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Structured Graph Learning for Scalable Subspace
Clustering: From Single-view to Multi-view

Zhao Kang, Zhiping Lin, Xiaofeng Zhu, Wenbo Xu

Abstract—Graph-based subspace clustering methods have ex-
hibited promising performance. However, they still suffer some
of these drawbacks: encounter the expensive time overhead, fail
in exploring the explicit clusters, and cannot generalize to unseen
data points. In this work, we propose a scalable graph learning
framework, seeking to address the above three challenges simul-
taneously. Specifically, it is based on the ideas of anchor points
and bipartite graph. Rather than building a n x n graph, where n
is the number of samples, we construct a bipartite graph to depict
the relationship between samples and anchor points. Meanwhile,
a connectivity constraint is employed to ensure that the connected
components indicate clusters directly. We further establish the
connection between our method and the K-means clustering.
Moreover, a model to process multi-view data is also proposed,
which is linear scaled with respect to n. Extensive experiments
demonstrate the efficiency and effectiveness of our approach with
respect to many state-of-the-art clustering methods.

Index Terms—Subspace clustering, multi-view learning, bi-
partite graph, connectivity constraint, out-of-sample, large-scale
data, anchor graph.

I. INTRODUCTION

S an unsupervised technique, clustering has always been

an important research topic in machine learning, pattern
recognition, and data mining. During the past few decades,
a plethora of clustering methods have been developed, such
as K-means [1]], spectral clustering [2], hierarchical clustering
[3]], DBSCAN [4]], deep clustering [5]], to name a few. Recent
years, to tackle the curse of dimensionality, subspace cluster-
ing has received increasing attention. It is capable of finding
relevant dimensions spanning a subspace for each cluster
[6], [7]. Among multiple approaches, graph-based subspace
clustering often generates the best performance [J8], [9]. As
a result, graph-based subspace clustering methods are in hot
pursuit in recent years.

Specifically, some representative methods of this category
include sparse subspace clustering (SSC) [10]], low-rank rep-
resentation (LRR) [11]], least squares regression (LSR) [12].
To enjoy the benefit of discriminative features brought by
deep neural works, some deep subspace clustering networks
have recently been proposed [13]], [[14]. In general, they are
implemented in two individual steps. Firstly, a n x n graph that
represents the pairwise similarity between samples is learned.
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Secondly, the learned graph is input to spectral clustering
algorithm which typically involves eigen-decomposition of the
Laplacian matrix. This pipeline procedure has one flaw, i.e.,
the graph might potentially not be optimal for the downstream
clustering since it might fail to achieve the cluster structure
with exact cluster number [[15]], [16]].

In particular, it is always difficult to capture complex
similarity patterns for data with high-level semanticity (hu-
man level), e.g., speech, textual data, images, and videos
(17], [18]. Added to that, graph requires O(n?) memory
and eigen-decomposition often consumes O(n?) time [19].
Consequently, they are costly and make the processing of
large-scale data prohibitive. Another usually ignored aspect is
out-of-sample problem [20], i.e., the existing framework does
not generalize to unseen data points. Putting it differently, for
testing data points that are never seen during training, existing
graph-based subspace clustering model cannot handle them
because the “graph structure” must be learned for all the data
points during training.

Some recent research endeavors are devoted to reducing the
algorithm complexity. For example, some off-the-shelf projec-
tion and sampling methods are applied for spectral clustering
[21]. Bipartite graph is also widely used to speed up spectral
clustering [22]-[24]. To get rid of the ad-hoc functions used
to calculate similarity, several scalable subspace clustering
methods are proposed. Combining sparse representation and
bipartite graph, Adler et al. [25] propose a linear subspace
clustering algorithm. [26] applies a data selection method to
speedup computation. [27] adopts sampling and fast regression
coding to cluster the codes of data points. [28] employs
orthogonal matching pursuit to reduce the computation load,
but it often loses clustering accuracy. [29] proposes an efficient
solver for sparse subspace clustering. Accelerated low-rank
representation is also developed [30], [31]]. [32] solves the
large-scale challenge by converting it to out-of-sample prob-
lem. Though these techniques can alleviate the computation
overhead, they often ignore the graph structure or fail to
address out-of-sample problem.

Moreover, by virtue of the development of data acquisition
and processing technologies, increasing volume of data are
represented by multiple views [33]-[37]. For example, a video
might consist of text, images, and sounds [38], [39]]; an image
can be described in different features, e.g., SIFT, GIST, LBP,
HoG, and Garbor [[40], [41]]; a document can be translated into
different languages [42], [43]. These heterogeneous features
often supply complementary information that could be helpful
for our tasks at hand [44]]-[46]. As a result, multi-view
subspace clustering has also been investigated [47]-[49]. For
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instance, Cao et al. [50] consider both the consistency and
the diversity among the multiple views; Gao et al. [S1]] learn
multiple graphs and let them correspond to a unique cluster
indicator matrix; Zhang et al. [47], [52] perform subspace
clustering in latent space; Kang et al. 53] propose to fuse
multi-view information in partition space. These algorithms
often achieve better results than the single view methods.

Unfortunately, most of existing multi-view subspace cluster-
ing methods also encounter scalability problem, which hinders
their applications on large-scale data. Some single-view large-
scale subspace clustering cannot be directly extended to cope
with multi-view data. Recently, Kang et al. [54] make the
first effort to tackle large-scale multi-view subspace clustering
challenge. However, it ignores the graph structure and fails to
deal with unseen data.

In this paper, we simultaneously deal with the three issues
of subspace clustering, i.e., high complexity, explicit graph
structure and out-of-sample. Apart from single-view model,
we also propose a multi-view model, seeking for a structured
graph that compatibly crosses multiple views. Firstly, we build
a dictionary matrix by selecting m landmarks from raw data
by K-means algorithm. Secondly, we learn the relationship
between our raw data and the landmarks, which generates
a bipartite graph with &k connected components if the data
contains k clusters. Thus, a cluster indicator matrix is naturally
obtained. Thirdly, for multi-view data, extra view-wise weights
are introduced to discriminate different views. The advantages
of our approach are: the small affinity matrix can preserve the
manifold of the data; the constraint of the bipartite graph dis-
covers the underlying cluster structure; our method addresses
out-of-sample problem; our overall complexity is linear to
the size of data. Compared to state-of-the-art techniques, our
methods gain a lot in terms of effectiveness and efficiency.

In a nutshell, the key contributions of this paper are:

o We present a novel structured graph learning framework
for large-scale subspace clustering in linear time. Besides,
this method also solves the out-of-sample problem.

e A scalable multi-view subspace clustering method is
proposed. The bipartite graph, cluster indicator matrix,
and view-wise weights learn from each other interactively
and supervise each other adaptively.

o Theoretical analysis establishes the connection between
our method and K-means clustering. Extensive experi-
mental results demonstrate the superiority of our method
with respect to many state-of-the-art techniques.

The rest of our paper is as follows. In Section we
introduce some background on subspace clustering and anchor
graph. Section [[II| presents our proposed graph learning model
and solution. In Section we perform theoretical analysis
and compare time complexity. Section |V| extends our method
to the multi-view data. Single-view and multi-view experi-
ments are conducted in Section [VI] and respectively. This
paper is rounded up with a conclusion in Section

II. BACKGROUND

In this section, we present an overview of the single-view
and multi-view subspace clustering, and then introduce the
anchor graph.

A. Subspace Clustering

Given data X € R, which includes n samples each
with d features, subspace clustering assumes that each data
sample can be expressed as a combination of other data points
in the same subspace. This combination coefficient matrix is
considered as the similarity graph, which captures the global
structure of data. In general, the following model is solved
(el

Ingn [X — XS||% +af(S) st. S>0,51=1, (1)
where S € R"*™ is the nonnegative similarity matrix and
o > 0 is a balance parameter. The first term is the reconstruc-
tion error and the second term f(-) is a regularizer function,
including low-rank constraint [11]], [55]], sparse ¢; norm [10],
Frobenius norm [56], [57]]. 1 is a vector of ones and S1 =1
means that each row of S adds up to 1.

It can be seen that the size of graph .S, which often results
in O(n3) computation complexity, would be a burden on both
computation and storage for large-scale data. Furthermore,
the subsequent spectral clustering step also suffers O(n?3)
complexity. Some recent subspace clustering methods with
low complexity have been developed. For instance, SSCOMP
[28]] is built on orthogonal matching pursuit; ESSC [29]
is a proximal gradient framework to solve sparse subspace
clustering; ALRR [30] is a faster solver for low-rank repre-
sentation. Though they can deal with large-scale data, they
fail to cope with out-of-sample problem and ignore the graph
structure. Kang et al. [16] consider that the graph should have
exactly k components if the data contain % clusters. However,
it has O(n3) complexity and cannot address out-of-sample
challenge. For new samples, SLSR [32] projects them into
the union of subspaces spanned by in-sample data. However,
SLSR does not explicitly consider the graph structure. In
practice, the data can display structures beyond simply being
low-rank or sparse [58]. In summary, there is no single method
which can address all three challenges faced by subspace
clustering: high complexity, graph structure, out-of-sample.

For multi-view subspace clustering, more attention is paid
to how to boost the clustering accuracy by fully exploring
the complementary information carried by multi-view data.
For instance, multi-view low-rank sparse subspace cluster-
ing (MLRSSC) [59] harnessing both low-rank and sparsity
constraints shows much better performance than previous
methods, such as [60]. Multi-view subspace clustering with
intactness-aware similarity (MSC_IAS) [61] tries to construct
a graph in latent space, which leads to superior accuracy. Kang
et al. [54] make the first attempt to address the scalability
issue of multi-view subspace clustering. Though it has a linear
complexity, it fails to consider the discriminative nature of
different views. Moreover, the graph learning and clustering
stage are separated, so the graph structure is ignored.

B. Anchor Graph

Anchors or landmarks were previously used in scalable
spectral clustering [23]]. Basically, its idea is to select a small
set of data samples called anchors or landmarks to represent
the neighborhood structure. Typically, these representative
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points are chosen based on K-means method (the cluster
centers) or random sampling [62]]. Specifically, with m anchors
A ={as, - ,a,} € R¥>™, a small graph Z € R™ ™ is
built to measure the relationship between the anchors and the
whole data. Typically, Z is constructed by Gaussian kernel
function [23]], [63], which might not be flexible enough to
characterize complex data.

For subspace clustering, we can borrow the idea of anchor
and treat A as a dictionary [54]]. Afterwards, we can solve the
following model to learn Z automatically, i.e.,

IX —AZT % + ol 2|7
st.0<Z, Z1=1.

min
A

2)

Though Eq. () is quite simple, it does not consider any cluster
structure. Putting it differently, Z might be just one connected
component, as shown in the left side of Fig. [T} It would be
desired if it has exactly k connected components denoted by
Z € ) [22], as shown in the right part of Fig.[I] Then, problem
() becomes

IX = AZT|[% + el Z]I%
st.0<Z, Z1=1,Z € Q.

min
A

3)

In the next section, we will show how to address this chal-
lenging problem.

III. STRUCTURED GRAPH LEARNING

To explicitly explore the cluster structure of Z, we can
make use of bipartite graph. To be precise, bipartite graph

S associated with Z is defined by S = €

ZT
R(ntm)x(n+m) Then, the normalized Laplacian matrix L is
expressed as L = [ — D~28D~z, where D is a diagonal ma-
trix with its 4-th diagonal element defined as d; = Zyi{n Sij.
According to spectral graph theory [64]], the normalized Lapla-
cian has the following property:

Theorem 1. The number of connected components in S is
equal to the cardinality k of the 0 eigenvalue of L.

By the theorem [1] if rank(L) = (n + m) — k meets, the
n data samples and m anchors are grouped into k clusters.
Therefore, to achieve the ideal subspace clustering with spec-

ified k clusters, we can explicitly express the constraint in
problem (3). It yields

min || X — AZT |} + ol Z)I%
st. 0< Z, Z1 =1,rank (L) = (n +m) — k.

“4)

Considering that the rank constraint is hard to tackle, we
can relax the constraint by following [65]. Eventually, our
proposed Structured Graph Learning (SGL) framework for
Subspace Clustering can be formulated as

min || X — AZ"||% + || Z||% + BTr(F T LF)
wr (5)
st.0<Z Z1=1,F"F=1,
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Fig. 1: The optimal bipartite graph with constraint. Initially, the
nodes in the left of the bipartite graph are connected randomly
with the right anchors. After enforcing the constraint, the
structured bipartite graph contains a specified number of
connected components.

where F € R™+m)xk Tt is worth pointing out that the
above structured graph learning can also be applied to semi-
supervised classification [66]. This problem can be solved by
an alternating optimization strategy.

A. Optimization Strategy

We solve Z and F iteratively, i.e., fix one of them and then
update the other one.

1) Fix F and Solve Z: note that L is I — D"2SD™z,
so both S and D depend on variable Z. Fortunately, we can
employ the following equation

(n+m) (n+m Fi7: F]

)
1 ;.
T (FTLF) =2 > Y s - L
e M| Vi Vd;

Considering the structure of S, we can further convert above
formula into the following formulation

Tr (FTLF) = i i 2ij
i=1j=1

2

as W;;, we can solve our problem
2

(6)

2

2
Fi

Vi,

Fn+j,:

V dn+j

)

2

Fi:  Fnyj:
vd; V dntj

row by row as

Defining

min 7 AT AZ; = 2XAZ; + aZi . 2y, + BWi 2y,

s.t. 0 S Z'L'j S 1722”' =1.
J

®)

This problem can be easily solved via convex quadratic
programming.

2) Fix Z and Solve F: when Z is fixed, the first and the
second term in Eq. (5) become constant. Our problem can be
equivalently written as

max

T (F D~ isD7iF) O
FeR(n+m)Xxk ,FT F=TI
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In general, computing the eigenvectors of S takes O(k(n +
m)?). To circumvent this complexity, we employ the special
structure of S and compute the eigenvectors of Z instead.
Concretely, we decompose F' and D as
re[v]e=[™

(10)

v DV}’

where U € Rk V € R™*k Dy € R™ ™, Dy € R™*™,
Eq.(9) can be rewritten as following

max
uTu+vTtv=I

U O,
TY(U DU2ZDV2V). (11)
According to the following theorem [22], it can be easily
solved.

Theorem 2. Suppose Q € R™™™ X € R"*k Y ¢ R™*k,
The optimal solutions to the problem

Tr (X'QY)

max
XTX4YTy=I
are X = gUl,Y = @Vl, where Uy and V7 are corre-
sponding to the top k left and right singular vectors of Q,
respectively.

The complete algorithm for subspace clustering is summa-
rized in Algorithm 1. By the theory of alternating optimization
[67], the objective function value of our problem (3) will
monotonically decrease in each iteration. Moreover, since the
objective function has a lower bound, such as zero, the above
iteration converges.

B. Out-of-sample Problem

Out-of-sample problem is hard and few discussed for sub-
space clustering. This is because we must compute the graph
consists of all data points, which is inherently impossible to
just involve unseen data. In contrast, our SGL method can
handle new data. Note that our method also outputs embedding
vectors V' and cluster labels for the anchor points. Then, we
just need to implement the classic k-Nearest Neighbor (kNN)
algorithm, which will propagate the labels to the new data. For
each new data point, this process takes O(md) time, which is
far lower than the cost carried out on the training data O(nd).
Therefore, our method can handle the out-of-sample problem
efficiently.

IV. THEORETICAL ANALYSIS

In this section, we demonstrate that our method is connected
to K-means method and provide the computational complexity
analysis.

A. Relationship with K-means Algorithm

Theorem 3. When we let v go to 0o, our problem ({) is equal
to K-means problem.

Proof. In Eq. (@), we set a constraint to make Z satisfy this
property: each component contains several data points and
anchor points; the number of connected components is k,
which means all the points are classified into clusters. Thus the

value of 8Tr (F'T LF) would be equal to zero. Denote the i-
th component of Z by Z* € R™*™ where n; represents the
data points number corresponding to this component and m;
denotes the anchor number corresponding to this component.
Hence, solving Eq. () is to solve the following problem for
each component of Z
: i i iy T |2 i||2
min | - A a2

st. Z11=1, 0<Z'<1,

where X* and A? consist of samples and anchors correspond-
ing to the i-th component of Z. When o« — oo, the above
problem becomes:

. 2112
min - {|Z7][

. . (13)
st. Zi1=1,0<27i<1

The optimal solution is that all elements of Z? are equal to
%. Thus, when o — oo, the optimal solution Z to problem
is:

Zij = {
(14

Let’s denote the solution set of this partition as /. It can be
shown that || Z||% = k. Thus Eq. becomes

Lz, and a; in the same p-th component
mp

0, otherwise

min || X, — Az ||, (15)
Z;eK

We can find that Eq. is exactly the objective function in
K-means method and AZ,” denotes the centroid of cluster i.
Therefore, the problem () is the problem of K-means. O

TABLE I: Summary of computational complexity of various
methods. In this table, n is number of data points and d is
size of features. m is the number of pre-defined upper bound
for the rank of the coefficient matrix. ¢ is the number of
iterations until the convergence. ¢; is number of iterations for
the K-means algorithm. ¢y is the number of iterations of the
sub-alternating system. m is the number of anchors. & is the
number of the clusters.

Method Time complexity
ALRR O(4dmin)
KMM O(n((md+mc+m2) t2+md) t)
ESSC O(nlogn)
FNC O(nmd + nmk)
SSCOMP O(n2dt)
SGL O(nm3t + 2mnt + nmt1d + nk?ty)

B. Complexity Analysis

The proposed method uses the anchor idea to construct a
smaller graph Z € R™*™(m < n) and performs singular
value decomposition (SVD) on a smaller matrix Z, so that the
complexity can be reduced significantly. Specifically speaking,
denote ¢ as the iteration number, we implement SVD on Z
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Algorithm 1 SGL for Subspace Clustering

Input: Data matrix X € R*™, anchor matrix A € R™,
cluster number k, parameters « and 3
Output: k clusters

1: Initialize the matrix F' randomly.
2: while convergence condition does not meet do
3. Update Z in Eq. (8) via convex quadratic programming

e

Update U in Eq. by Theorem
end while
6: Run K-means on matrix U to achieve the final partition

W

in each iteration to obtain indicator matrix U, which takes
O(m3t+mnt). The W computation costs O(mnt). We apply
the built-in Matlab function quadprog to solve Z in each
iteration, which leads to O(nm3t). As shown in Egq. ,
Z can be efficiently solved in parallel. Besides, we need
extra O(nmit1d) time to build the dictionary A by K-means
algorithm and O(nk?t;) time to achieve the final results by
applying K-means on U, where t¢; is another iteration number.
In conclusion, the time complexity of our method is linear to
the number of points n.

We compare the time complexity of several recent scalable
clustering methods in Table m As we can see, most methods
have a linear complexity. As shown in experimental part,
some of them sacrifice accuracy in pursuit of improving time
efficiency.

V. MULTI-VIEW STRUCTURED GRAPH LEARNING

Compared to single-view scenario, large-scale multi-view
subspace clustering is few studied. In this section, we show
that our structured graph learning method can be easily ex-
tended to handle multi-view data [X!, X2 ... X°¢], where
XV € R %M is the v-th view data matrix with d(*) features.
For multi-view clustering, all views are required to share the
same cluster pattern. Therefore, it is reasonable to assume
that there exists a unique graph Z. However, different views
might play various roles, so we introduce a weight factor
AV to balance the importance of different views. Finally,
our proposed Multi-view Structured Graph Learning (MSGL)
method can be formulated as

min

NXY = A ZT |+ al| Z|5 + BTr(FTLEF
Z,F,{)\vzo}z I I# +allZ|F + BTr( )

v=1

+3 () st 0< 2, Z1=1,F'F =1,
v=1

(16)

where 7 < 0. In this model, different anchor points are
generated for different views. In a similar way as SGL, we
can optimize the three variables alternatively.

A. Fix \", F, Update Z
The sub-problem we are going to solve is

c

min N(Zi (AT A Z) -2 X)) TAZ ) + aZ; 7],
b v=1

T
+ BWL:Zi); s.t. 0 < Zij < 1,ZZZ'j =1.
J

a7)

This quadratic problem can be easily solved.

B. Fix \V, Z, Update F
This sub-problem would be the same as Eq. (TT).

C. Fix F, Z, Update \’

For simplicity, we denote || X¥ — AYZ"|% as hY. Our
objection function becomes

c

H(\") =Y A"h" + Z (A")7.

v=1

(18)
It can be solved by taking the derivative on A\(*) and setting
it to zero.

OH

v vyY—1 __
aA“_h +v(\Y) =0

19)
It yields

1

AV = (—h) T
vy

Because of A’ > 0 and v<0, A > 0 is met. The com-
plete steps to multi-view subspace clustering is outlined in
Algorithm 2. It is worth pointing out that MSGL inherits
all advantages of SGL, i.e., explicit graph structure, a linear
complexity, extensions to out-of-sample data, convergence
guarantee.

(20)

Algorithm 2 MSGL for Subspace Clustering

Input: Data matrix [X';--;X¢], anchor
[AY; .. ; A, cluster number k, parameter o, 3, ¥
Output: £ clusters

matrix

1: Initialize the matrix F' randomly and A" as 1/c.

2: while convergence condition does not meet do

3 Update Z in Eq. (17).

4:  Update F' as Eq. (L1).

s:  Update A" by Eq. (20).

6: end while

7: Run K-means on matrix U to achieve final partition

TABLE II: Description of the single-view data sets.

Data Instance # Feature # Class #
BA 1,404 320 120
ORL 400 1,024 40
TRI11 414 6,429 9
TR41 878 7,454 10
TR45 690 8,261 10
RCVI1-4 9,625 29,992 4
MNIST 70,000 784 10
CoverType 581,012 54 7
Pokerhand 1,000,000 10 10
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VI. SINGLE-VIEW EXPERIMENTS

In this section, we conduct several experiments to evaluate
our method on single-view data sets.

A. Data Sets

Nine popular data sets are tested. Specifically, BA|'| OR
MNISTE] are image data, while TR11, TR41, ‘ﬂ RCV1-
4 [68] are text corpora. Pokerhamf] is evolutionary data and
CoverTypeE] is collected to predict forest cover type based
on cartographic variable. Table |lI] summarizes the statistics
of these data sets. MNIST, CoverType, and Pokerhand are
examined in out-of-sample problem.

B. Comparison Methods

For a fair comparison, we select five representative scalable
clustering methods.

ALRR: an accelerated low-rank representation algorithm
published in 2018 [30].

KMM: a K-Multiple-Means method based on the partition
of a bipartite graph published in 2019 [|69].

ESSC: an efficient sparse subspace clustering algorithm
published in 2020 [29]

FNC: a directly solving normalized cut method published
in 2018 [70]]. It has lower computational complexity and is
fast for large-scale data.

SSCOMP: a popular sparse subspace clustering method
based on orthogonal matching pursuit published in 2016 [28].

We tune the parameters in these methods to achieve the best
performance. For our approach, clustering performance varies
depending on the initialization of the K-means. Thus, we run
20 times and use a different seed to initialize K-means at
each time. We report the mean and standard deviation values.
Widely used clustering accuracy (ACC), normalized mutual
information (NMI), and Purity are employed to evaluate the
clustering performance [23]]. We conduct all experiments on
a computer with a 2.6GHz Intel Xeon CPU and 64GB RAM,
Matlab R2016a. The source code of our method is publicly
available [1]

C. Results

Table [I1I| shows the clustering results of various methods. It
can be seen that our proposed SGL outperforms other state-
of-the-art techniques in most cases. In particular, our method
performs much better than the most two recent methods KMM
and ESSC. In terms of ACC, NMI, and Purity, SGL improves
KMM by 12.57%, 15.06%, 14.49% in average, respectively.
With respect to ESSC, our gain is 16.66%, 16.19%, 12.17%,
respectively. Among the five competitive methods, ALRR
gives more stable performance than others; SSCOMP is quite

Thttp://www.cs.nyu.edu/ roweis/data.html
Zhttp://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase .html
3http://yann.lecun.com/exdb/mnist/

“http://www-users.cs.umn.edu/ han/data/tmdata.tar.gz
Shttps://archive.ics.uci.edu/ml/datasets/Poker+Hand
Shttp://archive.ics.uci.edu/ml/datasets/covertype
7https://github.com/sckangz/SGL

TABLE III: Clustering performance on six data sets. The best
performance is highlighted. Time is measured in seconds.

Data | Metric | ALRR |[KMM|ESSC | FNC [SSCOMP| SGL
ACC | 39.03 |41.45]28.56|46.79| 18.66 |48.51(0.52)
BA NMI | 57.21 |55.24|40.09 |60.13| 30.66 [60.47(0.22)
PURITY| 53.20 |45.47|32.76 |60.13| 21.36 |53.81(0.11)
TIME | 8.07 | 0.78 [18.30|1.68| 0.31 |11.63(0.12)
ACC | 68.00 [61.25|60.75|59.25| 63.75 |68.83(0.39)
ORL NMI | 82.73 |77.16|77.29 |77.33| 80.44 [81.90(0.15)
PURITY| 77.00 [65.00| 67.50 |64.25| 67.50 |77.07(0.73)
TIME | 4.55 | 024 | 469 [040| 0.19 |3.23(0.15)
ACC | 72.94 49.75|52.90 |54.58| 64.97 |75.31(0.86)
TRII NMI | 63.08 [27.94|44.18 |41.35| 55.59 [67.66(0.59)
PURITY| 75.84 |51.93|57.73 |41.35| 78.01 |80.32(1.67)
TIME | 4.51 | 0.15 (2553 (1.69| 3.19 |5.31(0.08)
ACC | 61.73 |66.05|67.31 |58.42| 69.47 | 77.79(0)
TR41 NMI | 62.87 [61.92|65.57|49.96| 66.73 | 72.11(0)
PURITY| 73.00 |72.09|73.35 |49.96| 80.52 | 84.16(0)
TIME | 7.75 | 0.36 |74.74 | 6.83 | 83.36 |7.63(0.23)
ACC | 7231 |73.80|67.25 |48.40( 73.04 |74.41(2.44)
TR45 NMI | 70.10 |67.73| 60.85|31.22| 69.96 [69.53(1.82)
PURITY| 77.68 |82.34|68.84 |31.22| 83.76 |76.74(1.71)
TIME | 9.41 | 0.35|62.25|4.83| 87.64 |6.34(0.18)
ACC | 66.79 [47.63|39.11 (65.37| 30.35 | 70.52(0)
RCVI1-4 NMI | 40.76 |17.12]12.30|35.00, 0.10 45.76(0)
PURITY| 78.79 |47.63|78.21 [35.00| 30.4 79.37(0)
TIME [1175.80| 4.1 [4078.2{85.90| 350.62 |98.86(0.67)

unstable, which could be caused by the fact that its strong
assumptions are often broke facing real-world data. FNC
generates mediocre results.

We also list the consumed time for each method in Table
We can observe that our method achieves comparable
efficiency on those small size data sets, including AR, ORL,
TR11, TR41, TR45. Though KMM demonstrates high effi-
ciency, it clustering performance is degraded. Sparse subspace
clustering based methods, i.e., ESSC and SSCOMP, cost much
more time than others on TR11, TR41 and TR45. For medium
size data RCV1-4, ALRR and ESSC run a long time. For
example, ESSC takes 4078 seconds to finish the RCV1-4 data,
while our method just needs 98.86 seconds. This indicates that
our method is efficient yet effective.

D. Parameter Analysis

There are three parameters «, 5 and anchor number m in
our model. We can observe that the dictionary A is constituted
of anchor points, which is important to the proposed model.
Recently, some advanced anchor points selection methods are
developed. For example, [[71] proposes to select a few sets of
anchors points based on randomized hierarchical clustering.
Consequently, it selects a different set of anchors for each
data point. [[72] adopts an exemplar selection method FFS to
find a subset that best reconstructs all data points based on the
¢1 norm of the representation coefficients. Compared to them,
our adopted K-means approach is simple and straightforward.
However, K-means is sensitive to initialization. Therefore,
we discuss the clustering effect caused by the variations of
anchor number and initialization. It is reasonable to assume
that we at least need k anchors to reveal the underlying
subspaces. In Fig. 2] we let the number of anchor points varies
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over the range [40,---,120] and [10,---,90] for ORL and
TR45, respectively. It shows that the clustering performance
indeed changes along with the variation of anchor number and
initialization. However, it can be seen that we don’t require
too many anchors for a good performance. Furthermore, the
standard variation suggests that our results change slightly due
to the initialization.

Furthermore, we adopt FFS [72] to select anchors and
use them to build an anchor matrix A. Then we plot the
performance of our method in Fig. 3] We can see that its
performance is inferior to K-means based approach. This could
be caused by the fact that these anchors are close to a few
cluster centroids, thus K-means is more appropriate than FFS.
FFS could well handles the case when anchors lie close to a
union of subspaces [72].

Next, we fix the number of anchor points and analyze the
sensitive of « and S on TR45 and ORL data sets. § varies
over the range of [0.0001,0.001,0.01,0.1,1,10]. « varies
over [0.001,0.01,0.1,1,10,50] and [0.1, 1,10, 20, 30,40, 50]
on TR45 and ORL respectively. Fig. 4| displays how the
clustering results of our method vary with o and 3. We can
find that the performance of our method is very stable with
respect to a large range of « and 3 values. In practice, we can
fix a and tune S.

E. Out-of-Sample Experiment

In this subsection, we conduct experiments on MNIST,
CoverType and Pokerhand to evaluate our method for address-
ing out-of-sample problem. Following the setting in SLSR
[32], we randomly select 1000 data points as in-sample data
for CoverType and Pokerhand, while 2000 data points for
MNIST. The rest data are regarded as out-of-sample data
for testing. As described in subsection we apply kNN
algorithm to test out-of-sample data. Concretely, we adopt
3NN and 1NN to the anchor points and their labels to predict
the clusters of test data. As a baseline, we also apply INN to
the in-sample data. Moreover, we compare with SLSR [32],
to our best knowledge, which is the only method proposed to
address out-of-sample problem for subspace clustering.

We report the results in Table As for the accuracy,
we can find that our approach consistently outperforms other
methods. In particular, our accuracy surpasses SLSR method
by about 10% on CoverType and Pokerhand data. Our method
obtains comparable performance with baseline on NMI and
Purity. These results suggest that our anchor points can well
represent the structure of the raw data. We can also see that
the number of neighbors in kNN has a big influence to the
final performance. This confirms the previous observation in
the literature.

In terms of running time, we can observe that our approach
outperforms others by a large margin and can finish IM
samples in less than 1 second. Compared to SLSR, our method
is at least 200 times faster. With respect to conventional kNN
approach, our method also runs much faster since we use
fewer points. In summary, our method is a promising approach
to process out-of-sample problem. On the other hand, this
approach demonstrates itself to be an alternative way to tackle
big data challenge.

TABLE IV: Clustering performance on out-of-sample prob-
lem.

Data Method Acc NMI PURITY

Time (s)

3NN-+anchor points [57.23(1.31)(53.72(0.84)|60.57(0.64)

1.04(0.02)

MNIST

INN+anchor points |58.23(0.35)|54.26(0.24) |62.37(0.19)| 0.67(0.01)

INN+in-sample data|56.49(0.75)|51.91(0.79)(59.61(0.96)|22.69(0.66)

SLSR 52.26 47.72 57.06

252.28

3NN-+anchor points |39.01(0.92)| 8.57(0.78) |50.15(0.41)

3.05(0.04)

INN+anchor points [32.10(1.48)| 6.69(0.52)

50.21(0.13)| 0.64(0.01)

CoverType

INN+in-sample data|31.41(1.21)| 6.47(0.57) {52.36(0.28)

8.24(0.11)

SLSR 26.5 7.3 49.42

178.72

3NN-+anchor points |27.97(1.71)| 0.27(0.10) |50.73(0.45)

8.81(0.07)

Pokerhand

INN+anchor points |22.15(1.48)| 0.33(0.10) |50.90(0.47)| 0.88(0.01)

INN+in-sample data|19.73(1.36)| 0.17(0.10) {50.23(0.38)

2.34(0.12)

SLSR 15.82 0.06 50.20

284.52

VII. MULTI-VIEW EXPERIMENTS

In this section, we assess the effectiveness and efficiency of
our multi-view model (T6).

A. Setup

We perform experiments on three benchmark data sets:
Caltech—?ﬂ NUS?], Citeseeﬂ Both Caltech-7 and NUS are
object recognition database, while Citeseer is a document data
with content and citations. The details of them are summarized
in Table We compare our proposed MSGL method with

TABLE V: Statistical information of the multi-view data sets.
The number in parenthesis denotes dimension.

View Caltech-7 Citeseer NUS

1 Gabor (48) Content (3703)  Color Histogram (65)
2 ‘Wavelet moments (40)  Citation (3312)  Color moments (226)
3 CENTRIST (254) Color correlation (145)
4 HOG (1984) Edge distribution (74)
5 GIST (512) Wavelet texture (129)
6 LBP (928) - -

Data points 1474 3312 30000

Class number 7 6 31

four other state-of-the-art multi-view methods.
AMGL [73] is a popular multi-view spectral clustering
method proposed in 2016. Though it is parameter-free, it has a
high complexity since it involves SVD implemented on n X n
matrix in each iteration.
MLRSSC [59] is a multi-view subspace clustering method
developed in 2018. It has good performance since it combines
low-rank and sparse model, but it has O(n3) complexity.
MSC_IAS [61]] is proposed to learn a better graph in latent
space in 2019. It surpasses a number of multi-view subspace
clustering methods, but it also has O(n?) complexity.
LMVSC [54] is a linear multi-view subspace clustering
method published in 2020. It shows superior performance and
high efficiency.

We use grid search to find the best parameters for all meth-
ods. For MSGL, + is searched from [—1,—2,—3, —4, —5].

8http://www.vision.caltech.edu/TmageDatasets/Caltech101/

“https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-

WIDE.html
10http://lig-membres.imag.fr/grimal/data.html
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B. Results

TABLE VIII: Clustering performance on NUS data.

Table report the clustering performance on the
three data sets. Both AMGL and MLRSSC raise out-of-
memory exception on the NUS data. We can observe that our
method outperforms other methods in most cases, including
our closest competitor LMVSC. In particular, our method
MSGL constantly outperforms LMVSC on accuracy and Pu-
rity. In terms of NMI, our method also achieves comparable or
even better performance than LMVSC. AMGL, MLRSSC and
MSC_IAS produce poor accuracy and NMI on Caltech-7 and
Citeseer data sets. There are some possible causes for this.
AMGL uses losses of different views to weight each view,
which might not be flexible to distinguish the contributions of
diverse views. Moreover, some real-world data sets can not be
simply characterized by low-rank or sparse structure as used
in MLRSSC and MSC_IAS. By contrast, we directly consider
the cluster structure, which is a target-oriented solution.

For running time comparison, the proposed method is
usually faster than the baseline methods except LMVSC.
Though both MSGL and LMVSC have linear time complexity,
LMVSC is faster since it is iteration-free. To be precise,
LMVSC does not consider the structure of graph and dis-
tinguish views, so it is a one-pass approach. For large-scale
data NUS, MSC_IAS costs about 12 hours, while our method
can finish it in 10 minutes. Hence, in term of efficiency and
effectiveness, MSGL and LMVSC are appealing in practice
applications.

TABLE VI: Clustering performance on Caltech-7 data.

Method ACC NMI PURITY Time (s)
MSC_IAS 15.48 15.21 16.75 45386
LMVSC 15.53 12.95 19.82 165.39
MSGL 16.31(0.42) | 12.26(0.28) | 20.51(0.37) | 547.58(32.11)

C. Convergence Analysis

As mentioned earlier, MSGL is a convergent algorithm. To
verify this, we demonstrate the behavior of the objective value
of Eq. (I6) in Fig. [5] It shows that our algorithm converges
within 10 iterations on all three real-world data sets. Once
again, this supports that our method is efficient.

VIII. CONCLUSION

In this paper, we propose a novel graph-based subspace
clustering framework to cope with single view and multi-view
data. We simultaneous consider graph structure, scalability,
and out-of-sample problems by making use of the anchor idea,
bipartite graph and spectral graph property. Consequently,
a graph with explicit cluster structure is learned in linear
complexity. Theoretical analysis builds the connection between
our method and K-means clustering. Extensive experimental
results demonstrate that our method can reduce the time
complexity without sacrificing the clustering performance. In
the future, we plan to investigate new anchor selection strategy
to improve the stableness of the proposed approach.

REFERENCES

[11 A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recog-

Method ACC NMI PURITY Time (s)
AMGL 4518 4243 46.74 20.12 [2]
MLRSSC 37.31 21.11 41.45 22.26
MSC_IAS 39.76 24.55 44.44 57.18 [3]
LMVSC 72.66 51.93 75.17 135.79
MSGL 73.31(0.96) | 52.47(2.23) | 77.34(2.87) | 395.63(21.33) [4]
[5]
TABLE VII: Clustering performance on Citeseer data. (6]
Method ACC NMI PURITY Time (s)
AMGL 16.87 0.23 16.87 449.07 [7]
MLRSSC 25.09 02.67 63.70 106.1
MSC_IAS 34.11 11.53 80.76 191.29
LMVSC 52.26 25.71 54.46 21.33 [8]
MSGL 54.47(0.78) | 26.54(0.94) | 57.49(1.13) | 62.23(4.72)

nition letters, vol. 31, no. 8, pp. 651-666, 2010.

A. Y. Ng, M. L. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Adv. Neural Inf. Proc. Syst. 14, 2001.

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241-254, 1967.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226-231.

X. Peng, H. Zhu, J. Feng, C. Shen, H. Zhang, and J. T. Zhou, “Deep
clustering with sample-assignment invariance prior,” IEEE Transactions
on Neural Networks and Learning Systems, 2019.

R. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine,
vol. 28, no. 2, pp. 52-68, 2011.

X. Peng, J. Feng, S. Xiao, W.-Y. Yau, J. T. Zhou, and S. Yang,
“Structured autoencoders for subspace clustering,” IEEE Transactions
on Image Processing, vol. 27, no. 10, pp. 5076-5086, 2018.

G. Liu, Z. Zhang, Q. Liu, and H. Xiong, “Robust subspace clustering
with compressed data,” IEEE Transactions on Image Processing, vol. 28,
no. 10, pp. 5161-5170, 2019.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

C.-G. Li, C. You, and R. Vidal, “Structured sparse subspace clustering:
A joint affinity learning and subspace clustering framework,” IEEE
Transactions on Image Processing, vol. 26, no. 6, pp. 2988-3001, 2017.
E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 11, pp. 2765-2781, 2013.

G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of
subspace structures by low-rank representation,” /IEEE transactions on
pattern analysis and machine intelligence, vol. 35, no. 1, pp. 171-184,
2013.

C.-Y. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and S. Yan, “Robust
and efficient subspace segmentation via least squares regression,” in
European conference on computer vision.  Springer, 2012, pp. 347—
360.

P. Ji, T. Zhang, H. Li, M. Salzmann, and I. Reid, “Deep subspace
clustering networks,” in Advances in Neural Information Processing
Systems, 2017, pp. 24-33.

J. Zhang, C.-G. Li, C. You, X. Qi, H. Zhang, J. Guo, and Z. Lin, “Self-
supervised convolutional subspace clustering network,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 5473-5482.

X. Zhu, Y. Zhu, and W. Zheng, “Spectral rotation for deep one-step
clustering,” Pattern Recognition, p. 10.1016/j.patcog.2019.107175, 2019.
Z. Kang, C. Peng, and Q. Cheng, “Twin learning for similarity and
clustering: A unified kernel approach,” in Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436-444, 2015.

Z. Kang, H. Pan, S. C. Hoi, and Z. Xu, “Robust graph learning from
noisy data,” IEEE transactions on cybernetics, vol. 50, no. 5, pp. 1833—
1843, 2019.

Z. Ren, S. X. Yang, Q. Sun, and T. Wang, “Consensus affinity graph
learning for multiple kernel clustering,” IEEE Transactions on Cyber-
netics,, 2020.

F. Nie, Z. Zeng, I. W. Tsang, D. Xu, and C. Zhang, “Spectral embed-
ded clustering: A framework for in-sample and out-of-sample spectral
clustering,” IEEE Transactions on Neural Networks, vol. 22, no. 11, pp.
17961808, 2011.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the nystrom method,” IEEE transactions on pattern analysis and
machine intelligence, vol. 26, no. 2, pp. 214-225, 2004.

F. Nie, X. Wang, C. Deng, and H. Huang, “Learning a structured optimal
bipartite graph for co-clustering,” in Advances in Neural Information
Processing Systems, 2017, pp. 4129-4138.

X. Chen and D. Cai, “Large scale spectral clustering with landmark-
based representation,” in Twenty-fifth AAAI conference on artificial
intelligence, 2011.

X. Chen, R. Chen, Q. Wu, Y. Fang, F. Nie, and J. Z. Huang, “Labin:
Balanced min cut for large-scale data,” IEEE transactions on neural
networks and learning systems, 2019.

A. Adler, M. Elad, and Y. Hel-Or, “Linear-time subspace clustering via
bipartite graph modeling,” IEEE transactions on neural networks and
learning systems, vol. 26, no. 10, pp. 2234-2246, 2015.

S. Wang, B. Tu, C. Xu, and Z. Zhang, “Exact subspace clustering in lin-
ear time,” in Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014.

J. Li and H. Zhao, “Large-scale subspace clustering by fast regression
coding,” in IJCAI, 2017.

C. You, D. P. Robinson, and R. Vidal, “Scalable sparse subspace
clustering by orthogonal matching pursuit,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

F. Pourkamali-Anaraki, J. Folberth, and S. Becker, “Efficient solvers for
sparse subspace clustering,” Signal Processing, p. 107548, 2020.

J. Fan, Z. Tian, M. Zhao, and T. W. S. Chow, “Accelerated low-rank
representation for subspace clustering and semi-supervised classification
on large-scale data,” Neural Networks, vol. 100, 2018.

S. Xiao, W. Li, D. Xu, and D. Tao, “Falrr: A fast low rank representation
solver,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 4612-4620.

X. Peng, H. Tang, L. Zhang, Z. Yi, and S. Xiao, “A unified framework
for representation-based subspace clustering of out-of-sample and large-
scale data,” IEEE transactions on neural networks and learning systems,
vol. 27, no. 12, pp. 2499-2512, 2015.

L. Huang, C.-D. Wang, H.-Y. Chao, and S. Y. Philip, “Mvstream:
Multiview data stream clustering,” IEEE transactions on neural networks
and learning systems, 2019.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

(54

[55]

[56]

[57]

(58]

P. Zhou, Y.-D. Shen, L. Du, F. Ye, and X. Li, “Incremental multi-view
spectral clustering,” Knowledge-Based Systems, vol. 174, pp. 73-86,
2019.

H. Tao, C. Hou, D. Yi, J. Zhu, and D. Hu, “Joint embedding learning
and low-rank approximation: A framework for incomplete multiview
learning,” IEEE Transactions on Cybernetics, 2019.

C. Tang, X. Zhu, X. Liu, M. Li, P. Wang, C. Zhang, and L. Wang,
“Learning a joint affinity graph for multiview subspace clustering,” [EEE
Transactions on Multimedia, vol. 21, no. 7, pp. 1724-1736, 2019.

W. Zhuge, F. Nie, C. Hou, and D. Yi, “Unsupervised single and multiple
views feature extraction with structured graph,” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 10, pp. 2347-2359, 2017.
M. Yin, J. Gao, S. Xie, and Y. Guo, “Multiview subspace clustering
via tensorial t-product representation,” IEEE transactions on neural
networks and learning systems, vol. 30, no. 3, pp. 851-864, 2018.

S. Sun, Y. Liu, and L. Mao, “Multi-view learning for visual violence
recognition with maximum entropy discrimination and deep features,”
Information Fusion, vol. 50, pp. 43-53, 2019.

K. Zhan, C. Niu, C. Chen, F. Nie, C. Zhang, and Y. Yang, “Graph struc-
ture fusion for multiview clustering,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, no. 10, pp. 1984-1993, 2018.

M.-S. Chen, L. Huang, C.-D. Wang, and D. Huang, “Multi-view
clustering in latent embedding space,” in Proc. of AAAI Conference on
Artificial Intelligence, 2020.

S. Yao, G. Yu, J. Wang, C. Domeniconi, and X. Zhang, “Multi-view
multiple clustering,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence. ~AAAI Press, 2019, pp. 4121-
4127.

H. Wang, Y. Yang, and B. Liu, “Gmc: Graph-based multi-
view clustering,” IEEE Transactions on Knowledge and Data
Engineering, vol. PP, pp. 1-14, 2019. [Online]. Available: https:
/ldoi.org/10.1109/TKDE.2019.2903810

C. Hou, E. Nie, H. Tao, and D. Yi, “Multi-view unsupervised feature
selection with adaptive similarity and view weight,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 9, pp. 1998-2011,
2017.

Y. Wang, W. Zhang, L. Wu, X. Lin, M. Fang, and S. Pan, “Iterative
views agreement: an iterative low-rank based structured optimization
method to multi-view spectral clustering,” in Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, 2016, pp.
2153-2159.

Y. Wang, “Survey on deep multi-modal data analytics: Collaboration,
rivalry and fusion,” arXiv preprint arXiv:2006.08159, 2020.

C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized
latent multi-view subspace clustering,” IEEE transactions on pattern
analysis and machine intelligence, vol. 42, no. 1, pp. 86-99, 2018.

X. Zhang, H. Sun, Z. Liu, Z. Ren, Q. Cui, and Y. Li, “Robust low-rank
kernel multi-view subspace clustering based on the schatten p-norm and
correntropy,” Information Sciences, vol. 477, pp. 430447, 2019.

Y. Chen, X. Xiao, and Y. Zhou, “Jointly learning kernel representation
tensor and affinity matrix for multi-view clustering,” IEEE Transactions
on Multimedia, 2019.

X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang, “Diversity-induced
multi-view subspace clustering,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 586-594.

H. Gao, F. Nie, X. Li, and H. Huang, “Multi-view subspace clustering,”
in Proceedings of the IEEE international conference on computer vision,
2015, pp. 4238-4246.

H. Tao, C. Hou, Y. Qian, J. Zhu, and D. Yi, “Latent complete row
space recovery for multi-view subspace clustering,” IEEE Transactions
on Image Processing, vol. 29, pp. 8083-8096, 2020.

Z. Kang, X. Zhao, C. Peng, H. Zhu, J. T. Zhou, X. Peng, W. Chen, and
Z. Xu, “Partition level multiview subspace clustering,” Neural Networks,
vol. 122, pp. 279-288, 2020.

Z. Kang, W. Zhou, Z. Zhao, J. Shao, M. Han, and Z. Xu, “Large-scale
multi-view subspace clustering in linear time,” in AAAI, 2020.

Z. Kang, X. Lu, Y. Lu, c. Peng, W. Chen, and Z. Xu, “Structure learning
with similarity preserving,” Neural Networks, vol. 129, pp. 138-148,
2020.

Z. Kang, X. Lu, J. Liang, K. Bai, and Z. Xu, “Relation-guided repre-
sentation learning,” Neural Networks, vol. 131, pp. 93—-102, 2020.

X. Peng, Z. Yu, Z. Yi, and H. Tang, “Constructing the 12-graph for
robust subspace learning and subspace clustering,” IEEE transactions
on cybernetics, vol. 47, no. 4, pp. 1053-1066, 2016.

B. D. Haeffele and R. Vidal, “Structured low-rank matrix factorization:
Global optimality, algorithms, and applications,” IEEE transactions on
pattern analysis and machine intelligence, 2019.


https://doi.org/10.1109/TKDE.2019.2903810
https://doi.org/10.1109/TKDE.2019.2903810

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. Brbi¢ and I. Kopriva, “Multi-view low-rank sparse subspace cluster-
ing,” Pattern Recognition, vol. 73, pp. 247-258, 2018.

R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral clus-
tering via low-rank and sparse decomposition,” in Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

X. Wang, Z. Lei, X. Guo, C. Zhang, H. Shi, and S. Z. Li, “Multi-view
subspace clustering with intactness-aware similarity,” Pattern Recogni-
tion, vol. 88, pp. 50-63, 2019.

M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, “Scalable semi-supervised
learning by efficient anchor graph regularization,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 7, pp. 1864-1877, 2016.
J. Han, K. Xiong, and F. Nie, “Orthogonal and nonnegative graph
reconstruction for large scale clustering.” in IJCAI, 2017, pp. 1809-
1815.

F. R. Chung and F. C. Graham, Spectral graph theory.  American
Mathematical Soc., 1997, no. 92.

Z. Kang, C. Peng, Q. Cheng, X. Liu, X. Peng, Z. Xu, and L. Tian,
“Structured graph learning for clustering and semi-supervised classifi-
cation,” Pattern Recognition, vol. 110, p. 107627, 2021.

X. Bo, Z. Kang, Z. Zhao, Y. Su, and W. Chen, “Latent multi-view semi-
supervised classification,” in Asian Conference on Machine Learning,
2019, pp. 348-362.

J. C. Bezdek and R. J. Hathaway, “Convergence of alternating opti-
mization,” Neural, Parallel & Scientific Computations, vol. 11, no. 4,
pp. 351-368, 2003.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark
collection for text categorization research,” Journal of machine learning
research, vol. 5, no. Apr, pp. 361-397, 2004.

F. Nie, C.-L. Wang, and X. Li, “K-multiple-means: A multiple-means
clustering method with specified k clusters,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 959-967.

X. Chen, W. Hong, F. Nie, D. He, M. Yang, and J. Z. Huang, “Spectral
clustering of large-scale data by directly solving normalized cut,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2018, pp. 1206-1215.
M. Abdolali, N. Gillis, and M. Rahmati, “Scalable and robust sparse
subspace clustering using randomized clustering and multilayer graphs,”
Signal Processing, vol. 163, pp. 166—180, 2019.

C. You, C. Li, D. P. Robinson, and R. Vidal, “Self-representation based
unsupervised exemplar selection in a union of subspaces,” arXiv preprint
arXiv:2006.04246, 2020.

F. Nie, J. Li, X. Li et al., “Parameter-free auto-weighted multiple graph
learning: A framework for multiview clustering and semi-supervised
classification.” in IJCAI, 2016, pp. 1881-1887.



	I Introduction
	II Background
	II-A Subspace Clustering
	II-B Anchor Graph

	III Structured Graph Learning
	III-A Optimization Strategy
	III-A1 Fix F and Solve Z
	III-A2 Fix Z and Solve F

	III-B Out-of-sample Problem

	IV Theoretical Analysis
	IV-A Relationship with K-means Algorithm
	IV-B Complexity Analysis

	V Multi-view Structured Graph Learning
	V-A Fix v, F, Update Z
	V-B Fix v, Z, Update F
	V-C Fix F, Z, Update v 

	VI Single-view Experiments
	VI-A Data Sets
	VI-B Comparison Methods
	VI-C Results
	VI-D Parameter Analysis
	VI-E Out-of-Sample Experiment

	VII Multi-view Experiments
	VII-A Setup
	VII-B Results
	VII-C Convergence Analysis

	VIII Conclusion
	References

