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Abstract—Inspired by the continuous opinion and discrete
action (CODA) model, bounded confidence and social networks,
the bounded confidence evolution of opinions and actions in
social networks is investigated and a social network opinions and
actions evolutions (SNOAEs) model is proposed. In the SNOAE
model, it is assumed that each agent has a CODA for a cer-
tain issue. Agents’ opinions are private and invisible, that is, an
individual agent only knows its own opinion and cannot obtain
other agents’ opinions unless there is a social network connec-
tion edge that allows their communication; agents’ actions are
public and visible to all agents and impact other agents’ actions.
Opinions and actions evolve in a directed social network. In the
limitation of the bounded confidence, other agents’ actions or
agents’ opinions noticed or obtained by network communication,
respectively, are used by agents to update their opinions. Based
on the SNOAE model, the evolution of the opinions and actions
with bounded confidence is investigated in social networks both
theoretically and experimentally with a detailed simulation anal-
ysis. Theoretical research results show that discrete actions can
attract agents who trust the discrete action, and make agents to
express extreme opinions. Simulation experiments results show
that social network connection probability, bounded confidence,
and the opinion threshold of action choice parameters have strong
impacts on the evolution of opinions and actions. However, the

Manuscript received May 8, 2020; revised September 16, 2020; accepted
November 24, 2020. This work was supported in part by the National Natural
Science Foundation of China under Grant 71991460, Grant 71991465, Grant
71871149, Grant 71910107002, and Grant 71725001; in part by the Research
Foundation of Education Bureau of Hunan Province, China, under Grant
20B147; and in part by the Spanish State Research Agency under Project
PID2019-103880RB-I00/AEI/10.13039/501100011033. This article was rec-
ommended by Associate Editor H. A. Abbass. (Corresponding author:
Yucheng Dong.)

Min Zhan is with the Key Laboratory of Hunan Province for New Retail
Virtual Reality Technology, Institute of Big Data and Internet Innovation,
Hunan University of Technology and Business, Changsha 410205, China
(e-mail: zhanmin19881005@126.com).

Gang Kou is with the School of Business Administration, Southwestern
University of Finance and Economics, Chengdu 611130, China (e-mail:
kougang@swufe.edu.cn).

Yucheng Dong is with the Center for Network Big Data and Decision-
Making, Business School, Sichuan University, Chengdu 610065, China
(e-mail: ycdong@scu.edu.cn).

Francisco Chiclana is with the Institute of Artificial Intelligence, De
Montfort University, Leicester LE1 9BH, U.K., and also with the Andalusian
Research Institute on Data Science and Computational Intelligence, University
of Granada, 18071 Granada, Spain (e-mail: chiclana@dmu.ac.uk).

Enrique Herrera-Viedma is with the Andalusian Research Institute in
Data Science and Computational Intelligence, University of Granada, 18071
Granada, Spain, and also with the Department of Electrical and Computer
Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah
21589, Saudi Arabia (e-mail: viedma@decsai.ugr.es).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCYB.2020.3043635.

Digital Object Identifier 10.1109/TCYB.2020.3043635

number of agents in the social network has no obvious influence
on the evolution of opinions and actions.

Index Terms—Action, bounded confidence, evolution, opinion,
social network.

I. INTRODUCTION

IN THE real world, people often express their opinions
regarding products, items, and issues, which are suscepti-

ble to change due to the influence of other people’s opinions.
Indeed, people communicate their opinions and attempt to
influence others’ opinions in an active give-and-take process
governed by collective buying and strategy decisions [1], [8];
consumers communicate with one another about innovation,
share their opinions, and ultimately decide to accept or reject
a new product [8], [33]; opinion leaders hope to guide others
close to them (neighbors) to an expected opinion to achieve
a particular goal [54], [55].

Theoretically, the opinion dynamics discipline has been
developed to describe the evolution of opinions among a group
of individuals who interact among them [4], [14], [39].
Consensus, polarization, or fragmentation is the main charac-
teristics of groups’ opinions in the final stage [16], [24], [41].
Based on how opinions are expressed, the existing opinion
dynamics models are roughly classed as a continuous or
as a discrete model. Classical continuous opinion dynamics
models include the DeGroot model [3], [10]; the Friedkin–
Johnsen model [19]–[21]; the bounded confidence model
(e.g., the Deffuant–Weisbuch model [9], [48] and the
Hegselmann–Krause model [24], [26]); and the continuous
opinion and discrete action (CODA) model [34], while the
Voter model [25], [27], [35]; the MR model [22], [28], [46];
and the Snajzd model [42], [45] are representative dis-
crete opinion dynamics models. Over the decades, opinion
dynamics has become a hot topic with much atten-
tion received from sociology [2], [23]; physics [4], [6];
computer science [11]–[13]; systems and control engi-
neering [15], [17], [40]; and applications in political
elections [23]; advertising and markets [7], [32]; and group
decision making [30], [47], [50], [51]. Despite this, the
existing opinion dynamics models and their extensions are
associated the following limitations.

1) Limitation 1: Most of the existing opinion dynam-
ics models focus on the evolution of the opin-
ions [16], [43], [47] and ignore the evolution of
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agents’ actions. However, in some issues or events,
opinions and actions of agents will evolve with inter-
actions [17], [29], [34], [41]. Therefore, investigating
opinions and actions evolutions is a very important
and interesting research topic, which so far has been
considered only by a limited number of research stud-
ies [17], [32], [34].

2) Limitation 2: The aforementioned studies on opinions
and actions evolutions models assume that the opinions
are inner and invisible, that is, agents only know their
own opinions, they cannot obtain but can notice other
agents’ opinions, which can be used to update/evolve
their own opinions [17], [29], [32], [34]. Actually, in real
life, in addition to their own opinions, agents can also
obtain other agents’ opinions when they are connected
via a social network that allows their interaction and
communication.

Thus, social networking is crucial for agents to obtain other
agents’ opinions [5], [18], [44], [49]. However, to the best of
our knowledge, this is the first research study that focuses on
opinions and actions evolutions with bounded confidence in
social networks with opinions updating rules based on other
agents’ opinions or actions. This research study is carried out
as per the following sequence of steps.

1) A directed social network is considered with agents as
its nodes, and edges representing the connection rela-
tionship among the agents. Each agent has a CODA for
a certain issue. Meanwhile, we consider the bounded
confidence of agents; that is, agents will interact with
each other only if the difference in their opinions is
smaller than a given bounded confidence threshold. The
opinion of an agent is only influenced by the agents
whose opinions differ from her/his own no more than
a certain confidence level [9], [24].

2) Inspired by the CODA model [34]; the bounded confi-
dence [9], [24]; and social network analysis [31], [36],
[38], a model for opinions and actions evolutions with
bounded confidence in social networks is proposed,
which is called the social network opinions and actions
evolutions (SNOAEs) model.

3) Based on the SNOAE model, the evolutions of
the opinions and actions with bounded confidence
in social networks are investigated by both theo-
retical analysis and detailed simulation experiments
analysis.

The proposed model can be applied to address certain opin-
ions and actions evolutions problems in the real world. For
example, people are often confronted with a limited number
of choices under certain circumstances, frequently as few as
two (e.g., buy or not buy, support or not support, accept or
reject, yes or no, and iOS or Android) but have continuous
opinions [32], [34]. The opinions of agents can be influenced
not only by their friends’ opinions but also by other noticed
customers’ actions. The research results in this article can pro-
vide decision support to companies and government in their
understanding of the evolutions of public opinions and actions
through the analysis of their social networks interactions on
a specific issue.

The remainder of this study is organized as follows.
Section II introduces the SNOAE model. Section III includes
the theoretical analysis. Section IV focuses on the simulation
experiments analysis. Finally, concluding remarks are drawn
in Section V.

II. SOCIAL NETWORK OPINIONS AND

ACTIONS EVOLUTIONS MODEL

In the proposed SNOAE model, it is assumed that each
agent has a continuous opinion and a discrete action for a cer-
tain issue [34]. Agents’ opinions are private and invisible, that
is, an agent only knows their own opinion and cannot obtain
other agents’ opinions unless there is a social network con-
nection edge that allows their communication; agents’ actions
are public and visible to all agents and impact on other
agents’ actions [17], [32]; both opinions and actions evolve in
a directed social network. Specifically, at each time an agent
chooses, randomly, another agent to update his/her opinion.
Thus, at a particular time, if an agent has a social network con-
nection edge to his/her chosen agent, then the chosen agent’s
opinion can be obtained and used by the agent to update his/her
opinion with bounded confidence; otherwise, the agent updates
his/her opinion with bounded confidence based on the noticed
actions of other agents.

Assumptions of the SNOAE Model:
1) Let G(V, E) be a directed social network, where V =

{v1, v2, . . . , vn} denotes the set of n agents and E =
(eij)n×n (i, j ∈ {1, 2, . . . , n} and j �= i) represents pres-
ence or absence of a directed edges between agents:
eij = 1 meaning that there is a directed edge from agent
vi to agent vj (i, j ∈ {1, 2, . . . , n} and j �= i); otherwise,
eij = 0.

2) Let O(t) = {o1(t), o2(t), . . . , on(t)} and A(t) = {A1(t),
A2(t), . . . , An(t)} be the opinions and actions of the
n agents in the social network G(V, E) at time t
(t = 0, 1, 2, . . .), respectively, where oi(t) ∈ [0, 1] and
Ai(t) ∈ {0, 1} (i = 1, 2, . . . , n).

3) For each agent vj (j =1, 2, . . . , n), the function relating
the continuous opinion and the discrete action of agents
is described by [32]

Aj(t) =
{

0, oj(t) ∈ [0, hj)

1, oj(t) ∈ [hj, 1]
(1)

where hj is the opinion threshold of action choice of
agent vj. The larger of the value of the opinion threshold
of action choice hj, the more corisk-conservative agent
vj is; on the contrary, the agent vj has a higher propen-
sity toward risk. Equation (1) explains that the external
discrete action depends on the magnitude of the internal
continuous opinion [32], as the schematic diagram in
Fig. 1 shows.
For example, when buying a product, Aj(t) = 0 describes
the “not buy” action while Aj(t) = 1 describes the
“buy” action. Thus, a risk-preference agent may assume
an opinion threshold of action choice of hj = 0.3,
which means that he/she is willing to buy the prod-
uct (Aj(t) = 1) when his/her opinion is more than or
equal to 0.3 [i.e., oj(t) ≥ 0.3]; otherwise, he/she will not
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Fig. 1. Schematic of continuous opinions and discrete actions of agents.

TABLE I
PARAMETERS IN THE SNOAE MODEL

to buy the product; however, a risk-conservative agent
may assume an opinion threshold of action choice of
hj = 0.7, and will select the buy action only when
his/her opinion verifies oj(t) ≥ 0.7.

4) Let εi be the bounded confidence of agents vi. At
each time value t, it is assumed that each agent
vi(i = 1, 2, . . . , n) randomly chooses another agent vj

(j �= i) to update his/her opinion. If eij = 1, then agent vi

can communicate with and obtains the opinion of agent
vj, which is used to update his/her opinion with bounded
confidence εi. If eij = 0, then the agent vi cannot com-
municate with the agent vj to obtain the opinion of agent
vj, but he/she can notice the action of the agent vj, which
is used to update his/her opinion with bounded confi-
dence εi. Thus, the opinion of agent vi(i ∈ {1, 2, . . . , n},
i �= j) at the time t + 1(t = 0, 1, 2, . . .) evolves as per
the following:

oi(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

oi(t), a : eij = 1,
∣∣oi(t) − oj(t)

∣∣ > εi
oi(t) + α(oj(t) − oi(t)), b : eij = 1,

∣∣oi(t) − oj(t)
∣∣ ≤ εi

oi(t), c : eij = 0,
∣∣oi(t) − Aj(t)

∣∣ > εi
oi(t) + α(Aj(t) − oi(t)), d : eij = 0,

∣∣oi(t) − Aj(t)
∣∣ ≤ εi

(2)

where α ∈ (0, 0.5] is the convergence parameter of
the agent vi being influenced by the agent vj. The
action of agent vi (i = {1, 2, . . . , n}) at a time t + 1
(t = 0, 1, 2, . . .) evolves based on the new opinion
oi(t + 1) and (1). Table I summarizes the parameters
in the SNOAE model.

Comparison Between the SNOAE Model and the DW and
the HK Models: Like the DW model [9], [29], [48] and HK
model [24], the SNOAE model also relies on the idea of
repeated averaging opinions under bounded confidence [16].

In fact, under certain additional assumptions, the SNOAE
model extends the DW model. Indeed, when the social network
is fully connected and agents meet in random pairwise encoun-
ters where they do or do not compromise, then (2) of the
SNOAE model coincides with the evolution of opinions equa-
tion of the DW model. However, they differ in their evolution
of opinions regime as follows.

1) The DW model [9], [48] and the HK model [24] assume
that agents always know other agents’ opinions at each
time and update their opinions based on other agents’
opinions under bounded confidence. In the proposed
SNOAE model, agents only know the opinions of those
agents directly connected with; otherwise, they can
only notice other agents’ actions. Therefore, in the
proposed SNOAE model agents update their opinions
with bounded confidence based on the noticed actions of
agents they are not connected or the opinions of agents
they are directly connected with.

2) The DW model [9], [48] and the HK model [24] only
consider opinion evolution, while the SNOAE model
considers both opinion and action evolution.

3) The HK model [24] is more suitable for formal meet-
ings in which each agent moves to the average opin-
ion of all agents under bounded confidence; the DW
model [9], [48] is suited for agents’ random pairwise
interactions under bounded confidence within large pop-
ulations; the SNOAE model can be used in situations
where the opinions of people can be influenced not only
by his/her friends’ opinions but also can be influenced
by other nonfriends’ actions. For example, regarding the
purchase or not of a product, people take into account
their friends’ opinions on the product but also they are
influenced by the noticed purchasing behavior of other
customers.

In real life, people are heterogeneous due to their different
backgrounds and personalities; which can be formally mod-
eled by the utilization of different parameters to characterize
different agents. However, in order to simplify the problem at
hand, reasonable assumptions are usually adopted in theoret-
ical studies, which in this article are: all the agents have the
same opinion threshold of action choice h, bounded confidence
ε, and convergence parameter α.

III. THEORETICAL ANALYSIS OF THE SNOAE MODEL

In this section, the evolution of opinions and actions in the
SNOAE model are supported with detailed theoretical study.

Proposition 1: For any chosen agent vj of agent vi, if eij=0,
Aj(t) = 0 and

∣∣oi(t) − Aj(t)
∣∣ ≤ ε (i �= j) at each time t

(t=0, 1, 2, . . .), then limt→∞oi(t) = 0.
Proof: The proof of Proposition 1 is provided in the

Appendix.
Proposition 1 states that if an agent always use the noticed

other agents’ discrete action of nonsupport to update his/her
opinion, and the distance between the agent’s opinion and
the noticed discrete action of nonsupport is always within
the bounded confidence, then the opinion of the agent can
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be completely attracted by the discrete action of nonsupport
until the opinion value of the agent is 0.

Example 1: There are two agents A and B. Let their opinion
thresholds of action choice are 0.5. In the initial time, the
opinion and action of agent A are 0.1 and 0, the opinion and
action of agent B are 0.25 and 0, respectively. Because there
is no connection and communication between A and B, they
update their opinions depending on the other side action at
each time. Let the bounded confidences of agents are 0.15.
Because the distance between the action value 0 of agent B and
the opinion value of agent A is always less than the bounded
confidence value 0.15, then the opinion value of agent A will
gradually near by the action value 0 of agent B in the process
of opinion and action evolution, and after a long time iteration
the opinion of agent A will be 0.

Proposition 2: For any chosen agent vj of agent vi, if eij=0,
Aj(t) = 1 and

∣∣oi(t) − Aj(t)
∣∣ ≤ ε(i �= j) at each time

t (t=0, 1, 2, . . .), then limt→∞oi(t) = 1.
Proof: The proof of Proposition 2 is provided in the

Appendix.
Proposition 2 states that if an agent always use the noticed

other agents’ discrete action of support to update his/her opin-
ion, and the distance between the agent’s opinion and the
noticed discrete action of support is always within the bounded
confidence, then the opinion of the agent can be completely
attracted by the discrete action of support until the opinion
value of the agent is 1.

Example 2: There are two agents A and B. Let their opin-
ion thresholds of action choice are 0.5. In the initial time,
the opinion and action of agent A are 0.9 and 1, the opinion
and action of agent B are 0.8 and 1, respectively. Because
there is no connection and communication between A and
B, they update their opinions depending on the other side
action at each time. Let the bounded confidences of agents
are 0.15. Because the distance between the action value 1 of
agent B and the opinion value of agent A is always less
than the bounded confidence value 0.15, then the opinion
value of agent A will gradually near by the action value
1 of agent B in the process of opinion and action evolution,
and after a long time iteration the opinion value of agent A
will be 1.

Proposition 3: When p = 0, ε < min{h, 1 − h}, then Ai(t +
1) = Ai(t) (i = 1, 2, . . . , n, t = 0, 1, 2, . . .).

Proof: The proof of Proposition 3 is provided in the
Appendix.

Proposition 3 shows that when network connection proba-
bility is 0, the bounded confidence is less than both the opinion
threshold of action choice and 1 minus the opinion threshold
of action choice, then the actions of agents do not change, that
is, all the actions of agents are stable.

That is to say, when there is no connection edges and
communication in a group of agents, agents depend on the
noticed other agents’ actions to update their opinions. Due to
the bounded confidence is less than the opinion threshold of
action choice and less than that 1 minus the opinion thresh-
old of action choice, an agents’ opinion is only influenced
by the noticed other agents’ action, which is the same with
the agents’ action. Their actions keep stability, even though

Fig. 2. Evolutions of (a) opinions and (b) actions for n = 500 agents over
time, and fixed parameter values p = 0.1, ε = 0.2, h = 0.3, α = 0.5.

their opinions are still changing. Examples 1 and 2 can help
to understand Proposition 3.

Proposition 4 below shows that agents’ actions do not
change, if there is no edge in social network between agents
with action support and agents with action nonsupport and the
distances between the opinion of agent with action support (or
nonsupport) and the action of agent with action nonsupport (or
support) are always larger than the bounded confidence.

Let V0(t) be the set of agents with action nonsupport at time
t, that is, Ai(t) = 0, where vi ∈ V0(t); and let V1(t) be the
set of agents with action support at time t, that is, Aj(t) = 1
where vj ∈ V1(t).

Proposition 4: In social network G(V, E), for any two
agents vi ∈ V0(t) and vj ∈ V1(t) at time t, if eij = 0 and∣∣oi(t) − Aj(t)

∣∣ > ε, and eji = 0 and
∣∣oj(t) − Ai(t)

∣∣ > ε, then
Ai(t + 1) = Ai(t) and Aj(t + 1) = Aj(t).

Proof: The proof of Proposition 4 is provided in the
Appendix.

Proposition 4 can help us to understand that due to the limi-
tation of bounded confidence and network connection, internal
communication between agents with the same action does not
change the action of agents.

IV. SIMULATION EXPERIMENTS ANALYSIS

OF THE SNOAE MODEL

This section provides simulation experiments analysis of the
evolution of opinions and actions in SNOAE model by con-
sidering: 1) the final ratio of agents in each action and 2) the
total change ratio of agents in each action, with different social
network structures (varying the connected probability parame-
ter value), bounded confidence, and opinion threshold of action
choice parameter values.

It was found that the evolutions of opinions do not always
achieve a stable state after long-time iteration, which is visu-
alized in Fig. 2 for 500 agents in the network with connected
probability parameter value of p = 0.1, a bounded con-
fidence parameter value of ε = 0.2, an opinion threshold
of action choice parameter value of h = 0.3, a conver-
gence parameter value of α = 0.5, and iteration time
of t = 500. The evolution ends after per agent running
500 times [17], [32].

The following notation is used in the simulation experi-
ments: k ∈ {0, 1} represents the action value of agents, where
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TABLE II
PARAMETERS SETTING IN SIMULATION EXPERIMENTS IN SECTION IV-A

k = 0 be the action of nonsupport and k = 1 be the action
of support. Nt

k denotes the number of agents with action k
at time t, the final ratio of agents with action k at time t is
pt

k = Nt
k/n, and the total change ratio of agents with action k

from the initial time to time value t is �pt
k = pt

k − p0
k .

A. Impacts of the Social Network Structure on the Evolution
of Opinions and Actions

In real life, especially in a social network framework,
agents’ opinions are often influenced by other agents’ opinions
and actions. The presence or absence of social network con-
nections between agents implies that agents can obtain other
agents’ opinions or can notice other agents’ actions, respec-
tively. Previous research studies reveal that social networks
have important impacts on opinions evolutions. The impacts
of the social network structure, defined by directed Erdős–
Rényi (ER) random graphs by its numbers of (n) and con-
nected probability parameter value (p), on opinions and actions
evolution is of interest to the present study.

Simulation method aims to determine the final ratio of
agents with action k at time t = 500 (i.e., p500

k , k = 0 or
k = 1) and the total change ratio of agents with action k the
initial time to time value t = 500 (i.e., �p500

k , k = 0 or 1).
Simulation method:
Input: n, p, h, α and ε.
Output: The average p500

k and average �p500
k (k = 0, 1).

Step 1: Let t = 0. Select initial opinions of agents
O(0) = {o1(0), o2(0), . . . , on(0)} uniformly and randomly
from [0, 1]; apply (1) to obtain the initial actions of agents
A(0) = {A1(0), A2(0), . . . , An(0)}.

Step 2: Generate a directed ER random graph G(V, E)

based on n and p; the directed edge eij from agent vi to agent
vj(i �= j) is obtained.

Step 3: Apply (2) to obtain the opinions of agents oi(t+1),
and apply (1) to obtain the actions of agents Ai(t + 1).

Step 4: When t = 500, obtain p500
k and �p500

k (k = 0, 1).
Step 5: After 500 independent realizations, output

average p500
k and average �p500

k (k = 0, 1).
Table II summarizes the parameter settings implemented in

the simulation experiment described above.
In the context of different numbers of agents n and dif-

ferent connected probability values p, the evolution results
of opinions and actions represented by the average p500

k and
average �p500

k (k = 0, 1) are shown in Fig. 3.
The following observations are noted.

Fig. 3. Evolution of opinions and actions, represented by average p500
k

and average �p500
k (k = 0 or 1) after 500 times independent simulation

realizations, for different numbers of agents n with respect to the network
connection probability parameter p, and fixed parameter values h = 0.3, α =
0.5, ε = 0.2, and t = 500. (a) The average p500

k (k = 0). (b) The average
p500

k (k = 1). (c) The average �p500
k (k = 0). (d) The average �p500

k (k = 1)

1) For a network connection probability parameter value
of p = 0, the average values p500

0 = p0
0, p500

1 = p0
1, and

�p500
0 = �p500

1 = 0, that is, in a situation of lack of
connections between agents the initial ratio of agents in
each action remains unchanged.

2) As the network connection probability parameter value p
increases, both average p500

0 and average �p500
0 decrease

to a minimum value from where they increase (concave
up), while average p500

1 and average �p500
1 increase to

a maximum from where they decrease (concave down).
This observation can be explained as follows: at time t, an

agent vi randomly selects another agent vj (i �= j). If eij = 1,
then the agent vi can obtain the opinion oj(t) of the agent
vj by communicating with the agent vj, and updates his/her
opinion oi(t+1) based on the bounded confidence parameter
value of ε; otherwise, eij = 0, the agent vi can only notice the
action Aj(t) of the agent vj to update his/her opinion oi(t+1)

based on the bounded confidence parameter value of ε. In this
second case, it can happen as follows.

1) Agent vi with action nonsupport [i.e., Ai(t) = 0 and
k = 0] selects an agent vj with action support [i.e.,
Aj(t) = 1 and k = 1], but cannot obtain the opinion oj(t)
of agent vj at time t, then because the distance between
the opinion value oi(t) ∈ [0, 0.3) and the action value
Ai(t) = 1 is larger than the value of the bounded con-
fidence parameter value, that is, |1 − oi(t)| > ε = 0.2,

oi(t) ∈ [0, 0.3), situation c of (2) implies that oi(t+1) =
oi(t), which means that the opinion of agent vi at time
t cannot be influenced by the action Aj(t) = 1 of the
agent vj.

2) Agent vi with action support [i.e., Ai(t) = 1 and k = 1]
selects an agent vj with action nonsupport [i.e., Aj(t) = 0
and k = 0], but cannot obtain the opinion oj(t) of the
agent vj at time t, then because the distance between
the opinion value oi(t) ∈ [0.3, 1] and the action value
Aj(t) = 0 is larger than the bounded confidence param-
eter value ε = 0.2, that is, |0 − oi(t)| > ε = 0.2,
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Fig. 4. Evolution of opinions and actions with different network connec-
tion probability parameter values p(p = 0, 0.05, 0.5, 1) over time, with fixed
parameter values n = 300, ε = 0.2, h = 0.3, and α = 0.5. (a) Actions
evolutions (p = 0). (b) Actions evolutions (p = 0.05). (c) Actions evolutions
(p = 0.5). (d) Actions evolutions (p = 1).

oi(t) ∈ [0.3, 1], situation c in (2) implies that oi(t+1) =
oi(t), which means that the opinion of agent vi at time
t cannot be influenced by the action Aj(t) = 0 of the
agent vj.

Notice that because the initial opinions of agents O(0) =
{o1(0), o2(0), . . . , on(0)} are uniformly and randomly selected
from [0, 1], and the opinion threshold of action choice param-
eter value is h = 0.3, the opinions distribution width of agents
with action nonsupport (k = 0) is smaller than the opinions’
distribution width of agents with action support (k = 1), and
the number of agents with action nonsupport (k = 0) is smaller
than the number of agents with action support (k = 1) at time
t = 0, that is, h < 1 − h and N0

0 < N0
1 . Therefore, in the pro-

cess of opinions and actions evolutions, the probability that
an agent selects another agent with action support (k = 1) is
greater than the probability that an agent selects another agent
with action nonsupport (k = 0).

The network connection probability among agents is divided
into two situations, that is, p = 0 and 0 < p ≤ 1.

1) For network connection probability parameter value of
p = 0, the conditions for the actions of agents to remain
unchanged (Proposition 3) are verified in this case as
shown in Fig. 4(a).

2) For a positive network connection probability parameter
value (0 < p ≤ 1), there are four cases for the opinions
and actions update: case 1: agents have different actions
and connection edges: opinions and actions are updated
based on other agents’ opinions and bounded confidence,
that is, situations a and b of (2) apply; case 2: agents
have the same actions and connection edges: opinions
and actions are updated based on other agents’ opin-
ions and bounded confidence, that is, situations a and b
of (2) apply; case 3: agents have different actions but
no connection edges: opinions and actions are updated
based on other agents’ actions and bounded confidence,
that is, situations c and d of (2) apply; case 4: agents
have the same actions but no connection edges: opinions

Fig. 5. Schematic of opinion and action evolution of agent in simulation
experiments.

and actions are updated based on other agents’ actions
and bounded confidence, that is, situations c and d of
(2) apply.

The final ratio p500
k and the total change ratio �p500

k (k =
0, 1) are influenced by cases 1, 2, and 4 rather than case 3.

1) When the network connection probability parameter
value is small [illustrated in Fig. 4(b) with p = 0.05],
there are few connections between agents in the social
network. In this context, case 4 plays a dominant role in
the evolution of opinions. Because the opinions update is
based on the value of the noticed actions (k = 0, 1), the
opinions will come from both ends and become more
extreme under bounded confidence, which relates to
Propositions 1 and 2 of our theoretical study. Opinions of
agents with action nonsupport (k = 0) belong to [0, h),
|0 − ε| = 0.2 < h = 0.3, and (h−|0 − ε|) < ε; so in the
process of the evolutions of opinions and actions, opin-
ions of agents with action nonsupport (k = 0) are not
completely attracted by the value of the discrete action
nonsupport (k = 0), and some agents with action non-
support (k = 0) at the initial time change their opinions
and show action support (k = 1) at the final time (see
Fig. 2). This leads to a decrease of the numbers of agents
with nonsupport (k = 0) and to an increase of the num-
ber of agents with support (k = 1) at the final time. The
schematic diagram of the evolutions of the opinions and
actions evolutions is show in Fig. 5.

2) As the network connected probability parameter value
p increases, the number of communication edges
increases, and the impact of the action nonsupport
(k = 0) on the opinions of agents with action non-
support (k = 0) decreases gradually, although it still
plays a dominant role in the evolution of opinions. The
opinions of agents with action support (k = 1) increase
their impact on the opinions of the agents with action
nonsupport (k = 0), which leads to more agents with
action nonsupport (k = 0) at the initial time to change
their opinions and show action support (k = 1) at the
final time. So as the network connection probability
parameter value p increases from 0, average p500

0 and
average �p500

0 values decrease until they reach their
minimum values.
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Fig. 6. Evolution of opinions and actions among n = 300 agents over
time, with fixed parameter values p = 1, ε = 0.2, h = 0.3, and α = 0.5.
(a) Opinions evolutions of agents. (b) Actions evolutions of agents.

3) As the network connection probability parameter value
p continues to increase from the value at which the
aforementioned minimums are reached, the impact of
the value of the action nonsupport (k = 0) on the
opinions of agents with action nonsupport (k = 0)
becomes weaker because the number of communication
edges among agents with action nonsupport (k = 0)
increases. The attraction of the opinions among the
agents with action nonsupport (k = 0) is gradually
smaller than the attraction of the opinions of the agents
with action support (k = 1) on the opinions of the
agents with action nonsupport (k = 0). Therefore,
average p500

0 and average �p500
0 values increase gradu-

ally, but average p500
1 and average �p500

1 values decrease
gradually. The evolutions of actions with p = 0.5 and
p = 1 are shown in Fig. 4(c) and (d), respectively. Notice
that for the specific case of being p = 1, the ratio of the
agents with action nonsupport (k = 0) at the final time
is larger than at the initial time, which shows the num-
ber of agents with action nonsupport (k = 0) does not
decrease but increases. The evolution of opinions and
actions over time among agents with p = 1 is shown in
Fig. 6.

Therefore, as p increases (with fixed ε = 0.2, h = 0.3,
α = 0.5), after 500 independent realizations of the simulation,
average p500

0 and average �p500
0 values are concave up; while

average p500
1 and average �p500

1 values are concave down.
The number of agents in the social network has no obvious

influence on the evolution of opinions and actions.
Notably, when bounded confidence changes, as the network

connection probability parameter value increases, the aver-
age values of the final ratios and the total change ratios of
agents with different actions may also change. We verified
that when 0.1 < ε < 0.25, as p increases, average p500

0 and
average �p500

0 still are concave up, while average p500
1 and

average �p500
1 still are concave down.

B. Impact of the Bounded Confidence and Opinion
Threshold of Action Choice Parameters on the Evolution of
Opinions and Actions

In the following, we report on the impact of bounded confi-
dence and opinion threshold of action choice parameters on the

TABLE III
PARAMETERS SETTING IN SIMULATION EXPERIMENTS IN SECTION IV-B

Fig. 7. Average final ratio of agents with different actions (k = 0 or
k=1), after 500 times independent simulation realizations, based on differ-
ent bounded confidence and opinion threshold of action choice parameters,
with fixed parameters p = 0.1, n = 500, α = 0.5, and t = 500. (a) The
average final ratio of agents with action k = 0. (b) The average final ratio of
agents with action k = 1.

evolution of opinions and actions by in simulation experiments
with parameters setting as per Table III.

Using the simulation method, we obtain the average final
ratio of agents and the average total change ratio of agents
with different action values in Figs. 7 and 9, respectively.

1) Average Final Ratio of Agents With Different Actions
Under Different Bounded Confidence and Opinion Threshold
of Action Choice Parameters: Fig. 7 shows the average final
ratios of agents with different actions [Fig. 7(a) for action
k = 0; Fig. 7(b) for action k = 1] with respect to the bounded
confidence and opinion threshold of action choice parameters.

From Fig. 7, two observations are noticed regarding the
effect of opinion threshold of action choice parameter and the
bounded confidences parameter, respectively.
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1) As the opinion threshold of action choice parameter h
increases, average p500

0 increases while average p500
1

decreases, that is, the agents move from risk-preference
to risk-conservative, as a result of the number of agents
with action nonsupport (k = 0) increases while the num-
ber of agents with action support (k = 1) decreases.
This observation has the following explanation: as the
opinion threshold of action choice value increases, the
initial ratio of agents with nonsupport action (k = 0)
also increases but the initial ratio of agents with support
action (k = 1) decreases, which leads to the increase of
the final ratio of agents with nonsupport action (k = 0)
and the decrease of the final ratio of agents with support
action (k = 1).

2) As the bounded confidences parameter ε increases:
a) when the opinion threshold of action choice param-
eter verifies h < 0.28, average p500

0 increases while
average p500

1 decreases and b) when the opinion thresh-
old of action choice parameter verifies 0.72 < h,
average p500

0 decreases while average p500
1 increases.

This observation shows that when the value of the opinion
threshold of action choice is small, as the bounded confidence
parameter increases, at the final time the number of agents
with action nonsupport (k = 0) gradually increases, while
the number of agents with action support (k = 1) gradually
decreases; with opposite monotonicity trend when the value
of the opinion threshold of the action choice value is high.
This observation has the following explanation: in the simu-
lation experiments, the network connection probability value
p = 0.1 means that the connection edges among the agents are
sparse. Agent updates their opinions predominantly based on
other agents’ noticed actions, that is, situations c and d of (2),
rather than on other agents’ opinions. Therefore, the opinions
of agents are strongly influenced by the value of the discrete
action under bounded confidence. In the evolution process of
opinions and actions, when h < 0.28, as the bounded confi-
dence parameter increases, more agents’ opinions are attracted
by the value of the action of nonsupport (k = 0) of agents,
so the average final ratio of agents with action nonsupport
(k = 0) increases while the average final ratio of agents with
action support (k = 1) decreases.

The evolution of the two actions (k = 0 and k = 1) over time
with respect to the bounded confidence and opinion thresh-
old of action choice parameters are depicted in Fig. 8. In
Fig. 8(a1)–(a5) and (b1)–(b5), with opinion threshold of action
choice parameter values h = 0.1 and h = 0.2, respectively, as
the bounded confidence parameter increases, the number of
agents with action nonsupport (k = 0) at the final time gradu-
ally increases, while the number of agents with action support
(k = 1) at the final time gradually decreases; In Fig. 8(c1)–(c5)
and (d1)–(d5), with h = 0.3 and h = 0.4, respectively, this
monotonicity trend does not hold.

Due to the opposition characteristic between action non-
support (k = 0) and action support (k = 1), when the
opinion threshold of action choice verifies0.72 < h, the
increase of the bounded confidence value implies that more
agents’ opinions are attracted by the value of the action of
support (k = 1) of agents, so the average final ratio of

Fig. 8. Evolution of the two actions (k = 0 or k = 1) over time with respect
to different bounded confidence ε and opinion threshold of action choice
parameters h, with fixed parameter values p = 0.1, n = 500, and α = 0.5.

agents with action nonsupport (k = 0) decreases while the
average final ratio of agents with action support (k = 1)
increases.

2) Average Total Change Ratio of Agents With Different
Actions Under Different Bounded Confidence and Opinion
Threshold of Action Choice Parameters: Fig. 9 shows the aver-
age total change ratio of agents with different actions [Fig. 9(a)
for action k = 0; Fig. 9(b) for action k = 1] with respect to
the bounded confidence and opinion threshold of action choice
parameters.

As before, two observations are drawn from Fig. 9.
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Fig. 9. Average total change ratio of agents with different actions (k = 0 or
k = 1), after 500 times independent simulation realizations, based on different
bounded confidence and opinion threshold of action choice values, with fixed
parameters p = 0.1, n = 500, α = 0.5, and t = 500. (a) The average total
change ratio of agents with action k = 0. (b) The average total change ratio
of agents with action k = 1.

1) As the opinion threshold of action choice parameter
h increases, when 0.38 < ε < 0.5, average �p500

0
decreases while average �p500

1 increases. Thus, when
bounded confidence parameter is high, as the opinion
threshold of action choice parameter increases the total
change ratio of agents with action nonsupport (k = 0)
decreases while the total change ratio of agents with
action support (k = 1) increases. The explanation of this
observation is the following: first, as the opinion thresh-
old of action choice parameter increases, at the initial
time the ratio of agents with action nonsupport (k = 0)
increases while the ratio of agents with action support
(k = 1) decreases. Because the network connection prob-
ability parameter is a small value (0.1), the update of
agents’ opinions based on other agents’ noticed actions
(i.e., situations c and d) plays a dominant role in the evo-
lution of opinions rather than the update of opinions based
on other agents’ opinions. In addition, larger opinions
distribution width of agents with a certain action means
a higher chance of that action to be chosen. Second, when
the bounded confidence parameter is high and the value
of the opinion threshold of action choice parameter is

low, the opinions of agents with action support (k = 1)
at the initial time are gradually attracted by the value
of the noticed action nonsupport (k = 0), so at the final
time they show action nonsupport (k = 0). The smaller
the opinion threshold of action choice parameter is, the
more agents change their initial actions support (k = 1)
to action nonsupport (k = 0) at the final time, so the
value of the total change ratio of agents with action non-
support (k = 0) is higher. Third, as the opinion threshold
of action choice parameter increases, more agents show
action nonsupport (k = 0) at the final time, while the total
change ratio of agents with action nonsupport (k = 0)
decreases, because of the decrease of the value ε − h.
As the increase of the opinion threshold of action choice
parameter continues, the opinions of agents with action
support (k = 0) at the initial time are gradually attracted
by the value of the noticed action support (k = 1).
Therefore, the average total change ratios of agents with
action support (k = 1) increases.

2) As the bounded confidences parameter ε increases:
a) when the opinion threshold of action choice param-
eter verifies h < 0.28, average �p500

0 increases while
average �p500

1 decreases and b) when the opinion
threshold of action choice parameter verifies 0.72 < h,
average �p500

0 decreases while average �p500
1 increases.

This observation shows that when the opinion threshold of
action choice parameter is low, the characteristic of agents is
risk-preference; moreover, the larger the bounded confidence
parameter is the larger the average total change ratio of the
agent with action nonsupport is. However, when the opinion
threshold of action choice parameter is high, the characteris-
tic of agents is risk conservative; furthermore, the larger the
bounded confidence value parameter is the larger average the
total change ratio of the agent with action support is. This
is explained because when the opinion threshold of action
choice parameter is low, as the bounded confidence parameter
increases the amount of opinions of agents with action support
(k = 1) that are attracted by the value of agents’ action (k = 0)
increases, which means that more agents with action support
(k = 1) at the initial time change their initial action to action
nonsupport (k = 0) at the final time. The effect is opposite
when the opinion threshold of action choice parameter is high
and the bounded confidence parameter increases.

Therefore, in a context of a network connection probability
parameter of p = 0.1, number of agents n = 500, conver-
gence parameter value α = 0.5, iteration time t = 500, and
500 independent realizations of the simulation, the impact of
the bounded confidence and opinion threshold of action choice
parameters on the evolution of opinions and actions evolutions
are as follows.

1) As the opinion threshold of action choice parameter
increases, the characteristic of agents changes from risk-
preference to risk-conservative due to the increase of the
number of agents with action nonsupport (k = 0) and
the decrease of the number of agents with action support
(k = 1).

2) When the opinion threshold of action choice parame-
ter is low, increasing the bounded confidence parameter
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increases the number of agents with action nonsup-
port (k = 0) and decreases the number of agents with
action support (k = 1) at the final time. However, when
the value of the opinion threshold of the action choice
parameter is high, increasing the bounded confidence
parameter has the opposite effect at the final time.

3) When the bounded confidence parameter is high,
increasing the opinion threshold of the action choice
parameter decreases the total change ratio of agents with
action nonsupport (k = 0) and increases the total change
ratio of agents with action support (k = 1).

4) When the opinion threshold of action choice parameter
is low, the characteristic of agents is risk preference,
with the average total change ratio of the agent with
action nonsupport being larger, the larger the bounded
confidence parameter is. When the opinion threshold of
the action choice parameter is high, the characteristic of
agents is risk conservative, with the average total change
ratio of the agent with action support being larger, larger
the bounded confidence parameter.

V. CONCLUSION

This article proposed a model for opinions and actions evo-
lution in social networks under bounded confidence. Both
theoretical and empirical research results regarding the evo-
lution of opinions and actions in social networks have been
presented. The theoretical research results prove that the
following.

1) Discrete actions can attract agents who trust the discrete
action, and make the agents express extreme opinions,
because:

a) if an agent always trusts the noticed discrete
action of nonsupport to update his/her opinion,
then the opinion of the agent can be completely
attracted by the discrete action of nonsupport, until
the opinion value becomes zero and keeps stable
(Proposition 1);

b) if an agent always trusts the noticed discrete action
of support to update his/her opinion, then the opin-
ion of the agent can be completely attracted by the
discrete action of support, until the opinion value
equals one and keeps stable (Proposition 2).

2) When the network connection probability is 0, due to
the limitation of the bounded confidence, the actions of
agents are unchanged (Proposition 3).

Simulation experimental results showed that social network
connection probability, bounded confidence, and the opinion
threshold of action choice parameters have strong impacts on
the evolution of opinions and actions. However, the number
of agents in the social network has no obvious influence on
the evolution of opinions and actions.

The results in this article suggested that firms and organi-
zation should consider adding the social connections among
the agents to decrease the appearance of extreme opinions.
Although the results in this article are helpful to understand
the evolution of opinions and actions in social networks, it
is still a challenging task to collect real data to develop real
data-driven SNOAEs.

APPENDIX

A. Proof of Proposition 1

Because eij = 0, Aj(t) = 0 and
∣∣oi(t) − Aj(t)

∣∣ ≤ ε at each
time t, then based on situation d in (2) we can obtain oi(t +
1) = oi(t) + α(Aj(t) − oi(t)) = oi(t) + α(0 − oi(t))= (1 −
α)oi(t) = (1 − α)t+1oi(0). Because α ∈ (0, 0.5] and oi(0) ∈
[0, 1], obviously, limt→∞oi(t) = 0.

B. Proof of Proposition 2

Because eij = 0, Aj(t) = 1, and
∣∣oi(t) − Aj(t)

∣∣ ≤ ε at each
time t, then based on situation d in (2) we can obtain oi(t +
1) = oi(t) + α(Aj(t) − oi(t)) = oi(t) + α(1 − oi(t)). Because
α ∈ (0, 0.5], and oi(0) ∈ [0, 1], then:

1) if oi(t) ∈ [0, 1), oi(t + 1) − oi(t) = α(1 − oi(t)) > 0;
2) if oi(t) = 1, then oi(t + 1) = oi(t) = 1.
The sequence {oi(t + 1)} is monotonic increasing and

bounded above by 1. Therefore, the sequence {oi(t +
1)} converges and its limit is the upper bound, that is,
limt→∞oi(t) = 1.

C. Proof of Proposition 3

For a certain issue, let oi(t) and oj(t) be the opinions of
agent vi and agent vj at time t, respectively; and let Ai(t)
and Aj(t) be the actions of agent vi and agent vj at time t,
respectively, where oi(t), oj(t) ∈ [0, 1], Ai(t), Aj(t) ∈ {0, 1},
i, j = 1, 2, .., n and i �= j.

When network connection probability p = 0, then for any
pair of agents vi and vj we have eij = 0 (i �= j). Thus, an
agent vi cannot obtain the opinion of the other agents but
notice their actions, which are used to update his/her opinion
based on bounded confidence ε. Therefore, in the process of
opinion evolution situations c and d in (2) apply.

Case A: For an agent vi with opinion oi(t) ∈ [0, h),
(1) implies that action Ai(t) = 0 at time t. Let the noticed
action Aj(t) of other agent vj being used to update his/her
opinion at time t + 1. Then, we have the following.

Case A-1: If Aj(t) = 0 and
∣∣oi(t) − Aj(t)

∣∣ = oi(t) > ε, then
according to situation c of (2), it is: oi(t + 1) = oi(t) ∈ [0, h),
Ai(t + 1) = 0.

Case A-2: If Aj(t) = 0,
∣∣oi(t) − Aj(t)

∣∣ = oi(t) ≤ ε, then
according to situation d of (2), it is: oi(t+1) = oi(t)+α(Aj(t)−
oi(t)) = (1 − α)oi(t). Because α ∈ (0, 0.5] and oi(t) ∈ [0, h),
so oi(t + 1) = (1 − α)oi(t) ∈ [0, h), Ai(t + 1) = 0.

Case A-3: If Aj(t) = 1, because oi(t) ∈ [0, h) and ε <

1 − h, then
∣∣oi(t) − Aj(t)

∣∣ = 1 − oi(t) > 1 − h > ε. Therefore,
according to situation c of (2), it is: oi(t + 1) = oi(t) and
Ai(t + 1) = 0.

Case B: For an agent vi with opinion oi(t) ∈ [h, 1],
(1) implies that action Ai(t) = 1 at time t. Let the noticed
action Aj(t) of other agent vj being used to update his/her
opinion at time t + 1. Then, we have the following.

Case B-1: If Aj(t) = 0, because oi(t) ∈ [h, 1] and ε < h,
then

∣∣oi(t) − Aj(t)
∣∣ = oi(t) ≥ h > ε. Therefore, according to

situation c of (2), it is: oi(t + 1) = oi(t) and Ai(t + 1) = 1.
Case B-2: If Aj(t) = 1 and

∣∣oi(t) − Aj(t)
∣∣ = 1 − oi(t) ≤ ε,

then according to situation d of (2), it is: oi(t + 1) = oi(t)+
α(Aj(t)−oi(t)) = oi(t)+α(1−oi(t)). Because α ∈ (0, 0.5] and
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oi(t) ∈ [h, 1], so α(1 − oi(t)) ≥ 0. Therefore, oi(t + 1) ≥ oi(t)
and Ai(t + 1) = 1.

Case B-3: If Aj(t) = 1 and
∣∣oi(t) − Aj(t)

∣∣ = 1 − oi(t) > ε,
then according to situation c of (2), it is: oi(t + 1) = oi(t) and
Ai(t + 1) = 1.

Summarizing, when p = 0, ε < h and ε < 1 − h, then
Ai(t + 1) = Ai(t) (i = 1, 2, . . . , n, t = 0, 1, 2, . . .).

D. Proof of Proposition 4

The interaction between agents in social network is divided
into four cases.

Case 1: For any agent vi ∈ V0(t) (oi(t) = [0, h), Ai(t) =
0), he/she randomly choose an agent vp ∈ V0(t) (op(t) =
[0, h), Ap(t) = 0) at time t, then Ai(t + 1) = Ai(t) = 0 no
matter eip = 0 or eip = 1 in social network G(V, E).

Case 2: For any agent vi ∈ V0(t) (oi(t) = [0, h),
Ai(t) = 0), he/she randomly choose an agent vj ∈ V1(t)
(oj(t) = [h, 1], Aj(t) = 1) at time t, because eij = 0 and∣∣oi(t) − Aj(t)

∣∣ > ε, then Ai(t + 1) = Ai(t) = 0.
Case 3: For any agent vj ∈ V1(t) (oj(t) = [h, 1], Aj(t) = 1),

he/she randomly choose an agent vi ∈ V0(t) (oi(t) = [0, h),
Ai(t) = 0) at time t, because eji = 0 and

∣∣oj(t) − Ai(t)
∣∣ > ε,

then Ai(t + 1) = Ai(t) = 1.
Case 4: For any agent vj ∈ V1(t) (oj(t) = [h, 1], Aj(t) = 1),

he/she randomly choose an agent vp ∈ V1(t) (op(t) = [h, 1],
Ap(t) = 1) at time t, then Ai(t + 1) = Ai(t) = 1 no matter
eip = 0 or eip = 1 in social network G(V, E).

Therefore, in social network G(V, E), for any two agents
vi ∈ V0(t)and vj ∈ V1(t) at time t, if eij = 0 and∣∣oi(t) − Aj(t)

∣∣ > ε, and eji = 0 and
∣∣oj(t) − Ai(t)

∣∣ > ε, then
Ai(t + 1) = Ai(t) and Aj(t + 1) = Aj(t).
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