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Abstract—It has been shown that self-triggered control has
the ability to reduce computational loads and deal with the
cases with constrained resources by properly setting up the
rules for updating the system control when necessary. In this
paper, self-triggered stabilization of Boolean control networks
(BCNs), including deterministic BCNs, probabilistic BCNs and
Markovian switching BCNs, is first investigated via semi-tensor
product of matrices and Lyapunov theory of Boolean networks.
The self-triggered mechanism with the aim to determine when
the controller should be updated is provided by the decrease of
the corresponding Lyapunov functions between two consecutive
sampling times. Rigorous theoretical analysis is presented to
prove that the designed self-triggered control strategy for BCNs
is well defined and can make the controlled BCNs be stabilized
at the equilibrium point.

Index Terms—Boolean control networks, semi-tensor product,
self-triggered scheduling, Lyapunov function.

I. INTRODUCTION

Boolean networks have attracted considerable attention due

to their wide applications in various fields such as gene

regulatory networks [1], smart home [2] and game theory [3]–

[5], etc. Extensive studies have been conducted on analysis and

control problems of Boolean networks by semi-tensor product

of matrices [6], [7] in the last decade, with different focuses

on system stability, optimization, observability, controllability

and so on. Readers may refer to [8]–[18] and the references

therein for more details.

As is well known, there are always switching and uncertain

phenomena in practical systems. For example, the bacterio-

phage λ in genetic regulatory networks may possess differ-

ent behaviors (lysis and lysogeny) under different external

and internal environments. A series of molecular processes

in genetic regulatory networks is always affected by some

intrinsic fluctuations and extrinsic perturbations with stochastic

factors. Therefore, probabilistic/Markovian switching Boolean

networks may have advantages in modeling the rule-based

properties and uncertainties. Stability and stabilization of prob-

abilistic/Markovian switching Boolean networks have been

investigated in [19]–[23].

In most existing references on stabilization and controller

design for Boolean control networks (BCNs), it is required
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that the states at all the discrete time should be accessible.

However, caused by constrained resources such as a limited

lifetime of battery-powered devices, the received data from

sensors for designing controllers may be disrupted. In addition,

it was pointed out [24], [25] that in the study of genetic

regulatory networks, the feedback control based on the data

at all the consecutive discrete time may lead to some undesir-

able results such as too frequent transmission of information

between mRNA and protein, Zeno behavior, and so on, which

may consume a large number of controller executions and

computational costs. Consequently, it is necessary to develop

control techniques depending on the measurable states at

partial discrete time.

Periodic sampling, which is a special case where the mea-

surements are available periodically, has been applied to study

state feedback stabilization for BCNs [26], [27]. The work was

then extended to non-periodical sampling [28], which is also

prescheduled. Such sampling intervals can be regarded as ex-

ogenous signals which are deterministic regardless of whether

the systems need attention. On the other hand, however, the

sampling time is always unknown in advance in event-based

cases, where the next sampling time at which the control

is updated always hinges on the control itself and a state-

dependent criterion in a way that the stability of the closed-

loop system is not destroyed [29]–[32]. Related works on

event-based control of Boolean networks can be found in [33]–

[38]. In [33], the disturbance decoupling problem was studied

by event-triggered control and the triggering condition as a

rank condition of the network transition matrices. In [34], the

authors designed the triggering times based on the Hausdorff

distance to study robust control of BCNs with disturbances.

Subsequently, Zhu and Lin in [35] obtained an optimal event-

triggered control strategy for stabilization of BCNs by con-

structing the weighted digraph and the hypergraph for the BCN

and applying the shortest path algorithm to the hypergraph.

The idea of event-triggered control was also extended to

study synchronization of drive-response BCNs [36] and robust

invariance of probabilistic BCNs [37]. Such results can indeed

reduce the number of samples while still fulfilling the requests.

The event-triggered control, with all its advantages, has

to depend on constant measurements to detect whether the

triggering conditions are fulfilled. However, self-triggered

sampling scheduling [39]–[41] has the advantage that the next

sampling time tk+1 can be determined in advance only based

on the state and controller at the current sampling time tk. To

our best knowledge, there are no references on self-triggered

control for BCNs, which motives our study in this paper

for improving the existing periodic/event-triggered sampling
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schemes for BCNs.
In this paper, for the first time to the best of our knowledge,

we investigate self-triggered scheduling for BCNs based on

Lyapunov functions for Boolean networks. Three kinds of

BCNs, namely deterministic BCNs, probabilistic BCNs and

Markovian switching BCNs, respectively, are considered. Lya-

punov functions for deterministic and Markovian switching

Boolean networks were, respectively, proposed in [42] and

[21]. However, there is no systematic analysis on Lyapunov

stability for all the different classes of Boolean networks. In

this paper, the definition and construction of the Lyapunov

function for probabilistic Boolean networks are presented. The

self-triggered conditions are designed hinging on the known

stabilizing controllers and the decrease of the corresponding

Lyapunov functions between two consecutive samplings. The

self-triggered controllers improve the known ones when only

partial state information is available. Note that Boolean net-

works are a kind of nonlinear networks with finite states, then

the methods and results for BCNs are not trivial and not similar

to those of the conventional discrete-time systems. We provide

rigorous theoretic analysis to prove that the presented self-

triggered update scheduling is well defined for (deterministic,

probabilistic, Markovian switching) BCNs and can make the

controlled BCNs stable.
In summary, the main contributions of this paper are

twofold:

i) The definition of Lyapunov function and Lyapunov

stability theory for probabilistic Boolean networks are

presented for the first time, which can be applied to

easily constructed a Lyapunov function for probabilistic

Boolean networks.

ii) A self-triggered scheduling for BCNs is proposed based

on the decrease of the constructed Lyapunov functions

between two consecutive sampling. Rigorous analyses are

given to show the well-definedness of the designed self-

triggered controllers and stabilization for three kinds of

BCNs, namely deterministic BCNs, probabilistic BCNs

and Markovian switching BCNs, respectively.

The remainder of this paper is organized as follows. Sec-

tion II introduces some preliminary results about semi-tensor

product of matrices. In Section III, we introduce the Lya-

punov stability theory for three kinds of Boolean networks. In

Section IV, self-triggered scheduling and theoretical analysis

are presented for BCNs, probabilistic BCNs and Markovian

switching BCNs, respectively. Finally, a brief conclusion is

given in Section V.
Notations. Let Rn and R

m×n be the sets of n-dimensional

column vectors and m × n real matrices, respectively. Set

B := {0, 1}. The symbol Bn×m represents the set of n ×m

matrices with every element being in B. The matrices in

B
n×m are called Boolean matrices. Bn := B

n×1. δin represents

the ith column of the identity matrix In, i = 1, 2, . . . , n.

Denote ∆n := {δin | i = 1, 2, . . . , n}. A matrix L ∈ R
n×r

is called a logical matrix if every column of L is in ∆n,

and a logical matrix L ∈ R
n×r can be written as L =

[δi1n , δ
i2
n , . . . , δ

ir
n ] or L = δn[i1, i2, . . . , ir]. Denote by Ln×r

the set of n × r logical matrices. Coli(L) represents the ith

column of L and Col(L) is the set of columns of L. W[m,n]

represents an mn×mn swap matrix defined in [6], [7], i.e.,

W[m,n] = [In ⊗ δ1m In ⊗ δ2m · · · In ⊗ δmm ], where ⊗ is the

Kronecker product [43]. 1n (0n) is a column vector in R
n

with all of its elements being 1 (0). diag{M1,M2, . . . ,Mn}
represents a diagonal matrix with the ith diagonal being Mi.

The notation A < (>,≤,≥) 0 for a matrix or a vector

A means that all the elements of A are negative (positive,

nonpositive, nonnegative). ρ(A) is the spectral radius of matrix

A. The symbols Pr{·} and E{·} represent the probability and

expectation operators, respectively.

II. SEMI-TENSOR PRODUCT

In this section, some preliminaries about semi-tensor prod-

uct of matrices are introduced. We first give the definition of

the main mathematical tool, semi-tensor product of matrices,

used in this paper.

Definition 1 ( [6], [7]): The semi-tensor product of matrices

M ∈ R
a×b and N ∈ R

c×d, denoted by M ⋉N , is defined as

M ⋉N = (M ⊗ Il/b)(N ⊗ Il/c),

where l is the least common multiple of b and c.

When the column dimension of M is equal to the row

dimension of N , i.e., b = c, the semi-tensor product of

M and N is degenerated to the traditional matrix product,

i.e., M ⋉ N = MN . Hence, the STP is a generalization

of conventional matrix product. Moreover, this generalization

keeps all major properties of traditional matrix product, such

as distributive law, associative law and so on. In this paper,

the symbol “⋉” is omitted if no confusion arises. Further dis-

cussions on properties and applications of semi-tensor product

can be referred to [6], [7].

The essential step of using semi-tensor product of matrices

to study Boolean networks is to define a bijective mapping

from B to ∆2, i.e., 0 ∼ δ22 , 1 ∼ δ12 . Then we can get a

bijection from B
n to ∆2n , denoted by φn : Bn → ∆2n , which

is defined as

φn(X) =

(

X1

X̄1

)

⋉

(

X2

X̄2

)

⋉ · · ·⋉

(

Xn

X̄n

)

∈ ∆2n ,

(1)

where X = (X1, X2, . . . , Xn)
T ∈ B

n and X̄i = 1 −Xi, i =
1, 2, . . . , n. Note that a Boolean function with n variables is a

mapping from B
n to B. An important lemma for equivalently

converting the original logical form of Boolean networks to

an algebraic expression is presented as follows.

Lemma 1 ( [6], [7]): For a Boolean function ψ : Bn → B,

there exists a unique matrix Mψ ∈ L2×2n , which is named as

the structure matrix of ψ, such that

φ1(ψ(X)) =Mψφn(X), (2)

where φ1, φn are defined in (1).

III. LYAPUNOV STABILITY THEORY

This section will introduce the Lyapunov stability theory

for three classes of Boolean networks, namely deterministic

Boolean networks, probabilistic Boolean networks and Marko-

vian switching Boolean networks. The Lyapunov function for
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probabilistic Boolean networks is defined for the first time,

while those for the other two kinds of Boolean networks can

be found in [21], [42], [44], [45]. Without loss of generality, it

can be assumed that the equilibrium point of a (deterministic,

probabilistic or Markovian switching) Boolean network is

δ2
n

2n . Otherwise, a coordinate transformation [46] can be used

to equivalently transfer any point δk2n to δ2
n

2n . We start by

emphasizing that the notations in Subsections III-A, III-B and

III-C are independent.

A. Lyapunov function for Boolean networks

A Boolean network with n nodes is given as

X(t+ 1) = f(X(t)), (3)

where X(t) ∈ B
n and f : B

n → B
n is a Boolean vector

function. Based on the semi-tensor product in Definition 1

and Lemma 1, the algebraic form of Boolean network (3) can

be equivalently rewritten as

x(t+ 1) = Fx(t), (4)

where x(t) = φn(X(t)) ∈ ∆2n , and F is in L2n×2n , called

the transition matrix of (3). Partition F as

F =

[

F11 F12

F21 F22

]

,

where F11 ∈ B
(2n−1)×(2n−1) and F22 ∈ B. Then one can

verify that a necessary condition for stability at the equilibrium

point δ2
n

2n of Boolean network (4) is that δ2
n

2n is a fixed point of

(4), which is equivalent to Fδ2
n

2n = δ2
n

2n , i.e., F12 = 02n−1 and

F22 = 1. Reviewing the Lyapunov theory proposed in [42],

[44], [45], Boolean network (4) is stable at the point δ2
n

2n if and

only if there exists a Lyapunov function of Boolean network

(4), V1(x(t)), which is defined to satisfy

• V1(x(t)) > 0 for x(t) 6= δ2
n

2n and V1(x(t)) = 0 for x(t) =
δ2

n

2n ;

• ∆V1(x(t)) < 0 for x(t) 6= δ2
n

2n and ∆V1(x(t)) = 0 for

x(t) = δ2
n

2n , where ∆V1(x(t)) := V1(x(t+1))−V1(x(t)).

Then by (9) in [42], a Lyapunov function for Boolean network

can be constructed as

V1(x(t)) = λTx(t), (5)

where λ = (λ1, 0)
T ∈ R

2n with λ1 ∈ R
2n−1 satisfying

λ1 > 0, (6)

FT11λ1 − λ1 < 0. (7)

B. Lyapunov function for probabilistic Boolean networks

If the update strategy of a Boolean network is not deter-

ministic and belongs to a set of possible update strategies

with certain probability distribution, then the Boolean network

becomes a probabilistic Boolean network. Consider a proba-

bilistic Boolean network with n nodes and s possible update

strategies as

Y (t+ 1) = g(t)(Y (t)), (8)

where Y (t) ∈ B
n, and g(t) ∈ {g1, g2, . . . , gs} with gi :

B
n → B

n being a Boolean vector function, i = 1, 2, . . . , s.

Moreover, for every time t, Pr{g(t) = gi} = pi, where

pi ≥ 0 and
∑s

i=1 pi = 1. Without loss of the generality,

it is assumed that pi > 0 for every i = 1, 2, . . . , s since if

pi0 = 0, then we can consider the possible update strategy

set as {g1, g2, . . . , gs}\{gi0}. The probability distribution of

g(t) is independent of the historical states Y (k) for k ≤ t.

Similar to that of the Boolean network case, by Lemma 1, the

equivalent algebraic form of probabilistic Boolean network (8)

can be obtained as

y(t+ 1) = G(t)y(t), (9)

where y(t) = φn(Y (t)) ∈ ∆2n , G(t) ∈ {G1, G2, . . . , Gs}
where Gi ∈ L2n×2n is the corresponding transition matrix

of gi, and Pr{G(t) = Gi} = pi, i = 1, 2, . . . , s. Before

constructing a Lyapunov function for (9), the definitions of

stochastic stability and the Lyapunov function for (9) are first

given as follows.
Definition 2: Probabilistic Boolean network (9) is said to be

stochastically stable at δ2
n

2n if limt→∞ E{y(t)} = δ2
n

2n .

Remark 1: The definition of stochastic stability for proba-

bilistic Boolean networks in Definition 2 is different from that

in [19], where a probabilistic Boolean network is said to be

stable at δ2
n

2n with probability one if for any initial value y(0),
there exists an integer T > 0 such that for all t ≥ T , one has

Pr{y(t) = δ2
n

2n |y(0)} = 1. (10)

The above definition is also called finite-time stability with

probability one [47]. This can be regarded as special case of

Definition 2.

Definition 3: A stochastic function V2 : ∆2n → R is called

a Lyapunov function for probabilistic Boolean network (9) if

the following conditions hold:

• V2(y(t)) > 0 for y(t) 6= δ2
n

2n and V2(y(t)) = 0 for y(t) =
δ2

n

2n ;

• ∆V2(y(t)) < 0 for y(t) 6= δ2
n

2n and ∆V2(y(t)) = 0 for

y(t) = δ2
n

2n , where ∆V2(y(t)) = E{V2(y(t+1))|y(t)}−
V2(y(t)).

Lemma 2: Based on Definitions 2 and 3, probabilistic

Boolean network (9) is stochastically stable at δ2
n

2n if and only

if there exists a Lyapunov function of network (9).

Proof. Necessity. By Definition 2, if probabilistic Boolean

network (9) is stochastically stable at δ2
n

2n , then for any initial

state y(0), limt→∞ E{y(t)} = δ2
n

2n . Taking expectation on

both side of (9), one has

E{y(t+ 1)} =

s
∑

i=1

piGiE{y(t)}

:= GE{y(t)}, (11)

where G =
∑s
i=1 piGi is a nonnegative matrix. Then

1
T
2nE{y(t)} = 1 and

1
T
2nG =

s
∑

i=1

pi1
T
2nGi =

s
∑

i=1

pi1
T
2n = 1

T
2n (12)

as y(t) ∈ ∆2n and Gi ∈ L2n×2n , i = 1, 2, . . . , s. Partition G

and E{y(t)}, respectively, as

G =

[

G11 G12

G21 G22

]

, E{y(t)} =

[

ỹ1(t)
ỹ2(t)

]

,



4

where G11 ∈ R
(2n−1)×(2n−1), G22 ∈ R, ỹ1(t) ∈ R

2n−1

and ỹ2(t) ∈ R. Thus, limt→∞ E{y(t)} = δ2
n

2n if and only

if limt→∞ ỹ1(t) = 02n−1 and limt→∞ ỹ2(t) = 1. Taking

limitation on both side of (11) yields limt→∞ E{y(t+ 1)} =
G limt→∞ E{y(t)}, i.e., δ2

n

2n = Gδ2
n

2n , which implies G12 =
02n−1 and G22 = 1. Then from (11), the update of ỹ1(t) can

be written as

ỹ1(t+ 1) = G11ỹ1(t). (13)

Thus, limt→∞ ỹ1(t) = 02n−1 if and only if ρ(G11) < 1. Note

that the matrix G11 is nonnegative. By [48], limt→∞ ỹ1(t) =
02n−1 if and only if there exists a vector ν1 ∈ R

2n−1 such

that

ν1 > 0, (14)

GT11ν1 − ν1 < 0. (15)

Define

V2(y(t)) = νT y(t), (16)

where ν = (νT1 , 0)
T ∈ R

2n with ν1 satisfying (14) and (15). It

can be easily verified that V2(y(t)) matches the conditions in

Definition 3 and thus can be viewed as a Lyapunov function

of network (9).

Sufficiency. If there exists a Lyapunov function V2(y(t)) in

the form (16) satisfying the conditions in Definition 3, then

(14), (15) hold and G12 = 02n−1. With the necessity proof,

one can prove that the network (9) is stochastically stable at

δ2
n

2n . �

From the proof of Lemma 2, a Lyapunov function of

network (9) can be constructed as

V2(y(t)) = νT y(t), (17)

where ν = (νT1 , 0)
T ∈ R

2n with ν1 ∈ R
2n−1 satisfying

ν1 > 0, (18)

GT11ν1 − ν1 < 0. (19)

C. Lyapunov function for Markovian switching Boolean net-

works

If the update strategy at every time randomly chooses

the possible update strategies related to the one at the last

time rather than following a certain probabilistic distribution,

then this network can be modeled as a Markovian switching

Boolean network given as

Z(t+ 1) = hσ(t)(Z(t)), (20)

where Z(t) ∈ B
n, hσ(t) ∈ {h1, h2, . . . , hr} with hi : B

n →
B
n being a Boolean vector function, σ(t) is a switching signal,

which is a discrete-time homogeneous Markov chain with

finite state set R = {1, 2, . . . , r}, i.e., σ(t) ∈ R, and its

transition probability matrix as Π = (πij) ∈ R
r×r defined

as

πij = Pr{σ(t+ 1) = j|σ(t) = i},

where πij ≥ 0 for i, j ∈ R and
∑r

j=1 πij = 1 for any i ∈ R.

The algebraic form of network (20) is

z(t+ 1) = Hσ(t)z(t), (21)

where z(t) = φn(Z(t)) ∈ ∆2n and Hσ(t) ∈
{H1, H2, . . . , Hr} whereHi ∈ L2n×2n is the transition matrix

corresponding to hi, i = 1, 2, . . . , r.

As in [21], [22], it is assumed that the Markov chain σ(t)
is ergodic, i.e., irreducible and positive recurrent.

Definition 4 ( [21], [22]): Markovian switching Boolean

network (21) is said to be stochastically stable at δ2
n

2n if for

any initial value z(0) and any initial distribution of σ(t), the

following condition holds:

lim
t→∞

E{z(t)|z(0), σ(0)} = δ2
n

2n . (22)

For network (21), the Lyapunov function is defined as

follows.

Definition 5 ( [21]): A stochastic function V3 : ∆2n ×R →
R is called a Lyapunov function of network (21) if for any

σ(t) ∈ R,

• V3(z(t), σ(t)) > 0 for z(t) 6= δ2
n

2n , and V3(z(t), σ(t)) = 0
for z(t) = δ2

n

2n ;

• ∆V3(z(t), σ(t)) < 0 for z(t) 6= δ2
n

2n , and

∆V3(z(t), σ(t)) = 0 for z(t) = δ2
n

2n , where

∆V3(z(t), σ(t)) = E{V3(z(t+1), σ(t+1))|z(t), σ(t)}−
V3(z(t), σ(t)).

It has also been proved in [21] that Markovian switching

Boolean network (21) is stochastically stable at δ2
n

2n if and

only if there exists a Lyapunov function for (21) defined in

Definition 5. Note that Hσ(t) = Hi when σ(t) = i. Partition

Hi as

Hi =

[

Hi,11 Hi,12

Hi,21 Hi,22

]

, Hi,11 ∈ B
(2n−1)×(2n−1), (23)

for i = 1, 2, . . . , r. By recalling the stability results in [21],

[22], a Lyapunov function for Markovian switching Boolean

network (21) can be designed as

V3(z(t), σ(t)) = ωTσ(t)z(t), (24)

where σ(t) ∈ R and ωi = (ωTi1, 0)
T ∈ R

2n with ωi1 ∈ R
2n−1

satisfying

r
∑

j=1

πijH
T
i,11ωj1 − ωi1 < 0, (25)

ωi1 > 0, (26)

for i = 1, 2, . . . , r.

Remark 2: For deterministic Boolean networks, a deter-

ministic function, of course, can be regarded as a Lyapunov

function. The Lyapunov functions for probabilistic and Marko-

vian switching Boolean networks are both stochastic, while

a Lyapunov function for a probabilistic Boolean network

can be equipped with a common gain ν and a Lyapunov

function for a Markovian switching Boolean network is in

fact composed of multiple functions. It is also difficult to

find a common Lyapunov function for a Markovian switching

Boolean network.
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IV. SELF-TRIGGERED SCHEDULING

To reduce computational loads and deal with the cases

with constrained resources, we aim to design self-triggered

strategy to properly set up the rules for updating the system

control when necessary. In fact, the control strategy under self-

triggered case has the following structure:
{

u(t) = u(tk) ∈ U(x(tk)), t ∈ [tk, tk+1),
tk+1 = tk + τ(x(tk)),

(27)

where t0 = 0, τ(x(tk)) denotes the time between two consec-

utive sampling times, and U(x(tk)) is the possible control set

when the state is x(tk). The problem we are interested is to

solve the co-design problem of both the triggering times and

the required control.

In this section, self-triggered control for BCNs, probabilistic

BCNs and Markovian switching BCNs will be studied mainly

based on the Lyapunov theory presented in the previous

section. Hereafter, it is assumed that a feedback controller

is given such that the studied BCN can be (stochastically)

stabilizable at the equilibrium point δ2
n

2n since the stabilization

of BCNs can be viewed as a prior by using the existing

methods in [22], [49]–[51]. The notations in Subsections IV-A,

IV-B and IV-C are also independent.

A. BCNs

In this subsection, we just study the BCN from its algebraic

expression form as

x(t+ 1) = Fu(t)x(t), (28)

where x(t) ∈ ∆2n is the state variable, u(t) ∈ ∆2m is the

control input and F ∈ L2n×2n+m . Assume that BCN (28) is

stabilizable at δ2
n

2n by a state feedback control

u(t) = Kx(t), (29)

where K ∈ L2m×2n , then by recalling the Lyapunov func-

tion in Subsection III-A, there exists a Lyapunov function

V1(x(t)) = λTx(t) for the closed-loop system

x(t+ 1) = FKΦ2nx(t), (30)

satisfying

λ = (λT1 , 0)
T , λ1 > 0, F̃T11λ1 − λ1 < 0, λ1 ∈ R

2n−1,

where

F̃11 = [I2n−1 02n−1]FKΦ2n

[

I2n−1

01×(2n−1)

]

,

and Φ2n = diag(δ12n , δ
2
2n , . . . , δ

2n

2n ) is called a reduced order

matrix [7] such that Φ2nx(t) = x(t) ⋉ x(t). By recalling

the Lyapunov function in Subsection III-A, the self-triggered

scheduling is designed such that the Lyapunov function at the

next time will decrease. For M ≥ 1 and a state x ∈ ∆2n , if

for any t and any u ∈ ∆2m , (Fu)tx 6= δ2
n

2n , let

UM (x) := {u ∈ ∆2m | V1
(

(Fu)ix
)

− V1((Fu)
i−1x) < 0,

i = 1, 2, . . . ,M}. (31)

Otherwise, if there exist some u ∈ ∆2m and a positive integer

Nu ≤M such that (Fu)Nux = δ2
n

2n , denote

UM (x) := {u ∈ ∆2m | V1
(

(Fu)ix
)

− V1((Fu)
i−1x) < 0,

V1
(

(Fu)jx
)

− V1((Fu)
j−1x = 0,

i = 1, 2, . . . , Nu; j = Nu + 1, . . . ,M}. (32)

Then τ(x(tk)) and U(x(tk)) in (27) are defined formally as

τ(x(tk)) = max{M | UM (x(tk)) 6= ∅}, (33)

U(x(tk)) = Uτ(x(tk))(x(tk)). (34)

Theorem 1: Consider BCN (28). The control strategy (33),

(34) for BCN (28) is well defined, i.e., for all x(0) ∈ ∆2n ,

tk+1 > tk, for k = 1, 2, . . ., and there exists a positive integer

N < 2n such that for any t ≥ tN , the control u(t) remains

unchanged, i.e., tN < ∞ and tN+1 = ∞. Moreover, the

system (28) with the control strategy (27) is stabilizable at

δ2
n

2n in a finite time.

Proof. To show the well-definedness of the control strategy

(33), (34), it suffices to prove that for all x ∈ ∆2n , U1(x) 6= ∅
where U1(x) is defined in (31). Suppose that at some sampling

time tk, x(tk) = x. Choosing ū = Kx, where K is given in

(29), we have

V1(F ūx)− V1(x) = V1(FKΦ2nx(tk))− V1(x(tk))

= V1(x(tk + 1))− V1(x(tk))
{

= 0, if x = δ2
n

2n ,

< 0, if x 6= δ2
n

2n ,

by the definition of Lyapunov function V1(x(t)). Then ū ∈
U1(x). This proves that U1(x) 6= ∅, and thus tk+1 > tk.

Now we are in a position to prove that there exists a positive

integer N < 2n such that the update of the control u(t) stops

at tN , i.e. tN <∞ and tN+1 = ∞. Bearing in mind the self-

triggered scheduling in (33) and (34), we have V1(x(t)) >
V1(x(t + 1)) if x(t) 6= δ2

n

2n and V1(x(t)) = V1(x(t + 1)) =
· · · = 0 otherwise. Note that the number of all the possible

values of the Lyapunov function V1(x(t)) for a fixed a λ is

no more than 2n since x(t) ∈ ∆2n . If N ≥ 2n, then by the

definition of the Lyapunov function V1(x(t)), one can find

an integer i satisfying 0 ≤ i < N such that V1(x(ti)) = 0,

i.e. x(ti) = δ2
n

2n . By selecting u(t) = Kx(ti) for all t ≥ ti,

where K is given in (29), then (Fu(ti))
tx(ti) = δ2

n

2n for any

t ≥ 0. That is, for any t, V1(x(t)) = 0 for all t ≥ ti. Then

the control will not update after ti, i.e., ti+1 = ∞, which is a

contradiction to tN <∞ and N > i.

Next, we prove that the system (28) with the control strategy

(33), (34) reaches the stable point δ2
n

2n at a finite time and

remains unchanged. By the self-triggered condition, one has

that V1(t0) > V1(t1) > · · · > V1(tN ) ≥ V1(tN+1) = 0.

If x(tN ) = δ2
n

2n , then u(t) = Kx(tN ) for all t ≥ tN can

guarantee that the state of the system (28) is δ2
n

2n afterwards.

That is to say the system (28) is stabilizable at δ2
n

2n in finite

time tN . If x(tN ) 6= δ2
n

2n , then u(t) = Kx(tN ) for all t ≥ tN
can guarantee that the state of the system (28) reaches δ2

n

2n in

time 2n since the state space of a Boolean network is finite

[49], [50]. Therefore the system (28) is stabilizable at δ2
n

2n in

finite time tN + 2n. The proof is completed. �
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Remark 3: From the above analysis, self-triggered con-

trollers are not unique and can also be designed based on the

decrease of the Lyapunov function. After tk+1, at which the

control should be updated, is determined, the state at time tk+1

and the possible control set U(x(tk+1)) can also be computed.

The control at time tk+1 can be chosen from the possible

control set such that the Lyapunov function V (x(t)) take the

smallest value at tk+1+1. The detailed control design process

is given as follows. Define

I(x(tk+1)) = arg min
u∈U(x(tk+1))

{

λTFux(tk+1)
}

.

Then the corresponding self-triggered controller can be given

as
{

u(t) = u(tk), for t ∈ [tk, tk+1);
u(t) ∈ I(x(tk+1)), for t = tk+1.

(35)

Example 1: Consider a BCN with n = 3, m = 1 and the

transition matrix in (28) as

F = δ8[2, 3, 3, 3, 7, 7, 8, 8, 4, 4, 6, 6, 8, 8, 5, 5].

A feasible state feedback controller is pre-given as

K = δ2[1, 1, 2, 2, 2, 1, 2, 1]. Then a Lyapunov function

exists in the form as V (x(t)) = λTx(t) with λ =
(λ1, λ2, λ3, λ4, λ5, λ6, λ7, 0)

T being selected as λ1 = 5,

λ2 = 4.5, λ3 = 4, λ4 = 6, λ5 = 1, λ6 = 3, λ7 = 2.

Consequently, the self-triggered scheduling can be designed

based on the Lyapunov stability theory. Specifically, at t0 = 0,

if x(t0) = δ18 , no matter u = δ12 or u = δ22 , (Fu)tx(t0) will

not be δ88 for any t. By a simple computation, τ(x(t0)) and

U(x(t0)) in (33) and (34) are τ(x(t0)) = 2 and U(x(t0)) =
{δ12}. Therefore, u(t0) = δ12 , and the next triggering time is

t1 = t0 + τ(x(t0)) = 2. Note that at time t1 = 2, the state

x(t1) is δ38 . Similarly, one can compute that τ(x(t1)) = 2 and

U(x(t1)) = {δ22}. Thus, u(t1) = δ22 and the next triggering

time is t2 = t1+ τ(x(t1)) = 4. Here, x(t2) is the equilibrium

point δ88 . Let u(t2) = Kδ88 = δ12 , then the next triggering

time is t3 = ∞. Therefore, it only needs the sampled data

and control strategies at three times t = 0, t = 2 and t = 4
to ensure the studied BCN stable at δ88 . Note that the self-

triggered sampling times are related with the initial states.

Fortunately, all the sampling times according the mechanism

corresponding to different initial states can be designed when

performing the self-triggered scheduling (see Table 1).

TABLE I
SAMPLING SCHEDULING

initial states sampling times control

δ18 t0 = 0, t1 = 2, u(t0) = δ12 , u(t1) = δ22 ,

t2 = 4 u(t2) = δ12
δ28 t0 = 0, t1 = 1 u(t0) = δ12 , u(t1) = δ22

t2 = 3 u(t2) = δ12
δ38 t0 = 0, t1 = 2 u(t0) = δ22 , u(t1) = δ12
δ48 t0 = 0, t1 = 2 u(t0) = δ22 , u(t1) = δ12
δ58 t0 = 0, t1 = 1 u(t0) = δ22 , u(t1) = δ12
δ68 t0 = 0 u(t0) = δ12
δ78 t0 = 0 u(t0) = δ12
δ88 t0 = 0 u(t0) = δ12

B. Probabilistic BCNs

Consider a probabilistic BCN as

y(t+ 1) = G(t)u(t)y(t), (36)

where y(t) ∈ ∆2n is the state variable, u(t) ∈ ∆2m is control

input, and G(t) ∈ {G1, G2, . . . , Gs} with Gi ∈ L2n×2n+m .

Moreover, Pr{G(t) = Gi} = pi, where pi > 0 and
∑s
i=1 pi = 1. Assume that probabilistic BCN (36) is stabi-

lizable by state feedback controller

u(t) = Ky(t), (37)

where K ∈ L2m×2n . Then the closed-loop system

y(t+ 1) = G(t)KΦ2ny(t) (38)

is stochastically stable to δ2
n

2n . By taking expectation on both

sides of (38), one has

E{y(t+ 1)} =

s
∑

i=1

piGiKΦ2nE{y(t)} := G̃E{y(t)}, (39)

where G̃ :=
∑s
i=1 piGiKΦ2n . Based on the Lyapunov func-

tion for probabilistic Boolean networks in Subsection III-B,

there exists a Lyapunov function V2(y(t)) = νT y(t) for the

closed-loop system (39) satisfying

ν = (νT1 , 0)
T , ν1 > 0, G̃T11ν1 − ν1 < 0, ν1 ∈ R

2n−1,

where

G̃11 = [I2n−1 02n−1]G̃

[

I2n−1

01×(2n−1)

]

.

Then the self-triggered scheduling (27) for probabilistic BCN

(36) can be desiged as follows. For M > 0, if for u ∈ ∆2m

and any t, E{yu,t(tk)|y(tk)} 6= δ2
n

2n , denote

UM (y(tk)) = {u ∈ ∆2m | E{V2 (yu,i(tk)) |y(tk)}

−E{V2(yu,i−1(tk))|y(tk)} < 0, i = 1, 2, . . . ,M}, (40)

where yu,M (tk) = (G(tk +M − 1)u) · · · (G(tk)u)y(tk) and

yu,0(tk) = y(tk). Otherwise, if there exist some u ∈ ∆2m and

a positive integer Nu ≤ M such that E{yu,Nu
(tk)|y(tk)} =

δ2
n

2n , denote

UM (y(tk)) = {u ∈ ∆2m |

E{V2 (yu,i(tk)) |y(tk)} −E{V2(yu,i−1(tk))|y(tk)} < 0,

E{V2 (yu,j(tk)) |y(tk)} −E{V2(yu,j−1(tk))|y(tk)} = 0,

i = 1, 2, . . . , Nu, j = Nu + 1, . . . ,M}. (41)

Also, τ(y(tk)) and U(y(tk)) are defined as

τ(y(tk)) = max{M | UM (y(tk)) 6= ∅}, (42)

U(y(tk)) = Uτ(y(tk))(y(tk)). (43)

Theorem 2: Consider probabilistic BCN (36). The control

strategy in (42), (43) for (36) is well defined, i.e., tk+1 > tk
for k = 1, 2, . . . . Moreover, the system (36) with the control

strategy in (27) is stochastically stabilizable at δ2
n

2n .

Proof. Similar to the proof of Theorem 1, it suffices to prove

that for all y ∈ ∆2n , U1(y) 6= ∅ where U1(y) is defined in
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(40). It can be assumed that at some time tk, y(tk) = y. Let

ū = Ky, where K is the stabilizing controller given in (37),

then

E{V2(yū,1)|y} − V2(y)

= E{V2(GtkKΦ2ny(tk))|y(tk)} − V2(y(tk))

= E{V2(y(tk + 1))|y(tk)} − V2(y(tk))
{

= 0, if y = δ2
n

2n ,

< 0, if y 6= δ2
n

2n ,

where the last inequality is implied by the Lyapunov sta-

bility theory for probabilistic Boolean networks. Then ū ∈
U1(x(tk)). Thus, τ(tk) ≥ 1 and the control strategy is well

defined.

Now we will prove that the system (36) with the control

strategy in (27) is stochastically stabilizable at δ2
n

2n . In what

follows, two cases are discussed.

Case 1): There is a minimal finite time N such that for

any y(0) ∈ ∆2n , E{y(N)|y(0)} = δ2
n

2n . Suppose that a

maximal k can be found such that tk < N . Under the

control u(t) = u(tk) for any tk ≤ t < N , we have

E{y(N)|y(tk)} = δ2
n

2n . Based on the sampling scheduling,

for all t ≥ N , E{V2 (yu,t−N(N)) |y(N)} = 0, which is

equivalent to E{yu,t−N(N)|y(N)} = δ2
n

2n . At this point, the

system (36) is stochastically stabilizable at δ2
n

2n in finite time.

Case 2): A finite time N satisfying that for any y(0) ∈
∆2n , E{y(N)|y(0)} = δ2

n

2n cannot be found. Then for

any time t and any y(0) ∈ ∆2n , E{y(t)|y(0)} 6= δ2
n

2n

and V2(y(tk)) > 0 by the definition of Lyapunov function

of probabilistic Boolean networks. Therefore, for any k,

E{V2(y(tk+1)|y(tk)} − V2(y(tk)) < 0, based on which a

sufficiently small positive number α < 1 can be found such

that

E{V2(y(tk+1)|y(tk)} < (1− α)V2(y(tk)) (44)

for any k = 0, 1, . . . . Taking expectation on both sides of (44)

yields

E{E{V2(y(tk+1)|y(tk)}|y(t0)} ≤ (1− α)E{V2(y(tk))|y(t0)},

that is,

E{V2(y(tk+1)|y(t0)} ≤ (1 − α)E{V2(y(tk))|y(t0)}.

By iteration,

E{V2(y(tk)|y(t0)} ≤ (1− α)kE{V2(y(t0))|y(t0)}.

Making k → ∞ produces limk→∞ E{V2(y(tk)|y(t0)} = 0,

which is equivalent to limk→∞ E{y(tk)} = δ2
n

2n . �

Next we give an example on a probabilistic Boolean control

network to show that its stochastic stability can be ensured by

the self-triggered control strategy.

Example 2: Consider a probabilistic BCN in the form of

(36) with n = 3, m = 1, and P{G(t) = G1} = p1 = 0.3,

P{G(t) = G2} = p2 = 0.7, where

G1 = δ8[3, 1, 6, 6, 2, 2, 8, 8, 1, 1, 1, 8, 4, 3, 5, 8],

G2 = δ8[1, 1, 2, 6, 8, 7, 7, 7, 6, 1, 1, 1, 5, 5, 5, 8].

A feasible update-based feedback control is given as u(t) =
Ky(t), where

K = δ2[2, 2, 1, 1, 1, 1, 2, 2].

Then a feasible Lyapunov function can be given as V2(y(t)) =
νT y(t), where ν = (8.3, 9.3, 9.4, 6.5, 2.8, 6.4, 3.6, 0)T . Via

the obtained results in this subsection, the self-triggered

scheduling (42), (43) can be performed by MATLAB with the

simulation results being shown in Figure 1. In Figure 1(a), we

take the initial state y(0) as y(0) = δ18 and the corresponding

state trajectories are given by running the program 500 times.

In Figure 1(b), the possible trajectories corresponding to all

initial states are simulated. From these, it can also be seen that

the stochastic stability at δ88 can be ensured.
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(a)
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9

10

 c
(t
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(b)

Fig. 1. (a) The trajectories corresponding to initial state y(0) = δ18 by running
the program 500 times and (b) The possible trajectories corresponding to all

the initial states. c(t) is the index of 1 in y(t), i.e., y(t) = δ
c(t)
8 .

C. Markovian switching BCNs

Consider a Markovian switching BCN as

z(t+ 1) = Hσ(t)u(t)z(t), (45)

where z(t) ∈ ∆2n is the state variable, u(t) ∈ ∆2m is

the control input, σ(t) is the switching signal, and Hσ(t) ∈
{H1, H2, . . . , Hr} with Hi ∈ L2n×2n+m , i = 1, 2, . . . , r. Here

σ(t) is a discrete Markov chain same as in Subsection III-C.

If Markovain switching BCN (45) is stochastically stabilizable

at δ2
n

2n by a state feedback control

u(t) = Kx(t), (46)
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where K ∈ L2m×2n , then the closed-loop system

z(t+ 1) = Hσ(t)KΦ2nz(t) (47)

is stochastically stable at δ2
n

2n . Based on the Lyapunov function

for Markovian switching Boolean networks in Subsection

III-C, there exists a Lyapunov function V3(z(t), σ(t)) =
ωTσ(t)z(t) for the closed-loop system (47) satisfying for i =
1, 2, . . . , r,

ωi = (ωTi1, 0)
T ∈ R

2n , ωi1 > 0
p

∑

j=1

πijH̃
T
i,11ωj1 − ωi1 < 0,

where H̃i,11 = [I2n−1 02n−1]HiKΦ2n

[

I2n−1

01×(2n−1)

]

, i =

1, 2, . . . , r.
At time tk, to determine the next sampling time tk+1 is

related to the switching signal σ(t) at the sampling time tk.

Therefore, the self-triggered scheduling (27) for Markovian

switching BCN (45) becomes
{

u(t) = u(tk) ∈ U(x(tk), σ(tk)), t ∈ [tk, tk+1),
tk+1 = tk + τ(x(tk), σ(tk)),

(48)

where τ(x(tk), σ(tk)) denotes the time between two con-

secutive sampling times and U(x(tk), σ(tk)) is the possible

control set when the state is x(tk) and the switching signal is

σ(tk). Then the self-triggered scheduling (48) for Markovian

switching BCN (45) can be designed as follows. For M > 0,

if E{zu,t|z(tk), σ(tk)} 6= δ2
n

2n for any t and u ∈ ∆2m , denote

UM (z(tk), σ(tk)) = {u ∈ ∆2m | E{V3 (zu,i(tk)) |z(tk), σ(tk)}

−E{V3(zu,i−1(tk))|z(tk), σ(tk)} < 0, i = 1, 2, . . . ,M},
(49)

where zu,M (tk) = (Hσ(tk+M−1)u) · · · (Hσ(tk)u)z(tk) and
zu,0(tk) = z(tk). Otherwise, if there exists some u ∈
∆2m and a positive integer Nu ≤ M such that
E{zu,Nu

(tk)|z(tk), σ(tk)} = δ2
n

2n , denote

UM (z(tk), σ(tk)) = {u ∈ ∆2m |

E{V3 (zu,i(tk)) |z(tk), σ(tk)} < E{V3(zu,i−1(tk))|z(tk), σ(tk)},

E{V3 (zu,j(tk)) |z(tk), σ(tk)} = E{V3(zu,j−1(tk))|z(tk), σ(tk)},

i = 1, 2, . . . , Nu, j = Nu + 1, . . . ,M}. (50)

Then τ(z(tk), σ(tk)) and U(z(tk), σ(tk)) are defined as

τ(z(tk), σ(tk)) = max{M | UM (z(tk), σ(tk)) 6= ∅}, (51)

U(z(tk), σ(tk)) = Uτ(z(tk),σ(tk))(z(tk), σ(tk)). (52)

Theorem 3: Consider Markovian switching BCN (45). The

control strategy in (48) for (45) is well defined, i.e., tk+1 >

tk for k = 1, 2, . . . . Also the system (45) is stochastically

stabilizable at δ2
n

2n .

Proof. Similar to the proof of Theorem 1, we only need

to prove for all z ∈ ∆2n and i ∈ R, there exists

ū ∈ ∆2m such that U1(z, i) 6= ∅. Suppose that at some

time tk, z(tk) = z. Let ū = Kz, where K is the sta-

bilizing controller given in (46), then by the properties of

Lyapunov function in Subsection III-C and similar to the

proof of Theorem 2, it is easy to get that E{V3(z(tk +
1))|z(tk), σ(tk)} − V3(z(tk), σ(tk)) = 0 if z = δ2

n

2n and

E{V3(z(tk + 1))|z(tk), σ(tk)} − V3(z(tk), σ(tk)) < 0 if

z 6= δ2
n

2n , which implies that tk+1 > tk.

Similar to the proof of Theorem 2, the final statement can

also be proved. �

V. CONCLUSION

In this paper, we studied self-triggered control for three

kinds of BCNs, including deterministic, probabilistic and

Markovian switching BCNs, in order to deal with the con-

straint of limited resources. By first reviewing and proposing

Lyapunov stability theory for Boolean networks, the self-

triggered scheduling was designed based on the decrease of

the Lyapunov function between two consecutive samplings and

the self-triggered controller was designed, under which the

studied BCNs can be ensured to be stabilizable at δ2
n

2n . Some

simulation results were presented for illustrating the presented

self-triggered strategy.
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