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Abstract—This article investigates the stability problem for
discrete-time neural networks with a time-varying delay by focus-
ing on developing new Lyapunov–Krasovskii (L–K) functionals.
A novel L–K functional is deliberately tailored from two aspects:
1) the quadratic term and 2) the single-summation term. When
the variation of the discrete-time delay is further considered, the
constant matrix involved in the quadratic term is extended to be
a delay-dependent one. All these innovations make a contribu-
tion to a quadratic function with respect to the delay from the
forward differences of L–K functionals. Consequently, tractable
stability criteria are derived that are shown to be more relaxed
than existing results via numerical examples.

Index Terms—Discrete-time neural network, Lyapunov–
Krasovskii (L−K) functional, negative-definiteness lemma, sta-
bility analysis, time delay.

I. INTRODUCTION

BY MIMICKING the way interconnected neurons work,
neural networks can manipulate information more effi-

ciently than many other systems. Therefore, during the past
several decades, neural networks have been widely used in var-
ious fields, such as speech recognition, image processing, and
fault diagnosis [1], [2]. Compared to continuous-time coun-
terparts, discrete-time neural networks seem to have greater
practical application potentials because of extensive computer-
based analysis and computation [3]. Besides, time delays are
often present in various artificial systems, which may decrease
the stability and reliability [4], [5]. So much effort has been
spent on the stability study of discrete-time neural networks
with time-varying delay [6]–[13].
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There is no doubt that stability is the prerequisite for appli-
cations. Regardless of what kind of stability problem is of
concern, such as passivity [14], [15]; dissipativity [16], [17];
or robust stability [18], [19], the method used to analyze
system stability is always the key concern [20]. These days,
the powerful tool to address the stability problem for discrete-
time delayed neural networks is the Lyapunov functional
method [21]–[24]. Nevertheless, this method usually leads to
a sufficient condition with more or less conservatism. This
kind of conservatism comes from two resources: 1) the cho-
sen L–K functional candidate and 2) related techniques to
bound the forward difference of this candidate. Therefore, con-
structing a proper L–K functional and developing advanced
techniques are two main ways to obtain a relaxed criterion [2].

As L–K functionals reported commonly include double-
summation terms, how to handle summation terms that appear
in their forward differences is essential for the reduction of
conservatism. By taking the place of the free-weighting-matrix
technique [4], summation inequalities become popular due to
simplicity and straightforwardness [25]–[29], which are often
applied together with the reciprocally convex combination
lemma (RCCL) [30]–[32]. For instance, the Jensen summation
inequality is often used in combination with the α-independent
RCCL in early years [33]. Later, more relaxed combinations
are popular [20]. However, as the gaps of these inequalities
become smaller, the improvement of the inequality method
may have little effect on improving the relaxation of stability
criteria.

There is a common understanding that a chosen L–K
functional candidate with more system information involved
may result in a more relaxed condition. Therefore, besides
double-summation terms, multiple-summation terms are now
added into L–K functionals [33], [34]. In addition, many
augmented L–K functionals are constructed, in which aug-
mented vectors contain a number of state-related vectors.
For instance, the augmented state vector involved in the
quadratic term often contains the three vectors: 1) x(k);
2)

∑k−1
i=k−h1

x(i); and 3)
∑k−h1−1

i=k−h2
x(i) (see (1) and (4) for

more details) [20]. The augmented state vector involved in the
single-summation term often contains x(i) and the activation
function f (x(i)) [20], [33]. On the other hand, by partitioning
the entire delay interval into more parts, delay-partitioning-
based functionals are proposed in which more information
of the discrete-time delay is considered [35], [36]. However,
it is necessarily noted that the forward differences of the
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above-mentioned L–K functionals are all estimated to be affine
with the delay. This kind of L–K functionals may lead to con-
servative stability conditions to some extent, which motivates
this research.

This article focuses on developing new L–K functionals to
study the stability problem for discrete-time neural networks
with a time-varying delay. It aims to construct such an appro-
priate L–K functional that its forward difference can be
estimated to be quadratic with the delay. To this end, two
novel single-summation terms are involved in the L–K func-
tional candidate. Meanwhile, a new augmented state vector
is constructed in the quadratic term by adding two double-
summation state vectors. Furthermore, when the variation of
the discrete-time delay is considered, the quadratic term is fur-
ther modified by changing the constant quadratic matrix to a
delay-affine one. All these innovations are helpful to produce
a quadratic function with respect to the delay. As a result,
the quadratic function negative-definiteness lemma, recently
reported, is employed to derive tractable LMI-based stability
criteria. The proposed L–K functionals are shown to be very
effective in reducing the conservatism of obtained criteria via
two numerical examples.

Notations: Throughout this article, the notations are ordi-
nary. For example, Sym{X} represents X + XT . Y ∈ S

n+ means
that Y is a symmetric and positive-definite matrix of R

n×n.
Z ∈ D

n+ denotes that Z is a diagonal matrix of S
n+. d ∈ N

implies that d is a non-negative integer.

II. PRELIMINARY AND USEFUL LEMMAS

Let us consider the discrete-time neural network with a
time-varying delay

x(k + 1) = Cx(k) + Af(x(k)) + Adf (x(k − h(k))) (1)

where x(k) ∈ R
n is the state vector associated with n neu-

rons; C := diag{c1, c2, . . . , cn} is the state feedback coefficient
matrix; A and Ad are the connection weighting matrices; and
f (x(k)) := col{f1(x1(k)), f2(x2(k)), . . . , fn(xn(k))} represents
the neural activation function satisfying

fi(0) = 0 (2)

σ−
i ≤ fi(t1) − fi(t2)

t1 − t2
≤ σ+

i , t1 �= t2 (3)

where σ+
i and σ−

i are known scalars, i ∈ {1, . . . , n}. The delay
h(k), abbreviated as hk, satisfies the following constraint:

1 ≤ h1 ≤ hk ≤ h2 (4)

where h1 and h2 are known integers.
This article aims to derive relaxed stability criteria for neural

network (1) with hk satisfying (4). Meanwhile, the computa-
tion burden should not significantly increase. To do so, we
focus on developing a new L–K functional that is fundamental
to a good stability condition.

Before presenting useful lemmas, we define two functions
s1(τ ) := τ + 1 and s2(τ ) := (τ + 1)(τ + 2) for τ ∈ N and the
following notations:

K1 := diag
{
σ+

1 , . . . , σ+
n

}
, K2 := diag

{
σ−

1 , . . . , σ−
n

}

h2k := h2 − hk, hk1 := hk − h1, h21 := h2 − h1.

Lemma 1 [37]: For constant integers α and β satisfying
α ≤ β and a function f (k, i) with k ∈ N, the equation

�F(k) = f (k, k + β + 1) − f (k, k + α) +
k+β+1∑

i=k+α+1

�f (k, i)

holds, where F(k) := ∑k+β

i=k+α f (k, i), �F(k) := F(k + 1) −
F(k), and �f (k, i) := f (k + 1, i) − f (k, i).

Lemma 2 [37]: For a matrix function M(hk) = �2h2
k +

�1hk +�0, where �2, �1, and �0 are coefficient matrices, if
the following inequalities:

M(h1) < 0, −�2h2
21 + 4M(h1) < 0 (5)

M(h2) < 0, −�2h2
21 + M(h1) + M(h2) < 0 (6)

hold, one has M(hk) < 0 for ∀hk ∈ [h1, h2].
Lemma 3 [25], [28]: For a matrix R ∈ S

n+ and a function
{ω(i) ∈ R

n|i ∈ [α, β]}, the inequality

(β − α)

β−1∑

i=α

�ωT(i)R�ω(i) ≥
2∑

l=0

(2l + 1)ϑT
l Rϑl (7)

holds, where �ω(i) := ω(i + 1) − ω(i), ϑ0 := ω(β) − ω(α),

ϑ1 := ω(β) + ω(α) − 2
β∑

i=α

ω(i)

s1(β − α)

ϑ2 := ω(β) − ω(α) + 6
β∑

i=α

ω(i)

s1(β − α)

− 12
β∑

i=α

β∑

j=i

ω(j)

s2(β − α)
.

Lemma 4 [30]: For R1, R2 ∈ S
n+ and T ∈ R

n×n such that[
R1 T
∗ R2

]

≥ 0, the matrix inequality

[ 1
α

R1 0
∗ 1

1−α
R2

]

≥
[

R1 T
∗ R2

]

holds for any α ∈ (0, 1).
Lemma 5: For integers h1 and h2 satisfying h1 < h2 and a

vector function {x(i)|i ∈ [k − h2, k − h1]}, the following two
equations hold:

k−h1∑

i=k−h2

x(i) =
k−h1∑

i=k−hk

x(i) +
k−hk∑

i=k−h2

x(i) − x(k − hk) (8)

k−h1∑

i=k−h2

k−h1∑

j=i

x(j) =
k−h1∑

i=k−hk

k−h1∑

j=i

x(j) +
k−hk∑

i=k−h2

k−hk∑

j=i

x(j)

+ h2k

k−h1∑

j=k−hk

x(j) − (h2k + 1)x(k − hk).

(9)
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Proof: From

k−h1∑

i=k−h2

x(i) =
⎛

⎝
k−h1∑

i=k−hk

+
k−hk∑

i=k−h2

−(i = k − hk)

⎞

⎠x(i)

=
k−h1∑

i=k−hk

x(i) +
k−hk∑

i=k−h2

x(i) − x(k − hk)

we obtain (8).
It follows from (8) that:

k−h1∑

i=k−h2

k−h1∑

j=i

x(j) =
k−h1∑

i=k−hk

k−h1∑

j=i

x(j)

+
k−hk∑

i=k−h2

k−h1∑

j=i

x(j) −
k−h1∑

j=k−hk

x(j).

Hence, (9) holds due to the following fact:

k−hk∑

i=k−h2

k−h1∑

j=i

x(j)

=
k−hk∑

i=k−h2

⎛

⎝
k−hk∑

j=i

+
k−h1∑

j=k−hk

−(j = k − hk)

⎞

⎠x(j)

=
k−hk∑

i=k−h2

k−hk∑

j=i

x(j) + s1(h2k)

⎛

⎝
k−h1∑

j=k−hk

x(j) − x(k − hk)

⎞

⎠.

Remark 1: For convenient application, the matrix version of
the quadratic function negative-definiteness lemma is directly
presented in Lemma 2. In order to highlight the effective-
ness of proposed L–K functionals on reducing conservatism,
the α-independent RCCL shown in Lemma 4 is employed.
Compared to others, the original RCCL is easier to deal with,
with only one free matrix introduced. Two summation equa-
tions are collected in Lemma 5 that are useful in summation
calculations.

III. MAIN RESULTS

A. New L–K Functional

Let us define the notations for the sake of clarity

ξ1(k) := col{x(k), x(k − h1), x(k − hk), x(k − h2)}
ξ2(k) := col{f (x(k)), f (x(k − h1)), f (x(k − hk))

×f (x(k − h2))}

ξ3(k) := col

⎧
⎨

⎩

k∑

i=k−h1

x(i)

s1(h1)
,

k−h1∑

i=k−hk

x(i)

s1(hk1)

×
k−hk∑

i=k−h2

x(i)

s1(h2k)
,

k∑

i=k−h1

k∑

j=i

x(j)

s2(h1)

×
k−h1∑

i=k−hk

k−h1∑

j=i

x(j)

s2(hk1)
,

k−hk∑

i=k−h2

k−hk∑

j=i

x(j)

s2(h2k)

⎫
⎬

⎭

ξ(k) := col

⎧
⎨

⎩
ξ1(k), ξ2(k), ξ3(k),

k−h1∑

i=k−hk

x(i),
k−hk∑

i=k−h2

x(i)

⎫
⎬

⎭
.

Now, a new L–K functional is constructed as follows:

V(k) :=
3∑

i=0

Vi(k) (10)

where

V0(k) := χT
0 (k)Pχ0(k)

V1(k) :=
k−1∑

i=k−h1

χT
1 (i)Q1χ1(i) +

k−h1−1∑

i=k−h2

χT
1 (i)Q2χ1(i)

V2(k) :=
k−1∑

i=k−h1

ηT
1 (k, i)Q3η1(k, i)

+
k−h1−1∑

i=k−h2

ηT
2 (k, i)Q4η2(k, i)

V3(k) := h1

k−1∑

i=k−h1

k−1∑

j=i

yT(j)R1y(j)

+ h21

k−h1−1∑

i=k−h2

k−1∑

j=i

yT(j)R2y(j)

with the augmented vectors

χ0(k) := col

⎧
⎨

⎩
η0(k),

k−1∑

i=k−h1

k−1∑

j=i

x(j)

×
k−h1−1∑

i=k−h2

k−h1−1∑

j=i

x(j)

⎫
⎬

⎭

χ1(i) := col{x(i), f (x(i))}
y(k) := x(k + 1) − x(k)

η0(k) := col

⎧
⎨

⎩
x(k),

k−1∑

i=k−h1

x(i),
k−h1−1∑

i=k−h2

x(i)

⎫
⎬

⎭

η1(k, i) := col

⎧
⎨

⎩
x(i), x(k),

k−1∑

j=i

x(j),
i∑

j=k−h1

x(j)

⎫
⎬

⎭

η2(k, i) := col

⎧
⎨

⎩
x(i), x(k),

k−h1−1∑

j=i

x(j),
i∑

j=k−h2

x(j)

⎫
⎬

⎭
.

Remark 2: In existing L–K functionals, the augmented
vector η0(k) defined in the quadratic term ηT

0 (k)Pη0(k) is
usually composed of the following three vectors: 1) x(k);
2)

∑k−1
i=k−h1

x(i); and
∑k−h1−1

i=k−h2
x(i) [20], [33], [34]. However,

in the new L–K functional (10), two double-summation vec-
tors

∑k−1
i=k−h1

∑k−1
j=i x(j) and

∑k−h1−1
i=k−h2

∑k−h1−1
j=i x(j) are added

into the augmented state vector χ0(k), which can lead to
more information among various state vectors considered. In
addition, inspired by our previous work [37], the two com-
plementary summation couples {∑k−1

j=i x(j),
∑i

j=k−h1
x(j)} and

{∑k−h1−1
j=i x(j),

∑i
j=k−h2

x(j)} are, respectively, encompassed
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in the two augmented state vectors η1(k, i) and η2(k, i), which
make all state vectors among ξ(k) appear in the forward
difference of V2(k). To the best of our knowledge, it is
the first time for such single-summation terms to be used
to analyze the stability of the delayed neural network. All
these innovations lead to a quadratic function with respect
to the delay from the forward difference of V(k). This has
the potential to achieve a more relaxed stability condition
via the negative-definiteness lemma recently reported [37],
compared to existing results via the convex optimization
method.

B. Improved Stability Criteria

Theorem 1: For given h1 and h2, neural network (1) with
the delay hk satisfying (4) is asymptotically stable, if there
exist matrices P ∈ S

5n+ , Q1, Q2 ∈ S
2n+ , Q3, Q4 ∈ S

4n+ , R1, R2 ∈
S

n+, Hi ∈ D
n+, i ∈ {1, . . . , 7}, S ∈ R

3n×3n, and L1, L2 ∈ R
n×16n

such that the following inequalities:
[

R̃2 S
(∗) R̃2

]

≥ 0, (11)

(h1) < 0, −�2h2
21/4 + (h1) < 0 (12)

(h2) < 0, −�2h2
21 + (h1) + (h2) < 0 (13)

hold, where

(hk) = 0(hk) + 1 + 2(hk) + 3 + �1 + �2 (14)

0(hk) = �T
2 P�2 − �T

1 P�1

+ Sym
{
(�2 − �1)

TP�0(hk)
}

(15)

1 =
[

e1
e5

]T

Q1

[
e1
e5

]

−
[

e2
e6

]T

(Q1 − Q2)

[
e2
e6

]

−
[

e4
e8

]T

Q2

[
e4
e8

]

(16)

2(hk) = cT
10Q3c10 − cT

20Q3c20 + h1cT
30Q3c30

+ Sym
{
cT

40Q3c30
} + cT

5 (hk)Q4c5(hk)

− cT
6 (hk)Q4c6(hk) + h21cT

70Q4c70

+ Sym
{
cT

8 (hk)Q4c70
}

(17)

3 = eT
s1

(
h2

1R1 + h2
21R2

)
es1 − �T

0 R̃1�0 − 31 (18)

�1 =
4∑

i=1

Sym
{
πT

1iHiπ2i
}

+
3∑

i=1

Sym
{(

π1i − π1(i+1)

)T
Hi+4

× (
π2i − π2(i+1)

)}
(19)

�2 = Sym
{
LT

1 (s1(hk1)e10 − e15)
}

+ Sym
{
LT

2 (s1(h2k)e11 − e16)
}

(20)

�21 = (c511 − c512)
TQ4(c511 − c512)

− (c611 − c612)
TQ4(c611 − c612)

+ Sym
{
(−c821 + c822 + c823)

TQ4c70
}

�2 = �21 + Sym
{
(�2 − �1)

TP�̃0

}
(21)

�̃0 = col{0, 0, 0, 0, e13 + e14 − e10}

�0(hk) = col{0, s1(h1)e9, s1(hk1)e10 + s1(h2k)e11

× s2(h1)e12, β1(hk)}
�1 = col{e1,−e1,−e2 − e3,−s1(h1)e1,−s1(h21)e2}
�2 = col{es,−e2,−e3 − e4,−s1(h1)e9,−β0},

β1(hk) = s2(hk1)e13 + s2(h2k)e14 + h2ks1(hk1)e10

− s1(h2k)e3

β0 = e15 + e16 − e3

π1i = K1ei − ei+4, π2i = ei+4 − K2ei

ei = [
0n×(i−1)n In×n 0n×(16−i)n

]
, i ∈ {1, . . . , 16}

es = Ce1 + Ae5 + Ade7, es1 = es − e1

c10 = col{e1, e1, 0, s1(h1)e9}
c20 = col{e2, e1,−e1 + s1(h1)e9, e2}
c30 = col{0, es1, e1,−e2}
c40 = col{−e2 + s1(h1)e9, h1e1, c403, c404}

c403 = −h1e1 − s1(h1)e9 + s2(h1)e12

c404 = −e2 + s2(h1)(e9 − e12)

c5(hk) = c50 + s1(hk1)c511 + s1(h2k)c512

c6(hk) = c60 + s1(hk1)c611 + s1(h2k)c612

c50 = col{e2, e1, 0,−e3}, c511 = col{0, 0, 0, e10}
c512 = col{0, 0, 0, e11}, c60 = col{e4, e1,−e2 − e3, e4}
c611 = col{0, 0, e10, 0}, c612 = col{0, 0, e11, 0}
c70 = col{0, es1, e2,−e4}

c8(hk) = c80 + s1(hk1)c811 + s1(h2k)c812

+ (h2k − 1)s1(hk1)c821 + s2(hk1)c822 + s2(h2k)c823

c80 = col{−e3 − e4, h21e1,−h21e2 + e3,−e4}
c811 = col{e10, 0, 0,−e3}
c812 = col{e11, 0,−e3 − e11, (h21 + 2)e11}
c821 = col{0, 0, e10, 0}
c822 = col{0, 0, e13, e10 − e13}
c823 = col{0, 0, e14,−e14}

R̃i = diag{Ri, 3Ri, 5Ri}, i = 1, 2

31 =
[
�1
�2

]T
[

R̃2 S

(∗) R̃2

][
�1

�2

]

(22)

�0 = col{e1 − e2, e1 + e2 − 2e9, e1 − e2 + 6e9 − 12e12}
�1 = col{e2 − e3, e2 + e3 − 2e10, e2

− e3 + 6e10 − 12e13}
�2 = col{e3 − e4, e3 + e4 − 2e11, e3

− e4 + 6e11 − 12e14}.
Proof: Define �Vi(k) := Vi(k + 1) − Vi(k). Along the tra-

jectory of (1), the forward differences of V0(k) and V1(k) are,
respectively, calculated

�V0(k) = χT
0 (k + 1)Pχ0(k + 1) − χT

0 (k)Pχ0(k)

= ξT(k)0(hk)ξ(k)
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�V1(k) = χT
1 (k)Q1χ1(k) − χT

1 (k − h1)Q1χ1(k − h1)

+ χT
1 (k − h1)Q2χ1(k − h1)

− χT
1 (k − h2)Q2χ1(k − h2)

= ξT(k)1ξ(k)

where χ0(k + 1) = (�0(hk) + �2)ξ(k), χ0(k) = (�0(hk) +
�1)ξ(k), and 0(hk) and 1 are, respectively, defined in (15)
and (16). Note that during calculation, Lemma 5 and the
following two equations have been considered:

k−h1−1∑

i=k−h2

k−h1−1∑

j=i

x(j) = (β1(hk) − s1(h21)e2)ξ(k)

k−h1∑

i=k−h2+1

k−h1∑

j=i

x(j) = (β1(hk) − β0)ξ(k).

In the same way, �V2(k) is obtained via Lemma 1 as
follows:

�V2(k) = ηT
1 (k, k)Q3η1(k, k)

− ηT
1 (k, k − h1)Q3η1(k, k − h1)

+
k∑

i=k−h1+1

�
(
ηT

1 (k, i)Q3η1(k, i)
)

+ ηT
2 (k, k − h1)Q4η2(k, k − h1)

− ηT
2 (k, k − h2)Q4η2(k, k − h2)

+
k−h1∑

i=k−h2+1

�
(
ηT

2 (k, i)Q4η2(k, i)
)

= ξT(k)2(hk)ξ(k)

where 2(hk) is defined in (17).
Now, along the trajectory of (1), we calculate the forward

difference of V3(k)

�V3(k) = yT(k)(h2
1R1 + h2

21R2)y(k) −
2∑

i=1

δi(k) (23)

where δ1(k) := h1
∑k−1

i=k−h1
yT(i)R1y(i) and δ2(k) :=

h21
∑k−h1−1

i=k−h2
yT(i)R2y(i). Applying Lemmas 3 and 4 to δ1(k)

and δ2(k) leads to

δ1(k) ≥ ξT(k)�T
0 R̃1�0ξ(k) (24)

δ2(k) ≥ ξT(k)

[
�1
�2

]T[ 1
α

R̃2 0
0 1

1−α
R̃2

][
�1
�2

]

ξ(k)

≥ ξT(k)31ξ(k) (25)

where α = hk1/h21 and 31 is defined in (22). Note that the

inequality

[
R̃2 S
(∗) R̃2

]

≥ 0 is the prerequisite for the second

estimation of (25). By combining (23) with (24) and (25), we
obtain

�V3(k) ≤ ξT(k)3ξ(k) (26)

where 3 is defined in (18).
According to (3), the following inequalities:

ρ1(k, H) ≥ 0, ρ2(k1, k2, H) ≥ 0 (27)

hold for any k, k1, k2 ∈ N and H ∈ D
n+, where

ρ1(k, H) := 2πT
1 (k)Hπ2(k)

π1(k) := K1x(k) − f (x(k)), π2(k) := f (x(k)) − K2x(k)

ρ2(k1, k2, H) := 2(π1(k1) − π1(k2))
TH(π2(k1) − π2(k2)).

As a result, it follows from (27) that:

0 ≤ ρ1(k, H1) + ρ1(k − h1, H2) + ρ1(k − hk, H3)

+ ρ1(k − h2, H4) + ρ2(k, k − h1, H5)

+ ρ2(k − h1, k − hk, H6) + ρ2(k − hk, k − h2, H7)

= ξT(k)�1ξ(k)

where �1 is defined in (19).
In addition, by considering relations among elements of

ξ(k), the following equations:

2ξT(k)LT
1 (s1(hk1)e10 − e15)ξ(k) = 0

2ξT(k)LT
2 (s1(h2k)e11 − e16)ξ(k) = 0

always hold, which leads to

ξT(k)�2ξ(k) = 0 (28)

where �2 is defined in (20).
As discussed above, the forward difference of V(k) is

estimated as follows:

�V(k) ≤ ξT(k)(hk)ξ(k)

where (hk) is defined in (14). It is noted that (hk) is
quadratic with the delay hk, which can be rewritten as

(hk) = �2h2
k + �1hk + �0

where �2 [defined in (21)], �1, and �0 are matrix coefficients,
irrespectively of hk. Based on Lemma 2, (hk) < 0 for any
hk ∈ [h1, h2] is ensured by inequalities (12) and (13), which
implies the asymptotic stability of neural network (1). This
completes this proof.

Remark 3: A tractable LMI-based stability criterion is
derived in Theorem 1 via Lemma 2. It is expected to be
less conservative than those based on the convex optimization
method [20] as well as those based on the original negative-
definiteness lemma [38].

Remark 4: To avoid a cubic function with respect to the
delay arising, the state vector ξ(k) is augmented by adding two
summation terms

∑k−h1
i=k−hk

x(i) and
∑k−hk

i=k−h2
x(i). As a result,

the relations among elements of ξ(k) should be considered by
constructing the zero (28). Although the order of the function
is reduced from three to two, two free matrices L1 and L2 are
introduced that contain lots of decision variables. If the com-
putation burden is of great concern, we can simplify the L–K
functional V(k) and obtain the following stability condition.

Corollary 1: For given h1 and h2, neural network (1) with
hk satisfying (4) is asymptotically stable, if there exist matrices
P ∈ S

3n+ , Q1, Q2 ∈ S
2n+ , Q3, Q4 ∈ S

4n+ , R1, R2 ∈ S
n+, Hi ∈ D

n+,
i ∈ {1, . . . , 7}, and S ∈ R

3n×3n such that (11)–(13) hold, where
(hk) is defined in Theorem 1 with �2 = 0, and

�0(hk) = col{0, s1(h1)e9, s1(hk1)e10 + s1(h2k)e11}
�1 = col{e1,−e1,−e2 − e3}
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�2 = col{es,−e2,−e3 − e4}, �2 = �21

ei = [
0n×(i−1)n In×n 0n×(14−i)n

]
, i ∈ {1, . . . , 14}.

Proof: Let us consider the simplified L–K functional

Vs(k) := Vs0(k) +
3∑

i=1

Vi(k) (29)

where V1(k), V2(k), and V3(k) are all defined in (10), and

Vs0(k) := ηT
0 (k)Pη0(k)

where η0(k) is defined in (10). The remainder of the proof
refers to Theorem 1 and is omitted here for brevity.

C. Delay-Variation-Dependent Stability Criterion

It is well recognized that the more information considered,
the less conservatism achieved. Inspired by [20], we further
study the effect of the variation of the discrete-time delay on
the stability of neural network (1). To do so, the quadratic term
Vs0(k) defined in (29) is replaced by an updated quadratic term
Ṽs0(k) in which the quadratic matrix P(hk) is not constant
but affine with the delay hk. Thus, the information on the
variation of the discrete-time delay is involved in the new
stability criterion.

Define �hk := h(k+1)−h(k) and assume that hk satisfies (4)
and that �hk satisfies

d1 ≤ �hk ≤ d2 (30)

where d1, d2 ∈ N are known constants. Now, we construct the
following new L–K functional:

Ṽs(k) := Ṽs0(k) +
3∑

j=1

Vj(k) (31)

where V1(k), V2(k), and V3(k) are all defined in (10) and

Ṽs0(k) := ηT
0 (k)P(hk)η0(k) (32)

where η0(k) is defined in (10) and P(hk) := P0 + hkP1 with
P0, P1 ∈ S

3n.
Remark 5: To avoid the quadratic function with respect to

hk appearing in the forward difference of L–K functional [20],
the augmented state vector in the added quadratic term is
chosen as col{x(k),∑k−1

i=k−h1
x(i)}, just the part of η0(k). This

inevitably leads to some conservatism. However, in Ṽs(k), the
entire η0(k) remains unchanged, which can further contribute
to a final quadratic function with the delay hk.

Theorem 2: For given h1 and h2, neural network (1) with hk

satisfying (4) and with �hk satisfying (30) is asymptotically
stable, if there exist matrices P0, P1 ∈ S

3n, Q1, Q2 ∈ S
2n+ ,

Q3, Q4 ∈ S
4n+ , R1, R2 ∈ S

n+, Hi ∈ D
n+, i ∈ {1, . . . , 7}, and

S ∈ R
3n×3n such that (11) and the following inequalities:

P0 + h1P1 > 0, P0 + h2P1 > 0 (33)

(h1,�hk) < 0, (h2,�hk) < 0 (34)

− �̃2h2
21/4 + (h1,�hk) < 0 (35)

− �̃2h2
21 + (h1,�hk) + (h2,�hk) < 0 (36)

hold for �hk ∈ {d1, d2}, where

(hk,�hk) = ̃0(hk) + ̃01(hk,�hk)

+ 1 + 2(hk) + 3 + �1 (37)

̃0(hk) = �T
2 P(hk)�2 − �T

1 P(hk)�1

+ Sym
{
(�2 − �1)

TP(hk)�0(hk)
}

̃01(hk,�hk) = �hk(�0(hk) + �2)
TP1(�0(hk) + �2)

�̃2 = �21 + Sym
{
(�2 − �1)

TP1�̃0

}

+ �hk�̃
T
0 P1�̃0

�̃0 = col{0, 0, e10 − e11}
where all other notations, such as 1, 2(hk), 3, �1, and
�21 are defined in Corollary 1.

Proof: Since P(hk) is affine with the delay hk, P(hk) > 0 for
hk ∈ [h1, h2] is guaranteed by P0+h1P1 > 0 and P0+h2P1>0.

On the other hand, along the trajectory of (1), the forward
difference of Ṽs0(k) is computed

�Ṽs0(k) = ηT
0 (k + 1)(P(hk) + �hkP1)η0(k + 1)

− ηT
0 (k)P(hk)η0(k)

= ξT(k)̃0(hk)ξ(k) + �hkη
T
0 (k + 1)P1η0(k + 1)

= ξT(k)
(
̃0(hk) + ̃01(hk,�hk)

)
ξ(k)

where ̃0(hk) and ̃01(hk,�hk) are both defined in
Theorem 2. Hence, the forward difference of Ṽs(k) defined
in (31) is estimated as follows:

�Ṽs(k) ≤ ξT(k)(hk,�hk)ξ(k)

where (hk,�hk) is defined in (37). It is seen that (hk,�hk)

is quadratic with hk and affine with �hk. Therefore,
(hk,�hk) < 0 for hk × �hk ∈ [h1, h2] × [d1, d2] is
guaranteed by inequalities (34)–(36). This completes the
proof.

IV. NUMERICAL EXAMPLES

Two numerical examples are given in this section to com-
pare the proposed stability criteria with some of existing
results from two aspects: 1) conservatism and 2) computa-
tion burden. They are, respectively, indicated by two indexes:
1) maximum allowable upper bound (MAUB) and 2) the
number of decision variables (NDVs).

Example 1: Consider the delayed neural network (1) with
the parameters

C =
[

0.1 0
0 0.3

]

, A =
[

0.02 0
0 0.004

]

Ad =
[−0.01 0.01
−0.02 −0.01

]

K1 = diag{1, 1}, K2 = diag{0, 0}.
In this example, MAUBs h2 for different h1 are computed by
Corollary 1 and Theorem 1 in this article and other condi-
tions reported recently. From Table I, we find that MAUBs
obtained by Corollary 1 are all larger than those obtained by
conditions proposed in [6]–[9], and [20] as h1 takes any value
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TABLE I
MAUBS h2 FOR DIFFERENT h1 IN EXAMPLE 1

TABLE II
MAUBS h2 FOR DIFFERENT h1 IN EXAMPLE 2

TABLE III
MAUBS h2 FOR DIFFERENT h1 WITH THE VARIATION OF DELAY

CONSIDERED

from the set {2, 4, 6, 8, 10, 20}. This clearly validates the effec-
tiveness of the new L–K functional Vs(k) defined in (29). As
expected, Theorem 1 produces the largest MAUBs among all
conditions, including Corollary 1, which implies that the two
double-summation state vectors added into V0(k) are helpful
to reduce the conservatism further.

In addition, NDVs involved in different conditions are also
listed. It is not difficult to find that the NDV involved in
Corollary 1 is very competitive, which is even smaller than
those involved in some other conditions.

Example 2: Consider the delayed neural network (1) with
the following parameters:

C =
[

0.8 0
0 0.9

]

, A =
[

0.001 0
0 0.005

]

Ad =
[−0.1 0.01
−0.2 −0.1

]

K1 = diag{1, 1}, K2 = diag{0, 0}.
As done in Example 1, both MAUBs and NDVs are computed
for different conditions in Table II. The listed MAUBs shows
that both Corollary 1 and Theorem 1 produce relaxed results
than other conditions proposed in [6], [10], [20], and [33].
Especially, it is observed that the MAUB (i.e., the largest h2)
is improved from 20 to 21 by Corollary 1 and Theorem 1
when h1 = 6.

In Table III, MAUBs are carefully compared between
Theorem 2 in this article and [20, Th. 1], which are both
derived by considering the information of the variation of hk.
It is seen that, no matter d = 0, 1 or d ≥ 2 (let d = d2 = −d1),
Theorem 2 always achieves less conservative results than
Theorem 1 [20]. This clearly shows the effectiveness of the

new L–K functional Ṽs(k) defined in (31). In addition, it is
noted that if we let P1 = 0 and P0 = P, Theorem 2 is reduced
to Corollary 1.

V. CONCLUSION

This article has studied the stability problem for discrete-
time delayed neural networks. New L–K functionals have
been tailored by taking into account more information of
state vectors, which could lead to quadratic functions with
respect to the delay from their forward differences, as well as
when the variation of the delay is considered. Relaxed stabil-
ity criteria have been consequently obtained by applying the
newly-developed negative-definiteness lemma. Two numerical
examples have demonstrated that they are more relaxed than
existing results recently reported.
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