58.4 607.3±301.4 205.4±69.8

TABLE VI
FAULT DIAGNOSIS TIME (SECONDS) ON THE FOUR DATASETS

Method
CWRU DIRG UCOON WHU

Avg±Std Avg±Std Avg±Std Avg±Std
TDF 0.30±0.016 0.04±0.002 0.22±0.003 0.03±0.002
FDF 0.29±0.002 0.04±0.003 0.24±0.004 0.03±0.002
MDF 275.53±1.266 127.81±2.238 20.15±0.522 15.76±0.585
MMSDE 97.15±2.217 9.71±0.035 74.55±0.263 8.46±0.022
IMDE 176.12±0.417 15.72±0.037 130.19±1.805 13.43±0.085
GP-SF 0.61±0.187 0.08±0.024 0.31±0.076 0.19±0.012
GP-MF 0.60±0.166 0.07±0.019 0.28±0.031 0.04±0.009
GP-OSF 0.53±0.156 0.08±0.024 0.31±0.053 0.03±0.008
GP-OMF 0.64±0.333 0.08±0.033 0.32±0.043 0.04±0.008
AFECGP 0.84±0.329 0.09±0.027 0.34±0.061 0.05±0.022

using the MDF, MMSDE, and IMDE features use a longer
time than the methods using the TDF and FDF features and
the GP based methods. The reason is that the extraction of the
MDF, MMSDE and IMDE features has a complicated signal
processing process, while the extraction of the TDF and FDF
features only performs statistical calculations on the signals.
The AFECGP approach uses about 0.84, 0.09, 0.34, and 0.05
seconds on the CWRU, DIRG, UCOON, and WHU datasets,
respectively. Compared with the other four GP based methods,
the time of AFECGP is longer on these four datasets because
the solutions of AFECGP have more calculations. However,
the time of AFECGP is much less than that of the methods
using the MDF, MMSDE and IMDE features. Overall, the time
complexity of the AFECGP is less than most of the traditional
fault diagnosis methods, and not remarkably larger than other
GP based methods for feature construction.

D. Feature Visualization

To better illustrate the superiority of the features generated
by AFECGP, the t-SNE dimensionality reduction technology
[68] is used to reduce the original signal and the features
generated by AFECGP into two dimensions (2-D) for vi-
sualization, respectively. The instances in the test set are

1 2 3 4 5 6 7 8 9 10

(a) CWRU

1 2 3 4 5 6 7

(b) DRIG

1 2 3 4 5 6 7 8 9

(c) UCOON

1 2 3 4

(d) WHU

Fig. 7. Data visualization via t-SNE using the original signals and the
features generated by AFECGP. Left: raw signals; right: features generated
by AFECGP.

used for visualization and the results are shown in Fig. 7,
where different running conditions are represented by different
colors. For example, 10 colored points of Fig. 7(a) represent
10 running conditions of rolling bearing in the CWRU dataset.
The left column of Fig. 7 shows the visualization results
using the original signals, while the right column shows the
visualization results using the features generated by AFECGP.

As it can be seen from the left figures of Fig. 7, for the
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CWRU, DIRG, and WHU datasets, the points in different
classes are randomly distributed and irregular. For the UCOON
dataset, some same colored points are gathered together, but
different colored clusters are overlapping. The visualization
results of the original signals illustrate that the vibration sig-
nals under different running conditions are wrongly clustered,
which indicates that the classification based on the raw signal
may not be effective.

As it can be seen from the right figures of Fig. 7, for the
CWRU, UCOON, and WHU datasets, the same colored points
are gathered together, and there are obvious gaps between the
different colored clusters. For the DIRG dataset, except for one
red point is incorrectly gathered together with the green points,
the other different colored points are gathered together and
do not have overlap. The visualization results of the features
generated by AFECGP illustrate that these features have good
similarity among the same class and have big differences
between different classes, which makes it easier to classify
the vibration signals under different running conditions.

By the visualization of the features generated by AFECGP,
the difference of the vibration signals under different run-
ning conditions can be seen intuitively. This illustrates that
AFECGP can effectively extract and construct representative
features in various vibration signals to improve the fault
classification performance.

E. Example Model Analysis

Two example models/trees/programs evolved by AFECGP
are used to further understand how informative features are
extracted from original vibration signals and why they achieve
effective fault diagnosis of rotating machinery.

1) Model on CWRU: An example model evolved/learned
by AFECGP on the CWRU dataset is shown in Fig. 8, which
achieves 100% accuracy on both the training and test sets.
This model contains decomposition functions HPF , LPF ,
BPF , and BEF ; rescaling functions: Abs and Sqrt; feature
extraction functions Std, Mean and Max; feature construc-
tion functions +, − and ÷; and feature combination functions
Fcom2 and FcomM.

Signals

HPF

Std

3840

Signals

BEF

21601140

Abs

Mean

Fcom2

+

Fcom2

FcomM

Output

Signals

BPF

Max

40203660

BPF

Abs

Std

Mean

LPF

Mean

-

Std

BEF

Signals

BPF

55804080

Sqrt

Signals 1620

Signals 3780900

Signals 4320600

Fig. 8. Example solution evolved by AFECGP on the CWRU dataset.

From the example model on the CWRU dataset shown
in Fig. 8, it can be found the information of seven subband

signals are extracted as features, which are further constructed
to form an output feature vector of four high-level features.
The example model in Fig. 8 has seven branches (from left
to right): branch 1 performs BEF with a feu of 3,780 Hz
and a fel of 900 Hz on the original signal, and calculates the
standard deviation of the filtered signal amplitudes as feature
1; branch 2 performs BPF with a fpu of 4,320 Hz and a fpl
of 600 Hz on the original signal, uses Abs to transform the
filtered signal amplitudes and calculates the standard deviation
as feature 2; branch 3 performs BPF with a fpu of 5,580
Hz and a fpl of 4,080 Hz on the original signal, uses Sqrt
to transform the filtered signal amplitudes and calculates the
average value as feature 3; branch 4 performs LPF with a fl
of 1,620 Hz on the original signal, and calculates the average
of the filtered signal amplitudes as feature 4; branch 5 performs
BPF with a fpu of 4,020 Hz and a fpl of 3,660 Hz on the
original signal, and calculates the maximum of the filtered
signal amplitudes as feature 5; branch 6 performs HPF with
a fh of 3,840 Hz on the original signal, and calculates the
standard deviation of the filtered signal amplitudes as feature
6; and branch 7 performs BEF with a feu of 2,160 Hz and a
fel of 1,140 Hz on the original signal, uses Abs to transform
the filtered signal amplitudes and calculates the average value
as feature 7. The features of branches 2, 3, 4 and 5 are used to
construct a high-level feature using a mathematical expression,
i.e., feature 2÷(feature 3−feature 4)+feature 5. The outputs of
this example solution are the high-level feature constructed by
branches 2, 3, 4 and 5, the feature constructed by branch 1, the
feature constructed by branch 6, and the feature constructed
by branch 7.

2) Model on WHU: An example model evolved by
AFECGP on the WHU dataset is shown in Fig. 9, which
achieves 100% accuracy on both the training and test sets.
This model contains decomposition function BPF and BEF ;
rescaling functions Abs and Sqrt; feature extraction functions
Mean, Min, and Std, and feature combination functions
Fcom2 and FcomM.

Min

Signals

BEF

4030

SqrtBEF

Abs

Mean

Std

Signals

BEF

1000660

Sqrt

Fcom2

FcomM

Output

53030Signals

Fig. 9. Example solution evolved by AFECGP on the WHU dataset.

From the example model on the WHU dataset shown in
Fig. 9, it can be found that the example model has a small
size with three branches (from left to right): branch 1 performs
BEF with a feu of 530 Hz and a fel of 30 Hz on the original
signal, uses Abs to transform the filtered signal amplitudes and
calculates the average value as feature 1; branch 2 performs
BEPF with a fpu of 40 Hz and a fpl of 30 Hz on the original
signal, uses Sqrt to transform the filtered signal amplitudes
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and calculates the minimum as feature 2; branch 3 performs
BEF with a fpu of 1,000 Hz and a fpl of 600 Hz on
the original signal, uses Sqrt to transform the filtered signal
amplitudes and calculates the standard deviation as feature 3.
The outputs of this example solution are feature 1, feature 2
and feature 3 that are constructed by the three branches.

By the analysis of the two example models, the processes
of feature extraction and construction of AFECGP are clearly
displayed and interpreted. Unlike the existing fault diagnosis
methods, AFECGP can adaptively determine the features num-
ber instead of presetting a fixed number. The example models
on CWRU and WHU have different sizes and complexity,
which illustrates that AFECGP can adaptively evolve solutions
with variable lengths and complexity according to tasks.

F. Further Discussions

To achieve the fault diagnosis of rotating machinery ef-
fectively, it is typically better to generate as many features
as possible for comprehensively describing the signals of the
various health states [3]. AFECGP does not use the existing
technical methods, such as multi-domain feature extraction
and multi-scale feature extraction, to expand the feature pool.
As it can be seen from Fig. 8 and Fig. 9 that these two
example models learned/evolved by AFECGP are different
from the existing feature extraction methods, which neither
uses the whole signal nor uses one certain subband signal.
In contrast, AFECGP adaptively determines multiple subband
signals, extracts and constructs the features with the highest
discriminability between different subband signals. Although
these subband signals found by AFECGP may not be the res-
onance band signals concerned/employed by domain experts,
they are very effective for fault diagnosis.

Typically, the manually extracted features are defined by
domain experts using mathematical operators to combine
various basic statistical indexes. For example, the pulse index
[18] has the equation of max|x(n)|/( 1

N

∑N
n=1 |x(n)|) using

Mean, Max, Abs and ÷ operators for feature generation.
AFECGP contains the basic statistical indexes (i.e., Max,
Min, Std, Mean, and KthM ) and mathematical operators
(i.e., +, −, ×, ÷ and Abs), and has the capability to gen-
erate the same features as the features defined by domain
experts. For example, the pulse index can be constructed by
Max(Abs(x))÷Mean(Abs(x)). However, from the example
models evolved by AFECGP shown in Fig. 8 and Fig. 9, it
can be found that the features generated by AFECGP are not
same as the manually extracted features, but are more effective
for classifying fault types.

In summary, rotating machinery fault diagnosis is an en-
gineering problem traditionally requiring domain expertise,
but it can also be solved using computational intelligence
algorithms. The proposed AFECGP approach is based on
evolutionary computation techniques, which can deal with the
processes of information detection, feature extraction, feature
construction and classification, automatically and simultane-
ously, without domain expertise and human intervention.

VI. CONCLUSIONS

The goal of this paper was to develop a new GP based
approach to automatically and simultaneously extract and con-
struct features from raw vibration signals for fault diagnosis of
rotating machinery. This goal has been successfully achieved
by developing the AFECGP approach having a new individual
representation of a multi-layer structure, a new function set
with various functions for different tasks, and a new terminal
set with the raw signal and the corresponding parameters
of functions. With these designs, the AFECGP approach
can detect useful subband signals, extract features from the
detected subband signals, construct high-level features from
the extracted features, and combine these high-level features
to form the output feature vector for fault diagnosis.

The performance of the AFECGP based diagnosis approach
was examined on four fault datasets, i.e., two rolling bearing
fault datasets, one gear fault dataset and one rotor dataset.
The proposed approach was compared with fourteen baseline
methods. The results showed that the features generated by
AFECGP were more effective than raw signal, manually ex-
tracted features and the features constructed by the traditional
GP based methods for fault diagnosis.

The investigations in this paper further reveal that when
the rotating machinery running conditions become complex
(e.g. more uncertain, dynamic and noisy), the traditional
features or knowledge extracted/designed by human experts
may not be effective for diagnosing the faults. In contrast, the
automatically learned features by automated learning methods
can adapt better and achieve more effective results. This
further suggests that the use and development of automated
learning algorithms for complex fault diagnosis is a good
direction of research, and this paper opens the door for further
investigation.
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