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Abstract—Deep learning techniques have been widely applied to 

hyperspectral image (HSI) classification and have achieved great 

success. However, the deep neural network model has a large 

parameter space and requires a large number of labeled data. 

Deep learning methods for HSI classification usually follow a 

patchwise learning framework. Recently, a fast patch-free global 

learning (FPGA) architecture was proposed for HSI classification 

according to global spatial context information. However, FPGA 

has difficulty extracting the most discriminative features when 

the sample data is imbalanced. In this paper, a spectral-spatial 

dependent global learning (SSDGL) framework based on global 

convolutional long short-term memory (GCL) and global joint 

attention mechanism (GJAM) is proposed for insufficient and 

imbalanced HSI classification. In SSDGL, the hierarchically 

balanced (H-B) sampling strategy and the weighted softmax loss 

are proposed to address the imbalanced sample problem. To 

effectively distinguish similar spectral characteristics of land 

cover types, the GCL module is introduced to extract the long 

short-term dependency of spectral features. To learn the most 

discriminative feature representations, the GJAM module is 

proposed to extract attention areas. The experimental results 

obtained with three public HSI datasets show that the SSDGL 

has powerful performance in insufficient and imbalanced sample 

problems and is superior to other state-of-the-art methods. Code 

can be obtained at: https://github.com/dengweihuan/SSDGL. 

 

Index Terms—deep learning, patchwise, hyperspectral image 
classification, imbalanced sample, feature representations. 

I. INTRODUCTION 

ith the development of remote sensing techniques, 

numerous hyperspectral images (HSIs) can be obtained 

with abundant spectral information. HSIs are composed 

of narrow and contiguous spectral bands in the 

electromagnetic spectrum [1]–[3]. Because of the richness of 

spectral information, it has a wide range of applications in 
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various fields, such as land-cover detection, agricultural 

development, environmental protection and urban planning [4]. 

Hyperspectral image classification, which aims to assign a 

unique label to each pixel, plays an essential role in the 

interpretation of hyperspectral remote sensing images [5, 6]. 

However, due to the high dimensionality of HSI and limited 

labeled data, data redundancy and the Hughes phenomenon 

often arise and pose a major challenge for HSI classification. 

To further improve the HSI classification performance, many 

studies have been undertaken over the years [7]–[9]. 

Traditional hyperspectral image classification usually carries 

out feature extraction first and then classifies HSI by various 

classifiers, such as multinomial logistic regression (MLR), 

maximum likelihood classification (MLC), and support vector 

machine (SVM) [10, 11]. Numerous studies have shown that 

introducing spatial information into the classification process 

can effectively improve the performance of HSI classification. 

Spectral-spatial based methods, such as simple linear iterative 

clustering (SLIC), extended morphological profiles (EMP) and 

the Gabor filter, have been proposed to extract both the 

spectral and spatial features of HSIs [12, 13]. However, these 

spectral-spatial features and hyperparameters are selected 

based on prior information, and the classification performance 

is limited by the number of training samples. 

With the development of deep learning, convolutional 

neural network (CNN)-based methods have attracted great 

attention for hyperspectral image classification [14]–[16]. As a 

data-driven automatic feature learning framework, it can 

achieve end-to-end training and automatically extract the 

spectral-spatial features of the images. Many supervised 

classification methods based on deep learning are used to 

extract the spectral and spatial features, such as 3D-CNN, 

multiscale convolutional neural networks [17, 18]. Recurrent 

neural networks (RNNs) and convolutional recurrent neural 

networks (CRNNs), which can learn the long short-term 

spectral dependencies, are widely used in hyperspectral image 

classification [19, 20]. In addition, residual networks, capsule 

networks, double-branch networks, and other novel networks 

have been widely applied in HSI classification and have 

achieved great classification accuracy with sufficient labeled 

samples [21]. However, these methods only consider the 

labeled samples and ignore the spectral-spatial information of 

unlabeled samples. To make full use of the unlabeled data, 

many semisupervised classification methods have been 

proposed. It can be observed that HSIs have strong spatial 

A Spectral-Spatial Dependent Global Learning 

Framework for Insufficient and Imbalanced 

Hyperspectral Image Classification  

Qiqi Zhu, Weihuan Deng, Zhuo Zheng, Yanfei Zhong*, Senior Member, IEEE, Qingfeng Guan, 

Weihua Lin, Liangpei Zhang, Fellow, IEEE, Deren Li, Senior Member, IEEE 

W 

mailto:zhuqq@cug.edu.cn
mailto:dengweihuan@cug.edu.cn
mailto:guanqf@cug.edu.cn
mailto:zhongyanfei@whu.edu.cn
mailto:zlp62@whu.edu.cn
mailto:drli@whu.edu.cn


2 

 

homogeneity, which means the adjacent pixels are likely the 

same class [22]. Therefore, the superpixel-based methods can 
effectively extract the deep spatial information for HSI 

classification. Moreover, the spatial size and shape of the 

superpixels are adaptive [23]. To further solve the problem of 

the small samples, the generative adversarial network was 

proposed to generate pseudolabeled samples and make the 

distribution of the fake samples closer to real data distribution 

[24]–[26]. However, most existing methods are patch-based 

learning frameworks, and the neighbor region of each pixel in 

HSIs is considered as the input data of the network. The high 

computational complexity is unavoidable since there are large 

overlapped areas among adjacent patches.  

To solve the above problems, a fast patch-free global 

learning (FPGA) framework was proposed to maximize the 

exploitation of the global spatial information according to the 

long-range spatial dependency [27]. FPGA has achieved great 

classification accuracy on public datasets and reduced the 

redundant calculations. However, the number of training 

samples per class is the same, and there are completely 

different labeled samples in each hierarchical training dataset, 

which is not suitable for datasets with insufficient and 

imbalanced samples, such as the Indian Pines dataset. 

Moreover, the categories with few samples have a small 

amount of weight in the loss calculation, and it is difficult for 

FPGA to classify these categories well. Since some land-cover 

types are difficult to distinguish by visual interpretation, the 

long-tail distribution issue of hyperspectral image datasets has 

arisen and seriously limits the classification performance.  

In this paper, to extract the deep spectral-spatial features 

and solve the sample problem of insufficiency and imbalance, 

a spectral-spatial dependent global learning (SSDGL) 

framework combining global convolutional long short-term 

memory (GCL) and global joint attention mechanism (GJAM) 

is proposed. Compared with the FPGA sampling strategy, a 

hierarchically balanced (H-B) sampling strategy is proposed to 

obtain enough hierarchical data and balance minibatch per 

class. The weighted softmax with cross entropy loss is used to 

give each class an equal probability of being selected. The 

novel sampling strategy and loss strategy can effectively solve 

the class imbalance problem. The baseline of the proposed 

framework is an encoder-decoder architecture (SegNet) [28], 

which has achieved good classification performance in image 

segmentation. Furthermore, the GCL module is introduced to 

extract the long short-term spectral dependent features and 

obtain the interrelation among the local pixels. The GJAM 

module is utilized to extract more discriminative feature 

representations.  

The main contributions of this paper are as follows. 

1) A spectral-spatial dependent global learning (SSDGL) 

framework is proposed for HSI classification. To solve the 

insufficient and imbalanced sample problems, a hierarchically 

balanced sampling strategy is utilized to generate stochastic 

hierarchical training sample data. The proposed sampling 

strategy reduces the overall training times and speeds up 

model convergence. The weighted softmax with cross entropy 

loss is introduced to reduce the weight of easy-to-classify 

samples so that the model focuses more on hard-to-classify 

samples during training. All pixels are used for the 

convolution operation at the same time, which solves the 

problem of the limited patch size. 

2) To extract the detailed spectral-spatial information of the 

whole image, GCL is proposed to capture the long short-term 

spectral dependent features and leverage convolutional kernel 

to extract interrelations among the local pixels. GCL is a 

sequence-to-sequence learning method, and the gated 

recurrent units are utilized to extract deep spectral and spatial 

features. This module can effectively distinguish similar land 

covers by extracting the intrinsic spectral-spatial dependency. 

3) To further extract the most discriminative feature 

representation, a global joint attention mechanism is designed 

to reweight and model the extracted features. This module is 

composed of a spectral attention mechanism and a spatial 

attention mechanism. The spectral attention mechanism can 

selectively emphasize informative spectral features and 

suppress less-useful ones. The spatial attention mechanism is 

introduced to extract the short-term spatially dependent 

features and emphasize the key regions.  

The rest of this paper is organized as follows. Section II 

discusses the related work. Section III provides a detailed 

description of the SSDGL framework for insufficient and 

imbalanced HSI classification. A description of the datasets 

and an analysis of the experimental results are presented in 

Section IV. The sensitive parameters are discussed in Section 

V. Finally, the conclusions are drawn in Section Ⅵ. 

II. BACKGROUND 

In recent years, deep learning techniques have achieved 

great success in the field of remote sensing. The CNN-based 

classification methods and fully convolutional network 

(FCN)-based classification methods have been applied to HSI 

classification successfully. Moreover, insufficient and 

imbalanced sample problems have become a research hot spot 

in image classification. 

A. CNN-based classification 

CNN-based classifications are regarded as common feature 

learning methods, which have a significant advantage in 

accuracy, and classifications are performed in an end-to-end 

manner [29]. To facilitate feature extraction and train the 

classifiers, HSI pixel patches are first generated from the 

original image by a sliding window with a fixed size. The 

spectral-spatial residual network (SSRN) and double branch 

multi-attention mechanism (DBMA) network were proposed 

to extract the deep spectral and spatial features. As the layer 

goes deeper, the features in the model become more abstract 

and more robust. The extracted spectral-spatial features were 

flattened into vectors and fused for classification [30, 31]. 

Mou et al. proposed RNNs extracting the spectral dependency 

among adjacent wavebands and regarded the HSI as sequential 

data [16]. Subsequently, CRNN was proposed to highlight 

long-term dependency between nonadjacent channel features. 

To consider both spatial and spectral information, the 

ConvLSTM was proposed to extract dependent features of the 

spectrums and geometric [32, 33].  
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Although these patchwise methods have achieved 

significant classification accuracies, redundant computation on 

the overlapping areas between adjacent patches is inevitable. 

The main bottleneck is that the traditional convolutional 

neural networks first divide HSI into patches and classify each 

patch into one corresponding label rather than directly 

classifying the whole image [34, 35].  

B. FCN-based classification 

Fully convolutional neural networks were first proposed for 

the task of image segmentation and achieved great success. 

The fully connected layers were replaced by convolutional 

layers with a kernel size of 1 × 1. U-Net is the most 

representative fully convolutional network. It consists of a 

contracting path to capture context and a symmetric expanding 

part to precise localization [36]. SegNet is a network based on 

FCN and consists of an encoder network, a corresponding 

decoder network followed by a pixelwise classification layer. 

The feature pyramid network (FPN), which improved on 

U-Net, was proposed to capture multiscale information. It 

composed of a bottom-up pathway, a top-down pathway and 

lateral connections [37]. Inspired by the FPN model, the 

DeepLab networks combining atrous convolution, spatial 

pyramid pooling, and fully connected CRFs have been 

proposed and used to extract feature representations with 

different scales [38].  

The purpose of hyperspectral image classification is the 

same as semantic segmentation tasks, which is to assign a 

unique label to each pixel. However, it is not feasible to 

directly transfer the semantic segmentation networks to HSI 

classification tasks, since the training sample of HSI datasets 

is highly sparse and only contains a set of discrete labeled 

pixels rather than a group of labeled images [39]. Xu et al. [35] 

proposed a spectral-spatial fully convolutional network 

(SSFCN) to perform feature extraction and semantic 

segmentation in an end-to-end manner. A novel mask matrix 

was proposed to deal with the high sparse training samples in 

HSIs. To solve the problem of model convergence and mine 

the global spatial context information, Zheng et al. [27] 

proposed a fast patch-free global learning framework (FPGA) 

for HSI classification. FPGA is a deep convolutional 

encoder-decoder architecture, the global stochastic stratified 

(GS2) sampling strategy was introduced to obtain diverse 

gradients to guarantee the convergence of the FCN in the 

FPGA framework. The FreeNet model in FPGA was proposed 

to avoid redundant computation on the overlapping areas 

between patches. The comparison of the patch-based and 

patch-free methods is shown in Fig. 1. 

 
Fig. 1. Convolution operation of patch-based and patch-free. 

The green area is the overlapping area. H and W are the 

spatial sizes of the input data, K is the convolutional kernel 

size, and S is the pixel patch size. It can be seen that the 

patchwise classification methods need to generate a patch for 

each pixel, which will generate redundant calculations in the 

model inference. However, the input data of global learning 

methods is the whole image, and there are no pixel patches or 

center pixels, which speeds up the model inference. Since the 

convolution operation considers all pixels of the whole image 

at the same time, the classification performance has been 

greatly improved [40]. 

C. Insufficient and imbalanced sample problems 

It is well known that the problem of limited training 

samples is one of the major obstacles that affect the accuracy 

of HSI classification. Since transfer learning methods using 

the pretrained deep learning network from the relevant domain 

to aid learning, few samples are required to fine-tune the 

model [41]. Yang et al. pretrained a two-channel CNN 

network on source HSI, which contains sufficient labeled 

samples. Then the bottom layers of the pretrained network 

were transferred to the target network as initialization, and the 

top layers were randomly initialized [42]. Pan et al. [9] 

proposed a small-scale data-based method, the multi-grained 

network (MugNet), which can obtain the fined spectral and 

spatial features. It used all the unlabeled samples to learn 

convolution kernels and build a lightweight network that does 

not include many hyperparameters for tuning. Fang et al [6] 

designed a lightweight 3D convolutional neural network and a 

novel clustering strategy for learning the deep discriminative 

feature and perform semi-supervised classification. Mei et al. 

[43] proposed a 3 dimensional (3D) convolutional autoencoder 

(3D-CAE) to maximally obtain the most discriminative 

spectral and spatial information for feature extraction. This 

framework can learn the deep features in an unsupervised 

mode and network trained without labeled training samples. 

Moreover, the problem of long-tail distribution poses great 

challenges for deep learning, and it has attracted increasing 

attention in computer vision. Existing solutions usually have a 

difference in sampling strategy and classifiers [44]. For most 

sampling strategies presented below, the probability jp  of 

sampling a data point from class j  is given by: 

1

q

j

j C q

ii

n
p

n





 (1) 

where  0,1q  and C is the number of training classes.  

The instance-balanced sampling, class-balanced sampling, 

and square-root sampling all achieved good results for 

long-tailed recognition, where q  is set to 1, 0, and 1/2 

respectively. Most of the methods trained the classifiers to 

rectify the decision boundaries on the head- and tail-classes 

via fine-tuning, and optimize parameters by loss reweighting 

strategies [45, 46]. Kang et al. [47] proposed a decoupled 

representation learning and classification strategy to compare 

the performance differences of different sampling strategies 

and classifiers for classification. 

Several important questions need to be considered. How can 

the global learning framework consider the relationship 

between long short-range bands? In addition, long-tail 

distribution exists in the HSI datasets and limits the 
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performance of HSI classification, so how can we address 

insufficient and imbalanced training data problems? To 

overcome the aforementioned issues, we propose the SSDGL 

framework for HSI classification using small training samples. 

III. SSDGL:  SPECTRAL-SPATIAL DEPENDENT GLOBAL 

LEARNING FRAMEWORK 

To extract the spectral relationship among different bands 

and the spatial correlation of all pixels, the SSDGL framework 

is proposed for hyperspectral image classification. This is an 

ensemble learning method that combines spectral, structural, 

and semantic features. The most discriminative feature 

representations are learned by the global convolutional long 

short-term memory integrated with the global joint attention 

mechanism (GCLAM). The hierarchically balanced sampling 

strategy is proposed to divide the training data into a 

hierarchical sequence of training samples, and the weighted 

softmax with cross entropy loss is introduced to reweight each 

class probability. The novel sampling strategy and loss 

function effectively solve sample imbalanced and insufficient 

problems. The skip connections are utilized to fuse the spatial 

features from the encoder and the semantic features in the 

same stage decoder. The overall architecture of the SSDGL is 

shown in Fig. 2.  

A. Hierarchically balanced sampling strategy 

The hierarchically balanced (H-B) sampling strategy was 

proposed to obtain diverse stochastic gradients, combined with 

weight decay and learning rate decay to speed up model 

convergence. In this work, the training sample is the whole 

image rather than the patches of the local area, and the set of 

discretely labeled pixels is assigned to a hierarchical sequence 

to improve the robustness of the model and reduce the training 

time of SSDGL-Net. Because the labeled pixels of the HSI 

dataset are insufficient and imbalanced, the labeled samples 

are divided in a certain ratio and the indices of each category 

are stored in different lists. The selected sample data are 

viewed as training data and other sample data as test data. The 

input data of the SSDGL-Net is a stochastic hierarchical 

training sample sequence, and the hierarchical training data 

balanced the number of samples per class. The hyperparameter 

α represents the number of hierarchical training data, and the 

number of labeled samples in hierarchical training dataset will 

affect the speed of model convergence. Each hierarchical 

training dataset contains all categories, and the mini batch per 

class is determined by the parameter β. Within a certain range, 

the smaller the value of β is, the more random gradients can be 

obtained and the less training time is required. To address the 

imbalanced sample problem, the weighted softmax loss is 

introduced to balance the probability of the ground-truth class 

and focus more on misclassified samples. The category 

weighting factor  0
/

M

j ii
q q M


 is added to the standard 

cross-entropy criterion to reduce the relative loss for 

well-classified samples. jp  is used to balance the probability 

that selecting a sample data belong to the class j . 

The number of labeled samples per class in hyperspectral 

images is different because it is difficult to identify many 

land-covers by visual interpretation. If using the traditional 

sampling strategy, the average accuracy and the overall 

accuracy are greatly limited. Therefore, it is necessary to 

introduce a novel sampling strategy and a suitable loss 

function to solve the problem of class long-tail distribution in 

hyperspectral image datasets. The pseudocode of SSDGL is 

shown in Algorithm 1. 

 
Fig. 2. Flowchart of insufficient and imbalanced HSI classification based on the SSDGL framework. 
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Algorithm 1 The pseudocode of SSDGL 

Input:  
M

i i
N n

0
= : A set of discrete labeled pixels 

      
in : A set of labeled pixels per class 

       : the training sample ratio 

      M : the number of classes 

       : the number of stratified training data 

       : mini-batch per class 

       : compression factor 

      
ijMask : mask matrix 

      ny : predicted scores 

      ij
y


: predicted label 

Output: The parameters of the whole network,  ,E D   , 

classification map 
1 W HO  

 

 ,R i j  [[]] an empty matrix 

ijI  {} an empty dict 

w [] an empty list 

1- in

im   ,  1-i iq m /  

for j = 0 to M do 

   

0

j

j M

ii

q
p M

q


 


 

    . jw push p  

end 

for s = 0 to do 

   for k = 0 to M do 

        ij kI shuffle n    

      while  ijlen I < do 

            fetch all samples from
ijI ,  , ijR i j I

 

            
 
 

, 00,

, 01,
ij

if R i j
Mask

if R i j


 
 >

 

      continue 

      fetch   
samples from 

ijI ,    , .ijR i j I pop 
 

      
 
 

, 00,

, 01,
ij

if R i j
Mask

if R i j


 
 >

 

   end 

end      

while training loss has not converged do 

 
1

log

m

n

y

ij

w ijy

ijn

e
L w m Mask

M e

 
    
 
 




 

  update 
E  

and 
D  

by minimizing
wL through   

stochastic gradient descent and weight decay: 

   1 w

E E

E

L

n


  



 
   

 
 

1 w

D D

D

L

n


  



 
   

   
end while 

 0 ,01 W H ijO y i H j W


    | < <  

B. GCLAM 

The GCLAM is composed of global convolutional long 

short-term memory (GCL) and global joint attention 

mechanisms (GJAM). Since the fully connected LSTM cannot 

extract local spatial information, it is replaced by ConvLSTM. 

However, the global spatial context information is ignored 

with the conventional ConvLSTM, and the importance of 

extracted features is difficult to emphasize. Hence, GCLAM is 

proposed to extract the dependency of spectral-spatial features. 

GCLAM is the most important part of the SSDGL framework, 

which can extract abundant spectral-spatial features and keep 

the spatial size of input data unchanged, as shown below. 

 
Fig. 3. The architecture of the GCLAM. 

a) The global convolutional long short-term memory (GCL) 

is utilized to extract the spectral dependency according to the 

global spatial context information. The flowchart is shown in 

Fig. 4, and the input data is the whole hyperspectral image. 

The channels of the input data are equally distributed to the n 

group, where n represents the time step of the GCL. In this 

work, GCL has two hidden layers. The first hidden layer is 

utilized to extract the interdependency between long-range 

features. For example, some different types of crops have 

similar spectral curves, but the correlation between their green 

band and the near-infrared band is quite different. Therefore, 

the spectral dependency of long-range bands can effectively 

distinguish similar land cover types. The second hidden layer 

is used to enhance the dependency of adjacent channels. GCL 

is composed of ConvLSTMCells, as shown in Fig. 5.  

 
Fig. 4. The architecture of the GCL. 

There are four main parts in ConvLSTMCells. a) The 

forgetting phase selectively forgets information passed from 

the previous unit and keeps important information. b) The 

memorizing phase selectively memorizes the input 

information. c) The output phase determines what information 

will be output. d) In the convolutional phase, gated units in 

ConvLSTMCells are equivalent to convolution layers, and it 

can nonlinearly transform the input features into more 

discriminative spectral-spatial features. 
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b) The global joint attention mechanism (GJAM) is 

composed of a global spectral attention mechanism and global 

spatial attention mechanism, and they are utilized to estimate 

the importance of the extracted features. The spectral attention 

mechanism is used to reweight the spectral features generated 

by the GCL module and focus on the most discriminative 

features. The global spatial attention mechanism is utilized to 

focus on the important local areas and take full advantage of 

the global spatial context information.  

 
Fig. 5. The architecture of the ConvLSTMCells. 

 

Fig. 6. The flowchart of the global spectral attention mechanism. 

1) The global spectral attention mechanism can be regarded 

as a feature detector, which assigns different weights to each 

channel. The larger weight is assigned to the meaningful 

channels and the weight of the meaningless channels is 

smaller. The global spectral attention mechanism is shown in 

Fig. 6. 

The input feature is the whole image rather than the patches 

of the local area. The different spectral features are obtained 

through the global maximum pooling layer and the global 

average pooling layer. They are represented as
c

avgF  and 
c

maxF . 

The input image is passed through the pooling layers, and two 

spectral vectors are generated. The output features are fed to a 

three-layer perceptron and two output feature vectors are 

generated. Then, the output feature vectors are merged using 

an elementwise summation operation. Finally, the output 

feature vector is multiplied with the input image. It can be 

expressed by the following formula: 

1 x1 a0 m0

( ) ( ( ( )) ( ( )))

( ( ( )) ( ( )))

c

c c

avg

M MLP AvgPool MLP MaxPool

W W

F F F

F W FW





 

 
 (2) 

2) In the HSI data cube, the adjacent pixels are likely to 

form an area and they belong to the same class. The spatial 

attention mechanism focuses on attention areas and reweights 

the generated attention areas, as shown in Fig. 7. The global 

spatial attention also used the maximum pooling layer and 

average pooling layer to extract different spatial information. 

The input features are fed to the pooling layers and two spatial 

feature maps are generated. Connect two feature maps through 

concatenation operation, and generate a one-dimensional 

feature map through the activation function and convolution 

operation. Multiply the one-dimensional feature map with the 

input feature maps channel by channel. The spatial features 

are reweighted and the spatial size is unchanged. It is 

expressed by the following formula: 

s

max

( ) ( ( ( ); ( )))

( ( ; ))

N N

N N c c

avg

AvgPool MaxPoM oF F F

F

lf

f F












 (3) 

 

Fig. 7. The flowchart of the global spatial attention mechanism. 

Generally, the data with same features will gather together 

to form an area. To highlight these areas, the spatial attention 

mechanism is necessary. Since some land covers have large 

spatial variability, the global learning method is necessary.  

IV. EXPERIMENTS RESULTS AND ANALYSIS 

To quantitatively and qualitatively analyze the classification 

performance of the proposed models, it was compared with 

some state-of-the-art methods for HSI classification, which 

include support vector machines with radial basis function 

kernel (RBF-SVM), semisupervised convolutional neural 

network (SS-CNN) [48], spectral-spatial residual network 

(SSRN) [30], double-branch multiattention mechanism 

network (DBMA) [31], MCNN- CONVLSTM [49], U-Net [36] 

and FPGA [27]. Extensive experiments were conducted on 

three datasets: the 16-class Indian Pines dataset, the 9-class 

Pavia University dataset, and the 15-class Houston University 

dataset. These datasets are utilized to validate the effectiveness 

of the proposed method in the cases of imbalanced sample 

data, high spatial resolution data, and a small number of 

sample data. All experiments were carried out based on the 

PyTorch library on a GeForce RTX 2080 Ti graphics card. 

A. Experimental Settings 

1) Model parameters: This is a framework based on 

encoding and decoding. To make the size of the input image 

meet the downsampling requirements, the input image was 

increased to a multiple of 16 and padded with zero. The group 

number of group normalization was set to 4, so the output 

channels of each layer must be a multiple of 4. Since this 

framework employs skip connections between the spatial 

features in the encoder and semantic features in the decoder, 

the channel of skip connections was set to 128 for feature 

fusion. 

2) Optimized parameters: The time step of the global 

convolutional long short-term memory was set to 8, and the 

size of the convolutional kernel was set to 5. The optimizer 

plays an important role in the training processes of the deep 
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CNN model and affected the model convergence [50]. The 

proposed framework was trained in 600 epochs training 

processes for each dataset and using gradient descent with 

momentum, where the initial learning rate was set to 0.005 

and multiplied by 1
_

power

iter

max iter

 
 

 
 with power  = 0.8 

and max_iter = 1,000. The momentum was set to 0.9 and the 

weight decay rate was set to 0.001.  

3) Metrics: To evaluate the performance of the proposed 

methods, four commonly used quantitative metrics were 

adopted: the accuracy of each class, the overall accuracy (OA), 

the average accuracy (AA), and the kappa coefficient (Kappa). 

To eliminate the deviation introduced by randomly choosing 

training samples, each experiment was run ten times, and the 

mean values of each evaluation criterion are reported. 

B. Experiment 1: Indian Pines Dataset 

The Indian Pines dataset was acquired in 1992 by the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

sensor in Northwestern Indiana. This dataset contains 

145×145 pixels, with 220 spectral bands in the wavelength 

range from 0.4 to 2.5 µm and is mainly composed of multiple 

agricultural fields. The spatial resolution is approximately 20 

meters per pixel. Since removing bands covering the region of 

water absorption, 200 bands of the data were retained. After 

removing the background pixels, 10,249 pixels were reserved, 

which contain 16 classes representing the different land-cover 

types. Fig. 8 shows the false-color composite of the image and 

the corresponding ground truth. 

 
Fig. 8. The Indian Pines dataset. (a) Three-band false color 

composite. (b) Ground-truth map (c) Legend

 

 
Fig. 9. Visualization of the classification maps for the Indian Pines 

dataset. (a) RBF-SVM. (b) SS-CNN. (c) SSRN. (d) DBMA. (e) 

MCNN-CONVLSTM. (f) U-Net (g) FPGA. (h) SSDGL.

 Table I lists the number of training and testing data per class. 

The training samples were set to 5% of all labeled samples. If 

the training data of the class was less than 5, the mini-batch 

per class was set to 5. The training data were obtained by H-B 

sampling strategy and the remaining data were viewed as test 

data to evaluate the accuracy.  

TABLE I 

THE NUMBER OF TRAINING SAMPLES AND TEST SAMPLES FOR THE 

INDIAN PINES DATASET 

 

No. Class. Train. Test. Total. 

1 Alfalfa 5 41 46 

2 Corn-notill 72 1356 1428 

3 Corn-mintill 42 788 830 

4 Corn 12 225 237 

5 Grass-pasture 25 458 483 

6 Grass-trees 37 693 730 

7 Grass-pasture-mowed 5 23 28 

8 Hay-windrowed 24 454 478 

9 Oats 5 15 20 

10 Soybean-notill 49 923 972 

11 Soybean-mintill 123 2332 2455 

12 Soybean-clean 30 563 593 

13 Wheat 11 194 205 

14 Woods 64 1201 1265 

15 Buildings-Grass-Trees 20 366 386 

16 Stone-Steel-Towers 5 88 93 

Total 529 9720 10249 

Fig. 9 (a)-(g) illustrates the classification results using 

RBF-SVM, SS-CNN, SSRN, DBMA, MCNN-CONVLSTM, 

U-Net and FPGA. It can be seen that the classification 

methods based on CNN had a better visual performance than 

SVM, and the image is smoother than SVM. This is because 

the convolutional neural network-based method considered the 

spatial features of adjacent pixels. The FPGA and SSDGL 

obtained the complete structure of land covers, and the 

category boundaries are closer to real images. This is because 

the FCN-based method makes full use of the global spatial 

context to extract the most discriminating spatial features. 

Compared with U-Net, the classification maps of FPGA and 

SSDGL show that these methods have better classification 

performance in the categories with similar spectral features, 

such as corn and soybean, and these methods have better 

generalization ability. GCL module played an important role 

in representation learning, and the correlation of the adjacent 

channels and long-range channels was simultaneously 

considered. It can be seen from Fig. 10 (a) that the large 

intraclass variations and the small interclass dissimilarity 

existed in the Indian Pines dataset. The proposed framework 

can obtain the most discriminative feature representations to 

reduce the intraclass distance and increase the interclass 

distance, as shown in Fig. 10 (b). 

For a more detailed verification of the results, the overall 

accuracies (OA), average accuracy (AA), kappa coefficients, 

and per-class accuracies are presented in Table II for all 

classification methods (RBF-SVM, SS-CNN, SSRN, DBMA, 

MCNN-CONVLSTM, U-Net, and FPGA). The best accuracy 

is highlighted in bold for each row in the table. 
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TABLE II 

THE CLASSIFICATION RESULTS OF RBF-SVM, SS-CNN, SSRN, DBMA, MCNN-CONVLSTM, U-NET, FPGA AND SSDGL ON THE INDIAN 

PINES DATASET WITH 5% LABELED SAMPLES. 

 

 

 
Fig. 10. Two-dimensional t-SNE visualization of features from the 

Indian Pines, Pavia University and Houston University datasets. 

Data distributions of the labeled samples in the original feature 

space (the first row) and the convolutional feature space (the second 

row). Different colors correspond to different classes. 

As shown in Table II, FCN-based methods obtained better 

class accuracy, and the overall accuracy was above 90%. It is 

attributed to the global learning framework, which makes full 

use of the global spatial context information. Since 

agricultural land cover types have a large spectral difference 

between the green band and the near-infrared band, the 

proposed method can highlight the correlation between these 

bands. The classification accuracy on soybean using SSDGL 

achieves a 3%∼7% improvement over FPGA and achieved a 

6%∼10% improvement on corn. Moreover, the hierarchically 

balanced sampling strategy played a key role in the class 

imbalance problem. The weighted softmax loss is employed 

to reduce the weight of easy-to-classify samples so that the 

model focused more on hard-to-classify samples during 

training. It can be seen in Table I that some number of 

training sample categories were less than 10, and some were 

more than 50. The categories with a small number of training 

samples were hard to classify, so the classification accuracy 

on corn, grass, and soybean was worse than other categories. 

The category weighting factor was added to the cross-entropy 

criterion function to balance the relative loss of well-to- 

classify samples and hard-to-classify samples. Hence, the 

proposed method achieved great classification performance 

on datasets with insufficient and imbalanced samples. It can 

be seen that the FCN-based method had higher accuracy on 

OA, AA, and kappa coefficient. Compared with FPGA, 

SSDGL achieved ~3% improvement in OA, AA and kappa 

coefficient. The novel sampling strategy and loss function can 

effectively solve the long-tail distribution problem of 

hyperspectral image datasets.  

C. Experiment 2: Pavia University Dataset 

The Pavia University dataset was acquired by the 

Reflective Optics System Imaging Spectrometer (ROSIS) 

sensor over the University of Pavia in 2001. Since 12 bands 

covering the region of noise and water absorption were 

removed, 103 bands of the data were retained, and the 

spectral range was from 0.43 to 0.86 µm. This dataset has 

610×340 pixels with a resolution of 1.3 meters per pixel. 

After removing the background pixels, 42,776 pixels were 

reserved, which contained nine classes representing the 

different land-cover types. Fig. 11 shows the false-color 

composite of the image and the corresponding ground truth. 

Table. Ⅲ lists the number of training and test data for each 

category. We set the training sample number per class as 1% 

of labeled samples. 

Class 

CNN-based FCN-based 

RBF-SVM SS-CNN SSRN DBMA 
MCNN- 

CONVLSTM 
U-Net FPGA Proposed 

1 70.32 72.14 75.57 90.37 94.36 97.67 97.22 100.00 

2 69.63 90.42 90.65 92.72 92.84 92.48 93.07 99.63 

3 58.26 81.48 97.01 95.63 93.02 84.77 89.46 99.24 

4 45.22 71.23 93.36 89.35 95.32 89.33 100.00 100.00 

5 75.48 83.62 98.56 96.92 92.13 81.00 95.63 99.56 

6 96.14 97.19 98.94 99.18 98.86 94.08 97.56 100.00 

7 95.79 91.03 84.21 79.57 84.83 100.00 100.00 100.00 

8 87.72 92.34 98.36 99.11 98.63 98.90 100.00 100.00 

9 75.03 96.39 97.61 97.91 92.47 78.95 100.00 100.00 

10 66.25 81.75 81.03 92.08 94.76 89.49 96.64 99.68 

11 77.62 87.39 93.02 95.15 96.28 97.81 96.74 99.36 

12 67.28 83.03 95.72 90.71 94.12 86.50 91.65 99.11 

13 96.93 97.42 99.81 99.81 96.95 98.97 100.00 100.00 

14 95.07 95.31 95.79 97.11 98.79 98.58 99.91 100.00 

15 35.48 74.04 92.25 88.13 92.83 92.08 99.72 100.00 

16 97.61 94.61 96.57 97.05 87.32 93.18 100.00 100.00 

OA 75.31 89.82 92.21 94.43 94.78 93.20 96.18 99.63 

AA 71.12 83.73 93.03 93.81 93.37 92.11 97.33 99.79 

Kappa 0.7173 0.8783 0.9115 0.9365 0.9437 0.9222 0.9564 0.9958 
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Fig. 12 (a)-(g) illustrates the classification results using 

RBF-SVM, SS-CNN, SSRN, DBMA, MCNN-CONVLSTM, 

U-Net and FPGA. It can be seen that the classification maps 

of RBF-SVM contain salt-pepper noise because this method 

only considers the spectral information and ignores the spatial 

correlation of the adjacent pixels. Therefore, the most 

discriminative features are difficult to extract, and the 

classification performance is limited. Due to the different 

materials of the roof, it is difficult to discriminate the 

building classes based on spatial context information, so the 

spectral features need to be emphasized. It can be seen from 

the classification maps that the building category labels had 

great differences with different methods, but the proposed 

method can obtain the complete shape of buildings and 

accurately discriminated the building materials. The GCL 

module was utilized to extract the interdependency between 

the channels according to the spectral information of the 

whole hyperspectral image. Because the global learning 

method can model the long-range dependency, the complete 

structure of the road can be obtained. The sample distribution 

of Pavia dataset is shown in Fig. 10 (c). There are many 

labeled samples in this dataset, but similar land cover types 

have difficulty distinguishing in the original HSI. The most 

discriminative features can be learned by the SSDGL, and the 

category boundary was accurately determined with generated 

feature maps. 

TABLE Ⅲ 

 THE NUMBER OF TRAINING SAMPLES AND TEST SAMPLES FOR THE 

PAVIA UNIVERSITY DATASET 

 

No. Class. Train. Test. Total. 

1 Asphalt 67 6564 6631 

2 Meadows 187 18462 18649 

3 Gravel 21 2078 2099 

4 Trees 31 3033 3064 

5 Metal sheets 14 1331 1345 

6 Bare Soil 51 4978 5029 

7 Bitumen 14 1316 1330 

8 Bricks 37 3645 3682 

9 Shadows 10 937 947 

Total 432 42344 42776 

To evaluate the performance of these methods on this 

dataset from a quantitative perspective, the overall accuracies 

(OA), per-class accuracies (AA), and kappa coefficients are 

presented in Table Ⅳ for RBF-SVM, SS-CNN, SSRN, 

DBMA, MCNN-CONVLSTM, U-Net, and FPGA. The best 

accuracy is highlighted in bold for each row in the table. As 

shown in Table Ⅳ, the spatial resolution of this dataset is 

very high, so the spatial information is important for HSI to 

discriminate hard-to-classify categories. The classification 

accuracy varied greatly on gravel with different methods, but 

the SSDGL framework achieved the best classification 

accuracy and was ~10% than other methods. This is because 

the GCL module was introduced to SSDGL to extract the 

interdependency of channels according to continuous spectral 

sequence and global spatial context information.  

 
Fig. 11. The Pavia University dataset. (a) Three-band false color 

composite. (b) Ground-truth map (c) Legend 

The classification accuracy of the FCN-based method was 

~ 3% higher than that of the CNN-based method on bare soil 

and ~10% higher on bitumen. It can be concluded that the 

high spatial resolution remote sensing image facilitates spatial 

feature extraction and boosts the classification performance. 

The classification accuracy of brick reached 99.92% with the 

SSDGL framework and ~1.5% higher than that of the FPGA. 

This was attributed to the global joint attention mechanism 

(GJAM), which extracted fine-grained spatial features and 

attention areas. It can be observed that SSDGL had higher 

accuracy in OA, AA, and kappa coefficient. The proposed 

method was ~3% higher than that of the CNN-based methods 

and ~1% higher than that of the FPGA. Although the number 

of training samples was limited, the classification accuracy 

per class of the SSDGL reached 99% because the proposed 

method has strong feature learning ability, and it is good at 

classifying class imbalanced datasets. 

 
Fig. 12. Visualization of the classification maps for the Pavia 

University dataset. (a) RBF-SVM. (b) SS-CNN. (c) SSRN. (d) 

DBMA. (e) MCNN-CONVLSTM. (f) U-Net (g) FPGA. (h) 

SSDGL.
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D. Experiment 3: Houston University Dataset 

The Houston University dataset is a public HSI dataset that 

was released in the 2013 IEEE GRSS Data Fusion Contest. 

The Houston University dataset is a more challenging 

hyperspectral dataset that was captured by the National 

Center for Airborne Laser Mapping (NCALM) over the 

Houston University campus and contains 15 complex 

land-cover classes with 349×1,905 pixels and 144 bands 

ranging from 0.36 to 1.05 µm. To further verify the validity 

of the proposed framework with limited training samples, the 

ten training samples per class was used to evaluate the 

performance of the proposed method. Fig. 13 shows the 

false-color composite of the image and the corresponding 

ground truth. Table. Ⅴ lists the number of training and test 

data for each category. Since the number of training samples 

per class is ten, the strong performance of the proposed model 

can be presented in this case. 

The classification performance of SSDGL is compared 

with seven state-of-the-art methods, which are summarized as 

follows: SVM-3DG [51], SS-CNN, SSRN, MugNet [9], 

AROC-DPNet [6], U-Net, and FPGA. SVM-3DG is a 

SVM-based method with 3D discrete wavelet transform and 

Markov random field. MugNet is a state-of-the-art deep 

learning method for small sample HSI classification. 

AROC-DPNet is a lightweight convolutional neural network 

with a deep clustering strategy. The weight decay rate was set 

to 0.001 and trained in 1,000 epochs. 

 

 
Fig. 13. The Houston University dataset. (a) Three-band false color 

composite. (b) Ground-truth map (c) Legend 

It can be seen in Table Ⅵ that the SSDGL framework 

achieve best classification performance than other popular 

methods. The overall accuracy was 10 ~ 20% higher than that 

of the CNN-based methods. Hence, the global learning 

framework had a remarkable breakthrough in the small 

sample classification of hyperspectral images. Compared with 

U-Net and FPGA, the proposed framework achieved a better 

classification accuracy on OA, AA, and Kappa. It can be 

concluded that an appropriate sampling strategy and loss 

function is necessary to address the insufficient sample 

problem. It can be seen from Fig. 10 (e) that the samples exist 

a small difference and some categories are difficult to 

distinguish in the original feature space. However, the 

proposed method has a strong feature learning ability and 

increase the gap between the different categories in the 

convolutional feature space. These categories can be easily 

distinguished on the generated spectral-spatial features. 

TABLE Ⅴ 

THE NUMBER OF TRAINING SAMPLES AND TEST SAMPLES FOR THE 

HOUSTON UNIVERSITY DATASET 

 

No. Class. Train. Test. Total. 

1 Healthy Grass 10 1241 1251 

2 Stressed Grass 10 1244 1254 

3 Synthetic Grass 10 687 697 

4 Tree 10 1234 1244 

5 Soil 10 1242 1252 

6 Water 10 315 325 

7 Residential 10 1258 1268 

8 Commercial 10 1234 1244 

9 Road 10 1242 1252 

10 Highway 10 1217 1227 

11 Railway 10 1225 1235 

12 Parking Lot 1 10 1224 1234 

13 Parking Lot 2 10 459 469 

14 Tennis Court 10 418 428 

15 Running Track 10 650 660 

Total 150 14861 15011 

 

The confusion matrix is shown in Fig. 14. It can be seen 

that the classification accuracy of each category was higher 

than 90%, except for the commercial class. The commercial 

class was easily misclassified as residential, road and parking 

lot because these categories have similar spectral-spatial 

features, and the fine-grained spatial difference struggled to 

extract with a small number of training samples. The SSDGL 

achieved great classification accuracy for some land-cover 

categories, so we did not use data augmentation to further 

improve the classification performance. 

 

 
Fig. 14. Confusion matrix of SSDGL on the Houston University 

dataset. 
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TABLE Ⅳ 

THE CLASSIFICATION RESULTS OF RBF-SVM, SS-CNN, SSRN, DBMA, MCNN-CONVLSTM, U-NET, FPGA AND SSDGL ON THE PAVIA 

UNIVERSITY DATASET WITH 1% LABELED SAMPLES 

 

TABLE Ⅵ 

THE CLASSIFICATION RESULTS OF SVM-3DG, SS-CNN, SSRN, MUGNET, AROC-DPNET, U-NET, FPGA, AND SSDGL ON HOUSTON 

UNIVERSITY DATASET WITH TEN SAMPLES PER CLASS 

 

 

V. DISCUSSION 

To better understand the effectiveness of each component 

in the spectral-spatial dependent global learning (SSDGL) 

framework, we conducted extensive analysis experiments of 

each module. All component analysis experiments were 

performed on the Indian Pine dataset, which has a low spatial 

resolution and the sample data is imbalanced. The baseline 

method is shown in Table. Ⅶ (a), which is an 

encoder-decoder architecture (SegNet) trained by the global 

stochastic stratified (GS2) sampling strategy of FPGA. 

A. Discussion on the GCL module and GJAM module 

The global convolutional long short-term memory (GCL) 

is described in Section III. Table. Ⅶ (b) presents the 

classification performance of the baseline method with the 

GCL module. The GCL module is added to SSDGL, OA 

increased from 58.39% to 95.69%. The hyperparameter α is 

introduced into the GCL module to determine the number of 

time steps. Where the value of α is from 4 to 12, and the 

interval is 2. When α is set to 8, the best classification 

accuracy can be obtained by the extracted spectral-dependent 

Class 

Patch-based Patch-free 

RBF-SVM SS-CNN SSRN DBMA 
MCNN- 

CONVLSTM 
U-Net FPGA Proposed 

1 85.82 92.21 97.41 96.26 96.53 94.06 97.83 100.00 

2 96.02 90.27 99.10 98.31 99.26 98.67 99.95 100.00 

3 65.46 79.82 88.61 89.16 87.15 78.30 91.28 100.00 

4 81.24 92.67 99.81 97.53 93.68 96.01 95.85 99.67 

5 99.23 99.41 100.00 99.72 97.26 100.00 100.00 100.00 

6 67.69 86.86 95.51 97.98 96.41 99.80 99.76 100.00 

7 53.86 79.85 92.16 85.51 88.74 79.56 99.73 100.00 

8 86.28 92.83 89.03 80.70 93.81 99.58 98.05 99.92 

9 99.92 93.93 99.96 91.12 93.79 99.25 97.86 100.00 

OA 86.54 90.14 96.55 95.13 96.28 96.09 98.68 99.97 

AA 73.52 83.52 95.73 93.48 94.69 93.47 97.82 99.95 

kappa 0.8192 0.8768 0.9543 0.9353 0.9481 0.9480  0.9825 0.9996 

Class SVM-3DG SS-CNN SSRN MugNet AROC-DPNet U-Net FPGA Proposed 

1 73.88 96.74 74.37 87.21 98.82 84.53 97.90 99.84 

2 68.65 93.14 78.41 86.66 90.75 48.79 87.54 98.71 

3 66.43 98.52 73.26 97.58 99.59 99.85 100.00 99.85 

4 78.83 79.59 78.53 80.41 93.31 74.72 98.22 97.16 

5 86.37 93.64 92.56 97.87 99.65 87.34 99.92 100.00 

6 66.82 95.53 76.94 88.25 96.78 97.78 93.97 98.10 

7 61.43 77.46 54.27 69.63 91.23 80.68 84.34 98.97 

8 44.72 61.28 92.89 62.82 88.92 44.25 66.12 66.29 

9 48.53 88.79 68.58 79.91 87.85 37.04 91.06 92.03 

10 67.18 86.73 65.11 92.18 90.72 78.55 96.63 99.92 

11 58.42 36.41 82.07 83.15 65.03 60.24 68.82 93.63 

12 52.71 75.06 74.63 78.75 95.79 73.83 90.60 99.67 

13 81.16 28.48 73.77 89.81 47.16 92.16 96.29 95.86 

14 84.93 91.34 74.83 98.17 76.29 100.00 100.00 100.00 

15 69.53 96.08 89.12 97.20 94.83 72.77 100.00 100.00 

OA 64.51 78.63 74.51 84.23 88.93 71.11 89.89 95.36 

AA 67.36 78.82 77.18 85.81 87.19 75.50 91.43 96.00 

Kappa 0.6287 0.7762 0.7235 0.8413 0.8781 0.6883 0.8908 0.9499 
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features. 

Table. Ⅶ (c) presents the effectiveness of the global joint 

attention module (GJAM). The addition of GJAM modules to 

SSDGL results in an OA improvement from 95.69% to 

96.97%. This module reweight the feature maps and extracts 

attention areas to boost the classification performance. The 

main hyperparameter is a compression factor in the global 

spectral attention mechanism. Due to the limitation of the 

space, we do not show the results of various parameters. 

B. Discussion on the H-B sampling strategy and weighted 

softmax loss 

Table Ⅶ (d) presents the results of the SSDGL with the 

H-B sampling strategy and weighted softmax loss (HB-WL). 

The OA is improved from 96.77 to 99.63 and AA from 97.65 

to 99.79. The H-B sampling strategy is used to balance the 

number of each class in the hierarchical training samples. The 

category probability is recalculated by the weighted softmax 

loss. 

The hyperparameter β is introduced to the H-B sampling 

strategy to control the mini-batch per class of hierarchical 

training samples. The value of β ranges from 5 to 40 and the 

interval is 5. The proposed SSDGL has the best classification 

performance when β is set to 10. When β is set to a value 

larger than 20, the classification accuracy of SSDGL 

decreases gradually, and the average accuracy is limited. It 

can be found that the value of β has little impact on the 

classification performance because the weighted softmax loss 

recalculates the category probability, but the H-B sampling 

strategy still plays a key role in addressing insufficient and 

imbalanced sample problems.

TABLE Ⅶ 

HSI CLASSIFICATION RESULTS EVALUATED ON THE INDIAN PINES DATASET WITH 5% LABELED SAMPLES. THE ENCODER-DECODER BASELINE, 

THE GCL, GJAM, AND HB-WL ARE ADDED IN SSDGL FOR THE MODULE ANALYSIS 

 

C. Discussion on the running time 

Table Ⅷ lists the training and testing time of the five 

methods on the Indian pines (IP), Pavia University (PU), and 

Houston University (HU) datasets. Although SSRN designed 

with the deep CNN, the training speed of SSRN was 2 times 

faster than that of SS-CNN. The semisupervised classification 

methods may achieve better performance than the supervised 

classification methods when the training samples are small, 

but they consume considerable computing memory and time.  

TABLE Ⅷ 

TRAINING AND TESTING TIME OF DIFFERENT MODELS ON THREE HSI 

DATA SETS 

 

  IN PU HU 

SS-CNN 
Train.(m) 

Test.(s) 

25.7 

19.6 

24.8 

35.4 
37.3 

45.2 

SSRN 
Train.(m) 

Test.(s) 

18.5 

15.2 

16.8 

29.6 
21.7 

36.5 

U-Net 
Train.(m) 

Test.(s) 

4.7 

0.23 

4.2 

0.27 
15.2 

0.41 

FPGA 
Train.(m) 

Test.(s) 

4.2 

0.16 

3.9 

0.19 
14.6 

0.34 

SSDGL 
Train.(m) 

Test.(s) 

9.8 

0.31 

8.9 

0.36 
27.5 

0.63 

It can be seen that FCN-based methods reduce memory and 

time consumption. We set the training iterations of the IP and 

PU datasets in 600 epochs and set 1,000 epochs on the HU 

datasets to make the model converge. The training speed of 

the global learning methods faster than patch-based deep 

learning methods and the testing speed was 100 times faster 

than that of patch-based methods. Moreover, the test data of 

global learning methods is a whole image rather than a patch 

of each test pixel, so the model inference time is greatly 

decreased because the global learning method reduces the 

redundant calculations of the overlapping areas between the 

adjacent pixel patches. The training times of SSDGL are 2~3 

times longer than those of the U-Net and FPGA, but the 

classification accuracy achieved a significant improvement. 

Hence, the proposed framework is valuable and has good 

application prospects. 

VI. CONCLUSION 

In this paper, a spectral-spatial dependent global learning 

(SSDGL) framework is proposed to improve the 

classification performance of hyperspectral images (HSI) 

with insufficient and imbalanced samples. In the SSDGL 

framework, the hierarchically balanced (H-B) sampling 

strategy is proposed to divide the training data into some 

hierarchical training samples. The weighted softmax with 

cross entropy loss is used to recalculate the category 

probability according to the number of labeled samples per 

class. The input data of SSDGL is the whole image, and it 

does not require dividing the HSI dataset into pixel patches. 

To extract the interdependence between spectral features, the 

global convolutional long short-term memory (GCL) is added 

to the SSDGL. The global joint attention mechanism (GJAM) 

is used to estimate the importance of different spectral-spatial 

features. It can be seen from the experimental results that 

SSDGL achieves better classification performance than other 

state-of-the-art methods on HSI datasets, especially when the 

training samples are insufficient or imbalanced. Compared 

Method GCL GJAM HB-WL OA AA Kappa 

(a) Baseline - - - 58.39 59.26 0.5365 

(b) SSDGL w/o GJAM and HB-WL √ - - 95.69 96.14 0.9532 

(c) SSDGL w/o HB-WL √ √ - 96.77 97.65 0.9649 

(d) SSDGL √ √ √ 99.63 99.79 0.9958 
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with the CNN-based methods, the global learning methods 

greatly reduce the training and inference time, thereby 

broadening its application prospects in HSI classification. 

REFERENCES 

[1] L. He, J. Li, C. Liu, and S. Li, “Recent advances on 

spectral–spatial hyperspectral image classification: An 

overview and new guidelines,” IEEE Trans. Geosci. 

Remote Sens., vol. 56, no. 3, pp. 1579–1597, Mar. 2018. 

[2] A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, 

“Hyperspectral image classification with independent 

component discriminant analysis,” IEEE Trans. Geosci. 

Remote Sens., vol. 49, no. 12, pp. 4865–4876, Dec. 

2011. 

[3] Y. Zhou and Y. Wei, “Learning Hierarchical 

Spectral–Spatial Features for Hyperspectral Image 

Classification,” IEEE Trans. Cybern., vol. 46, no. 7, pp. 

1667-1678, Jul. 2016. 

[4] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, 

“Advanced spectral classifiers for hyperspectral images: 

A review,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 

1, pp. 8–32, Mar. 2017. 

[5] Y. Chen, X. Zhao, and X. Jia, “Spectral–spatial 

classification of hyperspectral data based on deep   

belief network,” IEEE J. Sel. Topics Appl. Earth Observ. 

Remote Sens., vol. 8, no. 6, pp. 2381–2392, Jun. 2015. 

[6] B. Fang, Y. Li, H. Zhang, and J. C. Chan, “Collaborative 

learning of lightweight convolutional neural network 

and deep clustering for hyperspectral image 

semi-supervised classification with limited training 

samples,” ISPRS J. Photogramm. Remote Sens., vol. 161, 

pp. 164–178, Mar. 2020. 

[7] S. M. Aydemir and G. Bilgin, “Semisupervised 

hyperspectral image classification using small sample 

sizes,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, 

pp. 621–625, May 2017. 

[8] Y. Zhou, J. Peng, and C. L. Philip Chen, “Dimension 

Reduction Using Spatial and Spectral Regularized Local 

Discriminant Embedding for Hyperspectral Image 

Classification,” IEEE Trans. Geosci. Remote Sens., vol. 

53, no. 2, pp. 1082–1095, Feb. 2015. 

[9] B. Pan, Z. Shi, and X. Xu, “MugNet: Deep learning for 

hyperspectral image classification using limited 

samples,” ISPRS J. Photogramm. Remote Sens., vol. 145, 

pp. 108–119, Nov. 2018.  

[10] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. 

Sveinsson, “Spectral and spatial classification of 

hyperspectral data using SVMs and morphological 

profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 

11, pp. 3804–3814, Nov. 2008 

[11] J. Li, J. M. Bioucas-Dias, and A. Plaza, 

“Spectral–spatial hyperspectral image segmentation 

using subspace multinomial logistic regression and 

Markov random fields,” IEEE Trans. Geosci. Remote 

Sens., vol. 50, no. 3, pp. 809–823, Mar. 2012. 

[12] T. Lu, S. Li, L. Fang, X. Jia, and J. A. Benediktsson, 

“From subpixel to superpixel: A novel fusion 

framework for hyperspectral image classification,” IEEE 

Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 

4398–4411, Aug. 2017. 

[13] S. Jia, L. Shen, J. Zhu, and Q. Li, “A 3-D Gabor 

Phase-Based Coding and Matching Framework for 

Hyperspectral Imagery Classification”, IEEE Trans. 

Cybern., vol. 48, no. 4, pp. 1176–1188, Apr. 2018. 

[14] L. Zhang, Q. Zhang, B. Du, X. Huang, Y. Tang, and D. 

Tao, “Simultaneous Spectral-Spatial Feature Selection 

and Extraction for Hyperspectral Images”, IEEE Trans. 

Cybern., vol. 48, no. 1, pp. 16–28, Sep. 2018. 

[15] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Adaptive deep 

sparse semantic modeling framework for high spatial 

resolution image scene classification,” IEEE Trans. 

Geosci. Remote Sens., vol. 56, no. 10, pp. 6180–6195, 

Oct. 2018.  

[16] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral 

Image Classification with Deep Feature Fusion 

Network,” IEEE Trans. Geosci. Remote Sens., vol. 56, 

no. 6, pp. 3173–3184, Jun. 2018. 

[17] L. Fang, S. Li, X. Kang, and J. A. Benediktsson, 

“Spectral–spatial hyperspectral image classification via 

multiscale adaptive sparse representation,” IEEE Trans. 

Geosci. Remote Sens., vol. 52, no. 12, pp. 7738–7749, 

Dec. 2014. 

[18] A. B. Hamida, A. Benoit, P. Lambert, and C. B. Amar, 

“3-D  deep learning approach for remote sensing image 

classification,” IEEE Trans. Geosci. Remote Sens., vol. 

56, no. 8, pp. 4420–4434, Aug. 2018. 

[19] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent 

neural networks for hyperspectral image classification,” 

IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 

3639–3655, Jul. 2017. 

[20] H. Wu and S. Prasad, “Convolutional recurrent neural 

networks for hyperspectral data classification,” Remote 

Sens., vol. 9, no. 3, p. 298, Mar. 2017. 

[21] Z. Feng, S. Yang, M. Wang, and L. Jiao “Learning Dual 

Geometric Low-Rank Structure for Semisupervised 

Hyperspectral Image Classification”, IEEE Trans. 

Cybern., vol. 51, no. 1, pp. 346-358, Jan. 2021. 

[22] S. Jia, X. Deng, M. Xu, J. Zhou, and X. Jia, 

“Superpixel-Level Weighted Label Propagation for 

Hyperspectral Image Classification,” IEEE Trans. 

Geosci. Remote Sens., vol. 58, no. 7, pp. 5077-5091, Jul. 

2020. 

[23] Y. Yuan, J. Lin, and Q. Wang, “Hyperspectral Image 

Classification via Multitask Joint Sparse Representation 

and Stepwise MRF Optimization”, IEEE Trans. Cybern., 

vol. 46, no. 12, pp. 2966–2977, Dec. 2016. 

[24] Z. Zhong, J. Li, D. A. Clausi, and A. Wong, “Generative 

adversarial networks and conditional random fields for 

hyperspectral image classification,” IEEE Trans. 

Cybern., vol. 50, no. 7, pp. 3318–3329, Jul. 2020. 

[25] H. Wu and S. Prasad, “Semi-supervised deep learning 

using pseudo labels for hyperspectral image 

classification,” IEEE Trans. Image Process., vol. 27, no. 

3, pp. 1259–1270, Mar. 2017. 

[26] Q. Zhu, Z. Li, Y. Zhang and Q. Guan, “Building 

Extraction from High Spatial Resolution Remote 

Sensing Images via Multiscale-Aware and 



 14 

Segmentation-Prior Conditional Random Fields,” 

Remote Sensing, vol. 12, no. 23, pp. 3983, Dec. 2020. 

[27] Z. Zheng, Y. Zhong, A. Ma, and L. Zhang, “FPGA: Fast 

Patch-Free Global Learning Framework for Fully 

End-to-End Hyperspectral Image Classification,” IEEE 

Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 

5612-5626, Aug. 2020. 

[28] V. Badrinarayanan, A. Kendall, and R. Clipolla, “Segnet: 

A deep convolutional encoder-decoder architecture for 

image segmentation,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017. 

[29] X. Cao, J. Yao, Z. Xu, and D. Meng, “Hyperspectral 

Image Classification with Convolutional Neural 

Network and Active Learning” IEEE Trans. Geosci. 

Remote Sens., vol. 58, no. 7, pp. 4604–4616, Jul. 2020. 

[30] Z. Zhong, J. Li, Z. Luo, and M. Chapman, 

“Spectral–spatial residual network for hyperspectral 

image classification: A 3-D deep learning framework,” 

IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 

847–858, Feb. 2018. 

[31] W. Ma, Q. Yang, Y. Wu, W. Zhao, and X. Zhang, 

“Double-branch multi-attention mechanism network for 

hyperspectral image classification,” Remote Sens., vol. 

11, no. 11, p. 1307, Jun. 2019. 

[32] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, “Cascaded 

recurrent neural networks for hyperspectral image 

classification,” IEEE Trans. Geosci. Remote Sens., vol. 

57, no. 8, pp. 5384–5394, Aug. 2019. 

[33] W. Hu, H. Li, L. Pan, W. Li, R. Tao, and Q. Du, 

“Spatial-Spectral Feature Extraction via Deep 

ConvLSTM Neural Networks for Hyperspectral Image 

Classification,” IEEE Trans. Geosci. Remote Sens., vol. 

58, no. 6, pp. 4237-4250, Jun. 2020. 

[34] H. Lee and H. Kwon, “Going Deeper With Contextual 

CNN for Hyperspectral Image Classification,” IEEE 

Trans. Image Process., vol. 26, no. 10, pp. 4843–4855, 

Oct. 2017. 

[35] Y. Xu, B. Du, and L. Zhang, “Beyond the patchwise 

classification: Spectral-spatial fully convolutional 

networks for hyperspectral image classification,” IEEE 

Trans. Big Data, vol. 6, no. 3, pp. 492-506, Sep. 2020. 

[36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: 

Convolutional networks for biomedical image 

segmentation,” in International Conference on Medical 

Image Computing and Computer-Assisted Intervention. 

Springer, 2015, pp.234–241. 

[37] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, 

and A. L. Yuille, “DeepLab: Semantic image 

segmentation with deep convolutional nets, atrous 

convolution, and fully connected CRFs,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 

Apr. 2018. 

[38] Z. Niu, W. Liu, J. Zhao, and G. Jiang, “Deeplab-based 

spatial feature extraction for hyperspectral image 

classification,” IEEE Trans. Geosci. Remote Sens., vol. 

16, no. 2, pp. 251–255, Feb. 2019. 

[39] J. Jiao, M. Liang, H. Chen, S. Yang, H. Liu, and X. Cao, 

“Deep fully convolutional network-based spatial 

distribution prediction for hyperspectral image 

classification,” IEEE Trans. Geosci. Remote Sens., vol. 

55, no. 10, pp. 5585-5599, Oct. 2017. 

[40] R. Kemker, R. Luu, and C. Kanan, “Low-shot learning 

for the semantic segmentation of remote sensing 

imagery,” IEEE Trans. Geosci. Remote Sens., vol. 56, 

no. 10, pp. 6214–6223, Oct. 2018. 

[41] H. Zhang, Y. Li, Y. Jiang, P. Wang, Q. Shen, and C. Shen, 

“Hyperspectral classification based on lightweight 

3-D-CNN with transfer learning,” IEEE Trans. Geosci. 

Remote Sens., vol. 57, no. 8, pp. 5813–5828, Aug. 2019. 

[42] J. Yang, Y. -Q. Zhao, and J. C. -W. Chan, “Learning and 

transferring deep joint spectral-spatial features for 

hyperspectal classification,” IEEE Trans. Geosci. 

Remote Sens., vol. 55, no. 8, pp. 4729–4742, Aug. 2017. 

[43] S. Mei, J. Ji, Y. Geng, Z. Zhang, X. Li, and Q. Du, 

“Unsupervised spatial-spectral feature learning by 3D 

convolutional autoencoder for hyperspectral 

classification,” IEEE Trans. Geosci. Remote Sens., vol. 

57, no. 9, pp. 6808–6820, Sep. 2019. 

[44] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. 

Yu, “Large-scale  long-tailed  recognition  in  an  

open  world,” in Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, 2019, pp. 

2537–2546. 

[45] Y. Cui, M. Jia, T. Lin, Y. Song, and S. Belongie, 

“Class-balanced loss based on effective number of 

samples,” in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 2019, pp. 

9268–9277. 

[46] B. Zhou, Q. Cui, X. Wei, and Z. Chen, “BBN: 

Bilateral-Branch Network with Cumulative Learning for 

Long-Tailed Visual Recognition,” in Proceedings of the 

IEEE Conference on Computer Vision and Pattern 

Recognition, 2020, pp. 9719–9728. 

[47] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. 

Feng, and Y. Kalantidis, “Decoupling representation and 

classifier for long-tailed recognition,” in International 

Conference on Learning Representations, Worskhop 

Track, 2020. 

[48] B. Liu, X. Yu, P. Zhang, X. Tan, A. Yu, and Z. Xue, “A 

semi-supervised convolutional neural network for 

hyperspectral image classification,” Remote Sens. Lett., 

vol. 8, no. 9, p. 839–848, May 2017. 

[49] M. Seydgar, A. A. Naeini, M. Zhang, W. Li, and M. 

Satari, “3-D convolution-recurrent networks for 

spectral-spatial classification of hyperspectral images,” 

Remote Sens., vol. 11, no. 7, p. 883, Jan. 2019. 

[50] S. Bera and V. K. Shrivastava, “Analysis of various 

optimizers on deep convolutional neural network model 

in the application of hyperspectral remote sensing image 

classification,” Int. J. Remote Sens., vol. 41, no. 7, pp. 

2664–2683, Apr. 2020. 

[51] X. Cao, F. Zhou, L. Xu, D. Meng, Z. Xu, and J. Paisley, 

“Hyperspectral Image Classification With Markov 

Random Fields and a Convolutional Neural Network,” 

IEEE Trans. Image Process., vol. 27, no. 5, pp. 

2354–2367, May. 2018. 

 


