
10200 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 10, OCTOBER 2022

Saliency-Based Multilabel Linear
Discriminant Analysis

Lei Xu , Student Member, IEEE, Jenni Raitoharju , Member, IEEE,
Alexandros Iosifidis , Senior Member, IEEE, and Moncef Gabbouj , Fellow, IEEE

Abstract—Linear discriminant analysis (LDA) is a classical sta-
tistical machine-learning method, which aims to find a linear data
transformation increasing class discrimination in an optimal dis-
criminant subspace. Traditional LDA sets assumptions related
to the Gaussian class distributions and single-label data anno-
tations. In this article, we propose a new variant of LDA to be
used in multilabel classification tasks for dimensionality reduc-
tion on original data to enhance the subsequent performance of
any multilabel classifier. A probabilistic class saliency estimation
approach is introduced for computing saliency-based weights for
all instances. We use the weights to redefine the between-class and
within-class scatter matrices needed for calculating the projec-
tion matrix. We formulate six different variants of the proposed
saliency-based multilabel LDA (SMLDA) based on different prior
information on the importance of each instance for their class(es)
extracted from labels and features. Our experiments show that
the proposed SMLDA leads to performance improvements in
various multilabel classification problems compared to several
competing dimensionality reduction methods.

Index Terms—Class saliency, dimensionality reduction, linear
discriminant analysis (LDA), multilabel classification.

I. INTRODUCTION

MULTILABEL classification tasks have become more
and more common in the machine-learning field

recently, for example, in text information categorization [1],
image and video annotation [2], sequential data prediction [3],
or music information retrieval [4]. Compared to single-label
problems, the characteristics of multilabel problems are more
complicated and unpredictable. In a single label problem, each
instance merely belongs to a single class. In a multilabel
dataset, data items can be associated with either one or several
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classes. For example, an image can represent both a beach and
a sunset and, thus, be associated with both of these classes.
Moreover, different classes typically contain a varying num-
ber of data items, leading to class-imbalanced problems [5].
Hence, in order to solve a multilabel classification problem
efficiently and effectively, we need not only to consider the
correlation of class labels and features of each data item but
also to take into account the different cardinalities of the
classes. The problem of multilabel learning (MLL) has been
widely studied and various multilabel classifiers have been
suggested [6]–[8].

In this article, we focus on dimensionality reduction for
multilabel classification. Dimensionality reduction techniques
in general aim at transforming the data to a lower dimensional
form that is easier to process by the learning techniques with-
out losing relevant information. The dimensionality reduction
techniques for multilabel classification aim at optimizing the
data transformation for subsequent multilabel classification. At
least 50 such methods have been proposed [9].

A well-known supervised dimensionality reduction tech-
nique linear discriminant analysis (LDA) and its variants have
been widely used to extract discriminant data representa-
tions for solving various problems, for example, in human
action recognition [10] or biological data classification [11].
However, they are not optimal for multilabel problems due
to the characteristics of multilabel data. This is due to two
factors: 1) the contribution of each data item in the calcu-
lation of the scatter matrices involved in the optimization
problem of single-label LDA and its variants cannot be appro-
priately determined and 2) the cardinality of the various classes
forming the multilabel problem can be quite imbalanced. In
multilabel LDA (MLDA) [12] and its variants, these problems
have been tackled by introducing different weights to take
into account the label and/or feature correlation of different
items.

In this article, we propose a novel dimensionality reduction
method for multilabel classification based on a probabilistic
approach that is able to estimate the contribution of each data
item to the classes it is associated with by taking into account
prior information encoded using various types of metrics. The
proposed calculation of the contribution of each data item to
the classes it belongs to can not only weigh its importance
but can also avoid problems related to imbalanced classes. To
this end, we exploit the concept of class saliency introduced
in [13]. Hence, the proposed method is called saliency-based
MLDA (SMLDA). Our proposed SMLDA approach exploits
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both label and feature information with various prior weight-
ing factors. The proposed method yields features optimized
for multilabel classification that can be subsequently classified
using any multilabel classifier.

We have made the following contributions on dimensional-
ity reduction for multilabel classification tasks with our novel
SMLDA approach.

1) We propose a general framework for using the proba-
bilistic saliency estimation to weigh the importance of
each data item for the classes it is associated with for
the first time in MLL.

2) We formulate a novel SMLDA method that uses the
saliency-based weights in the scatter matrices and can
alleviate the problems related to imbalanced datasets.

3) We integrate different label and feature information
previously used as weights in dimensionality reduction
to SMLDA by using them as prior information for proba-
bilistic saliency estimation and show experimentally that
our approach leads to a better performance.

4) We compare our proposed approach to 11 compet-
ing dimensionality reduction methods on 17 diverse
multilabel datasets using seven evaluation metrics and
applying two different multilabel classifiers on the
produced features, and the results show considerable
improvements in multilabel classification tasks using our
approach.

The remainder of this article is structured as follows. In
Section II, we briefly review the related works. We include
a precise explanation of the LDA and weighted MLDA with
adequate mathematical notations to support the derivations of
the proposed method. In Section III, we describe our proposed
methods in detail. Section IV presents the experimental setup
and results. In Section V, we conclude this article and discuss
the potential future studies.

II. RELATED WORKS

In this section, we first briefly present several dimensionality
reduction techniques previously used in multilabel classifica-
tion tasks in Section II-A. In Section II-B, we give a detailed
description of the standard LDA, weighted LDA, and MLDA,
since they form the theoretical foundation for the proposed
work. Subsequently, we introduce the general concepts of
saliency estimation and the probabilistic saliency estimation
approach needed to develop the proposed method.

A. Dimensionality Reduction Methods for Multilabel
Classification

Dimensionality reduction techniques are commonly used as
a preprocessing step for multilabel classification to map the
raw high-dimensional data into an optimal lower-dimensional
subspace preserving the distinguishing features [9]. The tech-
niques can be categorized as unsupervised or supervised
approaches depending on whether class label information is
used or not [14]. Furthermore, the techniques can be divided
into methods that are independent of the classifiers or depen-
dent of the classifiers [9]. In this article, we consider only
dimensionality reduction techniques that are all independent
of the classifiers.

Principal component analysis (PCA) [15] is the most well-
known unsupervised dimensionality reduction algorithm that
minimizes the information lost by preserving as much of
the data’s variations as possible. Canonical correlation anal-
ysis (CCA) [16] is a widely known supervised dimensionality
reduction algorithm, projecting the raw data into a subspace
exploiting the correlations between the features and labels.

Dimensionality reduction techniques specifically designed
for multilabel data include the multilabel-informed latent
semantic indexing (MLSI) algorithm [17] that preserves the
discriminate feature information by considering the correla-
tions between the multiple labels and multilabel dimensional-
ity reduction via the dependence maximization (MDDM) algo-
rithm [18] that maximizes the dependence between the original
features and class labels using the Hilbert–Schmidt indepen-
dence criterion (HSIC) for measuring dependence. MDDM
has two variants with different constraints: 1) MDDMp
with an uncorrelated projection constraint and 2) MDDMf
with an uncorrelated feature constraint. MDDMp variant was
observed to perform better in [18]. Xu et al. [19] proposed
a multilabel feature extraction method that integrates least-
squares formulations of PCA and MDDM linearly, which
both maximizes feature variance and maximizes feature-label
dependence (MVMD) at the same time.

B. Linear Discrimination Analysis-Based Algorithms for
Multilabel Classification

Standard LDA and its variants have been applied to tackle
various multilabel classification problems [9], [12], [20]–[23].
These methods operate on N data items xi ∈ R

D and their
corresponding binary label vectors yi ∈ {0, 1}C, where D is the
original data dimensionality and C is the number of classes.
These are arranged into matrices X ∈ R

D×N and Y ∈ R
C×N .

An element yci of Y is 1 only if the corresponding data item xi

is associated with class c. Thus, in single-label classification
tasks, there is a single 1 on each column, but in multilabel
classification, the number of 1s is not constrained. The rows
of Y contain 1s for all data items that are associated with
the particular class and we denote them as y(j), where j ∈
1, . . . , C. The objective of LDA-based methods is to find a
data projection matrix W ∈ R

D×d that maps the data from the
original feature space R

D to a subspace R
d, where D > d, in

a manner that maximizes the class discrimination.
1) Linear Discrimination Analysis: LDA is an effective

technique to reduce the dimensionality of original data as
a prepossessing step for single-label classification problems.
LDA operates on within-class, between-class, and total scatter
matrices Sw, Sb, and St defined as follows:

Sw =
C∑

c=1

N∑

i=1

yci
(
xi − µc

)(
xi − µc

)T (1)

Sb =
C∑

c=1

(
N∑

i=1

yci

)
(
µc − µ

)(
µc − µ

)T (2)

St =
C∑

c=1

N∑

i=1

yci(xi − µ)(xi − µ)T . (3)
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Here, µc denotes the mean vector of class c as

µc = 1

Nc

N∑

i=1

ycixi (4)

where Nc = ∑N
i=1 yci is the cardinality of class c. The total

mean vector µ is computed as

µ = 1

N

N∑

i=1

xi. (5)

The optimal projection matrix W is learned by maximizing
Fisher’s discriminant criterion [24] that minimizes the within-
class scatter while maximizing the between-class scatter

J(W) = argmax
W

tr
(
WTSbW

)

tr
(
WTSwW

) (6)

where tr(.) denotes the trace of a matrix. Typically, the solution
to this trace ratio optimization is approximated by solving the
corresponding ratio trace optimization. This allows obtaining
the projection matrix W by solving the generalized eigenvalue
problem

Sbw = Swλw (7)

and taking the eigenvectors corresponding to the d ≤ C − 1
largest eigenvalues as columns of the projection matrix W. The
rank of Sb is equal to C − 1, which is the maximal dimen-
sionality of the resulting subspace. Also, different iterative
methods for solving directly the trace ratio problem have been
proposed [25], [26].

Since St = Sw + Sb, an alternative approach is to use St

instead of Sw and maximize Fisher’s discriminant criterion as

J(W) = argmax
W

tr
(
WTSbW

)

tr
(
WTStW

) . (8)

Finally, the optimized features can be obtained as

Z = WTX. (9)

The datasets used in most traditional LDA classification tasks
are assumed to have equal class distribution as a homoscedas-
tic Gaussian model [27], in which the covariance matrices
of each class should be identical [28]. The performance is
affected severely due to the imbalance of input datasets [29].

2) Weighted Linear Discrimination Analysis: In order to
enhance the robustness of traditional LDA on different kinds of
datasets, various weight factors based on class statistics [26],
[28], [30], for example, class cardinality, a prior probability,
have been introduced into the definitions of the scatter matri-
ces to balance the contribution of each class. Weighted LDA
approaches have diminished the influence of outlier classes
on the scatter matrices of imbalanced datasets to some extent;
however, they still neglect the varying importance of individual
samples in the class description. Saliency-based weighted LDA
(SwLDA) [13] was proposed to explore the contribution of
each instance based on probabilistic saliency estimation [31].
Our work uses a similar idea for multilabel classification.

Fig. 1. Number of instances for each class in the Yeast database.

3) Multilabel Linear Discrimination Analysis: Although
weighted LDA algorithms enhance the performance in single-
label classification tasks [32] compared to traditional LDA,
such variants are still not directly applicable for multilabel
classification tasks [12]. In a multilabel dataset, label
information contains certain correlations or dependencies [33],
for example, an image instance labeled as “car” highly cor-
relates to label “road” [12]. Besides, it is quite common that
the number of samples in each class in a multiclass dataset is
imbalanced. For example, the largest class size is 1128 and the
smallest is 21 in the widely used Yeast database [34], as shown
in Fig. 1. Due to the specific characteristics of multilabel
databases, it is imperative to take into account the correla-
tion of class labels and/or discriminative feature information
of each instance to tackle the suboptimal classification result
on imbalanced datasets.

If traditional LDA and its variants are applied to multilabel
classification tasks by simply using (1) and (2) with the
multilabel label matrix Y, an overcounting problem is encoun-
tered, that is, the contribution of one instance can be repeat-
edly counted in computing the scatter matrices. Hence, an
MLDA [12] and its variants use weight factors to express
redundancy or/and correlation information so that the scatter
matrices can be calculated without redundancy on multilabel
databases. These weight factors can be organized to a non-
negative weight matrix M ∈ R

C×N with the same size as the
label matrix Y

M = [m1, . . . , mi, . . . , mN] = [
m(1), . . . , m(j), . . . , m(C)

]T

(10)

where mi represents a weight vector for the ith instance, m(j)

is a weight vector for the jth class, and mci is the weight factor
of the ith instance for class c.

We denote by ni, n(c), and n the summations of the weights
for the ith instance, weights for class c, and all weights,
respectively

ni =
C∑

c=1

mci (11)

n(c) =
N∑

i=1

mci (12)
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n =
C∑

c=1

N∑

i=1

mci =
C∑

c=1

n(c). (13)

We also define row vectors n̂ and m̂ and matrix M̂ for
simplifying notations as

n̂ =
[

1

n(1)

, . . . ,
1

n(C)

]
. (14)

m̂ = [n1, . . . , ni, . . . , nN] =
C∑

c=1

m(c) (15)

M̂ = Mdiag
(

n̂
1
2

)
(16)

where M̂ has row vectors ([m(c)]/[
√

n(c)]) for c = 1, . . . , C.
The scatter matrices for MLDA can now be given as

Sw =
C∑

c=1

N∑

i=1

mci
(
xi − µc

)(
xi − µc

)T

= X
(

diag
(
m̂
)− M̂ᵀM̂

)
Xᵀ (17)

Sb =
C∑

c=1

(
N∑

i=1

mci

)
(
µ − µc

)(
µ − µc

)T

= X
(

M̂ᵀM̂ − 1

n
m̂ᵀm̂

)
Xᵀ (18)

St = Sw + Sb

= X
(

diag
(
m̂
)− 1

n
m̂ᵀm̂

)
Xᵀ (19)

where µ is the total mean vector of all training instances and
µc is the mean vector of class c

µ =
∑C

c=1
∑N

i=1 mcixi∑C
c=1

∑N
i=1 mci

, µc =
∑N

i=1 mcixi∑N
i=1 mci

. (20)

A detailed derivation of the matrix forms in (17)–(19) can be
found in [14]. The optimal projection matrix W can still be
obtained by solving the generalized eigenproblem in (7) as
discussed in Section II.

In the original MLDA [12], the weight factors are solved
using label correlations for different classes. First, a correlation
matrix R ∈ R

C×C is computed using the class labels of each
pair of classes

Rkl = cos
(
y(k), y(l)

) = yT
(k)y(l)

‖y(k)‖‖y(l)‖ (21)

where y(k), y(l) are label vectors for classes k, l ∈ 1, . . . , C.
The label correlation for classes k and l is high if the classes
are closely related. The correlation matrix R can be used to
compute the weight matrix M as M = RY. However, also this
approach may lead to the overcounting problem. To tackle the
overcounting problem [12], the weight factors are normalized
with the �1-norm

m′
i = mi

‖yi‖�1

. (22)

Other metrics for evaluating the relationships among
instances from the labels and/or features were used for deter-
mining the weights in [14] under the name weighted multilabel
LDA (wMLDA). In addition to the label correlation-based
weight factors used in MLDA [12], Xu [14] considered

entropy-based [35], binary-based [20], fuzzy-based [36], and
dependence-based weight factors [14]. Similar metrics can be
used as prior information within our probabilistic saliency
estimation framework. Therefore, the detailed explanations of
these metrics are left to Section III-A1.

In [21], MLDA was extended to Direct MLDA by changing
the definition of Sb in a way that allows obtaining a higher
dimensional subspace than the original MLDA, where the sub-
space dimensionality is limited by the rank of Sb to C−1. This
extension work further enhanced the results in multilabel video
classification tasks. Another extension, multilabel discriminant
analysis with locality consistency (MLDA-LC) [22] not only
preserves the global class label information as MLDA does
but also incorporates a graph regularized term to utilize the
local geometric information. MLDA-LC reveals the similarity
among nearby instances with transformation in the projection
space using incorporation of the graph Laplacian matrix into
the MLDA approach, which further enhances the classifica-
tion performance in multilabel datasets compared to MLDA
and MLLS algorithms.

C. Saliency Estimation

Saliency estimation, as a standard computer vision task, is
inspired by neurobiological studies [37] and cognition psy-
chology [38]. Generally, saliency estimation is a preprocessing
step for various high-level computer vision tasks, such as
object detection [31], [39] and omni directional images [40].
Saliency in physiological science is defined as a special kind of
perception of the human visual system, by which humans can
perceive particular parts in a scene in details due to colors,
textures, or other prominent information contained in these
parts [41]. These particular parts can be distinguished as a
foreground from nonsalient background parts.

Computational saliency estimation approaches can be cate-
gorized as local approaches and global approaches based on
the way they process saliency information [41]. Local saliency
estimation approaches explore the prominent information
around the neighborhood of specific pixels/regions whilst
global approaches exploit the rarity of a pixel/patch/region in
the entire scene. Since the emergence of the computational
saliency estimation field [42], various probabilistic approaches
have been explored in this topic.

Aytekin et al. [31] proposed a probabilistic saliency esti-
mation approach for segmenting salient objects in an image,
where a probability mass function P(x) depicts whether a
region xi (pixel, super-pixel, or patch) in an image is con-
sidered as a distinct region. The higher the values of P(xi) for
a region, the more prominent the region is. P(x) is solved by
simultaneously optimizing two terms to allocate not only lower
probabilities to nonsalient regions but also similar probabilities
to similar regions

argmin
P(x)

⎛

⎝
∑

i

P(xi)
2vi +

∑

i,j

(
P(xi) − P

(
xj
))2

aij

⎞

⎠

= argmin
P(x)

⎛

⎝
∑

i

P(xi)
2vi +

∑

i,j

(
P(xi)

2 − P(xi)P(xj)
)

aij

⎞

⎠

s.t.
∑

i

P(xi) = 1 (23)
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where the first term suppresses the probability of a non-
prominent region xi using its prior information vi ≥ 0. In
the second term, a high similarity of regions xi and xj,
given as a high similarity value aij, forces the regions to
have similar probabilities. To go from the first form to the
second form, the similarity values are assumed symmetric,
that is, aij = aji.

The optimization task in (23) can be expressed using matrix
notations as

p∗ = argmin
p

(
pTHp

)

H = D − A + V

s.t. pT1 = 1 (24)

where p is a probability vector that contains the probabilities
of each element or region xi to be salient, that is, pi = P(xi),
A is an affinity matrix, which denotes the similarity of each
pair of regions xi and xj as [A]ij = aij. D is a diagonal matrix
having elements equal to [Dii] = ∑

j aij, V is a diagonal prior
information matrix having elements [V]ii = vi, and 1 is a
vector of ones. Then, the Lagrangian multiplier method is
employed

L(p, γ ) =
(

pTHp
)

− γ
(

pT1 − 1
)
. (25)

A global optimum p∗ is obtained by setting the partial deriva-
tive of (25) with the respect p to 0. The final optimized
probability vector is

p∗
pse = 1

1TH−11
H−11 (26)

where the normalization constant 1TH−11 follows from the
constraint pT1 = 1 and ensures that the resulting values are
actual probabilities. Due to the properties of matrix H−1, the
elements of p∗ are always non-negative as shown in [31]. A
more detailed derivation of (26) can be also found in [31].

III. PROPOSED METHOD

We propose a novel SwLDA method for multilabel clas-
sification tasks. The proposed method has two main steps.
For the first step, we propose a probabilistic saliency estima-
tion approach to evaluate the importance of each sample for
each class in a multilabel dataset. This is a general frame-
work for multilabel class-saliency and, as future work, can
be easily integrated also with other dimensionality reduction
techniques or directly with multilabel classifiers that weigh
the samples based on their importance. In the second step,
we use the class-saliency analysis as weights in an MLDA
technique.

In our prior work [13], we used the idea of probabilistic
class-saliency estimation for single-label datasets to tackle the
suboptimal results of LDA-based algorithms caused by imbal-
anced datasets or/and outliers. In this article, we formulate
multilabel extensions of both the probabilistic class-saliency
estimation and the subsequent LDA-based dimensionality
reduction technique. Furthermore, we show how to use as
prior information in the probabilistic multilabel class-saliency
estimation framework different types of information extracted

from the data and/or labels that have been previously used
directly as sample weights in MLL and we propose a
new misclassification-based multilabel information extraction
approach, which is based on the prior information type used
for single-label data in [13].

A. Probabilistic Multilabel Class-Saliency Estimation

The goal of probabilistic multilabel class-saliency estima-
tion is to define the probability of each data item to be salient
for each class. In other words, we want to find a probability
matrix P ∈ R

C×N

P = [
p1, . . . , pi, . . . , pN

] = [
p(1), . . . , p(j), . . . , p(C)

]T (27)

where pi ∈ R
C is a vector containing the probabilities for

instance i to be salient for class c and p(j) ∈ R
N is the proba-

bility vector for the jth class. The probabilities for each class
are normalized to sum up to one, that is,

∑N
i=1 pci = 1 ∀c ∈

1, . . . C.
First, we make an assumption that only data items associated

with a class can be salient, that is, pci = 0 if yci = 0. As we
need to solve the probabilities pci only for data items associ-
ated with class c, we form a reduced data matrix Xc ∈ R

D×Nc

and reduced probability vector pc ∈ R
Nc

corresponding to
Nc data items associated with class c. Now, we can write the
optimization problem of probabilistic multilabel class-saliency
estimation as

argmin
pc

⎛

⎝
Nc∑

i

(
pc

i

)2
vc

i + 1

2

Nc∑

i

Nc∑

j

(
pc

i − pc
j

)2
ac

ij

⎞

⎠

= argmin
pc

⎛

⎝
Nc∑

i

(pc
i )

2vc
i + 1

2

Nc∑

i

Nc∑

j

(
(pc

i )
2ac

ij + (pc
j )

2ac
ij

)

−
Nc∑

i

Nc∑

j

(
pc

i pc
j

)
ac

ij

⎞

⎠

s.t.
Nc∑

i

pc
i = 1 (28)

where pc
i is the ith element in pc and vc

i ≥ 0 is the corre-
sponding prior information to suppress the probabilities of
nonsalient instances from class c. The similarity value ac

ij
forces the instances xc

i and xc
j have similar probabilities, if

they are similar. Unlike the original probabilistic saliency esti-
mation in (23), we do not require the similarity values to be
symmetric.

Equation (28) can be expressed in matrix notation as

pc∗ = argmin
pc

(
pcT

Hcpc
)

Hc = 1

2
D1

c + 1

2
D2

c − Ac + Vc

s.t. pcT1 = 1 (29)

where Ac is an affinity matrix of the items associated with
class c with [Ac]ij = ac

ij expressing the similarity of the ith
and jth class items, the diagonal matrix D1

c can be then com-
puted as [D1

c]ii = ∑
j [Ac]ij and D2

c can be then computed
as [D2

c]ii = ∑
j [Ac]ji, that is, D1

c has summations over rows
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while D2
c has summations over columns. Vc is a diagonal

prior information matrix having elements [Vc]ii = vc
i .

In this work, the compute the affinity matrix Ac ∈ R
Nc×Nc

with the RBF kernel function as

[
Ac]

ij = exp

⎛

⎜⎝−
∥∥∥xc

i − xc
j

∥∥∥
2

2σ 2

⎞

⎟⎠ (30)

where xc
i and xc

j are the ith and jth instance in class c and
σ is a hyper parameter. While (30) is sensitive to the param-
eter σ , we follow a common approach of setting its values
to the mean distance value between the training samples. The
affinity matrix could be also replaced by sparse variants, for
example, by forming a kNN graph and keeping only the values
for k nearest neighbors or by using an affinity matrix proposed
in [43], where the sensitive parameter σ is avoided.

Vc ∈ R
Nc×Nc

is a diagonal matrix, which carries the prior
information on whether each instance in class c is salient for
the class. The values of Vc are higher for samples, which are
expected to not be salient, that is, the lower a value [Vc]ii,
the more prominent the corresponding ith instance is expected
to be. Values for [Vc]ii = vc

i ∀i ∈ 1, . . . Nc can be estimated
from different prior information. For example, a data item that
belongs to all the classes it is unlikely to be salient for any par-
ticular class or if an item is very different from other samples
in a class it is unlikely to be salient for that class. It should be
noted that while we set prior information values vc

i only for
items associated with class c, we can exploit the information
extracted from other data items while setting the values of Vc.
For example, items having a high similarity with many items
not associated with the class could be considered less likely
to be prominent. We introduce six different approaches to set
the values of Vc in Section III-A1.

After computing the matrices Ac and Vc, the probability
vector pc∗ can be solved as

pc∗ = 1

1THc−11
Hc−11. (31)

In order to avoid singularity during this process, a regularized
version of Hc with a small value ε added to the diagonal
elements if Hc is rank-deficient.

As the probability vector pc∗ obtained by solving (31) has
only Nc elements, but we want to form a probability matrix
P ∈ R

C×N shown in (27), we need to put the values pc∗ to the
correct places in P. If the ith item in class c is the jth item in
the entire dataset, this can be done by setting [P]cj = pc

i for all
items in class c. To obtain full matrix P, the above-described
process is repeated for each class c ∈ {1, . . . , C}. The sum
of the values for each row in P is one, which is expected to
alleviate the overcounting problem.

1) Prior Information Types: Probabilistic saliency estima-
tion [31] was originally proposed for segmenting salient parts
from images. In this setup, the prior information used was that
the pixel at the image borders is typically nonsalient. The prior
information value vi was set to 1 for any border pixels and
to 0 for all the others. In multilabel class-saliency estimation,
we similarly want to use vc

i to integrate our prior knowledge
on which data items are likely to be salient for class c. To

this end, we propose a novel information type for MLL con-
text: misclassification-based prior information. Furthermore,
we introduce five prior information types based on weight
factors proposed for MLDA and wMLDA. Our experimen-
tal results show that using these information types as prior
information for our proposed saliency estimation framework
instead of using them directly as weight factors consistently
leads to better results.

Correlation-based prior information (SMLDAc) was used
as weight factors in the original MLDA algorithm [12]. As
in [12], we first compute the label correlation matrix R defined
in (21). We then compute the normalized weight vector m′

j ∈
R

C using (22) for all data items and set our prior information
matrix values as

[
Vc]

ii = 1 − m′
cj (32)

where item j of the full dataset is the ith item associated
with class c. Label correlation information is widely exploited
to tackle the redundancy of label information in multilabel
tasks [12], [44], but it can lead to a suboptimal result due to
nonzero values in the correlation weight factor matrix for irrel-
evant labels [14]. As we pick only the values for data items
associated with class c, the problem of unwanted nonzero
values can be avoided.

Binary-based prior information (SMLDAb) utilizes the label
information as in [20]. In our formulation, this approach
reduces to having an equal value in Vc for all instances as
only instances belonging to class c are considered in Vc. For
wMLDA, such direct use of class labels leads to an overcount-
ing problem in the scatter matrices. In our formulation, this
problem is avoided because Vc merely represents the prior
information for class saliency estimation and the final weight
matrix P is normalized for each class.

Entropy-based prior information (SMLDAe) assumes that
data items, which are associated with more classes are less
salient for any class as in [14] and [35]. We use this assumption
as our prior information as

[
Vc]

ii = 1 − 1∥∥yc
i

∥∥
�1

(33)

where yc
i is the label vector of the ith sample associated with

class c and, thus, ‖yc
i ‖�1 is the total number of classes the item

is associated with.
Fuzzy-based prior information (SMLDAf) uses a supervised

version of fuzzy C-means clustering algorithm (SFCM) as
in [14] and [36] to learn the membership degree of each item
in each class. We use the membership directly as our prior
information as

[
Vc]

ii = 1 − gc
j (34)

where gc
j is the membership degree of item j in class j and

item j is the ith item associated with class c.
Dependence-based prior information (SMLDAd) uses

HSIC [45], which is used to describe statistical dependence
between features and labels based on the estimation of the
Hilbert–Schmidt norms. To maximize HSIC, we follow an
iterative algorithm described in [14].
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This approach transforms a multilabel task to several single-
label tasks. It allocates 1 to only one prominent class for each
item after the final iteration. In our probabilistic formulation,
we set

[
Vc]

ii = 1 − hc
j (35)

where hc
j is 1 if item j has been assigned to class c and 0

otherwise and item j is the ith item associated with class c.
Misclassification-based prior information (SMLDAm) is

similar to the prior information used in [13] for single-label
data to alleviate the suboptimal result in LDA arising from
outlier items on imbalanced datasets

[Vc]ii =

⎧
⎪⎨

⎪⎩

0, if dc
ic < min

k 
=c
dk

ic

dc
ic

min
k 
=c

dk
ic
, otherwise

(36)

where dk
ic = ‖xic −µk‖2

2, xic is the ith instance of class c, and
µk is the mean vector of class k. Using this prior information
type, a sample that is closer to another class is considered less
salient for class c even if it is relatively close to the center
of class c. Note that when computing this prior information
matrix, we consider the full data X and not only the data items
in Xc for which we are defining the prior information values.

B. Saliency-Based Multilabel Linear Discriminant Analysis

After forming the probability matrix P using the proposed
probabilistic multilabel class-saliency estimation, we use the
probabilities directly as weights for our MLDA. We compute
the scatter matrices Sw and Sb as

Sw = X
(
diag

(
p̂
)− PᵀP

)
Xᵀ (37)

Sb = X
(

Pᵀ P − 1

n
p̂ᵀp̂

)
Xᵀ (38)

where p̂ = ∑C
c=1 p(c) and n = ∑C

c=1
∑N

i=1 pci. Note that the
probability values for each class are always normalized to sum
to one. By setting mci = pci, we get n(c) = 1 from (12) for all
classes and, thus, n̂ in (14) is a vector of ones and diag(n̂[1/2])

in (16) is an identity matrix. This gives us simpler formulas
for Sw and Sb than the ones used in MLDA.

The optimal projection matrix W can be obtained by solving
the regularized version of the generalized eigenproblem in (7)

Sbw = (Sw + εI)λw (39)

where ε is a small constant added to the diagonal values of
Sw to avoid problems caused by singularity. We select the
eigenvectors corresponding to d largest eigenvalues containing
0.999 of the information to form the projection matrix W and,
finally, the features optimized for multilabel classification can
be obtained as

Z = WTX. (40)

The pseudocode for the overall SMLDA algorithm is provided
in Algorithm 1. In the pseudocode, we give the correlation-
based prior information type as our default type, but other prior
information types can be used by simply replacing (32) on the
pseudocode line 4 with a formula of another prior information
type.

Algorithm 1: The Pseudocode of SMLDA

/* Training procedure for obtaining
optimal projection matrix W */

Input: Xtrain ∈ R
D×N , Ytrain ∈ R

C×N

Output: Projection matrix W ∈ R
D×d

1 Create the probability matrix P ∈ R
C×N and fill it with

zeros;
2 for each class c ∈ {1, . . . , C} do
3 Calculate the affinity matrix Ac ∈ R

Nc×Nc
using (30);

4 Calculate the prior information matrix Vc ∈ R
Nc×Nc

using (32);
5 Calculate diagonal matrices D1

c, D2
c ∈ R

Nc×Nc
as

[D1
c]ii = ∑

j [Ac]ij and [D2
c]ii = ∑

j [Ac]ji;
6 Calculate Hc = 1

2 D1
c + 1

2 D2
c − Ac + Vc;

7 Using Eq. (31), solve the probability matrix pc∗;
8 Put the values of pc∗ to correct places in P;
9 end

10 Calculate the scatter matrices Sw and Sb using Eqs. (37)
and (38);

11 Solve the projection matrix W using Eq. (39);

C. Computational Complexity Analysis

The computational complexity of the proposed SMLDA
algorithm is formed as follows: for a class with Nc asso-
ciated data items, the computational complexity of com-
puting the kernel matrix is ([Nc2 − Nc]/2), that is, the
complexity of computing the affinity matrix is O(Nc2).
The complexity of computing the prior information matrix
using (32) is O(C2N) as it requires computing the corre-
lation between each pair of classes using (21) and multi-
plying C × C and C × N matrices in (22). The compu-
tational complexity of solving (31) is O(Nc3) due to the
required matrix inversion. The overall complexity of apply-
ing the probabilistic multilabel class-saliency estimation for
all the classes becomes O(maxc Nc3). The complexity of
the LDA operation for D-dimensional data items is O(D3).
The overall complexity of SMLDA is O(maxc Nc3 + D3).
Thus, if maxc Nc < D, the proposed method does not sig-
nificantly affect the complexity compared to the standard
LDA operation, but for max Nc > D the complexity is
higher.

IV. EXPERIMENTS

A. Databases and Data Preprocessing

We performed our experiments on 17 publicly available
multilabel databases1,2. The datasets and their characteristics
are given in Table I, where “Cardinality” means the mean num-
bers of class labels per instance for the training set and “Min
#/Max #” shows the smallest/largest class size in the train-
ing set. The mean imbalance ratio (“MeanIR”) measures the
dataset imbalance following [59], where the imbalance for a
class is computed by dividing the largest class size by the

1http://ceai.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
2http://www.uco.es/kdis/mllresources/#KatakisEtAl2008
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TABLE I
CHARACTERISTICS OF DATASETS USED FOR EXPERIMENTS

size of the class (i.e., this value is 1 for the largest class
and larger for other classes). MeanIR is the mean over all
the classes. Mean class imbalance ratio (“MeanCIR”) denotes
mean imbalance as in [60], where the imbalance of a class is
computed by dividing the number of negative samples by the
number of positive samples if the number of negative sam-
ples is larger and vice versa if the number of positive samples
is larger. MeanCIR is the mean over all the classes. Thus,
meanIR measures the imbalance between classes, which is our
main interest. MeanCIR, on the other hand, focuses on the
imbalance between positive and negative samples and maybe
high even if all the classes have equal size.

We centralized the datasets and, for non-LDA-based tech-
niques, we centralized also the label matrix used for training.
We deleted some instances without labels or with NaN values.
Some of the datasets have empty classes with no samples in
either train or test set. For such datasets, we used all the sam-
ples and the full label matrix for training, but for computing
the evaluation metrics we considered only classes with at least
one test sample. If the number of test classes for a dataset is
lower than the overall class number, we show also the number
of test classes in the “Classes” column of Table I.

B. Evaluation Metrics

We adopt seven different evaluation metrics [61] to evaluate
the performance of our proposed algorithm. Here, we denote
the ground-truth label matrix for the M test samples as Y =
[y1, . . . , yM], where the ith column yi ∈ R

C represents the
label vector of test sample xi. The multilabel classifiers give
as their outputs for each input vector xi, a vector p̂i = f (xi),
where p̂i,c denotes the membership of instance i in class c.
This is then converted to a binary predicted label vector ŷi

by thresholding. Li = {sortc(p̂i)} denotes an ordered list of
classes ranked in the order of descending probability in p̂i.
I(yi) is used to denote the indices of relevant classes in yi

and ¬I(yi) denotes the indices of negative classes in yi. We
use (↓) to denote metrics, where lower values indicate better
results and (↑) in the opposite case.

1) Ranking loss (↓) evaluates for each item i relevant ver-
sus irrelevant class pair and gives the fraction of pairs,

where the irrelevant class if ranked above the relevant
one. Here, we use m to denote the number of relevant
classes in yi and n = C − m

ranking_lossi = |p̂i,I(yi) ≤ p̂i,¬I(yi)|
m ∗ n

(41)

ranking_loss =
∑M

i=1 ranking_lossi

M
(42)

where |p̂i,I(yi) ≤ p̂i,¬I(yi)| is used to denote the count
of wrong rankings for item i.

2) One error (↓) shows how often the top-ranked class for
an item is not among the positive ground-truth labels

one_errori =
{

0, if Li[1] ∈ I(yi)

1, otherwise
(43)

where Li[1] denotes the first class in the sorted list Li

one_error =
∑M

i=1 one_errori

M
. (44)

3) Normalized coverage (↓) demonstrates how far on aver-
age in the predicted label ranking Li one needs to go to
cover all the ground-truth labels of an instance

coverage =
∑M

i=1 maxj
{
j|I(yi) ∈j Li

}− 1

M ∗ (C − 1)
(45)

where {j|I(yi) ∈j Li} gives the positions of relevant
classes I(yi) in the ordered list L.

4) Macro-AUC (↑) is the average area under ROC curves
(AUC) for different classes [61]. The ROC curve uses
the true-positive rate and false-positive rate, which may
be unreliable in the cases, where very rare classes are
present (high meanCIR) [62].

5) Micro-AUC (↑) is the area under ROC curves (AUC)
averaged over the full predicted label matrix Ŷ [61].

6) Macro-F1 (↑) shows the average F1 value on each class

macroF1 = 2

C

C∑

c=1

precisionc ∗ recallc
precisionc + recallc

(46)

where precisionc = TPc/(TPc + FPc) and recallc =
TPc/(TPc + FNc) are precision and recall for class c,
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TABLE II
SUMMARY OF THE EVALUATION METRIC PROPERTIES

and TPc, FPc, and FNc are the number of true positives,
false positives, and false negatives for class c.

7) Micro-F1 (↑) indicates the overall F1 score averaged
over the full predicted label matrix Ŷ

microF1 = 2 ∗ precision ∗ recall

precision + recall
(47)

where precision = TP/(TP+FP) and recall = TP/(TP+
FN) and TP, FP, and FN are the number of true posi-
tives, false positives, and false negatives predictions in
the predicted label matrix Ŷ.

Some characteristics of the used metrics are summarized
in Table II following the analysis provided in [61]. Most of
the metrics are based on the predicted membership vectors p̂i,
while the last two use the predicted class labels that can be
obtained from the predicted memberships by setting a thresh-
old. It is possible to get different predicted labels from the
same p̂i with different thresholds, but this does not depend
on the input features, that is, the quality of the dimension-
ality reduction techniques. Therefore, the metrics based on
the predicted memberships are well suited for evaluating the
differences of the dimensionality reduction techniques.

Most of the metrics can be optimized by labelwise effective
classifiers, which roughly means that the classifier can give
higher membership values for the relevant classes than for
the irrelevant classes for every sample. Instancewise effective
classifiers, on the other hand, can distinguish between relevant
and irrelevant samples for each class. Some classifiers, such
as Micro-FI, are optimized only by double effective classifiers
that are both labelwise and instancewise effective. The metrics
that optimize instancewise effectiveness give more weight to
the samples in smaller classes and, thus, are suitable for eval-
uating the performance in imbalanced (high meanIR) datasets,
when it is not desired to obtain an overall high performance by
predicting the majority classes correctly and failing in the rare
classes. Due to the aforementioned unreliability of ROC curves
in the presence of a very small class (high meanCIR), we use
macro-F1 as the main metric for imbalance-aware evaluation.

C. Experimental Setup

We carried out all the experiments using two multilabel clas-
sifiers applied to the projected data: 1) multilabel k-nearest
neighbor classifier (ML-kNN) [54] and 2) multioutput linear
ridge regressor (LRR) [2], [63]. ML-kNN utilizes the k-nearest
neighbor algorithm and maximum a posterior (MAP) principle
to tackle the multilabel categorization task. ML-kNN first esti-
mates prior and posterior probabilities of each instance i for

each class c from a training dataset based on frequency count-
ing [54]. Then, the predicted probabilities on a test dataset are
calculated using the Bayesian rule. In our work, the predicted
labels were obtained by setting a threshold (≥ 0.5) for the
predicted probabilities.The hyperparameter k of ML-kNN was
set to 15 as in [14]. As multilabel classification is a specific
case of multitarget regression [64], the multioutput LRR can be
trained to solve the multilabel classification tasks. In our work,
we used the LRR classifier with a hyperparameter μ = 0.1.
The predicted labels were obtained by setting a threshold (≥ 0)
for the predicted values from the LRR classifiers.

For comparisons, we used the following LDA-based dimen-
sionality reduction techniques: DMLDA [21], wMLDAc,
wMLDAb, wMLDAe, wMLDAf, and wMLDAd [14], where
the subscripts denote the types of prior information used as
weight factors following Section III-A1. Note that wMLDAc is
equivalent to the original MLDA [12]. For all the LDA-based
methods, we solved the regularized generalized eigenprob-
lem (39) with ε = 0.1. After solving the eigenproblem, we
kept the eigenvectors corresponding to the top 0.999 infor-
mative eigenvalues to form the projection matrix W. Besides
the LDA-based methods, we conducted experiments with five
other dimensionality reduction techniques: PCA, CCA [16],
MLSI [17], MDDMd [18], and MVMD [19]. We used the
MATLAB codes provided for [14]1 in the comparative exper-
iments and exploit the relevant parts also in the implementation
of our proposed method.

D. Classification Results and Analysis

1) Comparisons of Different Variants of SMLDA and
wMLDA: We first compare the different variants of our
proposed SMLDA approach. Furthermore, we compare our
methods against the variants of wMLDA that use the
same prior information types directly as weights. We show
the results using the ranking loss evaluation metric in
Tables III and IV of the main paper and the results using
the six other evaluation metrics in Tables I–XII of the supple-
mentary material. In each table, we place next to each other
the variants of SMLDA and wMLDA with the same prior
information type and highlight the better approach for each
dataset. The prior information for SMLDAm was proposed by
us and has not been previously used with wMLDA. Therefore,
we do not show such a comparison for it.

We first observe that our proposed SMLDA variants clearly
outperform the corresponding wMLDA variants. In all test
cases by both classifiers and any evaluation metric, the average
performance of the proposed approach is better. This clearly
confirms the value of using the probabilistic saliency esti-
mation instead of just using the same prior information type
directly as a weight as in wMLDA.

Next, we observe that there are no major differences
among the variants of SMLDA. Therefore, we do not rec-
ommend using SMLDAd or SMLDAf because the fuzzy and
dependence-based prior information types are computation-
ally much more expensive than the other prior information
types. Among the remaining variants, we select SMLDAc as
our default variant.
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TABLE III
COMPARISON OF DIFFERENT VARIANTS OF THE PROPOSED METHOD RESULTS WITH ML-KNN USING RANKING LOSS (↓)

TABLE IV
COMPARISON OF DIFFERENT VARIANTS OF THE PROPOSED METHOD RESULTS WITH LRR USING RANKING LOSS (↓)

2) Comparisons Against Competing Dimensionality
Reduction Techniques: We then compare wMLDAc, which
we recommend using as our default variant, against other
competing dimensionality reduction techniques. Here, we
consider five non-LDA-based techniques: 1) PCA; 2) CCA;
3) MLSI; 4) MDDMp; and 5) MVMD, along with DMLDA,
MLDA, which is equivalent to wMLDAc and uses the same
prior information as our proposed variant wMLDAc, and
wMLDAd, which was the proposed wLMDA variant in [14].
We provide the results in Tables V and VI of the main paper
and Tables XIII–XXIV of the supplementary material.

The results show that our proposed method has the best
average performance with ML-kNN evaluated by all the
performance metrics and with LRR evaluated by macro-
F1. MDDMp is the best performing competing method.
However, in all cases, our proposed approach achieves a sim-
ilar performance, while our method is clearly better when
evaluated with macro-F1. Our proposed method also clearly
outperforms other LDA-based techniques.

We then focus on the most imbalanced datasets evaluated
by our main metric for imbalanced classification, macro-F1.

We collect from Tables XVII and XVIII of the supplementary
material the results for the classes having meanIR over 15 and
provide them in Tables VII and VIII. Our proposed method has
the best average performance with ML-kNN and the second
best with LRR, which shows that the proposed method indeed
can help to deal with class imbalance.

3) Statistical Analysis of the Results: To evaluate whether
the observed differences are statistically significant, we fol-
lowed the recommendations of [65]. We first applied to each
table the Friedman test, which is a rank-based nonparametric
test showing whether the differences are overall significant. At
the bottom of each table, we report the Friedman p value. We
have highlighted the value if it shows that the null hypoth-
esis can be rejected at the 0.05 significance level. Next, we
perform the Wilcoxon sign-ranks test to evaluate the pairwise
differences between the methods. This test ranks the differ-
ences between two classifiers ignoring the signs and uses
the ranks to determine value T as described, for example,
in [65]. Finally, the T value is compared to a critical value
that depends on the number of datasets. In our experiments,
we used 17 datasets, which means that the null hypothesis
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TABLE V
COMPARATIVE RESULTS WITH ML-KNN USING RANKING LOSS (↓)

TABLE VI
COMPARATIVE RESULTS WITH LRR USING RANKING LOSS (↓)

TABLE VII
COMPARATIVE RESULTS WITH ML-KNN USING MACRO-F1 (↑)

can be rejected at 0.01 significance level if T1 ≤ 23 and
at 0.05 significance level if T2 ≤ 34. For seven datasets, as
in Tables VII and VIII, T2 ≤ 2. We applied the Wilcoxon
sign-ranks test between our proposed SMLDAc method and

every other method dimensionality reduction technique. We
give these values at the bottom of every table and bold the
values if they show that the difference between the methods
is statistically significant at a 0.05 significance level. Negative
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TABLE VIII
COMPARATIVE RESULTS WITH LRR USING MACRO-F1 (↑)

TABLE IX
SUMMARY OF THE WILCOXON SIGNED-RANKS TEST RESULTS: THE NUMBER OF TIMES

WHEN SMLDAC WAS BETTER IN A STATISTICALLY SIGNIFICANT WAY

values indicate that the other method was performing better
than SMLDAc.

The results of the Friedman test show that the overall dif-
ferences are statistically significant in most cases. The only
exceptions among 28 result tables are Tables I, II, XI, and XIV
in the supplementary material. Tables I and II in the supplemen-
tary material, compare the variants of the proposed method
using ML-kNN and LRR with one error evaluation metric.
Table XI in the supplementary material, compares the variants
of the proposed method using ML-kNN with the Micro-F1
evaluation metric. Table XIV in the supplementary material,
compares SMLDAc against competing methods using LRR
and one error evaluation metric.

The results of the Wilcoxon signed-ranks test confirm the
good performance of our proposed SMLDAc. There is no such
case, where a competing method would outperform SMLDAc
in a statistically significant manner (only another variant of our
proposed method, SMLDAd, can do this in two cases). On the
other hand, SMLDAc can outperform every competing method
in a statistically significant manner at least twice. The results
of the conducted Wilcoxon signed-ranks test are summarized
in Table IX showing the number of times when a statistically
significant difference was detected between SMLDAc and all
competing methods.

V. CONCLUSION

In this article, we proposed a novel probabilistic framework
for the LDA-related dimensionality reduction algorithm aim-
ing to improve the performance of multilabel classifiers on
various multilabel datasets. The probabilistic approach uses an
affinity matrix to ensure similar results for similar instances
and a prior information matrix to integrate prior information
on the prominence of each instance for each class. Our solution
can alleviate the data imbalance problem, which is commonly
encountered in multilabel datasets, as the weight factor vec-
tors are calculated separately for each class. Our method can
also alleviate the common overcounting problem. We proposed

variants of our methods using different prior information
matrices based on both labels and features.

We used seven metrics to evaluate the performance of our
method with competing methods on 17 multilabel datasets. The
experimental results showed that our method enhanced the clas-
sification performance compared to the competing algorithms
and handles imbalanced classification well. Our algorithm is
still based on the linear subspace learning technique. In the
future, we will make a nonlinear extension using the kernel
trick.
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