
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022 12163
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Abstract—Currently, several convolutional neural network
(CNN)-based methods have been proposed for computer-aided
COVID-19 diagnosis based on lung computed tomography (CT)
scans. However, the lesions of pneumonia in CT scans have
wide variations in appearances, sizes, and locations in the lung
regions, and the manifestations of COVID-19 in CT scans are
also similar to other types of viral pneumonia, which hinders
the further improvement of CNN-based methods. Delineating
infection regions manually is a solution to this issue, while
excessive workload of physicians during the epidemic makes
it difficult for manual delineation. In this article, we propose
a CNN called dense connectivity network with parallel atten-
tion module (PAM-DenseNet), which can perform well on coarse
labels without manually delineated infection regions. The parallel
attention module automatically learns to strengthen informative
features from both channelwise and spatialwise simultaneously,
which can make the network pay more attention to the infection
regions without any manual delineation. The dense connectiv-
ity structure performs feature maps reuse by introducing direct
connections from previous layers to all subsequent layers, which
can extract representative features from fewer CT slices. The
proposed network is first trained on 3530 lung CT slices selected
from 382 COVID-19 lung CT scans, 372 lung CT scans infected
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by other pneumonia, and 200 normal lung CT scans to obtain
a pretrained model for slicewise prediction. We then apply this
pretrained model to a CT scans dataset containing 94 COVID-
19 CT scans, 93 other pneumonia CT scans, and 93 normal
lung scans, and achieve patientwise prediction through a voting
mechanism. The experimental results show that the proposed
network achieves promising results with an accuracy of 94.29%,
a precision of 93.75%, a sensitivity of 95.74%, and a specificity
of 96.77%, which is comparable to the methods that are based
on manually delineated infection regions.

Index Terms—Computer-aided diagnosis, convolutional neu-
ral network (CNN), coronavirus disease 2019 (COVID-19), lung
computed tomography (CT) scans.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) is a novel
coronavirus disease, which is caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], and
has become a global pandemic that broke out in early 2020.
Patients usually present respiratory infection symptoms in the
early stage, some rapidly developing acute respiratory distress
syndrome, acute respiratory failure, and other serious compli-
cations [2]. It has infected about 18 902 735 people and caused
about 709 511 deaths in more than 200 countries up to August
7, 2020 [3]. Presently, the diagnosis methods of COVID-19
mainly include medical imaging methods, such as computed
tomography (CT) [4], [5] and chest X-ray [6], [7], and an etio-
logical method, such as reverse-transcriptase polymerase chain
reaction (RT-PCR) [8], [9]. Currently, the real-time RT-PCR is
regarded as the gold standard for confirmation of the SARS-
CoV-2 infection [10]. However, some studies have shown that
the diagnostic sensitivity of RT-PCR is lower than lung CT
especially in the initial presentation of COVID-19 [10], [11].
It is essential to consider CT as a primary tool for the cur-
rent COVID-19 detection [12]. But observation of the lung CT
scans by clinicians is time consuming and laborious, especially
with the current surge in the number of patients, which greatly
increases the workload of radiologists and reduces the diag-
nostic efficiency. Therefore, for fast and accurate detection, we
aim to develop a computer-aided COVID-19 diagnosis method
based on lung CT scans.

In recent years, machine learning methods have been used in
the computer-aided diagnosis of pneumonia, such as the sup-
port vector machine (SVM) [13], [14]; the k-nearest neighbors
algorithm (KNN) [15], [16]; the Bayesian method [17], etc.
However, these traditional machine learning methods usually
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require a complex procedure of handcrafted feature extrac-
tion and dimension reduction. By the deep learning methods,
the convolutional neural network (CNN) can automatically
learn features from high-dimensional medical images in an
end-to-end multilevel manner, which does not require hand-
crafted feature extraction [18]. The CNN extracts high-level
features progressively via several layers of feature representa-
tions [19], and has achieved outstanding performance in many
image processing tasks [20]–[22] and medical image analy-
sis [23]–[26], as well as in the computer-aided COVID-19
diagnosis [27]–[32].

Currently, most existing CNN-based studies on computer-
aided COVID-19 diagnosis have made some achievements, but
the lesions of pneumonia in CT scans have wide variations
in appearances, sizes, and locations in the lung regions, and
the manifestations of COVID-19 in CT scans are also similar
to other types of viral pneumonia, which hinders the further
improvement of CNN-based methods. To enable the network
to focus more on the infection regions and improve the clas-
sification accuracy, some researchers first delineate infection
regions manually, then they extract patches from lung CT
scans according to the delineation and input these patches into
the network for training to improve recognition performance.
However, manual delineation is time consuming and labori-
ous, which is made more difficult by the excessive workload
of physicians during the epidemic. Therefore, the researchers
usually obtain lung CT scans with coarse labels that lack
manual delineation.

In this article, we propose a CNN-based method called
dense connectivity network with parallel attention module
(PAM-DenseNet) that uses a dense connectivity structure and
attention module to distinguish COVID-19 from other types
of pneumonia and normal lung cases, which can perform
well on coarse labels without manually delineated infection
regions. The attention module is a mechanism that enables
the network to enhance the extraction of informative fea-
tures through self-learning [23], [33]. We propose an attention
module called the parallel attention module (PAM). It con-
tains channel attention and spatial attention that can learn to
strengthen or suppress features from both channelwise and
spatialwise simultaneously. The PAM makes the network pay
more attention to the infection regions in lung CT scans, which
can improve the performance without any manual delineation.
The dense connectivity structure is introduced in densely
connected convolutional networks (DenseNets) [34], which
has been experimentally demonstrated to be particularly well
suited for small-scale datasets [35]. It can perform effective
feature map reuse by introducing direct connections from
previous layers to all subsequent layers, which not only ben-
efits gradient backpropagation in the deep network but also
extracts representative features from fewer CT samples.

To achieve patientwise prediction, we first train the PAM-
DenseNet on selected lung CT slices to obtain a slicewise
prediction model. Then, we use this pretrained model to
predict each slice in a CT scan of a patient, and use a vot-
ing mechanism to synthesize the slicewise prediction results
to output the final patientwise prediction results. The lung CT

slices dataset contains 3530 slices selected from 382 COVID-
19 lung CT scans, 372 lung CT scans infected by influenza-B
virus pneumonia or bacterial pneumonia, and 200 normal lung
CT scans. The CT scans dataset includes 94 COVID-19 CT
scans, 93 other pneumonia CT scans containing influenza-
B virus pneumonia and bacterial pneumonia cases, and 93
normal lung scans. The experimental results show that the
proposed network achieves promising results with an accuracy
of 94.29%, a precision of 93.75%, a sensitivity of 95.74%, and
a specificity of 96.77%, which is comparable to the methods
that are based on manually delineated infection regions.

The remainder of this article is organized as follows. We
briefly introduce the most relevant studies in Section II. In
Section III, we present the proposed PAM-DenseNet in detail.
The dataset, experimental settings, comparative methods,
experimental results, and analysis are provided in Section IV.
Finally, we conclude this article in Section V.

II. RELATED WORK

Recently, many CNN models have been proposed in
computer-aided COVID-19 diagnosis based on lung CT scans.
Shi et al. [36] reviewed and concluded several recent stud-
ies in his paper. Song et al. [28] constructed a CNN model
based on a pretrained ResNet [37] with a feature pyramid
network [38] to recognize COVID-19 on 777 COVID-19 CT
scans, 505 bacterial pneumonia CT scans, and 708 normal CT
scans, and they achieved an accuracy of 86%. They also test
VGG [39] on their dataset which achieved an accuracy of 84%.
Xu et al. [29] first used a CNN-based segmentation model
pretrained from a pulmonary CT image dataset to extract can-
didate abnormal patches, then they used a ResNet to perform
classification on 2301 COVID-19 patches, 2244 influenza-A
viral pneumonia patches, and 5616 no infection patches with
an overall accuracy of 86.7%. Chen et al. [30] first manually
delineated infection regions on CT scans by researcher, then
they used the U-Net++ [40] to segment COVID-19- related
lesions and detect COVID-19 on 4382 COVID-19 CT slices
and 9369 non-COVID-19 CT slices. The evaluation results
of COVID-19 classification using the proposed model are
95.2% (accuracy), 100% (sensitivity), and 93.6% (specificity).
Zheng et al. [41] proposed a U-Net for lung infection regions
segmentation and used a 3-D CNN model for predicting the
probability of COVID-19, and the proposed model achieves a
sensitivity of 90.7% and a specificity of 91.1% on 313 COVID-
19 subjects and 229 other subjects. Wang et al. [31] sketched
the region of interest on CT slices manually and used a CNN
model with inception structure [42] to diagnose COVID-19 on
195 COVID-19 CT scans and 258 non-COVID-19 CT scans,
and showed a total accuracy of 73.1%, along with a specificity
of 67.0% and a sensitivity of 74.0%. Shan et al. [27] intro-
duced a CNN-based segmentation model to detect COVID-19
infection regions with manual delineation of physicians and
obtained 91.6% Dice similarity coefficients between automatic
and manual segmentations. Jin et al. [43] used a 2-D CNN
model to segment the lung image and then identified slices of
COVID-19 cases, and the sensitivity of 94.1% and the speci-
ficity of 95.5% are achieved on 496 COVID-19 subjects and
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Fig. 1. Framework of the PAM-DenseNet. The PAM-DenseNet is a cascaded structure of dense block, transition layer, and PAM. The dense block extracts
features from CT slices through a dense connectivity structure, and the transition layer performs downsampling, then the PAM self-recalibrates features from
channelwise and spatialwise. A fully connected layer with softmax operation outputs the prediction as a classifier. The “other pneu.” stands for other types of
pneumonia.

1385 other subjects. Jin et al. [44] used a segmentation model
based on U-Net++ to extract lesion regions. This is followed
by a ResNet-50 classification model on 723 COVID-19 sub-
jects and 413 other subjects, and the final sensitivity is 97.4%
and specificity is 92.2%, respectively. Li et al. [45] used a
ResNet-50 model to discriminate COVID-19 from community-
acquired pneumonia and nonpneumonia on 468 COVID-19
subjects, 1551 other subjects, and 1445 nonpneumonia sub-
jects, and the results show a sensitivity of 90% and a specificity
of 96%, etc. Many studies used manually delineated infection
regions to improve the recognition accuracy due to the vari-
ability of infection regions that hampers network performance,
but it also increases the workload of radiologists, especially in
the current period of severe epidemic. Therefore, our goal is
to develop a well-performed CNN model for computer-aided
COVID-19 diagnosis based on lung CT slices without any
manual delineation of lung infection regions, and to utilize
this model to achieve patientwise prediction through a voting
mechanism.

III. PROPOSED PAM-DENSENET

In this article, we propose a CNN called the dense connec-
tivity network with PAM (PAM-DenseNet) for the slicewise
classification of COVID-19, other pneumonia, and normal
cases. As illustrated in Fig. 1, the PAM-DenseNet mainly
employs PAM and the dense connectivity structure. First, an
initial 7 × 7 convolution is performed on the input CT slice,
and the feature maps are input into a dense block to extract
features by the dense connectivity structure. The dense con-
nectivity structure iteratively concatenates the input features
with the output features and enables each convolution layer to
receive raw information from all previous layers, which can
realize the reuse of feature maps so that more features can be
extracted from fewer CT slices. After that, a transition layer
is introduced to perform downsampling. The transition layer
consists of a batch normalization (BN), a rectified linear unit
(ReLU), 1×1 convolution, and an average pooling layer. Then,
a PAM is followed to implement channel attention and spa-
tial attention on the feature maps to make the network pay
more attention to the lung infection regions from “what” and
“where”, respectively. At the end of the last dense block, the

Fig. 2. Process of predicting patientwise labels. We first train the PAM-
DenseNet model on the lung CT slices dataset, then apply this pretrained
model to the patient CT scans dataset, and obtain the patientwise prediction
through the voting mechanism. The “other pneu.” stands for other types of
pneumonia.

feature maps are sent to a fully connected layer after applying
the global average pooling operation, followed by a softmax
classifier that outputs the prediction. The input CT slice and
feature maps in all convolution layers are zero padded to keep
the size fixed. The whole PAM-DenseNet employs seven dense
blocks and six PAMs. The dense block and PAM will be
introduced in the following sections.

The process of achieving patientwise prediction is shown
in Fig. 2. First, we construct a lung CT slices dataset where
slices are selected by physicians from COVID-19 CT scans,
other types of pneumonia CT scans, including influenza-B
virus pneumonia and bacterial pneumonia, and CT scans of
normal lungs. Then, the lung CT slices dataset is prepro-
cessed, which mainly includes using a pretrained U-Net model
to segment lung tissue and normalization. We use this lung
CT slices dataset to train our PAM-DenseNet and obtain a
pretrained model to distinguish COVID-19 CT slices, other
types of pneumonia CT slices, and normal lung CT slices.
We then use the pretrained model to predict the CT slices of
each patient CT scan. The patient CT scans dataset contains
COVID-19 cases, other types of pneumonia cases, and nor-
mal cases. We perform the same preprocessing operation on
the patient CT scans dataset. After we obtain the CT slices
prediction labels for each patient, we use a voting mechanism
to synthesize these slicewise labels to obtain a patientwise
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Fig. 3. Structure of the dense layer.

prediction label. The voting mechanism we use is that when
all CT slices of a patient are predicted to be normal, the label
of the patient is predicted to be normal. When there are slices
predicted to be COVID-19 or other pneumonia, the category
with a larger number of slices is taken as the final label of the
patient. When the number of slices predicted to be COVID-19
is the same as that of other pneumonia, the prediction probabil-
ities of these two types of slices are summed, respectively, and
the larger one is the final prediction label of the patient. The
above datasets and preprocessing methods will be described
in Section IV.

A. Dense Block

The dense block provides the function of extracting features,
and each dense block is composed of three layers that are
connected densely. The dense layer shown in Fig. 3 is designed
to act as a composite of six operations [34]: 1) BN; 2) a
ReLU; 3) a 1 × 1 convolution (CONV); 4) BN; 5) a ReLU;
and 6) 3 × 3 convolution. For reducing the number of input
feature maps, 1 × 1 convolution is introduced as a bottleneck
layer before each 3 × 3 convolution, which can improve the
computational efficiency. The number of feature map channels
output by each dense layer is called the growth rate. The 1×1
bottleneck convolution first compresses the number of input
feature map channels to equal the growth rate, and then the
3 × 3 convolution further extracts features from the feature
maps and keeps the number of channels unchanged.

The dense block in the PAM-DenseNet is illustrated in
Fig. 4. Three dense layers are used in each dense block. Let
F�(·) denote a dense layer transformation, where � indexes the
dense layer, and denote the output of the �th dense layer as
X�. Within each dense block, for improving the information
flow between dense layers, the dense block utilizes direct con-
nections from any dense layer to all subsequent dense layers.
That is, the �th dense layer receives the feature maps of all
preceding dense layers, X0, . . . , X�−1

X� = F�

([
X0, X1, . . . , X�−1

])
(1)

where [X0, X1, . . . , X�−1] denotes the concatenation of feature
maps produced in the dense layers 0, . . . , � − 1. This kind
of dense connectivity structure achieves the reuse of feature
maps, which can mine more information from the limited CT
slices to improve classification accuracy.

B. Parallel Attention Module

To improve the performance of classification without man-
ually delineated infection regions of lungs, a natural idea is
that if the network can autonomously pay more attention to the

Fig. 4. Structure of the dense block. The output feature maps of each dense
layer are densely concatenated to preform feature reuse.

infection regions, the network will improve its ability to dis-
tinguish the interclass variations between COVID-19 and other
pneumonia, followed by improving the classification accuracy.
The attention module in CNNs mainly includes channel atten-
tion and spatial attention. It is a mechanism that can make the
network strengthen the critical information adaptively accord-
ing to different tasks. Recently, many attention modules have
been proposed, such as the squeeze-and-excitation networks
(SE block) [33], the bottleneck attention module (BAM) [46],
the convolutional block attention module (CBAM) [47], SCA-
CNN [48], etc. The idea of these attention modules is to
aggregate and self-recalibrate the feature maps via channelwise
and spatialwise. For distinguishing the variations of infection
regions in the lung CT slices more effectively, we propose
a PAM in our network, which employs a channel attention
module and a spatial attention module (SAM) in a parallel
manner.

The structure of PAM is illustrated in Fig. 5. For a given
intermediate feature map M ∈ R

C×H×W , PAM simultaneously
infers a 1-D channel attention map Ac ∈ R

C×1×1 and a 2-D
spatial attention map As ∈ R

1×H×W . However, to obtain the
weights that indicate the importance of the feature, the atten-
tion map usually needs to be processed by sigmoid function to
compress the weights between zero and one. Multiplying the
feature map with the two attention maps will cause a signifi-
cant decrease in value, which will lead to performance drop.
Therefore, we first do an elementwise addition operation on Ac

and As before sigmoid, and then use the sigmoid function to
obtain a weight map indicating the information that should be
enhanced. Considering that the parameters of the PAM in the
early stage of network training have not been trained well, the
weight map generated at this time is also inaccurate, and direct
multiplication to the original feature map will cause problems,
such as the decline of network performance and difficulty in
training. To ease the above problems, we design identical map-
ping to enable the network to bypass the effect of the weight
map on the original feature map. The weight map is element-
wise multiplied with the original feature map M and the results
then elementwise add with the feature map M to obtain the
final channel and spatial refined feature map M′ ∈ R

C×H×W .
The overall process of PAM can be summarized as

M′ = M ⊕ M ⊗ [σ(Ac ⊕ As)] (2)

where ⊗ denotes the elementwise multiplication, σ denotes
a sigmoid function, and ⊕ denotes the elementwise addition.
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Since the two attention maps Ac and As have different shapes,
we expand the attention maps to R

C×H×W before adding them.
We analyze the PAM from both forward and backward

processes. Given a dense block output D(x, θ) with input x,
θ is the trainable parameter in the dense block. Then, D(x, θ)

is fed into the channel attention module and the SAM to cal-
culate the weight map A(D(x, θ), φ), where φ is the trainable
parameter in the PAM. The final output y of PAM is computed
as

y = A(D(x, θ), φ) · D(x, θ) + D(x, θ). (3)

During the forward inference, the weight map A(D(x, θ), φ)

serves as a soft feature selector to indicate “what” and “where”
to attend in the channelwise and spatialwise, respectively,
which can help the network learn the feature that needs to be
emphasized or suppressed. During the back propagation, the
PAM can also serve as a gradient update filter. The gradient
of the dense block is

∂y

∂θ
= ∂A(D(x, θ), φ)

∂D(x, θ)
· ∂D(x, θ)

∂θ
· D(x, θ)

+ A(D(x, θ), φ) · ∂D(x, θ)

∂θ
+ ∂D(x, θ)

∂θ
. (4)

We can find that the weight map A(D(x, θ), φ) also par-
ticipates in the gradient propagation process of the previous
dense block, and to some extent has played a role in selectively
strengthening or suppressing the gradient.

1) Channel Attention Module: The structure of the channel
attention module is illustrated in Fig. 6. To obtain channel-
wise attention information, we adopt the SE block structure
and make slight adjustments to adapt to our network struc-
ture. The SE block is an effective channel attention mechanism
proposed in squeeze-and-excitation networks [33], which can
effectively recalibrate channelwise feature responses by explic-
itly modeling interdependencies between channels. For a given
feature map M ∈ R

C×H×W , we first use average pooling to
aggregate spatial information for each channel, generating a
spatial context descriptor Mc

avg ∈ R
C×1×1, which denotes the

average-pooled features. Then, the descriptor is forwarded to a
multilayer perceptron (MLP) with one hidden layer to produce
the channel attention map Ac ∈ R

C×1×1. To lower the number
of parameters in the attention module, the size of the hidden
layer in MLP is set to R

C/r×1×1, where r is the reduction
ratio. The channel attention module is computed as

Ac = MLP(Avgpool(M))

= W1

(
W0

(
Mc

avg

))
(5)

where MLP(·) denotes the operation of the MLP and
AvgPool(·) denotes the average pooling. W0 and W1 denote
the MLP weights W0 ∈ R

C/r×C and W1 ∈ R
C×C/r, respec-

tively. W0(·) and W1(·) denote the fully connected operation.
Compared with the original SE block, our modification is to
cancel the sigmoid in the SE block and make it after the addi-
tion of the channel attention map and the spatial attention map,
so as to prevent the value of the feature map from dropping
significantly.

Fig. 5. Structure of the PAM. The channel attention module and SAM are
placed in parallel to infer attention maps, and the attention maps are fused
and applied to the original feature map by elementwise multiplication.

Fig. 6. Structure of the slightly modified SE block.

Fig. 7. Structure of the SAM.

2) Spatial Attention Module: The structure of the SAM
is illustrated in Fig. 7. Given an intermediate feature map
M ∈ R

C×H×W as input, the SAM produces a spatial atten-
tion map As ∈ R

1×H×W to strengthen or suppress features
in different spatial locations, which is complementary to the
channel attention. For saving both the number of parameters
and computational overhead, we first apply a 1 × 1 convo-
lution on the input feature map to compress channels, which
reduce the dimension of feature map M to R

C/r×H×W . We use
the same reduction ratio r with the channel attention module
for simplicity. Utilizing contextual information adequately is
crucial to identify which areas of lung CT slices should be
focused on. Therefore, we design two different convolutional
branches to encode spatial information: one branch adopts two
consecutive 3×3 standard convolution operations and the other
branch uses two consecutive 3×3 dilated convolution [49] with
a dilation rate of 2. These two branches have different prior-
ities: the dilated convolution can enlarge the receptive fields
by a sparse convolution kernel, which can leverage contextual
information more effectively, while the standard convolution
can extract more information about details with a smaller
receptive field by a compact convolutional kernel. The dimen-
sion of the feature maps in these two branches is maintained
at RC/r×H×W and then we integrate and compress the feature
maps to R

1×H×W by 1×1 convolution, respectively. To aggre-
gate the original spatial information of the input feature map
M from spatialwise, we apply the average-pooling operation
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along the channel axis to obtain a one-channel feature map
Ms

avg and concatenate it with the output of the previous two
branches to obtain a spatial feature descriptor in dimension
R

3×H×W . Finally, we apply a 5×5 convolution layer on the
spatial feature descriptor to generate a spatial attention map
As ∈ R

1×H×W encoding where to emphasize or suppress. In
short, the spatial attention is computed as

As = f 5×5
[
Ms

avg; f 1×1
2

(
f 3×3
1

(
f 3×3
0

(
f 1×1
0 (M)

)))
;

f 1×1
3

(
d3×3

1

(
d3×3

0

(
f 1×1
1 (M)

)))]
(6)

where f k×k represents a convolution operation with a filter size
of k×k, and d3×3 denotes a dilated convolution operation with
a filter size of 3 × 3. [; ] denotes the concatenate operation.
Subscripts indicate different convolution operations.

IV. EXPERIMENTS AND DISCUSSION

A. Dataset and Preprocess

This study is based on the reliable lung CT scans that
are collected by the cooperative hospitals in Chongqing and
Hubei, China. There are a total of 476 COVID-19 lung CT
scans and 465 other types of pneumonia lung CT scans includ-
ing 268 bacterial pneumonia CT scans and 197 influenza-B
virus pneumonia CT scans, and 293 normal lung CT scans.
The slice thickness of the COVID-19 CT scans contains 1, 2,
and 5 mm. The slice thickness of the other types of pneumonia
is 2 mm. The slice thickness of the normal lung CT scans con-
tains 1.25, 2, and 5 mm. Based on these CT scans we construct
two datasets: 1) a lung CT slices dataset and 2) a patient CT
scans dataset. The patient CT scans dataset randomly selects
94 COVID-19 CT scans, 93 other types of pneumonia lung
CT scans, including 41 bacterial pneumonia CT scans and 52
influenza-B virus pneumonia CT scans, and 93 normal lung
CT scans. Excluding the CT scans of the patient CT scans
dataset, we select slices to construct the lung CT slices dataset
from the remaining CT scans. The lung CT slices dataset con-
tains 3530 slices, of which 1016 slices are selected from 382
COVID-19 CT scans, 1012 slices are selected from 372 other
types of pneumonia CT scans, including 227 bacterial pneu-
monia CT scans and 145 influenza-B virus pneumonia CT
scans, and 1502 slices are selected from 200 normal lung CT
scans. In the selection of slices, we pay attention to the slices
with typical lesions and take into account the diversity of lung
morphology on different slices. These slices only consist of the
transverse plane, and slice size is 512×512. The original CT
scans contain a lot of content unrelated to lung tissue, such as
clothes, bones, etc., which will cause unnecessary interference
in the network. Therefore, we first employ a pretrained U-Net
model to segment the lung tissue. The pretraining segmenta-
tion model we used is proposed by Hofmanniger et al. [50],
which is trained on a large and diverse lung CT dataset that
covers a wide range of visual variability, and our experiments
have shown that this model can accurately segment lung tis-
sue in the case of severe lung infection. Several segmentation
results are shown in Fig. 8. After segmenting the lung tissue,
we normalize these datasets between zero and one.

Fig. 8. Several segmentation results of lung CT slices. (a) COVID-19.
(b) Influenza-B virus pneumonia. (c) Bacterial pneumonia. (d) Normal lung
slice.

B. Evaluation Metric

For evaluating the performance of the proposed PAM-
DenseNet, five evaluation metrics are introduced for evalu-
ation: 1) accuracy (Acc); 2) sensitivity (Sen); 3) specificity
(Spec); 4) precision (Prec); and 5) F1 score (F1), which are
given as follows:

Acc = Numcorrect

Numtotal
(7)

Sen = TP

TP + FN
(8)

Spec = TN

FP + TN
(9)

Prec = TP

TP + FP
(10)

F1 = 2TP

2TP + FN + FP
(11)

where TP denotes the true positive, FP is the false positive,
TN is the true negative, and FN stands for false negative.
Numcorrect represents the number of samples that are correctly
predicted, and Numtotal represents the total number of test
samples. The COVID-19, other types of pneumonia, and nor-
mal case are regarded as positive class, respectively, in the
calculation of Sen, Spec, Prec, and F1 score.

C. Implementation Details

In our PAM-DenseNet, the growth rate of the dense block
is 16 and the kernel size of convolution in dense block is
3 × 3 with one padding. The kernel size of initial convolution
is 7 × 7 with three padding. The reduction ratio of PAM is 8.
The implementation details of the PAM-DenseNet are shown
in Table I. The PAM-DenseNet is trained from scratch on a
Tesla V100 GPU. Adam is used as the optimizer with the
learning rate of 3e-4. The cross-entropy function is used as
the loss function, and the proposed network is trained for 400
epochs with a batch size of 8. The cross-entropy loss function
LCE can be formulated as follows:

LCE = −
3∑

i=1

yi log(pi) (12)

where i ranges from 1 to 3 that denotes three categories,
yi represents the ground truth, and pi denotes the predicted
probability.
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TABLE I
IMPLEMENTATION DETAILS OF OUR PROPOSED PAM-DENSENET

TABLE II
EVALUATION RESULTS FOR DIFFERENT TYPES OF ATTENTION MODULES

D. Experiments and Analysis

1) Effectiveness of Parallel Attention Module: To compare
the performance of PAM with the single channel attention
module and single SAM, we conduct experiments to evaluate
PAM, SE block, and the SAM of PAM. We adopt DenseNet as
our baseline, and combine the above attention modules to eval-
uate through five-fold cross-validation on the lung CT slices
dataset. The DenseNet utilizes seven dense blocks and six tran-
sition layers, three dense layers in each dense block, and the
attention modules are placed behind the transition layers. The
reduction ratio of the SE block is set to 8. Experimental set-
tings, such as epoch, batch size, etc., are the same as those
in Section IV-C above. The test results are shown in Table II,
and the receiver operating characteristic curves (ROC) and area
under the curve (AUC) are shown in Fig. 9. COVID-19 and
other types of pneumonia are regarded as the positive classes,
respectively, in the calculation of these evaluation metrics. We
can find that compared with the “DenseNet” without attention
module, the channel attention module and SAM can effectively
improve network performance. The PAM outperforms that of
using only the channel attention module or SAM and has a bet-
ter diagnostic performance for pneumonia, which demonstrates
that utilizing both attention modules simultaneously produce
a more significant promotion for improving the classification
accuracy in computer-aided COVID-19 diagnosis.

To demonstrate the effectiveness of PAM from the perspec-
tive of visualization, we apply the gradient-weighted class acti-
vation mapping (Grad-CAM) [51] method on the “DenseNet,”
“DenseNet+SE,” “DenseNet+SAM,” and “DenseNet+PAM,”
respectively. The Grad-CAM utilizes the gradient information

Fig. 9. ROC and AUC of different attention modules. (a) The ROC and
AUC of the COVID-19 category. (b) The ROC and AUC of the other types
of pneumonia.

Fig. 10. Class activation maps of the “DenseNet,” “DenseNet+SE,”
“DenseNet+SAM,” and “DenseNet+PAM.” The warmer color represents a
higher value of weights, which denotes that the network is more focused
on the regions. (a) input lung CT slices. (b) DenseNet. (c) DenseNet + SE.
(d) DenseNet + SAM. (e) DenseNet + PAM.

that has flowed into a convolution layer of the CNNs to under-
stand the importance of each neuron for a decision of interest;
thus, the regions focused by the network can be visualized.
We randomly select three COVID-19/other types of pneumo-
nia CT slices as input. The visual results are shown in Fig. 10.
The three slices are displayed in column Fig. 10(a) and the
regions marked by the red rectangle are the infection regions,
such as the peripheral ground-glass opacities, lung consolida-
tion, etc. The column in Fig. 10(b)–(e) shows the visualization
of the “DenseNet,” “DenseNet+SE,” “DenseNet+SAM,” and
“DenseNet+PAM,” respectively. We can see that the networks
with PAM have a higher value of weights in the relevant infec-
tion regions of lungs than the networks with other attention
modules. This indicates that the PAM enables the network
to pay more attention to the infection regions that are con-
ducive to the pneumonia recognition tasks, thereby improving
performance without manual delineation.

To show the effect of PAM more intuitively, we display the
intermediate feature maps before and after PAM in Fig. 11.
We randomly select three COVID-19/other types of pneumonia
CT slices as input, which are shown in the first column. To
facilitate visual observation, we chose the first four PAMs with
high resolution. We show the change of the feature maps after
passing through the PAM, and we can see that the feature
response value of the lesion area is significantly enhanced.

2) Experiment of Slice-Wise Classification and Visual
Explanation of PAM-DenseNet: We train and compare the



12170 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022

TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT NETWORKS ON THE LUNG CT SLICES DATASET

Fig. 11. Visual comparisons of the intermediate feature maps produced by
PAM in the “DenseNet+PAM”. The infection regions are marked by the red
rectangle and warmer color represents a higher response value.

PAM-DenseNet with several typical CNN architectures on the
lung CT slices dataset, including VGG16 [39], VGG19 [39],
ResNet18 [37], and ResNet34 [37]. For the comparison of the
attention module, we combine the PAM or SE block into these
networks. We evaluate these networks with five-fold cross-
validation on our lung CT slices dataset. The reduction ratio
of the SE block is set to 8. Experimental settings, such as
epoch, batch size, etc., are the same as those in Section IV-C
above. The number of parameters and the classification results
are shown in Table III. COVID-19 (COV), other types of
pneumonia (pneu), and normal lung (Nor) are regarded as the
positive class, respectively, in the calculation of these evalua-
tion metrics. We can find that the PAM-DenseNet combined
with the dense connectivity structure and PAM achieves the
best performance among all those networks. The PAM per-
forms better than SE block because it has spatial and channel
attention modules but the SE block only has channel atten-
tion while missing the importance of spatial attention. The
PAM arranges the channel attention module and SAM in paral-
lel and simultaneously calculates channel and spatial attention
maps to fuse, and achieves better classification performance.
For the feature extraction structure, the networks using dense
connectivity structure perform significantly better than those
with residual connection and plain structure. It is worth noting

that DenseNet without any attention module performs better
than the PAM-ResNet and PAM-VGG, both of which are with
PAM. This also proves the effectiveness of the dense connec-
tivity structure. Moreover, we can find that the networks with
dense connection structure have a significantly lower number
of parameters. The attention modules can steadily improve the
classification performance of networks with a small number of
parameters required.

We also conduct experiments to explain the PAM-DenseNet
from a visual perspective through Grad-CAM. It is crucial to
track the attention of the proposed network and provide valuable
information about which lung regions are particularly related
to the diagnosis of COVID-19 or other types of pneumonia. To
visually demonstrate the effectiveness of the proposed PAM-
DenseNet in COVID-19/other pneumonia recognition, and to
show the lung regions that the proposed network focuses on, we
use Grad-CAM on a trained PAM-DenseNet model to generate
the class activation map. We randomly select six samples of
COVID-19 and other types of pneumonia from the lung CT
slices dataset and feed them into the Grad-CAM to visualize
the regions that the networks focused on. As illustrated in
Fig. 12, the PAM-DenseNet accurately focuses on the periph-
eral ground-glass opacities, lung consolidation, etc., which are
in accord with clinical studies of COVID-19 [4]. Therefore,
the proposed PAM-DenseNet can focus on these infection
regions accurately to make predictions, which demonstrates
the network’s effectiveness, and meanwhile confirms that these
regions are associated with COVID-19.

3) Experiment of Patient-Wise Prediction: To achieve
patientwise prediction, we first obtain slicewise pretrained
models trained from the lung CT slices dataset, and then
apply these models to the patient CT scans dataset. The pre-
trained models predict each slice in a CT scan of a patient,
and we use a voting mechanism to synthesize the slicewise
prediction results to output the final patientwise prediction.
The experimental results are reported in Table IV. We can
find that our PAM-DenseNet achieves the best accuracy in the
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TABLE IV
PERFORMANCE COMPARISON AMONG DIFFERENT NETWORKS ON THE PATIENT CT SCANS DATASET

Fig. 12. Visualization of focused lung regions by the proposed PAM-
DenseNet. For each visualization result, the one with the black background is
an input CT image, followed by a class activation map shown as a heat map.
The warmer color represents a higher value of weights, which denotes that
the network is more focused on the regions. The regions marked by the red
rectangle are the infection regions, such as the peripheral ground-glass opac-
ities, lung consolidation, etc. (a - f): Class activation maps of six COVID-19
samples. (g - l): Class activation maps of six other pneumonia samples.

three categories. In the calculation of evaluation metrics for
each category, most of the indicators, especially the integrated
index F1 score, also reach the highest value, which demon-
strates the promising performance of our proposed network
in patientwise prediction. In addition, we can see that in the
patientwise prediction, the dense connection structure is supe-
rior to the residual connection structure and the plain structure.
Moreover, the attention module has a stable improvement
effect on performance. The PAM with spatial attention and
channel attention is superior to SE block with only channel
attention.

TABLE V
COMPARISON OF EXISTING COMPUTER-AIDED COVID-19 DIAGNOSIS

METHODS BASED ON CNN

4) Comparison With Existing Methods: There are some
existing methods in computer-aided COVID-19 diagnosis: the
method of Chen et al. [30], which obtained 95.2% (accuracy),
100% (sensitivity), and 93.6% (specificity) on 51 subjects
with COVID-19 and 55 subjects with other, the method of
Zheng et al. [41], which achieved the sensitivity of 90.7%
and specificity of 91.1% on 313 subjects with COVID-19
and 229 subjects with others, the method of Jin et al. [43],
which achieved the sensitivity of 94.1% and specificity of
95.5% on 496 subjects with COVID-19 and 1385 subjects
with others, the method of Jin et al. [44], which obtained the
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sensitivity is 97.4% and specificity is 92.2% on 723 subjects
with COVID-19 and 413 subjects with others, the method of
Wang et al. [31], which achieved a total accuracy of 73.1%,
along with a specificity of 67.0% and a sensitivity of 74.0%
on 44 subjects with COVID-19 and 55 subjects with others,
the method of Song et al. [28], which achieved an accuracy
of 86.0% for pneumonia classification (COVID-19 or bacterial
pneumonia), and an accuracy of 94.0% for pneumonia diag-
nosis (COVID-19 or healthy) on 88 subjects with COVID-19,
100 subjects with other pneumonia, and 86 healthy subjects,
the method of Xu et al. [29], which achieved an overall
accuracy of 86.7% on 219 subjects with COVID-19, 224 sub-
jects with other pneumonia, and 175 healthy subjects, and the
method of Li et al. [45], which obtained the sensitivity of 90%
and a specificity of 96% on 468 subjects with COVID-19, 1551
subjects with other pneumonia, and 175 healthy subjects. The
classification results of PAM-DenseNet and some state-of-the-
art methods are listed in Table V. We can see that compared
with existing methods, our method achieves promising results
without manually delineated infection regions under a small
number of parameters, which shows the application value in
computer-aided COVID-19 diagnosis.

V. CONCLUSION

In this article, we proposed a CNN architecture PAM-
DenseNet for computer-aided COVID-19 diagnosis on lung
CT scans. The proposed PAM-DenseNet employs the dense
connectivity structure and PAM attention module to perform
feature maps reuse and self-recalibrating features, which can
improve performance significantly on limited lung CT scans
without manually delineated infection regions. Our dataset
consists of three categories: 1) COVID-19; 2) other types of
pneumonia; and 3) normal case. We train our PAM-DenseNet
on selected lung CT slices to obtain a slicewise prediction
model, then we use the pretrained model to predict each slice
in patient CT scans dataset, and use a voting mechanism to
calculate the final patientwise prediction results. The experi-
mental results on 280 CT scans demonstrate that our proposed
network achieves promising patient-wise results with an accu-
racy of 94.29%, a precision of 91.18%, a sensitivity of 98.94%,
and a specificity of 95.16%, which is superior to most existing
computer-aid COVID-19 diagnosis methods and is also com-
parable to the methods that are based on manually delineated
infection regions.
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