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A Dynamic Event-Triggered Approach to Recursive
Non-fragile Filtering for Complex Networks with
Sensor Saturations and Switching Topologies

Shaoying Wang, Zidong Wang, Hongli Dong and Yun Chen

Abstract—In this paper, the non-fragile filtering issue is ad- restrictions, and an alternative approach is therefore to infer

dressed for complex networks (CNs) with switching topologies, network states according to partially available measurements.
sensor saturations and dynamic event-triggered communication Recently, the filtering issue of CNs has become a main-

protocol (DECP). Random variables obeying the Bernoulli distri- D . .
bution are utilized in characterizing the phenomena of switching Sr€am topic in the area of complexity science, see [11], [15],

topologies and stochastic gain variations. By introducing an [30], [39], [46], [51]. In [15], the recursive filtering issue
auxiliary offset variable in the event-triggered condition, the has been addressed for coupled stochastic CNs subject to
DECP is adopted to reduce transmission frequency. The goal the random disturbances and packet dropouts. In [50], the

of this paper is to develop a non-fragile filter framework for ; ; ; ; A
considered CNs such that the upper bounds on the filtering error ?;Sl\tjlg]ve\l/?t?]nﬁIgfgltzg]iIitr;/azistc):iirs]egwesugated for time-delayed

covariances are ensured. By virtue of mathematical induction, A ) . o
gain parameters are explicitly derived via minimizing such upper In_pra(_:tlce, phenomena of StOCh_aSUC gain vz_;lrlatlons (SQVS)
bounds. Moreover, a new method of analyzing the boundednessare inevitable in the process of filter realization due mainly

of given positive definite matrix is presented to overcome the to unexpected implementation errors such as rounding errors,

challenges resulting from the coupled interconnected nodes, and 55)04.digital conversion errors, and programming errors [21].
sufficient conditions are established to guarantee the mean-square_l_h . tf SGVs. if not Il handled Id lead t
boundedness of filtering errors. Finally, simulations are given to g Impac rom_ S, I not we .an- €d, could lead to
prove the usefulness of our developed filtering algorithm. serious degradations on the overall filtering performance. As

_ . such, the last years have spotted a great surge of research
Index Terms—Complex networks, non-fragile filter, dynamic . g e
event-triggered communication protocol, switching topologies, interest on non-fragile filtering problems and some elegant
sensor saturations. results have appeared, see e.g. [23], [26], [28], [31], [37].
To mention a few, the non-fragilé/,, filter [21] and the
distributed resilient recursive filter [26] have been designed
. INTRODUCTION for time-varying nonlinear systems.
. » Another frequently encountered phenomenon in engineering
Complex netwqus (CNS)’. pompnsed of large quant|t|e§ %f;actice is the so-called sensor saturation that is primarily
coupled nodes with a specific topology, have found applic aused by the inherent physical constraints [49]. Correspond-

:IOHS n "t”?as In(f[{l\tjdlrllg social n_etV\:Qrks, k;\l:l)loglcaldneltw?r_k gly, a large amount of work has been acquired on sensor-
ransportation network, communication nEtwork, and electricgly, ation-resistant filtering problems, see [7], [18], [47], [54].

zower griis [14], [?2]]; [27], [29]'|([36}1’3[38]' 5140]’ [48], [SI?]' Fqr example, in [47], the filtering and intermittent fault de-
mong others, scale-free networks [43], random networks a tion issues have been addressed for uncertain stochastic

small-world.networks [,44] have been well rec,"gn'ze,d as thr stems subject to sensor saturations. Nevertheless, to our best
representative categories of CNs. In general, it is quite diffic owledge, non-fragile filtering issues for CNs with SGVs and

to fully access all the states of CNs owing to th? COUpI'n&?sor saturations have not been comprehensively considered.
characteristic between nodes and the technologlcallphy5|ca|n reality, it is quite common that the connection topology of

_ _ , _ CNs varies with time because of the changes of nodes in the
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CNs under switching topologies, the corresponding reseancfatrix. col{-} means to aggregate all the column vectors into
has received little attention, which constitutes one motivati@column vectorA” means the transpose of mateik tr(A)
of our current investigation. denotes the trace of matrit. sym{x} represents + *7. N

A practical issue for networked systems is how to improvié the natural number seE{z} represents the expectation of
the utilization efficiency of the inherently limited bandwidtithe random variable:. All matrices used in this paper are
for communication in a resource-scarce environment [1], [JuUpposed to have appropriate dimensions.

[25], [32], [34], [41], [42], [45], [52]. Among various trans-

mission schemes that have been put forward to save network [I. PROBLEM STATEMENT

bandwidth, the so—cal_led eyent—triggered strate_gy has receive%onsider a CN with switching topologies and sensor satu-
much research attention with the hope of averting unnecessakions:

ily frequent network transmissions while guaranteeing certain .
estimation performance. The basic concept of the so-called i D (i i ; (i
event-triggered transmission is that the data communication is zig, =A 2y + CZCIE e + B wy) 1
executed only when the deviation between the current and the _ o =1 _ (1)
latest transmitted data meets a predefined condition [4], [5], z,(j) = (C,S)x,(j)) + v,(j) i=1,2,...,L

(9], [13], [24], [33]. _ _

Very recently, the dynamic event-triggered communicatiotihere :ES) € R" is the system Statez,gl) € R™ is the
protocol (DECP) has been put forward via introducing auximeasurement outpuf; represents an inner-coupling matrix,
iary variables [9], [10], [16], [53], and many important resulte&ind ¢ > 0 refers to the overall coupling strengtkj,(c”)
have been given regarding filtering problems for various CNge Bernoulli variables adopted to regulate the connection
under DECP, see e.g. [18], [19]. For instance, in [33], an evelietween nodes an j. Specifically, (,i” = 1 if node i
triggered filter has been designed for stochastic nonlingar connected with nodg, and otherwiseg,iij) — 0. The
systems by simultaneously t_aklng into account "“e_‘"‘”?at'cﬂ?obability distribution Osziij) satisfiesIP{g,fj) =1} = @iij)
errors, packet losses, and time delays. In [9], a d|str|but3ﬂd]P,{C(ij) —0}=1- {.(ij) 0 e R* andv® € R™ are
set-membership filter has been devised in case of unknown-"~ *°* ) LR R )" .
but-bounded process and measurement noises. NevertheFeesréj,fmean(i?o'S%? with cc(>i\)/ar|anc@§§ andR,”, respectively.
it is worth mentioning that little effort has been put so faMatricesA,”, B,” andC, = are known. _
into dynamic event-triggered filtering issues for CNs, let alone 1he saturation functiop : R™ — R™ is defined as follows:
the case where the SGVs, sensor saturations and switching () = col{p;(21), p2(22), - - -, Pm(2m)} )
topologies are also involved.

Based on aforementioned considerations, in this paper, WBerevi(z;) = sign(z;) min{p;, [z}, sign(-) is the signum
aim at investigating non-fragile filtering problems for timefunction andp;(i = 1,2,---,m) represents the saturation
varying CNs under DECP subject to sensor saturations afyel- o _
switching topologies. Some Bernoulli distributed random vari- T0 reduce communication frequency, the DECP is adopted
ables are used to describe phenomena of switching topologhd! its event generator function given by

and SGVs. The DECP is employed to schedule the data _ _ _ (4)
transmissions in a dynamical way. The main challenges we f (M,@,ai,ei,x,@) = HM;(J)H —0; — X; 3)
face lie in the following three aspects: 1) how to better model v

the phenomenon of DECP? 2) how to handle the impa@%ereug) A Z}(gi)_zl(ci)’ Zl(cz,) is the latest transmitted measure-

from sensor saturations, DECP and switching topologies Ak

the design of recursive filter? and 3) how to analyze the mean-

square boundedness of the filtering error? To overcome the X;(er — hiX](:) o, — HM;(:)H ()

listed challenges, we are dedicated to the development of a )

dynamic event-triggered non-fragile recursive filter such thihere0 < o; < 1,0 < h; <1 and0; > 1/h; are predefined

upper bounds on the resulting filtering error covariances &¥éalars, andq%” > 0 is the initial value.

obtained and then gain matrices are designed via minimizingSince z,(j) is sent to the remote filter only when

such upper bounds. f(u,g“,ai,ei,x,@) > 0, the triggering instant sequenée<
The primary contributions we deliver in this paper are giveky < k1 <--- <k <--- is

as follows: 1) a dynamic event-triggered non-fragile filter, . (i) (i)

which is suitable for online implementation, is first proposed k1 = ;ng{’f > kil f (“k 0405, X, ) >0} ()

in the conC}Jrrence (_)f_sensor sa_lt_uratlons, swnthng t0p0|ogl3%:cordingly, the available measurement at the filter, denoted

and SGVs; 2) sufficient conditions are provided to ensure )" . _

mean-square boundedness of resulting filtering errors; arbé' %", Is described as

nt, andng) is an internal dynamical variable satisfying

3_) a new f[echniqu_e, whic_h gnalyzes the boundedr_le_ss (_)f a 5](;‘) _ z,(;;),k € {ke ke + 1, .. kpyr — 1} (6)

given positive definite matrix, is presented to tackle difficulties ' .

caused by the coupling of interconnected nodes. Remark 1:Note that an auxiliary offset variab@”, which
Notation. || - || is the Euclidean norm or the spectral norm oévolves according to (4), has been exploited in the event

vector or matrix *”. P > 0 denotes thaP is a positive-definite triggering condition to dynamically adjust the inter-event time.
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As stated in [9],X§f) is a non-negative scalar when the [1l. M AIN RESULTS

iy ()
parameters satisfy,” > 0, 0 < h; < 1 andb;h; > 1. A pesign of Dynamic Event-Triggered Non-fragile Filter
With this property, it is easy to see that the triggering times

under DECP will be reduced when compared to those from the!n the first place, some useful lemmas are given for subse-
static event-triggered protocol, thereby further alleviating tH&€Nt anaIyS|s N
network burden. It should also be pointed out that the DECPLemma 1: 0\ £ E[z{’ (2{”)7] has the following recur-

would reduce to the static protocol by settibg— oc. sion:
Based on the available measureme,&’ﬁ the filter for node (i) D) AG@)  4GONT | 2
0,7,=4,"0,"(A o
i (i=1,2,...,L) is constructed as follows: ki =4O (A ; e (il)l’k(i) o
+ Qg + i + B Q (By7) (8)
A,(;H“g =AW ™ +CZC Wzl and, for a given positive scalar;, its upper bound can be
=1 (7)  calculated as
~ (1) ~ (7 ~( (i) (1) .
Ik-l—l_ k+1|k+Gk+l( k+1—Ck+1xk+l‘k) O](;j_l :(1+7T) Z)O('L (A’L) +BZ)Q Z)( Z))
L
where x;ll‘k € R" and A,(Hl € R™ denote the predic- + (14t sz Mif;iij)JrS,(fj))Fo,(f)FT 9)
tion and estimate ofz:,jil, respectively. Note thaGkJrl £ j=1

GkJrl + 51&116'3“1: whereGkﬁ)rl denotes the filter gain to- yhere

be- deS|gned§,(j+1G(z,C+1 represents the stochastic uncertainty L L
associated with the filter gairg"’) "1 Is a determined matrix, By 2 E[(Z ¢ Ta)( Z ¢TIt
and §k+1 € R is the multiplicative noise with meaf and =1 =1

varlanceﬁkf)H .

Remark 2:1t is observed from the proposed filter structure
(7) that all the information about coupled configuration of the
network, switching topologies, DECP and SGVs has been fully glid) & é(ij)(l B —(zg M2 Zdlg
exploited. The stochastic parameter uncertalrﬁtfﬁsiGs k1 K K '
are utilized to characterize the resilience of the filter gain vari-
ations, which are inevitable in the process of filter realization  pyoof: Based on (1) and the definition 61", it is quite
owing to unexpected implementation errors. Note that the Nograjghtforward to obtain (8).
fragile filter proposed in this paper is quite different from that Next, expanding the terri;; ;, we have
in [18], [26], where the distinctive difference lies in that 1)
the main contribution of [18] is the design of a non-fragiled,, , =" TO\VTT + ... 4+ (VTR (2P) T 0T

o filter for nonlinear CNs with gain perturbation satisfying ~(iL) =(il Ly, (1
AK M;F; xN; and F1, F; . < I, 2) a distributed filter is Tt Cfi )@g )FE[:E’E )(:E’(ﬁ ))T]FT +

Biag 2 BAL A0 (03 (P07
j=1

proposed in [26] for a cIass of discrete time-varying systems + E,SL)FO(L)FT
with stochastic nonlinearities and sensor degradation with zero
mean and bounded second-moment uncertaidtiggk), and = ZS(” ro?r” + Z Z i) gim)
3) the objective here is to propose a dynamic event-triggered j=1m=1
non-fragilerecursive minimum-variance filtering algorithior () (. (m)\T
linear CNs with sensor saturations, switching topologies and X TE[z” (o )t (10)
SGVs. From the following elementary inequality
For nodei, the one-step prediction and filtering errors are,
respectively, defined as ab” +ba” < waa” + 770" (7 > 0), (11)

(2) (4) 4 (4) (4) - (1) we have
Eptile = Thi1 ~ Tpprjpr Cr1 = Trg1 — Trja

and their corresponding error covariances are, respectively, Z Z C(”)C(W)FE (J)( m)) jind
denoted as

=(1) fE[ (7) ( (1) )T], =(4) *E[ (1) ( (1) )T]

Skrak = Pk Crrak Skt = Rt _](Cij)flgim)FE[a:,(Cj)(xém))T +x§€m)(I§€j))T]FT

N =

I\Mh
-

1m=1

In this paper, we aim at designing filter (7) for CNs (1) such J ;

that, in case of sensor saturations, switching topologies, DECP< 1
and SGVs upper bounds cﬁfcﬂ exist, i.e. ,H,(CJ)A < :,(j}rl, =9 <

and= ~k+1 is minimized through properly choosing parameter !

G;(er- Moreover, sufficient conditions for mean-square bound-— Z gk“” Zgé” I'E[z (J) (J)) I
edness of estimation errors are established.

) E0m) P () ()T 4 40m) (4 m)yT)pT
1

'Fﬂh

1m

~
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The definition of='"  tells

k+1|k

L
4= Z<(17) Z C]ilm)FE[x](cm) (‘Tl(cm))T]FT
m=1

20 =AVED (AT + MY+ NG
:MiZZ,i”)FO,(j)FT (12) F N+ NV T +B,<j> D(BINHT - (17)
=t In addition, we obtain
Similarly, the term®;, ;, + <I>12 & 1S rewritten as I
(1) (i5) (J) ~(i3) 1, (GNT
Dok + DYy p Moz = ZC Ho ;Ck Fe)']
E[AI(:)II(:) (x;gi))T(A(i))T] .
_ 2 S(U)ro(])l—\T 18
=¢ Z k k (18)

L
Z U)P.’L' 7)

+ 7 'E[(e =1

Z Q(”)I‘x(J)

N where the fact tha[(('¢""™] = 0 (j # m) has been
—m ADOW (AT 4 7o lc2<1)117k. By i

utilized. Substituting (18) into (17) yields (15). |
Lemma 3:The recursion o}’ is

(13)
Then, it follows from (10), (12) and (13) that

i i) (i i i) (i i (1) =(9) (2)
Ol(cJ)rl <(1+m )A( )O( )(A( ))T + B;(c )Q;(C)(B;(c ))T ~k+1 Qk+1‘—‘k+1|k(Qk+1)T
L o B ‘ B(l G(l C (1) = (4) (C(l ) (G(i) )T
(L4 m e D (MG + SEro’ T (14) T e
j=1 +E[Gk+l:“k+l(:uk+1) (Grya)"]
which implies that (9) holds. n +E[Gk+1<p(01§1)1 ST (Ol 2 (G )T
Remark 3:In Lemma 1, the expression of the state covari- G}(;H[ +1 + CkilOka)rl(Ckil) ](Gz(ch)rl)T

ance is obtained as shown in (8). Unfortunately, it is literally
difficult to calculate the exact value via (8) owing to the
existence of the unknown ternds ;, + @fm. To deal with
such an issue, an upper bound on the state covariance is given
in (9) by using (11).
For nodei, let us first focus our attention on the exac\t,vhere
values of the one step prediction and filtering error covariances
Zily and =]l

+ Béllcilm[ L+ L0 )T IG )T
+ sym{% 1+l T Hz g1 T Hészrl + H4 k1
+ HéZkJrl + HG k1T H7 1 (19)

o, 2r-ai e, on ar-al) o)

“k-i-l\k . k+1-k+1°
Lemma 2: The recursion of:,%wC is HY}@H £ E[Q,(jila,(jﬂlk(ukﬂ) (G )T,
(0 (D) 40N | 2N i) ()T Hyan 2B e e (G20 (G
= —A ! = ’ A ’ =+ S - FO T + N 7 i 7 7 7
S —ACEI AT+ 2 STTOITE ANy 2 B0 <0 60T ()T @)
0 D (i i (OREYN (@) (4) (1) (i) \T
+N1(2 (/\/'12 AT+ BYQW (BT (15) ,Hé(l?;cﬂ—l =E[- Gf;ﬂ#f;ﬂ%’ (()Ck-',-lxlz-;—l)(Gk-i—l) J;
K2 A (2 (2 (2 (2
where H5?k+l =E[- Gk+1“k+1( k+1) (Gk+1)T]a
@) L (i) () L (i) G Hg}c-i—l éE[Gl(;-)HN/(;-H( 1(;+1)T(Ck+1) (Gl(q:-l)T]v
T A ~(2] J ~(2] J i 1 7 2 7 ~(
Nll,k = E[(CZCk Ley )(CZCk Le;”) ], 7{%“ S E[- ch+1‘:0(clg+1 k+1)(cl(€llxl(€ll)T(G§€}rl)T]_
j=1 j=1
L
(i) & (4) ( (1) UN\T )
Ni kT E[4) (c Z<k Te")7l; Proof: Based on the definition (H‘Ej}rl, we have

j=1
L

Z ZJ)].—‘,T(J)

22 k £E Z <(” ka

C]g”) Y Cl(clj)

o C]g”) .

Proof: Based on (1) and (7), we have

() =ADED +CZ<(W )
Jj=1

L
¢S 4 BPw
j=1

EI(CZJ)rl E/(€l+l|k - GkZJ)rl(ngrl Ckili.kzj-l\k) (20)
Adding two zero termSZ](;_i)_l - z,(;)rl and O,gﬂrl:z:&l -
Cliilkarl to the right-hand side of (20) yields
Eclj-l 791(;-!—1 l(clJ)rl\k + Gk-i—l k+1
Gk+190(clgz+1 li)rl) Gl(ciJ)rlUl(:J)ﬂ

+G¢c 2l (21)

We know

(1) (D) (4) A (4
E[Qkﬂ k+1\k(€k+l\k)T(Qk+1)T]

(16)
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_ 0@ =) (i) \T (7)
=1 e Qi) Opls 2(1+6; )ngﬂ +(1+6; 1o,
+ B GO O ED L CET G )T (22)

U,gil 21+ 7T§ + 76 + w7 + ﬁg)(b;;}rll
+ (Lt gt o)l + (14w R,
+ (1 + 7T5_1 + 7T8_1 + 7y )0&101@21(@&21?7

[Gl(cl+1”k+1(”k+1) (Gl(cl+1)T]
Gl(clJrl k+1(Gl(cl+1) +Bl(cl+10§lk+l kZJ)r1(Ggf3c+1)T= (23)
E[GL, (Ch L2 ) 2 )T (G

K2 K2 K2 K2 K2 (Z
:Gl(c-i—lclg-i—lol(c-i—l(clg-i—l) (Gl(c-i—l)T and l({kﬂ is the matrix obtalnS((Jll)by replf(?)“©k+1 by(()),wrl
+ 89 @ o o) © () ) (G(Z ) (24) in U,CJrl Then, the inequalitie; ", , <Z,7,, andz;’}, <
k4+1~"s,k+1 " k+1~k+1 k+1 s,k+1 _‘;H_l always hold.
Noting that 5k+1|k and :v,(g}rl are both uncorrelated with Proof: With initial conditions, we hav&!) < 2. As-
’Ul(cl-?—l’ we have suming thaE!” < 2, we need to prove thétkH < :,(j}rl.
_ _ _ _ Similar to (12) we have
El-Q ek (i) (G =0, @ S ) i) e ) ()
i i i i 1) a2 71]’”TLFE J m TFT
E[Gk-i-l(p (Olg-’—l k-?—l)( k-?—l) (Gl(H—l)T] =0, Nll,k & J;WZ:ICk Ck [Ek (Ek ) ]
E[- Gl(cl-l-l kl-i-l(cl(cz-i)-l I(clj—l)T(GEgzj-l)T] =0. (25) L
) <c2MzZ<<” (28)
Based on the definition Ofk:_l and (21)- (25),_,€Jrl can
be calculated via (19). | _
So far, we have made much effort to obtain the expressions\Next, let us handle the term\lf1 (Nl(;?k)T in (15). By

of error covariance (as shown in Lemmas 2-3) with sensutilizing (11), one has
saturations, switching topologies, DECP and SGVS. Unfor- ()= (i) 4 (NT (i)
tunately, it is hard to compute thelr accurate values due toN12k (Nu k) < m Ay B (4 )E oyt 1k (29)
the existence of the unknown ternz\é12 » and 7—[] ht1 (1= Substituting (29) into (15) leads to

1,2,---,7). In search of an alternative scheme, the upper- _

boundlng technique seems a feasible solution, that is, we I|k€4:§€3rwC <1+ Wz)A,(f sz (A;(CZ))T

to find an upper bound on the error covariance by virtue of L ‘
the recursive difference equation approach + (1 + w5 e, Z QSJ)PEJ(CJ)FT
Theorem 1:Let 7;, o; @and f3; (i = 2,--- ; 5) be positive =1
scalars. Under the initial cond|t|0ﬂ(’) = =" > 0, assume L _ o _
that there exist solutior}, , and :,(jﬂ +e2 3 SPToPTT + BV (BT, (30)

j=1
EW s =1+ m)APED (AT

Skilk . Then, from Lemma 1 and the assumption tﬁéﬁ) <E l), it
=)
—1\ 277, 7(i) = () 1T is easy to show tha"f: s S <= SN
+ (14 my )M z; G TET In view of (3)-(4) and (11), we obtaln
J:
Lo N ; () \T () (chlj-l)z 1y,.2
4+ ZSI(;J)FOIEJ)FT + Bl(cl)Ql(cZ)(Bl(cZ))T (26) (MkJrl) MkJrl < (1 + 91') 02 +(1+ 0, )Ui (32)
Jj=1 2
d
and an "
i i) = i E[(x;. )2]
2y =1+ 7+ ma+ ) [0, 20 (20T k+(1l)
7 7 1) —=(¢ 7 7 E[(h X + 0i — HM ”) ]
+ AL G k+lck+’1~,i+1|k<c,§+l> (G o o
@ GO (G O g B T <E[(1+ an)(hoxi? +00)" + (1 a7 )
+ Gk+1Uk+1(Gk+1) + ﬂk-l—le k+1 +1(Gs,k+1) <(1+ ai)[(l + Li)h2E( (i))z + (1 + L;1)Ui]

@) "
+ 1+ o E 7). (32)

_ Based on Lemma 4 in [19], we observe that
X =(xy2 ﬁézpw E[(x{),)% < X{),. Hence, it is not difficult to verify
that B[\, (u\'],)"] < 6\), 1. Furthermore, we have

where

(4) _ 2 (1+6)) . .
Xk+1 =[(1+ )1+ ¢i)hj + 791_2 E[Gl(cJ)rl“kJrl(MkJrl (Gl(chl)T]
X (L+ay XY + (1 +a) (1 + 7Y =GVL Elu  (u))TNGE )T
(

+(1+a;7H)(1 46702, + B GO B () ) IG )T
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<G 6 (GO )T + ﬂ,gﬂrlG(zngka(GSkH)T, (33) Proof: Taking partial derivative ofr(Z{"] ) with respect

and to the parameteré}k 4, and letting the partial derivative be
zero, we obtain
[G (C(Z) ©) ) (C(Z) )(G(l )T]
k+1‘P k+1$k+1 ¥ k+1$k+1 k+1 5tl‘(~k+1)
<ka+1(Gk+1) + BkJrl s k+1 (GglkJrl)T' (34) 5@&1
Similar to (29), the last term of the right-hand side of (19) = _— 2(1 + 3 4 74 + 7T5)é1(3—1|k(01£21)

is computed as (@) (@) =0) (3)
+2(1 + 73+ m +75)G, 0, C (Ck+1)

K1 =k 1k
0
+26,, 04,
0, (44)

HO o+ (HO LT

<7T3E[Ql(;4)rl‘€§;3-1\k(‘gg-l\k)T(QgciJ)rl)T]

+ W?TIE[GkJrleJrl(ukJrl) (Gl(clJrl)T]’ (35)
s + (k)"

§7T4E[Q§c€)rl€§clj-l\k(ggc?-l\k)T(Ql(clJ)rl)T]

+7T4 [Gk+1(p(cliilxl(3rl)sp (Cliilkarl)(Gl(;Jrl)T](a |
36

After some algebraic manipulations, we have
Gl(clj—l [(1+ 73+ ma + 7T5)Cl(cz-|)-lél(3rl|k(cl(c:)-l) + Uzgl_ﬁl]
=14 73 +ms + ﬁ5)§,§1}r1|k(0,(€21)T, (45)

which yields (43). [ |
Remark 4:So far, we have handled the dynamic event-
triggered non-fragile filtering issue for CNs with sensor sat-
urations and switching topologies. It should be pointed out
» that the factors of sensor saturations, switching topologies,
+ 7y 1E[G,(j+10k21 ,M(c,g;l ;H)T(GEJL)T], (37) DECP and SGVs have brought some essential difficulties in
VIO (7—[ ) the design of the filtering scheme. Sufficient conditions that
4kl Lk+1 o guarantee the existence of the filter have been established via
< E[GkJrleJrl(NI(CZJ)rl)T(Gl(cZJ)rl)T] Theorems 1-2, where the effects from the above-mentioned
—1 (&) (0 (4) (@) \T factors on filter performance have been considered. More
+ g E[GkJrl(p(CkJrl k+1)s0 (Crfr k+1)(Gk+1) ](738) specifically,p is related to the saturation level®/; accounts
for the switching topologlesﬁkJrl stands for the covariance

5k+1 5k+1 o of the multiplicative noise a”fibkﬂ is there for the DECP.
<z E[GHMH(u;(f}rl)T(G,(ﬁrl)T] It is also wor(tjhwhllcl? to_lncf)_tllce_ thatI the hpro_posfed dynamic
oA G) G () \T event-triggered non-fragile filtering algorithm is of a recursive
o E[Gk“ k(v k“) (Gk“) ) (39) characteristic facilitating online implementations.

H oy + ()T

<m0 e 0T @) )]

Hhsr + (M )T
<msBIGH gty ()T (GYL)T)

+mg 1E[G§;1<ck21 O Eel a9 TG )T, (40)
HglkJrl + (H7 k+1)
< E[G (C(Z) (1) ) T(C(Z) )(

Ty k+1‘P E+1LE+1)¥P E+1 k+1

+ g E[GY), (C) el (O 2 TG )T (41)

Next, substituting (33)-(41) into (19) yields

B. Analysis of Boundedness of Filtering Errors

To facilitate further developments, the following definition
and assumption are first introduced.
Definition 1: [17] <x is exponentially mean-square bound-
k'H)T] ehd if there exist positive numbers v and0 < o < 1 such
that

E{lll*} < rE{[ll*}o” + u. (46)

Assumption 1:There exist positive real scala@ish, b, ¢, ¢,

55511 <(1+7m3+my +7r5)[Q(i) =@ (QEJ}LI)T ks, t, 7, Us, G, q d, ¢, 5, f and ¢, such that the following

k+1=k+1|k

i i i) =i i i conditions hold
Bl(chng k+1Ck421“‘l(c+1|k(CIg+1) (Gi 3c+1)T] ||A(i)|\ 5 B(i)(B(i))T o
7 7 7 7 7 7 < d < S s
Gl(c+1Ul§+1(Gl(c+1) + ﬁkJrle 3c+1 kJZ1(Gi,3c+1)T- k

(42) c< el <e )G9 0 <

Using mathematical induction, we ha@ﬁl < E,(j}rl |
Theorem 2:Consider the discrete CNs with sensor satura-
tions described by (1) and the proposed non-fragile filter given

by (7). The upper bound oﬁ,(cjrl is minimized with parameter

G;;j—l =(1+m3 +ms+ 7T5)E1(;J)r1|k(cl(€:)-1)T[(1 + 73
+ ) OB L (CRL)T + O 7Y (48)

1M < E, 0| < 7, [|tx(O ”)II <,
gl <@V <l |RV| < d1¢M7) < ¢,
ISS7) < 5,181 1 < B 16811 < 6.

For convenience of later analysis, we denote
H(i) = diagL{Q(i)}
I, £ dlag{Q ) ,Q](CL)},
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Ak = dla’g{Al(gl)v A](f)v e 7AI(€L)}7

L
h <Y S uE{ (o (o)) ITT AL T
Bkédla’g{B](gl)aBl(f)v aB](qL)}a Z i

=1
Cr 2 diag{CV, c<2> oy + trE{w” (w)T(BITAY  BYY
Qk £ dlag{Q(l) - (L)} + trE{UkJrl( sz)rl) (GkZJ)rl)TG(+1}
Gor 2 dlag{Gsllz, GS AR ,Gg_Lk)}, <(m? 4 BE*k?) (2 L5, 7 + ngb?)
M £ diag, {M;}, T 2 diag, {T'}, +md(k* + Bk3) = 5 (52)
G}, & diag {G1)}, O £ diag, {C}} and
T21,1,---,1], ©210,0,---,0], E[(g ](H)_)T ;(§+1]
B 2eollO, 05,0, Ok, -5l TG )G 1))
A = diag{Ge 7, G Gy }’A Elp (CISH kZJ)rl)(GkZJ)rl)TGkJrl(p(Cliil I(clJ)rl)]
&= QOB O ¢ S de ), Bl ) (O (G GO
i- —i (i)

+ sym{E|[—(u (GO HNTGH %) c® 0
Theorem 3:Consider the discrete CNs with sensor satura- El)[ ; ktl)) EF kf)l) Z)’”l (Crirti)
tions described by (1) and the proposed non-fragile filter given El(uy.51) (Gk+1) Gk+1Ck+1 k+1]

by (7). Under Assumption 1, if the following two inequalities +E[-¢ (Cliil k+1)(Gl(cl+1)TGkZJ)rle21 k+1]}
81 A(m® + k2%) (a2 + LX) < 1 @47 <A+m+ 772)tr{IE[ukJ)r1(u,(;H)T(Gkﬁ)rl)TG,(;H]
and + (L4t + m) e {Elp(CLY2))
_ (@ .G (1) \T A(@) -1 -1
vEL+n+ns)1+f+5) o (Cihh k+1)(Gk+1() Gl + ) (1+ 272 tng )
+ (40 4 n6) L+ 6) <1 (48) X tr{E[$k+1(xk+1) (Ck+1) (Gk+1)TGk+1Ck+1]}
. <(E? + BED[(L+m1 +m2)me + (1 + 0y +n3)pm
hold, thena,(j) is exponentially mean-square bounded. ( )1[( jh )me (L ) 53
Proof: From (16) and (21) , we have +(L+my ' +mg )" £ g (53)
where
(i) _Q (4) A(l Z) + Q (i) I () 7 7 i 7 7 7 7
i =0 e Z< & AL 2 (@708, + 50, (C0,)T(E0, ) TE0 L,
‘ (&) \T ~(2) (@) T ()
+ ,YI(;) + gl(cz)rl (49) Fk+1 (Gri1) G + BkJrl(Gs 1) ot
In the sequel, an iterative matrix equation is constructed as
where
follows:
% i B % % i (1 i % i ) i 7 i
T 20 ch”F O+ LB e - Gl opl = oL Ao (AN (@) + 2, (54
Jj=1 . .
(i) i i i i i Where@ () £ Z)Q ) (B(Z))T + bl (b > 0) and
Ir+1 AGl(chl kJ)rl - GkJ)rl (Céil l(cJ)rl) @ Bo™Qo 0
+GL O 0 (I)Hl () 4D 0@ 40 G
AGS k+1ck+1Ak ®k (Ak )T(C ) (Gs kJrl)T

Recalling the definition oﬂgj}rl and (43), it can be deduced

that q i 4 j % v
) 3 M G0, O TeP T TG0, )T
I <5 Y3 .

L
G #(19) o (8) DT (o) \T
10,1 <1+ 0_2 2. (51) + ZMzCk Q1 PO T (1)
c j=1
() (@)
Next, it follows from the definitions o'}, andg\"), in + B, Q. (By")" + bl (55)
(50) that (I_\)low, we are in a position to prove the boundedness of
i i 0" . Let
E[<v£+l> Y] b1
A a o) 0@ o)
:CQZSI(:J‘)E[(II(CJ‘))TFTAEJ)1FI§€J‘)] O = diag{©; 7,0, -+, 6,7}, (56)
= " then®, ., satisfies
+E[(wi) T (BY) AL, B i) O =Tl A B ATTIT, |

+ E[(UI(JJ)A) (GkZJ)d)TGI(;HUkH] + és,k+lék+1Akék!‘i;}régﬂézkﬂ
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L
+ Y EMAPTL TOTT (1)) B
i=1

L
+ 3 BALAYGE O 1O,

=1

(CIS«H) (Gifiﬂ)TE? + BrQuBL + 6.
Taking the norm for the both sides of (57) leads to

(57)

1Ok41]]
<Mt [P AR+ 1Gserr IP 1 Crn 12 Ak 12
L
+ 3 MBI AT PP + 1G4 12
=1
X NCELIPITIR] 106l + 1 B2l + b
<01(|©k|| + o2 (58)
where
51 = (m? + k2% (a® + L*(r),
5y 2 bg + b.
It follows from (56) that
@](;Jrl = éiélﬁ_lé? (59)
and, subsequently,
1052111 < 18k41l < 81]|Ox]| + 6. (60)
If 01 < 1, the following inequality can be obtained
b2
108111 < 160 + = (61)
1
On the other hand, (54)-(55) tells
ey, >l (62)

In light of (61) and (62), there exist scala@and© such

that
er<el] <eor (63)

holds for allk > 0.

Now, we are in a position to focus on the proof of the

boundedness of the filtering errors. Let us define

L
Viler) = > (e T(©0) el (64)
i=1
where
er = col{a,(cl), - ,s,gL)}. (65)
According to (63), it is clear that
O~ lexl|* < E[Vi(ex)] < 07 [lexl*. (66)

For positive scalarg, andns, according to (11) and (49),

we obtain the following inequality:

E[Vii1(ers)ler] — (14 na +n5)Vi(er)

L
<(L+ma+75) Y E{(e))T (AT (2

i=1

IR C

8

X lej-lA g
+ ﬂk+1(

<®§J+1>

x Z Z AM DR
=1 j=1
L
+ (1 +mn7) Z E[(7k+1) (91(;4&)_1'7
i=1

NCONICOR
DA ()T (G )T
1Gsl3c+10122114 g (Z)} + (1 +n" + )

)TFTM]gll—\E(J)]

o

L

+ 0+t gt ) Y Bl )T ©),)
=1

gl(cl-i)-l]

(67)

where

(1) (1) (4)
IQk-i-l + ﬁk-ﬁ-l(ck-i—l)

16,0l

My =(

Ql(cl-l-l)T(@k?-l)
X (GS}@H)T(@;J)A)
Utilizing the matrix inversion lemma, we have
(AT @O )TN ) A - ©) !
=A@ )T AV O (AT ()T
+010,]" wilA“ (e
——[®<”+@”<A )@ (@
~ [+ (A“’) @ )T (@)
a*m®0 . o)~

(68)

3 )10 A1

k+1 k+1
10l AVe 1 el)!

<-(1+ L2 o)t (69)

On the other hand, it follows from the expression@uﬁﬁl
in (54) that

@k+1 > Gs k+101221A(i)®(i) (A(i))T(C

oy, > Mol re?’ rT ),

653-1 2 M; CIS])GSM-IC/C:)-IF@ nFT(Ck-H) (ngk-i-l)T'

(70)

Then, the second and third terms on the right-hand side of

(67) are rewritten as

B ENT AN T (e TG, )T e )

DTGH )T,
)T

)

XGS/@+1C/@21A(Z W
<BleT(©P) 1l (72)
and
L L )
ZZ 2M Ck”)E (J))TI\TMlgllergl(cJ)]
=1 j=1
L L
<SOSR+ B ED)T(OF) e
i=1 j=1
<L(1+B) Y E[)T(©O7) ). (72)
j=1

Substituting (69)-(72) into (67) yields
E[Vii1(ers1)ler] — (14 na + n5)Vi(er)
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L

<@+ +m)(F+B) D E{E)T©0) )T
=1
+ (1 +n" +n6)*(1+ B)L
L
RACONCIONCOR
1=1
+ 1 +n) A0 + (L+n5" +ng " +n7 ) Lge ™"
=oVi(ex) + A (73)
where
02 (L +nu+ns)(f+B)+ L +mn " +ns)*(1+B)L
A2 (L4970 + (1403t 405t + 071 Lge ™.
(74)
Then, it follows from (71) that
E[Vk_;,_l (ek+1)|ek] < vV (ek) + A (75)

with v being defined in (48). In addition, we can immediatel
obtain

k
Efl|eo) )" + 20" v

=1
A0
1—

Elflexs1]?] <

< (76)

lojjoNoljol

Ellleol*J* ! +

which indicates thastgj) is exponentially bounded in the sensk

of mean-square it < 1. [ |
Remark 5:A sufficient condition has been provided ir

Theorem 3 to guarantee the mean-square boundednegslof

is worthwhile to note tha@,ﬁrl is not only dependent o@éi)
but also on@ (] =1,2,---,L), and this brings additional
difficulties to dlscover the relatlonshlp betweﬁ@kﬂn and
H@kZ)H. To deal with such a challenge, the ter@nﬁl~ has
been introduced in (54) and the recurrence relatio®gf
has been determined as |n (57). Then, it is not difficult t
verify the boundedness (@k“

IV. I LLUSTRATIVE EXAMPLES

Example 1: Consider a CN consisting & coupled nodes
with known matrices:

40[0.95 124 ) @) [ —0.65 0.3

ko 1-0.5 0.92sin(5k)| **% 0.2 +0.5sin(3k) —0.3]"
3 [0.38 —0.7] L) [ 0.1 2 [-0.1

Ay 105 0.1 Br= —0.6 By= —-0.9|’

r T o 17T T

BB 0.1 o 0.5 @ 2.4 B 1
k1-0.6]7 7k L O % . Y

. 101 (1)_]0.2 (2)_|0.05 3)_]0.3

F_{ 0 o 1} G {0 1] G, _[ 0.2} G 0.2|"

In this simuIation, we set = 8 x 1073, ¢ = ey =
€6 er = eg eg = 0.2, e3 = e4 = e5 = 0.5. The
initial conditions are;v(o) 2D = 10.5,1)7, 230 = 2 =

Tyj0 = v Lo 1/0
[~1,0.25]7, 2§ = Aﬁg = [-0.5,-0.75]", B} = 0,011,
ng()) = 00212 and Eo|o 0.0115. Meanwhile, we set
@ = 001, RY

( = 001, (" = 095, (i = 1,2,3),

.3049461, IEEE Transactions on Cybernetics

9
’,%12) — 0.8, 4713) 0.65, {2V = 075 (P = 0.55,
o= 085, ¢ = 075, 8% =1 (G = 1,2,3). The

dynamic event- trlggered parameters are choseh;as 0.1,
o; = 0.01 andd; = 0.1 ( = 1,2, 3). In addition, the saturation
level parameters are; = 1, ¢, = 1 (1 = 1,2,3), p1 = 0.5,
p2 =0.8 andp3 =0.9.

Figs. 1-2 display trajectories of actual states and their
estimates. It is clear that the true trajectories are well tracked
by the designed filter. Based on Theorems 1-2, the upper
bounds are obtained, and the curves of Log(the actual error
covariance) and their bounds are given in Figs. 3-4, from
which we spot that curves of Log(MSE) stay below that of
upper bounds. In addition, Figs. 5-6 plot the curves of the
actual filtering error covariances with hope to better display
the changing trend of their filtering errors, which shows that
the filtering errors are small and tend to be stable.

2 g
h —6— True value
—*— Node 1

6

o
g

10 20 30 40

N

—S— True value

o
T

=)

Actual state and Estimated state

-0.5 &

. .
30 40
t/step

The first state component

L
20 60

Fig. The curves ozfc( )k andm( ) on nodei (i =1,2,3).

B ok
R OR

—6— True value
—%— Node 1

o True value
—*— Node 2

-0.5
50

Actual state and Estimated state

—&— True value ||
—*— Node 3

50

.

30 40
t/step

The second state component

Fig. The curves ofr:( )k and:c( ) on nodei (i = 1,2, 3).

Example 2: The presented dynamic event-triggered non-

fragile filtering approach is applied to a network of inter-

connected flexible link robot systems [8], [35], where the

system state is composed of the angular posmon of the motor
shaft”

g the velocrty of the motor shait'”)

position of the I|nk9
(it =1,2,---,5) .

ko the angular

and the velocity of the I|nk19
Drscretlzatrng the original system under

the samplrng penorT = 1, the following system parameters
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50
8
g2 o ==
3 Upper bound
3 —-—--Node 1
g -50 . . . .
s 0 10 20 30 40 50 0
o 10
2 of -
[
g-10r Upper bound
< ——~Node 2
g .20 I . . .
< 0 10 20 30 40 50 60
510 - ; . . )
)
8
g or o - - ]
T Upper bound
. ——-Node 3
10 L L L L
0 10 20 30 40 50 0

tistep
Estimation error variances of)i and their upper bounds

Fig. 3.
bounds.

Log(the actual error covariance) and their corredpan upper

20 , . . :
Upper bound
or //V/\//\//\/\/\/W
P
E
5 or [ Y ]
3 P
% 10 : w \ ‘ ‘
2 0 10 20 30 40 50 60
5
[} 5 T
=
2 or - - T
g [
g sf Upper bound
< ~ - Node 2
£ 10 \
g o 10 20 30 40 50 60
s 5 :
k)
8 or o L S
S .
*r Upper bound
| | ! . ——-Node 3
-10
0 10 20 30 t/step 40 50 60

Estimation error variances of{ and their upper bounds

Fig. 4. Log(the actual error covariance) and their corredpan upper

bounds.

are obtained:

—0.0727  0.0002 0.2095 —0.0240
Au(k) = —0.4842 —0.0751 1.2996 0.2095
T 1-0.0362 —0.0098  0.2351 0.0562 |’

1.5873 0.0852 —3.4969 0.2351

1 0 0 0

Other matrices are given as:

B{"=0.1 —0.6 02 03],BPH-01 —09 04 0.1],

B¥<01 -06 03 05],B"=0.3 01 0 0.05],
0.9 05 03 05]"

BPH09 —0.1 07 06,6001 01 05 04

The initial values arez!” = % = [0.5,1,0,0]7,
0 ~(2 0 ~(3

o = @ = [£1,0250,07, 2f) = i) =
[~0.5,-0.75,0,0)7, 2} = &}) = [0.1,0,0.5,0), z{” =
iy = [-0.5,0.25,0, 1], and S} = 0.1y, (i = 1,-+-,5).
In addition, we setc = 8 x 1073, ¢; = 0.2, Q}, G — 0.01,
RY =0.01, (" = 095 S 085 U = 065 <<14>

0.5, (" = 0.85, {*Y = 0.75, <§ = 0.55 gk = 0.55,
,gw = 0.65, <,f” = 085, {* = 0.75, (" = 0.75,

10

' /\/\‘ ' Actual variances
/ ~
001 / ]
0 4\/\ L L L L
0 10 20 30 0 50 60
001 . . T T
— Actual variances
0.005 /\N — @
0 T L L L L L
0 10 20 30 40 50 60
001 : T ! . .
‘\/\\/\\
J/ \/\/\,\ ]
0.005 N/ B
__J
o \ \ \ \
0 10 20 30 40 50 60

t/step
The first state component

Fig. 5. The actual filtering error variance for the first stabtenponent.

0.01
Actual variances
0.005 /\b T
0 —— L L L L L
0 10 20 30 40 50 60
0.015 T T
T
0.01 f B
0.005 - \\/—‘\/\ |
/7
0 10 20 30 40 50 60
0.01 T T T T
- T T
0.005 //
— Actual variances
, ‘
0 10 20 30 40 50 60

t/step
The second state component

Fig. 6. The actual estimation error variance for the secoat stomponent.

B = 0.95,

¢4 = .75, ¢ = 0.95, ¢* = 0.55,
124") = 0.55, ?‘)” — 0.85, gb) = 0.75, <Z53> = 0.95,

1254) = 0.65. The dynamic event-triggered parameters are
chosen as; = 0.1, 01 = 0.2, 0o = 0.05,03 = 0.1,04 = 0.15
andos = 0.01. andd; = 10. The saturation level parameters
area; =0.1,4, =0.1,p1 =0.5, p2 = 08,03 =0.9, ps = 0.6
and ps = 0.4.

Figs. 7-10 demonstrate trajectories of actual states and their
estimates, which show the true trajectories are well tracked
by the proposed filter. Moreover, Fig. 11 plots the dynamic
event-triggered time. It is observed that the transmitted data
become less as the threshold increases.

V. CONCLUSIONS

In this paper, we have solved the non-fragile filtering prob-
lem for CNs with sensor saturations and switching topologies.
The DECP has been adopted to adaptively tune triggering
thresholds, thereby saving communication costs. Upper bounds
on error covariances have been derived and minimized by
properly choosing gain parameters. Sufficient conditions have
been obtained to guarantee mean-square boundedness of error
dynamics. Finally, simulations have been given to prove the
usefulness of our developed filtering algorithm. One of our
future research topics would be the extension of the presented
filtering method to systems with more complicated network-
induced phenomena [3], [12].
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