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Abstract—Label distribution Learning (LDL) is the state-of-
the-art approach to deal with a number of real-world ap-
plications, such as chronological age estimation from a face
image, where there is an inherent similarity among adjacent
age labels. LDL takes into account the semantic similarity by
assigning a label distribution to each instance. The well-known
Kullback–Leibler (KL) divergence is the widely used loss function
for the LDL framework. However, the KL divergence does not
fully and effectively capture the semantic similarity among age
labels, thus leading to the sub-optimal performance. In this paper,
we propose a novel loss function based on optimal transport
theory for the LDL-based age estimation. A ground metric
function plays an important role in the optimal transport for-
mulation. It should be carefully determined based on underlying
geometric structure of the label space of the application in-hand.
The label space in the age estimation problem has a specific
geometric structure, i.e. closer ages have more inherent semantic
relationship. Inspired by this, we devise a novel ground metric
function, which enables the loss function to increase the influence
of highly correlated ages; thus exploiting the semantic similarity
among ages more effectively than the existing loss functions.
We then use the proposed loss function, namely γ–Wasserstein
loss, for training a deep neural network (DNN). This leads to a
notoriously computationally expensive and non-convex optimisa-
tion problem. Following the standard methodology, we formulate
the optimisation function as a convex problem and then use an
efficient iterative algorithm to update the parameters of the DNN.
Extensive experiments in age estimation on different benchmark
datasets validate the effectiveness of the proposed method, which
consistently outperforms state-of-the-art approaches.

Index Terms—Optimal Transport, Wasserstein metric, Age
estimation, robust loss function, divergence measures, deep label
distribution learning.

I. INTRODUCTION

IN some machine learning problems, such as age estimation,
head pose estimation etc., there is an inherent semantic

similarity among target classes. For instance, in the chrono-
logical age estimation problem, facial images of an individual
at nearby ages are very similar due to moderate, slow and
gradual ageing process. This introduces a kind of similarity or
correlation among adjacent age labels (classes). By effectively
utilising such semantic inter-class relationships, a learning
algorithm can train a model which would generate more
accurate outputs. Label distribution learning (LDL) [1] is a
novel learning framework, which takes the semantic similarity
among target labels into consideration. Rather than assigning
a single label, adopted in traditional learning frameworks, the
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Fig. 1. Facial age estimation as a label distribution learning problem – to
reflect the face similarity between neighbouring ages, the scalar age label is
encoded a Gaussian label distribution for a facial image at the age of 25.

LDL allocates descriptive degrees to all target age labels. In the
age estimation problem, each degree denotes the extent to which
the corresponding age label describes the instance. Obviously,
the highest degree occurs at the subject’s chronological age
label. The complete set of all descriptive degrees constitutes
a label distribution over the label space for each instance.
Fig. 1 shows an instance at age 25 and its corresponding
label distribution. As seen, all ages in the range 20 to 30 can
describe the 25-years old face to some extent. In summary,
assigning a ground-truth label distribution can implicitly utilise
the semantic similarity among age labels.

The well-known Kullback–Leibler (KL) divergence [2] and
the total variation (TV) distance [3] are the widely used loss
functions for the LDL framework. However, these loss functions
have some deficiencies, which limit their effectiveness in
measuring the distance between the generated and ground-
truth label distributions, resulting in sub-optimal learning
performance. For instance, both the KL divergence and the
TV distance return a constant value for any pair of label
distributions in Fig. 2. But, intuitively, the label distribution
B should be closer to the label distribution A, as compared
to the label distributions C and D. There is also another
issue associated with utilising these measures as the loss
function. Although the LDL framework takes care of the
semantic similarity among age labels, these measures do not
fully exploit this semantic information during training. In fact,
when employing the KL divergence as the loss function for
training a deep neural networks (DNN), the update rule for the
model’s parameters in the back-propagation step ignores the
relationships among age labels altogether. Clearly, in addition
to the concept of label distribution encoding, the loss function
itself should also reflect the semantic similarity information
among labels to encourage the learning algorithm to render
more accurate predictions.

One effective way of mitigating the aforementioned issues
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associated with the KL divergence and the TV distance is to
exploit the optimal transport theory [4]–[6]. Optimal transport,
also called Wasserstein distance or Earth Mover’s distance as
special cases, is defined as the amount of effort required to
move mass to make two label distributions equal. It computes
a meaningful distance between two label distributions. For
instance, the optimal transport provides a smaller value for the
distance between the label distributions A and B in Fig. 2, than
for the label distributions A and C. Leveraging this property,
in this paper, we present a novel optimal transport-based loss
function for the LDL framework.

Moreover, the optimal transport has another desirable benefit
which helps the learning process, specifically for the age
estimation problem. The optimal transport formulation adopts a
ground metric function (also called transportation cost function),
which captures the underlying geometric structure of the label
space. This underlying geometric structure of the label space
closely reflects the semantic similarity among labels. Thus in
contrast to the KL divergence and the TV distance, the optimal
transport based loss function exhibits appealing properties
which help to capture the semantic correlation among the
age labels during training.

In general, each specific learning problem will require a
specific ground metric function, associated with the geometric
structure of the target label space, to accurately capture the
corresponding semantic similarity among labels. The existing
family of optimal-transport based loss functions, called as p–
Wasserstein [6], utilise a generic ground metric function which
assumes a simple linear or quadratic structure over the label
space. This may be insufficient to capture the complex (non-
uniform and non-linear) similarity between close labels in some
problems, such as age estimation. Motivated by this fact, in this
paper, we propose a carefully devised ground metric function
that incorporates the underlying label similarity structure over
the age label space into the learning algorithm more effectively.
The proposed loss function, named as γ–Wasserstein, is able
to simultaneously address the issues associated with commonly
used divergence-based loss functions and also refines the
predicted label distribution so as to exert a stronger influence
(cost) on errors associated with neighbouring ages.

We use the proposed loss function for training DNNs
to solve the age estimation problem. This leads to a non-
convex optimisation problem, which is computationally very
challenging. Our solution of this optimisation problem is
inspired by the existing approaches in [5] where a regularisation
term is used to make the objective function convex. Starting
from this regularised formulation of the transport problem,
we then derive an efficient algorithm for solving the resulting
optimisation problem, following the approach proposed in [6]–
[8]. Experiments on multiple benchmark ageing datasets
demonstrate substantial improvements over state-of-the-art
methods.

The main contributions of this paper are summarised as
follows:
• We propose an optimal transport-based loss function as

an alternative to the existing loss functions.
• We handle the similarity among close ages effectively by

proposing a novel ground metric function.
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Fig. 2. The KL divergence and the TV distance are constant for all pairs of
the label distributions, while the proposed γ–Wasserstein loss function outputs
a distance between label distributions A and D, which is larger than the one
between label distributions A and C and the one between label distributions
A and B.

• To the best of our knowledge, this is the first application
of optimal transport for the age estimation problem.

The rest of this paper is organised as follows: we briefly
summarise the related work in Section II. The problem formula-
tion and the limitations of the existing loss functions, including
KL divergence and TV distance, are discussed in Section III.
Section IV reviews the optimal transport formulation and
introduces our proposed model. We provide the details of
our implementation and evaluate our approach in Section V.
The last section concludes the paper.

II. RELATED WORK

In early efforts devoted to the age estimation problem,
the facial appearance was represented by hand-crafted fea-
tures [9] or generating a statistical model [10]. The privileged
information, encoding the facial attributes of ageing, such as
smoothness, face shape, face acne, wrinkles, and bags under-
eyes, are utilised in [11] to improve the generalisation of age
estimation systems. The concepts of sparse representation [12],
[13] and dictionary learning [14], [15], combined with Active
Appearance Model (AAM), Local Binary Patterns (LBP),
Gabor and Bio-Inspired Features (BIF), have been used
in [16], [17] to extract robust face features for modelling age
progression. With the popularity of DNNs in wide variety of
applications [18]–[21], the research focus has shifted towards
learning discriminative features by training a neural network
end-to-end on a labelled face image dataset [22]. These end-
to-end approaches can be categorised into four major groups,
namely regression, ranking, classification and label distribution
based methods.

Regression based approaches are most intuitive but only a few
are able to compete with other age estimation approaches [23].
It is well known that facial images possess certain ordinal
patterns in the ageing feature space [24]. In the ranking
based approach, this ordinality of age labels is considered
during the training stage [25]–[27]. Although these approaches
enhance the age estimation accuracy, they suffer from the
lack of scalability. The classification based methods [28], [29]
formulate the age estimation as a multi-class classification
problem and treat different ages as independent classes. During
the training stage, these approaches try to learn discriminative
features using the well-known cross entropy (CE) loss function.

In a different approach, Geng [1] explicitly characterises
the semantic correlation among age labels. In this study and



3

some other similar works [2], [30], [31], each age label is
represented as a label distribution (usually Gaussian or triangle
label distribution). In all these methods, the KL divergence
is employed as the loss function to measure the similarity
between the estimated age label distribution and ground-truth.
Gao et al. [31] propose the use of KL divergence regularised
by an expectation regression module to further refine the value
predicted by the KL loss function. The expectation regression
module penalises the difference between the expectation of the
estimated age label distribution and the corresponding ground-
truth age label. Recently, Akbari et al. [32], [33] propose a
flatter loss function for the LDL framework which exhibits a
higher performance on cross-dataset settings. In this paper, we
discuss that an optimal transport based loss function would
exploit the underlying geometric structure of the space of label
distributions more effectively as opposed to these divergence-
based loss functions. Consequently, the proposed loss function
is able to capture the semantic similarity among age classes
more effectively.

A. The Optimal Transport Theory

Optimal transport is a metric which measures the distance
between two probability label distributions using a certain
ground metric function, which captures the cost of transporting
mass from one label distribution to match another label
distribution. Recently, the optimal transport problem has gained
considerable attention in a wide range of applications, such as
image classification [34], domain adaptation [35], generative
adversarial networks [36], etc. There have been some efforts
to integrate the optimal transport as a loss function for
deep learning [7]. Most previous works employ a generic
ground metric function reflecting the geometry structure in
the output space to define the optimal transport problem.
However, for some applications such as age estimation, the
existing ground metric functions do not properly capture the
semantic correlations among neighbouring labels. Different
from previous works, we utilise the label structures more
carefully to define a proper ground metric function.

III. PROBLEM FORMULATION

Let X and Y denote the input space and the label space over
a finite set L = {l1, l2, · · · , lK}, where lk is k-th chronological
age label. The aim of an age estimation algorithm is to find
a mapping function from the input space X to the age label
space Y . To this end, a typical method is the one-hot strategy
in which a binary vector y = [y1, · · · , yK ]T ∈ RK is assigned
to the input instance x with the corresponding scalar age label
l. If l equals the k-th age label in L, yk = 1; otherwise yk = 0.
This kind of label encoding models the age estimation problem
as a standard classification problem.

There is a strong visual semantic similarity among the face
images of nearby ages, e.g. a person at the age 24, 25 and
26 may have very similar facial features that are difficult to
distinguish. By formulating the age estimation problem as
a classification problem, this semantic similarity is ignored,
leading to an inconsistency during DNN training. Therefore,
a network trained with the one-hot age labels has difficulty

to separate visually similar face samples that have different
age labels. This problem has been partially addressed by using
label distribution encoding [1], by which a vector of degrees
y = [y1, · · · , yK ]T ∈ RK is assigned to each instance. yk
represents the degree (probability) to which lk describes the
instance x. Provided that

∑K
k=1 yk = 1, the vector y forms a

probability label distribution. So, the vector y is called label
distribution and the learning process on instances annotated by
the label distributions is called label distribution learning [37].
In this paper, we define the label distribution by a probability
distribution function over L. Following [1], [2], we use a
Gaussian label distribution, where its value at the point lk ∈ L
is obtained via yk = 1√

2πσ
exp(− (lk−l)2

2σ2 ); σ is a predefined
standard deviation. The highest degree of class membership
is at the corresponding scalar chronological age l and the
probabilities gradually decrease on the both neighbouring sides
of the chronological age (see Fig. 1 for reference.)

We consider the problem of learning a mapping function h∗θ ,
parameterized by θ, over a hypothesis space H which maps
the input instance x to its label distribution y. We model this
mapping function as a DNN with parameters θ. Let ẑ be the
DNN’s output for an input image x, i.e. ẑ = hθ(x). Suppose
ẑ is then followed by a softmax function. The outcome of this
operation is that the vector ẑ is collapsed into a probability
label distribution form z = [z1, z2, · · · , zK ] ∈ RK , where
zk ∈ [0, 1] and

∑K
k=1 zk = 1. Here, zk = exp(zk)/

∑
i exp(zi)

denotes the probability that sample x belongs to the age label
k. Let S = {(xn,yn), n = 1, · · · , N} denote a set of training
samples, where xn and yn represent the n-th training image and
the corresponding ground-truth label distribution. The mapping
function h∗θ is obtained by minimising the following empirical
risk:

min
hθ∈H

1

N

N∑
n=1

`(zn,yn), (1)

where `(·, ·) is a loss function.
The design of a proper loss function to obtain distance

between pair of probability label distributions is crucial for
the LDL problem. The information divergence-based measures,
such as Kullback–Leibler (KL) divergence and total variation
(TV) distance, are widely used as the loss function in the
existing LDL algorithms [2], [37]. The KL divergence is defined
as

LKL(z,y) =

K∑
k=1

yk log

(
yk
zk

)
, (2)

and the TV distance is defined as

LTV (z,y) =

K∑
k=1

|zk − yk|. (3)

However, these loss functions have several deficiencies as
follows.

I. Element-wise operation: As inferred from Eqs. (2)
and (3), both the KL divergence and the TV distance involve
a summation of K element-wise operations. That means the
distance between two label distributions z and y is obtained
via comparing the individual bins on the label distribution
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Fig. 3. Divergence-based loss function vs. OT-based loss function. The former
treats the output bins independently (green line) while the latter considers the
potential interaction among all the bins (brown lines).

z, i.e. zk, k = 1, ...,K, with the corresponding bins on the
label distribution y, i.e. yk, k = 1, ...,K. In other words,
these losses treat the output bins independently and thus the
potential interaction among them are ignored. Fig. 3 shows
the point-wise operation. In consequence, these losses do not
measure the distance between the generated and ground-truth
label distributions properly. Fig. 4 presents the KL divergence
and the TV distance between two label distributions with their
peaks at lA, lB as a function of the label distribution separation
∆l = lA − lB . The x-axis plots the ∆l values and the y-axis
the corresponding loss. As seen, for small values of ∆l, i.e.
when the two label distributions are highly overlapping, the
KL divergence and the TV distance assume low values. As the
overlap decreases, the both loss values increase. However, as the
two age label distributions become non overlapping, i.e. when ∆
exceeds circa 20, the loss values saturate. The loss value reaches
∞ for the KL divergence, while it becomes constant for the TV
distance. Hence, the KL divergence and the TV distance output
a fixed distance between all the label distribution pairs in Fig. 2.
Thus, once the two label distributions become disjoint, these
losses ignore the actual distance between them. Consequently,
the saturation of the KL and TV losses for non-overlapping
label distributions may impact undesirably on the learning
performance.

II. Element-wise update rule: Another issue associated
with the divergence-based loss functions relates to the rule
for updating the DNN’s parameters during back-propagation.
Using the chain rule, the derivative of the KL divergence and
TV distance with respect to the model’s output z, can easily
be obtained as:

∂LKL/∂zk = −yk log(zk) (4)

and

∂LTV /∂zk = |zk − yk|. (5)

It is clear that during the back-propagation stage, the update of
the parameters of the k-th element of the last layer of DNN is
dependent on the difference zk−yk of the label distributions z
and y. However, the update rule is oblivious of the interaction
with the other bins. Ignoring the incongruence of the other
bins when updating the model’s parameters may render the
optimisation less robust. Note that in our approach we force
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Fig. 4. The loss values produced by two label distributions with their peaks
at lA, lB as a function of age label distribution separation ∆l = lA − lB .
When both label distributions are the same, the KL divergence and the TV
distance are 0. As ∆l increases, the KL divergence and the TV distance
increase. When the label distributions cease to overlap, these distances behave
like a constant function. In contrast, p–Wasserstein and γ–Wasserstein losses
continue monotonically increasing as ∆ grows in magnitude.

the model to learn multi age labels with different degrees of
membership via the label distribution learning framework. In
fact, owing to different patterns of the ageing process, some
ages (younger ages) may be easier to learn than other ages
(older ages). Due to the element-wise nature of the update
rule of parameters of model trained via the KL divergence
and TV distance, the training process saturates too fast, and
consequently results in model over-fitting on easy ages and
under learning on hard ages. Intuitively, if the gradient takes
into account the neighbouring ages effectively, it may redress
this issue to some degree.

IV. THE METHODOLOGY

One effective way to tackle the aforementioned deficiencies
associated with the KL divergence and the TV distance is
to leverage the underlying geometric structure of the label
space in the learning process. This can be achieved by utilising
the optimal transport framework as the loss function [7]. The
optimal transport [4], [6] avoids such issues by considering
the pairwise cost between all the output bins when measuring
the distance between pair of probability label distributions. In
the following, we first describe in brief the theory of optimal
transport, and the existing optimal transport based loss function,
the p–Wasserstein loss. Then, we propose a novel optimal
transport based loss function, namely γ–Wasserstein loss.
The proposed loss function computes a meaningful distance
between two label distributions, even when the supports of
the label distributions do not overlap. Further, it facilitates an
adaptive way to interact with neighbouring ages during the
back-propagation stage. The proposed loss function improves
the accuracy of LDL-based age estimation systems.

A. Optimal Transport Theory

Given two probability label distributions z ∈ ΣK and
y ∈ ΣK , where ΣK := {s ∈ RK+ |1T s = 1} is the
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(K − 1)-dimensional probability simplex, the optimal transport
(OT) problem is defined as the minimum cost of optimally
redistributing the mass of one probability label distribution
to match the mass of another probability label distribution,
providing a measure of similarity between the two label
distributions. This is formulated by optimising over transport
plans that push z onto y as:

`OT(z,y) := min
γ

K∑
i=1

K∑
j=1

g(li, lj)γij

s.t.
K∑
j=1

γij = zi,

K∑
i=1

γij = yj , γij ≥ 0,

(6)

where γij represents how much mass gets moved from point li
to point lj and g(li, lj) ∈ R+ is the transportation cost of this
movement. The first (second) marginal constraint in Eq. (6)
satisfies that the total amount of mass transported from (to) a
point li must equal zi (yi). The third constraint enforces that
the amount of mass transported must be positive. It can be
convenient to reformulate Eq. (6) in matrix form as:

= min
Γ∈U(z,y)

< Γ,C >, (7)

where < · > denotes the inner Hilbert-Schmidt product for
matrices. U(z,y) is the set of all possible transport plans
Γ = [γij ] ∈ RK×K+ , satisfying marginal constraints Γ1 = z
and ΓT1 = y, where 1 ∈ RK is the all-one vector. C = [cij =
g(li, lj)] ∈ RK×K+ is the cost matrix.

B. The Standard p–Wasserstein Loss

When the cost matrix C is obtained via a distance or ground
metric function function g : L × L → R+, then it is shown
in [4] that `OT satisfies the properties of a distance, referred to
as optimal transport distance. In this case, the cost matrix is
called ground metric matrix. The well-known p-Wasserstein
distance [6] is defined using the OT formulation (6) with
gw(li, lj) = |li−lj |p for any p ≥ 1. For the specific case of p =
1, the p-Wasserstein distance is also known as the earth mover
distance. According to this ground metric function, the cost of
optimal transport plan, obtained by `OT, for redistributing the
predicted label distribution z = hθ(x) to match the ground-truth
label distribution y is penalised over longer distances.

C. The Proposed γ–Wasserstein Loss

The ground metric function g(li, lj) plays an important
role in building the shape of the OT-based loss function (see
section IV-E for an intuitive analysis.) It is directly related
to the cost needed for transporting the mass from point li to
point lj . The choice of a ground metric function should reflect
the geometric structure of the label space, which manifests
the semantic similarity of the labels. Since the label spaces of
different learning problems have different characteristics, the
ground metric function should be designed to properly capture
the different notions of semantic similarity among their target
labels. This is particularly crucial in the age estimation problem
where there are strong and complex semantic similarities among
neighbouring ages.
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Fig. 5. The proposed ground metric function for different values of parameter
τ (ρ = 10).

In the optimal transport problem (7), any ground metric
function in the form g(li, lj) = T (li − lj) can be considered.
Here function T (·) is a symmetric and monotonically increasing
function with respect to li − lj and has a single minimum at
li = lj . Along with this direction, we formulate the ground
metric function such that it reflects this general intuition, i.e. the
farther the transportation, the higher the cost. More precisely,
this criterion will favour the cost g(li, lj) to be small for pairs
of close points and large for pairs of far points. In addition,
we consider another constraint in designing the ground metric
function: The ground metric function should emphasise the
crucial importance of closer transportation. Considering these
constraints, we formulate the ground metric function as:

gγ(li, lj) =

{
ρ ln

(
1 +

|li−lj |
τ

)
, if |li − lj | ≤ ρ

|li − lj | − φ, otherwise
(8)

where φ = ρ− ρ ln (1 + ρ/τ) is a constant to make the metric
continuous at point |li − lj | = ρ. This metric behaves as
a logarithmic function for close transfers, thus focusing on
the semantic similarity between neighbouring classes more
effectively than the existing ground metric functions.

The proposed ground metric function is visualised with
respect to d = li − lj for different values of τ and ρ = 10 in
Fig. 5. The shape of the ground metric function gives some
intuition about how different values of ρ and τ change the
behaviour of the ground metric function which may affect
the optimal transport plan induced by (7). Depending on the
chosen values of ρ and τ , a different cost is assigned to each
transportation; a smaller cost to the pair of close points and
vice versa. For smaller values of τ , the curvature of the ground
metric function is logarithmic for the close transportation. In
other words, the transportation cost assigned by the ground
metric function changes logarithmicly in the area where it
deals with pair of close points. Depending on the value of ρ,
the ground metric function switches to a linear section for the
far point transportation. Consequently, the transportation cost
assigned by the ground metric function changes linearly in this
area.
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D. Optimisation

Given the appropriate values for ρ and τ , we then integrate
the proposed γ–Wasserstein loss function into deep learning.
For solving the risk minimisation problem (1), we first need to
solve the minimisation problem (7) which is a non-convex task
and with the high computational complexity O(n3logn) [38].
Cuturi et al. [5] propose to use the regularised optimal transport
(ROT) distance that speeds up the computation of the original
optimal transport as:

`ROT(z,y) = min
γ

∑
i

∑
j

g(li, lj)γij − λγi,j(ln γi,j − 1)

= min
Γ∈U(z,y)

< Γ,C > −λH(Γ),
(9)

Here, H(Γ), known as Sinkhorn’s relaxation, measures the
complexity of the transportation plan by computing its entropy.
This measure is used to regularise the hypothesis space U by
favouring a simpler hypothesis. This entropic regularisation
makes the objective function a convex problem that can
be solved several times faster than the original transport
problem (6). More details can be found in [5].

Utilising our proposed ground metric function for the age es-
timation problem, we adapt the Sinkhorn-Knopp algorithm [5],
[39] to obtain the optimal solution of `ROT (9). This is achieved
through performing row and column scaling (See Algorithm 1).
At the next step, we need to compute the gradient of the loss
function with respect to the output z. As discussed in [6]–[8],
the objective function and constraints in Eq. (9) are linear with
respect to Γ; therefore, it can be computed using its Lagrange
duality:

d`ROT(z,y) = max
α,β∈RK

αT z + βTy

− 1

λ

∑
i

∑
j

λ exp(αi + βj − cij).
(10)

The optimal solutions of the prime problem (9) and dual
Lagrange problem (10) are equal and related to each other. In
fact, the ROT problem (9) has a semi-closed minimiser, called
optimal transport plan, Γ∗ = exp(λ(−C + α∗1T + 1β∗)) =
diag(u∗)Tdiag(v∗) for T = exp(−λC), u∗ = exp(λα∗) and
v∗ = exp(λβ∗), where α∗ and β∗ are the solutions to the dual
problem in Eq. (10). α∗ and β∗ can be efficiently obtained
by the Sinkhorn-Knopp algorithm [7], [39]. The interested
reader may find it useful to consult [5] for more details of
the concepts explained. An example of the source and target
label distributions, i.e. y and z, and the resulting transport
plan Γ∗ is illustrated in Fig. 6. Recall the matrix Γ∗ represents
the possible plans of transporting the mass from the predicted
output z to the ground-truth label distribution y.

After solving the minimisation problem (9), we then update
the DNN’s weights θ. Considering Eq. (10), the gradient of
the proposed γ–Wasserstein loss with respect to the DNN’s
output, i.e. ∇z`ROT, is computed as

∇z`ROT = α∗ =
ln(u∗)

λ
. (11)

The gradient with respect to z is then used to update the model’s
parameters θ using the chain rule. The detailed procedure is

Fig. 6. Top: The target label distribution is a Gaussian for a facial image at
the age of 30. Below: The source label distribution and the corresponding
transport plan that maps the source label distribution onto the target label
distribution (from Top). (Best viewed in colour)

Algorithm 1 γ–Wasserstein Loss and its Gradient
1: Input: z ∈ R1×K , y ∈ R1×K , ρ , τ , K, λ;

2: Initialize: u = 1 ∈ R1×K ;
3: Calculate: Cρ,τ ∈ RK×K via Eq. (8)
4: Set: S = exp(−λCρ,τ ) and Tρ,τ = S⊗Cρ,τ

5: For t = 1, 2, · · · iterations do
6: v = y � (uS)
7: u = z� (vS)

8: End for
9: v = y � (uS)

10: Output:
11: `ROT(z,y) = u (vTρ,τ )

T

12: ∇z`ROT = ln(u)
λ

∗⊗ and � denote element-wise matrix product and division.

summarised in Algorithm 1. ∇z`ROT is then used to update the
DNN’s parameters θ using the chain rule. In our experiments,
we found ρ = 10, τ = 1 and λ = 0.2 to be most effective.
We set the number of iterations in Algorithm 1 as 50 and the
standard deviation of label distribution as σ = 2 for all ages.
Detailed ablation studies on parameter settings are discussed
in the next section. In this study, we find the best values for
ρ and τ via cross validation. The detail will be given in the
following sections.

E. The intuitive analysis

In this section, we provide an intuitive analysis of the
properties of the proposed γ–Wasserstein loss function in
comparison with the standard p–Wasserstein loss function
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and the divergence-based losses, i.e. KL divergence and TV
distance.

I. Treatment of errors: In our proposed formulation, the
ground metric has two free parameters, i.e. ρ and τ , which
are fine-tuned during training. This allows the loss function
to adaptively adjust its shape to control the influence of small
errors and the impact of large errors. In following, we elaborate
on how the shape of the proposed γ–Wasserstein loss effectively
deals with both relatively small and large errors.

In the estimation of ages from images of faces in-the-
wild, we may be dealing with situations where initially the
estimation error can be very large. In such cases, the loss
function should facilitate a fast recovery from these large errors.
Fig. 2 illustrates the proposed γ–Wasserstein loss between two
label distributions as a function of the age label distribution
separated by ∆l. As discussed earlier, in the case of the KL
divergence and the TV distance, the loss for large errors
(when the two label distributions are not overlapping, see
Fig. 2) is constant. Such losses are incapable of guiding the
model update. As anticipated in Fig. 4, both p–Wasserstein
and γ–Wasserstein address the saturation of the KL divergence
and the TV distance for non-overlapping label distributions
(large errors). These metrics behave linearly at large errors and
continue monotonically increasing as ∆l grows in magnitude.
Thus in contrast to the KL divergence and the TV distance,
the optimal transport pays more differentiating attention to
the instances with large errors. For measuring the distance
between pairs of label distributions in Fig. 2, the proposed
γ–Wasserstein loss respects the fact that label distribution D
is further from B than label distribution C.

On the other hand, as discussed in [40], [41], loss functions
emphasising small errors improve the accuracy of the DNN
models. In our work, the impact of small errors is improved
by incorporating the proposed ground metric function by its
logarithmic form (see Fig. 5). The proposed ground metric
function, the γ–Wasserstein loss, as can be seen from Fig. 4,
is a concave function of |d|, which rapidly increases in the
range of small errors. Consequently, γ–Wasserstein loss is more
sensitive to small errors, compared with the p–Wasserstein loss
function, the KL divergence and the TV distance where the
loss values exhibit the quadratic growth. In general, similar
to p–Wasserstein loss, the linear part of γ–Wasserstein loss
drives the training process close to the point where predictions
will be fairly close to the ground truth label distribution.
Then, in contrast to the p–Wasserstein loss, the γ–Wasserstein
loss function will switch to its logarithmic part to refine the
prediction with a greater influence exerted by small errors.

II. Correlation-aware update rule: As discussed earlier,
the derivative of γ–Wasserstein loss function `ROT with respect
to each element of the vector z is obtained as ∇z`ROT = ln(u)

λ ,
where u is obtained via the iterative loop in Algorithm 1. It can
be inferred that the update rule of each network’s parameter
depends on all elements of p and q via computing matrix C.
This is more robust compared to the KL divergence and TV
distance where, as discussed in Section III, the update rule
depends only on the corresponding target bins, i.e. zi and qi
(see Eqs. (2), (3)).

V. EXPERIMENTS

In this section, we first introduce the experimental settings,
including the datasets, evaluation metric and implementation
details. Then, we compare the performance of the proposed
method with the state-of-the-art approaches on different bench-
marking datasets.

A. Datasets and evaluation protocols

We conduct our experiments on several ageing datasets,
including MORPH [42], FGNET [43], and AgeDB [44].
MORPH dataset is a large longitudinal collection of 55, 134
mugshot images from 13, 617 subjects of different ethnicity in
the age range from 16 to 77 years old. More than 96% of the
images in the MORPH dataset are African or European people.
Different evaluation protocols are adopted to evaluate the age
estimation performance on this dataset. Two popular protocols,
namely random splitting (RS) and partial RS, perform a 5-
fold cross validation on the whole set of images and a subset
of 5, 493 images from the MORPH dataset, respectively. The
subjects of the images used in the partial RS protocol are
instances of Caucasian descent to reduce the cross-ethnicity
influence. Five-fold subject-exclusive (SE) cross validation
protocol is also performed to evaluate the performance of
age estimation algorithms. Since there is no identity overlap,
this protocol is more challenging. The label distribution of
images in the MORPH dataset in terms of gender and ethnicity
is significantly unbalanced. Following the works in [45], the
MORPH dataset is further randomly partitioned into three non-
overlapped subsets S1, S2 and S3. This splitting makes the
Male-Female ratio about three and the White-Black ratio one.
Two experiments are performed: 1) training on S1, testing on
S2+S3 and 2) training on S2, testing on S1+S3.
FGNET dataset contains 1, 002 images of 82 subjects and
the ages range from 0 to 69 years old. The FGNET dataset is
challenging due to the large variation in pose, expression and
lighting conditions. For the evaluation on the FGNET dataset,
we follow the leave-one-person-out (LOPO) protocol [28] in
our experiments. In this protocol, all images from one subject
are separated for testing and the remained images are used
for training. This partitioning is repeated for all 82 subjects in
the FGNET dataset and the averaged MAE and CS scores are
reported as the final performance.
AgeDB dataset is a in-the-wild collection of 16, 488 images of
568 subjects in the age range form 1 to 101. Following [46], we
adopt the RS validation protocol to evaluate the performance
of the proposed method.

B. Implementation Details

Among the wide variety of currently available network
architectures, the well-known VGG-16 is the one achieving
the best performance on almost all the available datasets for
age analysis, as reported in a recent comparative study [22].
We used the pre-trained model (VGG-Face [47]) trained with
a large-scale face recognition dataset as the basic backbone
of our system. We do not use any other advanced techniques,
such as multi-task learning or ensemble learning, in our model.
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Further, we do not use any other external ageing datasets,
such as IMDB-WIKI [28], for pre-training. Clearly, by using
these techniques and extra training data, better performance
can be achieved. We employ an SGD optimiser and set the
learning rate, the momentum and the weight decay as 0.001,
0.9 and 0.0005, respectively. The learning is decreased by a
factor of 10 every 50 epochs. Each model is trained totally
in 150 epochs with the batch size of 32. For the evaluation
on the FGNET dataset, due to the limited number of training
images, we stop the training when over-fitted. Due to numerical
stability, we scale down the ground metric matrix by a certain
factor for each dataset. Our algorithm is implemented using
the MatConvNet1 framework on one GTX 1080Ti GPU.

Face alignment and data augmentation are two common pre-
processing steps for age estimation. All training and testing
images are aligned by the following two steps: Step I - Face
detection and facial landmark localisation: the MTCNN face
detector [48] is applied to detect the face and extract the
corresponding face bounding box and 5 facial landmarks (the
left and right centre of the eyes, the nose tip, the left and
right corner of the mouth) of each image. Following the work
in [28], the detected face bounding box is extended by taking
additional 40% of the width and height of face on all sides. Step
II - Face normalisation: In this step, a face image is centred
and aligned to a normalised position in order to guarantee all
facial landmarks stay at the same position in the image. The
facial landmarks are used for the alignment of each face by
the method proposed in [49]. Finally, the normalised face is
resized to 256× 256 pixels.

In order to relieve the over-fitting problem, we perform
standard augmentation techniques during the training stage
by random horizontal flipping, rotating (±10°), cropping and
adding Gaussian noise to the images. During inference, we
use the central cropped image as the input to the network and
the expected value over the entries of the output vector z is
considered as the predicted age, i.e. lp =

∑K
i=1 ipi.

We evaluate the performance of an age estimation algorithm
in terms of mean absolute error (MAE) and cumulative score
(CS) [9]. The MAE is calculated by averaging the absolute
error between the predicted age and the ground-truth over the
total number of test images. The CS measure is calculated as
Tθ
T × 100%, where Tθ is the number of test images whose

absolute error between the predicted age and the ground-truth is
not greater than the threshold θ. In this paper, unless otherwise
noted, θ is set as 5.

C. Effect of Hyper-parameters

There are four hyper-parameters in the proposed γ–
Wasserstein loss function which should be tuned carefully.
To reduce the search space, we first adopted the p-Wasserstein
loss (p = 1) as the ground metric function and performed the
partial RS protocol on the MORPH dataset to find the best
choices for λ and number of iterations in Algorithm 1. We
empirically found that λ = 1 and 50 iterations are the best
choices. Then, we performed further experiments to determine
the hyper-parameters ρ and τ in the proposed loss function.

1http://www.vlfeat.org/matconvnet/

TABLE I
THE INFLUENCE OF DIFFERENT PARAMETER SETTINGS ON THE PROPOSED

LOSS FUNCTION.

H
HHHτ

ρ 1 2 4 6 8 10 12

0.1 2.56 2.56 2.49 2.53 2.62 2.73 2.74
0.5 2.55 2.55 2.52 2.51 2.49 2.50 2.52
1 2.54 2.56 2.56 2.52 2.50 2.47 2.51
2 2.55 2.59 2.57 2.52 2.53 2.55 2.57

Table I shows MAEs for different combinations of ρ and τ .
As seen, the best age estimation performance is achieved using
ρ = 10 and τ = 1. As discussed earlier, ρ and τ should be
determined in a such way that the influence of small errors
should be amplified. As seen in Fig. 5, for a fixed ρ, the
effect of small errors is emphasised by choosing a smaller
τ . However, as shown in Table I, for optimal performance it
is important to control both the "definition" (range) of small
errors as well as their influence. This suggests that ρ and τ
need to be optimised jointly.

It should be noted that one can fine-tune the hyper-parameters
for each specific dataset. This may achieve marginally better
performance. However, this is not practical in real-world
applications, where the test images have different characteristics.
In this paper, we only evaluate our proposed method with fixed
hyper-parameters, fine-tuned on a small set of images, across
all the datasets, to verify its effectiveness in practical scenarios.

D. Comparisons with state-of-the-art algorithms

We compare the proposed method with a number of state-
of-the-art methods in controlled and uncontrolled (in-the-wild)
situations. To be fair, we only take deep neural networks-based
approaches for comparison. The MAE and CS values are read
from the references.
Results in controlled environments: To evaluate the performance
of the proposed method, we conduct some experiments on the
MORPH dataset which contains facial images captured in
a controlled environment. The comparisons under different
protocols of the MORPH dataset are summarised in Table II-
IV. Our method achieves the best MAE performance on the RS
and partial RS protocols, which is lower than the best state-of-
the-art method by a margin of 0.33 (11.80%) and 0.18 (9.13%)
years, respectively. The results obtained using the SE, S1/S2S3
and S2/S1S3 protocols are more interesting. In contrast to the
RS protocol, there is no identity overlap between training and
testing sets in the SE protocol. The training and the test sets
are balanced in terms of ethnicity and gender in the S1/S2S3
and S2/S1S3 protocols. The experimental results show that
our approach consistently outperforms other methods under
these protocols as well. Our method is best among all the
approaches, because it gains not only from label distribution
learning but also from the proposed similarity-aware ground
metric function introduced in the proposed loss function.
Results in uncontrolled environments: The experimental results
on the Morph dataset are encouraging. However, images in this
dataset are mugshots captured in a controlled environment.
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TABLE II
THE RESULTS OF THE EVALUATION ON THE MORPH DATASET (RS AND

PARTIAL RS PROTOCOLS).

Method MAE CS (%)

Partial RS Protocol
AGEn [45] 4.34 -
DEX [28] 3.25 -
DNCL [27] 2.85 83.8
DRF [50] 2.80 85.6
DC [32] 2.57 89.6
TV Distance 2.89 86.1
Cross Entropy (CE) 2.65 88.3
KL Divergence 2.56 89.1
p-Wasserstein 2.50 89.3
γ–Wasserstein 2.47 90.4

RS Protocol
C3AE [51] 2.78 -
DLDL [2] 2.42 -
CE-MV [52] 2.41 90.1
DRF [50] 2.14 91.3
DLDL-v2 [31] 1.97 -
DC [32] 1.88 94.3
TV Distance 2.14 90.4
Cross Entropy (CE) 1.96 92.7
KL Divergence 1.90 93.1
p-Wasserstein 1.89 93.1
γ–Wasserstein 1.79 94.4

We are more interested in assessing the performance of
age estimation systems on images taken in uncontrolled
environments which are more challenging. So, we conducted
further experiments on two uncontrolled datasets, i.e. FGNET
and AgeDB datasets. Compared with the FGNET dataset, the
images in the AgeDB dataset are captured under more sever
shooting situations, where more different poses, noise and
occlusions, etc. occur.

The results on the FGNET and AgeDB datasets are given
in Table V and VI, respectively. As the AgeDB dataset is
relatively new, there are a very few evaluations of age estimation
methods reported in the literature. Compared to the results
on the MORPH dataset, the accuracy of all age estimation
algorithms degraded. This degradation in the performance can
be attributed to the uncontrolled external factors which include
makeup and expressions in the face, variable lighting conditions,
changes in head pose, resolution of the facial images etc. Our
proposed method still achieves the lowest MAE and highest
CS score among the existing approaches on both FGNET and
AgeDB datasets. This suggests that our method has a better
generalisation ability to unseen scenarios compared with other
existing methods.

Some examples of face images in the wild (from AgeDB)
with good and poor age estimation accuracy by the proposed
γ–Wasserstein are shown in Fig. 7. As seen, the low accurate
predictions are mostly caused by the difficult conditions created
by very bad illumination, different kinds of occlusion, blurring,
makeup etc.

TABLE III
THE RESULTS OF THE EVALUATION ON THE MORPH DATASET (SE

PROTOCOL).

Method MAE CS (%)

Demographic features [53] 3.60 -
Multi-Task [54] 3.00 85.3
Soft-Ranking [55] 2.83 -
CE-MV [52] 2.80 -
Xie et al. [46] 2.69 -
TV Distance 3.12 84.0
Cross Entropy (CE) 2.94 86.5
KL Divergence 2.82 87.2
p-Wasserstein 2.78 87.8
γ–Wasserstein 2.71 88.1

TABLE IV
THE RESULTS OF EVALUATION ON THE MORPH DATASET (S1/S2+S3 AND

S2/S1+S3 PROTOCOLS).

S1/S2+S3 S2/S1+S3 Average

Method MAE CS (%) MAE CS (%) MAE CS (%)
Soft-Softmax [56] 3.24 - 3.03 - 3.14 -
D2C [57] 3.06 - 3.05 - 3.06 -
Wan et al. [58] 3.08 - 2.78 - 2.93 -
AGEn [45] 3.04 - 2.68 - 2.86 84.0
Xie et al. [46] 2.80 - 2.81 - 2.81 -
DC [32] 2.80 87.2 2.8 85.2 2.8 86.2
TV Distance 2.96 85.2 3.01 84.9 2.98 85.0
Cross Entropy (CE) 2.88 86.5 2.87 86.6 2.87 86.5
KL Divergence 2.78 87.3 2.79 87.3 2.79 87.3
p-Wasserstein 2.75 87.4 2.75 87.5 2.75 87.5
γ–Wasserstein 2.69 88.2 2.70 88.2 2.70 88.2

TABLE V
EVALUATION ON THE FGNET DATASET (LOPO PROTOCOL).

Method MAE CS (%)

DEX [28] 4.63 -
AGEn [45] 4.34 76.0
Ranking-CNN [59] 4.13 -
CE-MV [52] 4.10 78.5
C3AE [51] 4.09 -
DNCL [27] 3.71 81.8
Xie et al. [46] 3.58 78.3
DRF [50] 3.47 87.3
TV Distance 3.65 79.8
Cross Entropy (CE) 3.52 81.3
KL Divergence 3.48 82.0
p-Wasserstein 3.52 81.5
γ–Wasserstein 3.41 82.9

E. Evaluation of different loss functions

To validate the effectiveness of the proposed loss function, we
compare it with several existing loss functions: the TV distance,
the KL divergence, p-Wasserstein metric and the proposed γ-
Wasserstein loss function. We further, compare with multi-class
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TABLE VI
EVALUATION ON THE AGEDB DATASET (RS PROTOCOL). THE MAE AND

CS VALUES ARE READ FROM [46].

Method MAE CS (%)

AGEn [45] 6.22 53.5
CE-MV [52] 5.87 57.2
Xie et al. [46] 5.58 53.2
TV Distance 5.75 57.8
Cross Entropy (CE) 5.41 59.2
KL Divergence 5.29 61.4
p-Wasserstein 5.20 61.8
γ–Wasserstein 5.16 62.9

TABLE VII
THE INFLUENCE OF VALUES OF PARAMETER p IN THE p–WASSERSTEIN

LOSS FUNCTION.

p 0.7 0.8 0.9 1 1.1 1.2 1.3 2
MAE 4.01 2.78 2.50 2.50 2.49 2.52 8.12 NaN

classification approach where the cross entropy (CE) is used as
the loss function. First, we performed the partial RS protocol on
the MORPH dataset to find the best value of hyper-parameter
p in the p–Wasserstein loss function. We empirically found
the training algorithm explodes for p ≥ 2. This is due to the
appearance of large values assigned to far points by the ground
metric function. Table VII shows MAEs for different values of
p. As seen, the best age estimation performance is achieved
using values of p close to 1.

The experimental results are shown in bottom part of
Tables II– VI. TV distance has the highest MAE among existing
loss functions. Comparing the results of KL divergence with
those of T distance, the increase of age estimation accuracy
is apparent. The accuracy further increases by utilising the
p-Wasserstein algorithm, but the reduction is relatively small
with respect to the KL divergence. Finally, we observe that the
best values of MAE and of the CS score are achieved when
the γ–Wasserstein loss is used for training the model.

F. Computational complexity

The proposed and competing methods have the same
computational complexity at the inference stage. However,
at the training stage, the computational complexity of our
proposed method is higher than the divergence-based methods.
For solving the minimisation problem (1), the gradient of
the loss function ` should be computed. Using a divergence
bases loss function, e.g. KL divergence or TV distance, the
gradient is directly obtained via Eq. (4) or Eq. (5). This is
with the computational complexity of order O(n). However,
for computing the gradient using an optimal transport loss
function, e.g. p–Wasserstein or γ–Wasserstein loss function,
we first need to solve the minimisation (10) using the Sinkhorn-
Knopp algorithm. This has computational complexity of the
order of O(n2) [60]. Then, the gradient is obtained via Eq. (11)
with computational complexity O(n2 log(n)).

G. Discussion
1) Effect of Age Group: To evaluate the accuracy of the

proposed method at each age class, the age of all images
within each class is estimated by our proposed algorithm. This
experiment is conducted on the validation set of the AgeDB
and MORPH datasets by following the RS protocol. Fig. 8
illustrates the performance of our age estimation algorithm for
different age classes in each dataset. The solid line indicates
the average predicted age in each age class and the red bars
represent the standard deviation of the predicted age at each
class. The dashed line is a reference to show where accurate
predictions must lie.

It can be observed that the average accuracy of our proposed
method differs at different ages. Generally, the gap between
the estimated ages and ground-truth ones increases towards
older and younger ages. The system tends to have accurate
performance in middle ages. The age of younger subjects
is slightly over-estimated. This is more pronounced for the
subjects in the AgeDB dataset. Starting from approximately
the age of 60 years old, the very accurate performance of our
system elsewhere begins to diverge from the correct prediction
line. This observation may be due to the limited number of
training images in the older age categories. Moreover, a texture
change is the most perceptible change during adulthood. Texture
changes appearing at very old ages are very fine and difficult
to recognise. For this reason, the precise age estimation for
older people is more difficult.

Fig. 9 shows the distribution of ages predicted by our
proposed algorithm for different evaluation datasets. The solid
and dashed lines show the age distributions of predicted ages
and ground-truth, respectively. As can be seen, the model
trained by our proposed algorithm follows the age distribution
of the the MORPH and AgeDB datasets. Our system closely
models the distribution of the MORPH dataset, which is bi-
modal. However, it is not able to fit the ground-truth distribution
of the AgeDB dataset. This could be due to in-the-wild
faces in the AgeDB dataset which lead to degradation in the
performance.

2) Error Distribution: As the MAE and CS measures only
reflect the age prediction errors over all test data, it is important
to know how certain the model is in the age prediction and
how far off it might be. Fig. 10 shows the distribution of the
prediction errors (between estimated ages and target ages) of
two models trained by γ–Wasserstein and p–Wasserstein on
the MORPH dataset under the RS protocol. As can be seen,
the error distribution for both models approaches the Gaussian
distribution and the maximum error between the estimated and
the target ages is around 10 years. As showed in Fig. 7, this
error might be due to illumination conditions, face occlusion,
blurring, makeup etc Moreover, Fig. 10 illustrates how using
a different ground metric function for the optimum transport
based loss function will result in different patterns for the
error distribution curves. As can be observed, the standard
deviation of the error distribution of the model trained by the
p–Wasserstein loss function is higher. Furthermore, the mean
of the distribution is slightly shifted to the right.

3) Cross-dataset evaluation: There are many demographic
factors, such as gene, gender, ethnicity etc., and many other
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Fig. 7. Ground-truth/Estimated age of exemplar images from the AgeDB dataset with good and bad age estimation achieved by the proposed method.
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Fig. 8. Average predicted age at each age class for different datasets. (a)
MORPH. (b) AgeDB.

external factors, such as illumination conditions, image quality,
makeup, lifestyle, cosmetic surgery, etc., which may confound
the training process, if the distribution of the training images
is skewed with respect to these factors [61]. For instance,
the distribution of images in the MORPH dataset in terms of
ethnicity is significantly unbalanced. More than 96% of the
images in the MORPH dataset are African or European people.
In the AgeDB dataset, a bias may be further introduced to
the dataset by makeup covering age signs such as wrinkles
and age spots. Since a neural network efficiently learns a data
distribution, the performance of the trained models is prone to
be biased to the distribution of the training data. These biases
associated with the ageing datasets cause the trained models
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Fig. 9. Distribution of the predicted ages for different datasets. (a) MORPH.
(b) AgeDB.

to perform best with test data which is similar to that used to
train the model, and to generalise poorly to unseen data, if the
test data has a different distribution.

In this section, we reveal the existence of a dataset bias in the
ageing datasets via cross-dataset evaluation, where the test and
training sets have different data distributions and characteristics.
Specifically, we evaluate the performance of the trained models
on a dataset other than it was trained for (trained on the AgeDB
dataset and tested on the MORPH and FGNET datasets, and
trained on the MORPH dataset and tested on the AgeDB and
FGNET datasets).

The results for the intra-dataset and cross-dataset evaluations
are given in Table VIII. The numbers in the bold font represent
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TABLE VIII
INTRA AND CROSS-DATASET EVALUATION. INTRA-DATASET RESULTS ARE

IN BOLD.

Test Datasets

FGNET MORPH AgeDB

Training Dataset MAE CS (%) MAE CS (%) MAE CS (%)
MORPH 7.01 46.15 1.79 94.4 10.65 33.19
AgeDB 9.82 28.94 5.72 55.60 5.16 62.91

the intra-dataset results. Compared with intra-dataset evaluation,
the accuracy of our age estimation algorithm in the cross-dataset
evaluation is significantly degraded. In Fig. 11, we show the
distribution of the predicted ages for the two models trained
on MORPH and LAP datasets, respectively. Compared with
the distribution of the predicted ages under the intra-domain
evaluation (see Fig. 9), the trained models are not able to follow
the ground-truth distributions in the cross-dataset evaluation.
These results confirm that the age estimation performance is
severely affected by the dataset bias. This calls for designing
alternative leaning schemes which make the trained model
agnostic to the dataset bias and provide models which have the
ability of overcoming the bias between the training and testing
sets. The future work in this research area will need to develop
the key elements of age estimation system training, such as a
loss function, learning rate policy and architecture components,
so that the trained model can render an age estimation solution
which is more domain invariant than existing methods.

4) Important face regions: Motivated by [28], we conduct
the following experiment in order to determine the most
important parts of the face image to the overall age estimation
accuracy. In each test image, a block within the face area is
replaced by the mean image. The block size used is 20× 20
pixels. The MAE on the validation images of the MORPH
dataset for each of the block occlusions is given in Fig. 12.
As seen, the occlusion of different parts of the face frame
has a different impact on the age estimation performance.
The area from the eyes to the chin and that between two
ears through the centre of the face are the most informative
parts of the face for the age estimation. Occluding the area
between the bottom of the nose and the upper lip increases the
MAE the most. The next important parts are the regions close
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Fig. 11. Distribution of the predicted ages for two models: (a) Trained on the
MORPH dataset, (b) Trained on the AgeDB dataset.

Fig. 12. Impact of the block occlusion of face region with size of 20 × 20
pixels on the age estimation accuracy (MAE).

to eyes and lips. Surprisingly, the area above the eyebrows
passing through forehead does not have much impact on the
performance, although this area has apparent ageing patterns.
In fact, due to in-the-wild nature of the training set, the top
part of a large proportion of training images are occluded by
hair, hat etc. Further, cosmetic surgery also hides these ageing
signs. Therefore, the trained models may not be sensitive to
this area of the face for estimating the age.

VI. CONCLUSION

In this paper, we proposed an optimal transport-based loss
function for the age estimation within a label distribution
learning framework. Adopting the notion of optimal transport to
deal with the label distribution task has two advantages. Firstly,
the optimal transport has been shown to have the potential
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to measure the distance between two label distributions
properly. This, in particular, avoids the common problem with
information divergence-based measures, such as KL divergence
and TV distance, to gauge the distance between two label
distributions, which do not overlap. Secondly, by devising
the ground metric function for the optimal transport so that
it closely reflects the semantic similarity of neighbouring
classes, the learnt age estimation model becomes more effective.
Extensive evaluations on the FGNET, MORPH, AgeDB datasets
confirm the merits of the proposed approach in terms of
delivering better accuracy of age predictions. While this work
primarily focuses on a label distribution learning framework
to establish its virtue for the age estimation problem, it can be
applied to other machine learning tasks where there is some
kind of similarity among classes. We are currently investing
this in relation to other applications. Furthermore, we note
that our original formulation has a limitation which makes it
impractical for comparing distributions supported on different
topological spaces. Applying our model to such learning tasks
is an important future direction of this work.
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