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Feature Selection Based on a Sparse Neural
Network Layer with Normalizing Constraints

Peter Bugata and Peter Drotár, Member, IEEE

Abstract—Feature selection (FS) is an important step in ma-
chine learning since it has been shown to improve prediction
accuracy while suppressing the curse of dimensionality of high-
dimensional data. Neural networks have experienced tremendous
success in solving many nonlinear learning problems. Here, we
propose a new neural network-based FS approach that introduces
two constraints, the satisfaction of which leads to a sparse FS
layer. We performed extensive experiments on synthetic and real-
world data to evaluate the performance of our proposed FS
method. In the experiments, we focus on high-dimensional, low-
sample-size data since they represent the main challenge for FS.
The results confirm that the proposed FS method based on a
sparse neural network layer with normalizing constraints (SNeL-
FS) is able to select the important features and yields superior
performance compared to other conventional FS methods.

Index Terms—Feature selection, dimensionality reduction, neu-
ral network, high-dimensional data.

I. INTRODUCTION

IN recent years, a rapid increase in the amount of data
has been observed. Data generated in areas such as health-

care, bioinformatics, transportation, social media, and online
education are often high-dimensional and present challenges
not only for effective and efficient data management but also
in the application of data mining and machine learning tech-
niques [1]. In addition to the increased demands on computing
resources, these high-dimensional data are tightly associated
with the curse of dimensionality, which is a phenomenon that
adversely affects machine learning algorithms designed for
low-dimensional space [2].

One approach to cope with the curse of dimensionality and
related issues is feature selection (FS). This is the process of
selecting a subset of features from the original feature set. The
goal is to select the relevant features and to drop irrelevant,
noisy, and redundant features. To date, many FS methods
based on different principles, such as rough set theory [3], the
graph-guided regularization approach [4], logistic regression
with cardinality constraints [5], and many others [6], [7], [8],
have been proposed.

Recently, artificial neural networks and deep learning have
provided unprecedented performance on many nonlinear learn-
ing problems, such as pattern recognition, sequence recog-
nition, system identification, and medical diagnoses. Neural
networks construct new and more abstract high-level features
from the original low-level input variables and discover the
distributed representations of data. The achievements of neural
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networks and deep learning have led to the opinion that
advanced machine learning can be done without FS. However,
in some cases, mainly where the number of observations is not
sufficient, deep learning should be combined with FS to obtain
better learning performance [9]. In general, irrelevant features
can slow network training and increase requests for computa-
tional resources. FS decreases model complexity at the input
level and is also helpful in maintaining the interpretability of
the original features and understanding the trained model [10].

On the other hand, neural networks and deep learning can
be the basis for FS. A deep-learning-based FS approach is
presented in [11], where it is used in the context of action
recognition from video records and utilizes the contributions
of input variables to the activation potentials of the first hidden
layer. Another FS method [12], which is used for remote
sensing scene recognition, selects important features according
to the minimal reconstruction error in the deep belief network.
Several works [13], [14], [15] introduced FS methods based on
neural networks and applied their networks in bioinformatics.

Some neural network-based FS methods utilize the assump-
tion that when training a neural network, the weights of useless
features tend to be zero [10]. To determine the importance of
features for making a correct prediction, they define various
saliency metrics, including the network weights, the derivative
of the network loss function, or both [16]. The saliency values
computed after training the network with the full set of features
determine the feature importance (scores, weights).

Other algorithms sequentially eliminate irrelevant features
according to some criteria evaluated in each step for all
remaining features. The criterion used in [17] is the difference
between the values of the objective function before and after
the removal of the feature. The method in [18] eliminates
useless features based on the prediction accuracy. The same
criterion is used by an FS method [19], which sequentially
builds a set of selected features starting with an empty set.

Recently, more attention has been paid to promoting the
sparsity of deep neural networks. The inclusion of a sparse
regularization term into the learning model results in zeroing
out the redundant weights during the training process, and
a smaller number of nonzero weights leads to sparse feature
scores. Sparse regularizers are often based on the norms of
the network weights. An FS method introduced in [20] selects
the important input variables of a feedforward neural network
with `1 regularization. The method in [21] utilizes `1 and `1/2
regularizations for eliminating the redundant dimensions of
input data to compress the input layer of the network. In an FS
method [13], a sparse one-to-one linear layer is added between
the input layer and the first hidden layer, and its weights
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determine the importance values of the input variables. The
network is trained with elastic-net regularization [22], which
is a convex combination of `1 and `2 regularizations.

In this paper, we propose a new neural network-based FS
method called sparse neural network layer FS (SNeL-FS).
It utilizes a special sparse layer of the feedforward neural
network to select relevant features. Unlike previous work,
the sparsity of this FS layer is achieved in a new way by
a combination of two normalizing constraints. The feature
importance values are then determined with saliency measures
designed specifically for the FS layer. The proposed FS
method is suitable for classification and regression tasks. The
main contributions of this paper are summarized as follows:

1) We propose a novel FS method based on feedforward
neural networks, which selects the most important fea-
tures with a special network layer suitable for FS added
between the input layer and the first hidden layer.

2) To obtain the sparsity of the FS layer, two constraints
are introduced. The first limits the weights of inputs, and
the second regulates the standard deviations of outputs
of the FS layer neurons. The constraints are dynamically
balanced during network training.

3) Two saliency measures based on the FS layer weights are
defined to determine the feature importance.

4) The experimental results compared to the results of
popular FS methods demonstrate the ability of the pro-
posed method to identify relevant features even in high-
dimensional data with small sample sizes.

The rest of the paper is organized as follows: Section II
describes the main idea and the theoretical concept of the
proposed FS method. Section III focuses on its implementation
aspects. In Section IV, we first evaluate the performance of
the novel FS method on artificial data and then compare
its influence on the classification performance on real-world
datasets. Finally, in Sections V and VI, we discuss future
research directions and present our conclusions.

II. PROPOSED METHOD

Let F = {X1, X2, . . . , Xm} be a set of m features
(variables) and {x1, x2, . . . , xn} be a set of n observations
of a dataset X ∈ Rn×m. Let Y = (y1, y2, . . . , yn) be the
target variable. In general, the goal of supervised FS is to
find a set S ⊂ F of dim features, dim � m, that optimally
characterizes the target Y . Based on the set S, a new dataset
X∗ ∈ Rn×dim is extracted and keeps most of the information
aboutX . The proposed FS method assigns scores to individual
features according to the weights of the added FS layer, and
the features with the highest scores form the set S.

A. Feature Selection Layer

Consider a feedforward neural network that solves a given
classification or regression task. Then, we include a special
hidden dense layer between the input layer and the first hidden
layer of this network for the purpose of FS. We denote this
layer as the FS layer.

The FS layer has dim neurons, where dim is the number
of input variables (features) to select. No nonlinear activation

function is used in this layer; thus, the layer represents a linear
transformation of the input variables. The FS layer neurons do
not use any threshold value (bias = 0), so the parameters of
the FS layer are only the weights of the connections between
the input layer and the FS layer. The FS layer is then fully
connected to the first hidden layer of the original network.

The aim of the constructed FS layer in selecting important
input variables is to find an optimal solution that simultane-
ously satisfies the following two conditions:

i) The weights between the input layer and the FS layer
take only the values 1 or 0, where 1 means that the
corresponding input variable is selected by the respective
FS layer neuron and 0 means the opposite.

ii) For each FS layer neuron, the sum of the weights of the
connections entering this neuron equals 1.

When these conditions are satisfied, each FS layer neuron
selects exactly one input variable. Thus, the FS layer weights
can be interpreted as variable selection. Note that two FS layer
neurons can select the same variable; hence, after eliminating
the zero-weighted variables, the original space of the variables
is transformed into a space with at most dim dimensions.

While condition ii) limits the size of the weights, condition
i) requires weight values of only 0 or 1, which seems to
be critical because this condition cannot be obtained by
continuous methods in neural networks. We approximate this
constraint by the sparsity of the FS layer with an idea loosely
inspired by batch normalization; a neural network technique
that accelerates and to some extent separates the training of
individual layers [23].

Assume that the input dataset is standardized. Each input
variable is standardized independently; i.e., each variable has
a mean of 0 and a standard deviation of 1. Then, the new
features obtained as FS layer outputs also have a mean value
of 0. Consider some neuron of the FS layer. If only one
connection with a weight of 1 enters this neuron and the
weights of the other connections are 0, then the corresponding
new feature is only a copy of the selected original variable,
and its standard deviation is also 1. If several connections
have nonzero weights smaller than 1 and with a sum of 1, the
standard deviation will decrease unless the respective variables
are completely correlated. Therefore, to achieve a sparse
solution, we replace condition i) with a new condition in which
the standard deviation of the output of each FS layer neuron
must be at least 1.

1) FS Layer Definition: Consider the dataset X with the
variables X1, X2, . . . , Xm. We assume that X is standardized;
i.e., the mean or expected value E(Xj) = 0, and the standard
deviation and variance Var(Xj) = 1 for every j = 1, . . . ,m.
Next, consider the feedforward neural network to solve the cor-
responding classification or regression problem. The proposed
SNeL-FS method modifies the network by including a dense
FS layer of dim neurons between the input layer and the first
hidden layer. In the FS layer, no nonlinear activation function
and no bias are used; thus, the outputs, i.e., the activation
values, of its neurons represent new variables and are defined
as

Ak =

m∑
j=1

wjkXj , for k = 1, . . . , dim,



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX XXXX 3

where wjk denotes the weight of the connection between the
j-th input neuron and the k-th FS layer neuron.

The presented FS method selects dim important input vari-
ables of the dataset X according to the optimal FS layer
weights obtained by learning the modified neural network.
The network is trained to minimize a given objective function,
while the weights and activation values of the FS layer should
satisfy the following two sets of conditions:

m∑
j=1

|wjk| ≤ 1, for k = 1, . . . , dim, (1)

Var (Ak) ≥ 1, for k = 1, . . . , dim. (2)

The Var(Ak) value is the variance of Ak computed over
all observations of the input dataset X or over observations
included in each minibatch in the training process when used.

An example of a neural network with the added FS layer
that satisfies conditions (1) and (2) is depicted in Fig. 1. As
proven below, each FS layer neuron selects one input variable,
which is shown by highlighted connections.

Xj

wjk Ak

∑ |wjk| ≤ 1
j

Var(Ak) ≥ 1 

X1

Xm

FS layer

Input layer

Fig. 1. Feature selection layer based method

2) Relationship Among the FS Layer Constraints: When
analyzing requirements (1) and (2) for the k-th neuron of the
FS layer, it can be seen that they work against each other. This
follows from the relationship between the sum of the absolute
values of the weights entering the k-th neuron and the variance
of its activation value Ak.

Lemma 1. Let {X1, X2, . . . , Xm} be a set of m variables
from a standardized dataset X . If Ak =

∑m
j=1 wjkXj , where

k ∈ {1, . . . , dim} and wjk ∈ R, for j ∈ {1, . . . ,m}, then

Var (Ak) ≤

 m∑
j=1

|wjk|

2

. (3)

Proof. With the linearity of the expectation, the definitions of
variance and covariance lead to the following expression of
the variance of Ak:

Var (Ak) =

m∑
i=1

m∑
j=1

wikwjk Cov(Xi, Xj), (4)

where Cov(Xi, Xj) is the covariance of the variables Xi,
Xj . Because the dataset X is standardized, the covariance
values of Xi and Xj match with their correlation values
Corr(Xi, Xj), where the values range from -1 to 1. Based
on the properties of absolute values, the variance of Ak is
bounded from above by the following sums:

Var (Ak) =

∣∣∣∣∣∣
m∑
i=1

m∑
j=1

wikwjk Corr(Xi, Xj)

∣∣∣∣∣∣ ≤
m∑
i=1

|wik|
m∑
j=1

|wjk| |Corr(Xi, Xj)| ≤
m∑
i=1

|wik|
m∑
j=1

|wjk| .

From this we get inequality (3).

Assume condition (1) holds for the k-th neuron of the FS
layer. Then, inequality (3) implies that the variance of Ak

is bounded from above by one; i.e., Var (Ak) ≤ 1. It is an
inequality that is opposite the one in condition (2) for the k-th
neuron. Conversely, if we assume that condition (2) holds for
the k-th neuron, then inequality (3) implies an inequality that
is opposite the one in condition (1); i.e.,

∑m
j=1 |wjk| ≥ 1. We

have shown that conditions (1) and (2) work against each other.
In addition, if they hold simultaneously for the k-th neuron,
then

∑m
j=1 |wjk| = 1 and Var (Ak) = 1.

Therefore, it follows from Lemma 1 that if the input dataset
is standardized and conditions (1) and (2) hold, then the
outputs of the FS layer are also standardized.

3) Sparsity of the FS Layer: Additionally, we examine
which weights of the FS layer satisfy inequalities (1) and (2).
We show that assuming there is no pair of fully correlated
input variables, the solution is sparse. This assumption is not
limiting because if two input variables are fully correlated,
then one of them can be omitted without a loss of information.

Lemma 2. Let {X1, X2, . . . , Xm} be a set of m variables
of a standardized dataset X . Suppose that for every i, j ∈
{1, . . . ,m}, i 6= j, the variables Xi, Xj are not completely
correlated; i.e., |Corr(Xi, Xj)| < 1. Then, the solution of
inequalities (1) and (2) for k ∈ {1, . . . , dim} is a set of all
vectors wk = (w1k, w2k, . . . , wmk) that satisfy the following
conditions:

a) There is exactly one i ∈ {1, . . . ,m} such that |wik| = 1.
b) For every j ∈ {1, . . . ,m}, j 6= i, the weight wjk = 0.

Proof. It is easy to see that each vector wk with a single
nonzero component whose absolute value equals 1 satisfies
the system of inequalities (1) and (2) for k ∈ {1, . . . , dim}.
We prove that only such vectors are solutions of this system.

Let k be an arbitrary number from the set {1, . . . , dim} and
let the vector wk satisfy the system of inequalities (1) and (2).
We know that the variance of the activation Ak of the k-th FS
layer neuron is bounded from above:

Var (Ak) ≤
m∑
i=1

m∑
j=1

|wik| |wjk| |Corr(Xi, Xj)| . (5)
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Generally, |Corr(Xi, Xj)| ≤ 1 for every i, j ∈ {1, . . . ,m};
thus, for each term on the right side of inequality (5), the
following is valid:

|wik| |wjk| |Corr(Xi, Xj)| ≤ |wik| |wjk| . (6)

Assume that there are two different nonzero components
wpk, wqk of the vector wk. According to the assumption in
Lemma 2, |Corr(Xp, Xq)| < 1 and for the corresponding term
of (5), the following holds:

|wpk| |wqk| |Corr(Xp, Xq)| < |wpk| |wqk| . (7)

After summation, we obtain the following:

Var (Ak) <

m∑
i=1

m∑
j=1

|wik| |wjk| =

 m∑
j=1

|wjk|

2

. (8)

Because the vector wk satisfies condition (1), inequality (8)
implies that Var (Ak) < 1. However, this is a contradiction
to the assumption that the vector wk satisfies condition (2),
Var (Ak) ≥ 1.

Therefore, if the vector wk satisfies conditions (1) and (2),
it has at most one nonzero component. If all components
are zero, then condition (2) does not hold. Thus, the only
possibility is that the vector wk contains exactly one nonzero
component, and according to conditions (1) and (2), its abso-
lute value must be equal to 1.

This lemma implies that for each FS layer neuron, the
solutions of inequalities (1) and (2) are vectors of the weights
entering this neuron, which are not only sparse but even have
exactly one nonzero component. This means that the FS layer
realizes the selection of the input variables. Ideally, each FS
layer neuron selects exactly one input variable corresponding
to the connection with the nonzero weight.

B. Neural Network Model

Let us consider a feedforward neural network that forms the
basis for the use of the SNeL-FS method. Suppose there are H
hidden layers in the model. We denote the model parameter by
θ = {W 1, b1, . . . ,WH+1, bH+1}, where W h is the weight
matrix of the connections between the (h − 1)-th and h-th
layers and bh is the bias in the h-th layer for h = 1, . . . ,H+1.
Let the minimized objective function be of the form

f(θ) = l(θ) + λ

H+1∑
h=1

Ω(W h), (9)

which is the sum of the loss function l(θ) and the regular-
ization term

∑H+1
h=1 Ω(W h) multiplied by the regularization

parameter λ ∈ R+
0 . The type of loss function used depends

on the problem being solved. The regularization term can be
added to avoid the possible overfitting of the model.

After including the FS layer between the input layer and the
first hidden layer, the model is slightly changed, and its new
parameter is θ̃ = {W , W̃

1
, b̃

1
, . . . , W̃

H+1
, b̃

H+1
}, where

W = (wjk) is the weight matrix connecting the input layer
to the FS layer. The original optimization task is transformed
into a new task, the results of which are used to select the most

important input variables. Because the added FS layer should
satisfy conditions (1) and (2), the original task is changed to
the following constrained optimization problem:

min
θ̃
f(θ̃) = l(θ̃) + λ

H+1∑
h=1

Ω(W̃
h
),

m∑
j=1

|wjk| − 1 ≤ 0, for k = 1, . . . , dim, (10)

1−Var (Ak) ≤ 0, for k = 1, . . . , dim.

Problem (10) aims to minimize the objective function f(θ̃)
with respect to the parameter θ̃ and subject to two sets
of additional constraints. Because solving this problem is
extremely difficult, we have transformed it to an unconstrained
optimization problem, the solution of which approximates
the solution of constrained problem (10). The idea is based
on the Karush-Kuhn-Tucker (KKT) approach [24], which
generalizes the method of Lagrange multipliers. However, to
avoid the inclusion of a large number of hyperparameters, we
applied some simplification. Finally, the optimization problem
is defined as

min
θ̃
F (θ̃) = f(θ̃) + λSΩS(W ) + λAΩA(W ),

ΩS(W ) =

dim∑
k=1

max(0,

m∑
j=1

|wjk| − 1),

ΩA(W ) =

dim∑
k=1

max(0, 1−Var (Ak)),

(11)

where λS , λA ∈ R+
0 are two multipliers. The penalty terms

ΩS and ΩA are always nonnegative and equal to zero only if
conditions (1) and (2) for all FS layer neurons are satisfied.

It can be seen that the ΩS penalty is a weaker form of
`1 regularization. A neuron of the FS layer contributes to the
penalty only if the sum of the absolute values of the weights
entering this neuron exceeds 1. The contribution of an FS layer
neuron to the ΩA penalty is positive only if the variance of
its activation value is less than 1.

The network training process minimizes the original objec-
tive function f defined by (9) with respect to the parameter θ̃
and balances conditions (1) and (2). When the penalty ΩS is
positive in a certain epoch of network training, to minimize
it, the absolute values of the respective FS layer weights are
reduced during the following epochs. According to Lemma 1,
this results in a decrease in the variance of the corresponding
activations and an increase in the ΩA penalty. Conversely, a
decrease in the ΩA penalty leads to an increase in the absolute
values of the respective FS layer weights, which can result in
an increase in ΩS . Furthermore, the prediction error must be
minimized, so mainly the weights belonging to the relevant
input variables should be increased, whereas the others may
decrease.

1) Differentiability of the Objective Function: Gradient-
based methods used for optimization in neural networks im-
plicitly assume that optimized objective functions are differ-
entiable. In examining the differentiability of the objective
function F (θ̃) described by (11), we focus on the newly
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defined terms ΩS(W ) and ΩA(W ) penalizing the breach of
conditions (1) and (2), respectively.

The partial derivative of the penalty ΩS(W ) with respect
to wjk, where j ∈ {1, . . . ,m} and k ∈ {1, . . . , dim}, can be
expressed as follows:

∂ΩS(W )

∂wjk
=

{
sgn(wjk), if

∑m
i=1 |wik| > 1,

0, otherwise.
(12)

The function ΩS(W ) is not mathematically differentiable with
respect to wjk at the points where

∑m
i=1 |wik| = 1 and for

wjk = 0. To make this function differentiable in its domain,
we set the derivative at these points to zero.

Consider n observations of the dataset X . We denote the
values of the variables X1, X2, . . . , Xm of the i-th observation
for i = 1, 2, . . . , n as Xi

1, X
i
2, . . . , X

i
m. Then, the activation

value of the k-th FS layer neuron for the i-th observation is

Ai
k =

m∑
j=1

wjkX
i
j . (13)

Assuming that the dataset X is standardized, the expected
value of Ak is zero, and its sample variance is computed as

Var (Ak) =
1

n

n∑
i=1

(
Ai

k − E(Ak)
)2

=
1

n

n∑
i=1

(
Ai

k

)2
. (14)

After substituting (13) into (14), applying the chain rule, and
utilizing the linearity of differentiation, the partial derivative
of the variance Var (Ak) with respect to wjk has the following
form:

∂Var (Ak)

∂wjk
=

2

n

n∑
i=1

Ai
kX

i
j =

2

n

n∑
i=1

m∑
l=1

wlkX
i
lX

i
j . (15)

Now, we can compute the partial derivative of the penalty
ΩA(W ) with respect to wjk as follows:

∂ΩA(W )

∂wjk
=

{
− 2

n

∑n
i=1A

i
kX

i
j , if Var (Ak) < 1,

0, otherwise.
(16)

Technically, we solve the problem with the partial derivatives
at the points where Var (Ak) = 1 by setting them to zero.

C. Saliency Measures Based on the FS Layer

The optimal model obtained by training the modified neural
network provides the optimal weights Ŵ of the FS layer.
Ideally, the weight matrix Ŵ contains dim nonzero weights,
one for each FS layer neuron (Lemma 2). Then, each FS
layer neuron selects exactly one important input variable
corresponding to the nonzero weight. Note that several neurons
can select the same variable.

Generally, although the optimal solution is close to a sparse
solution, the number of nonzero weights of Ŵ does not have
to be small enough to unambiguously select at most dim
input variables. Therefore, to select the required number of the
most important variables, we introduce two alternative saliency
measures derived from the optimal weights of the FS layer.
The first utilizes the sum of the weights, whereas the second
uses the maximum weight.

1) Sum-weight Saliency: Consider the input variable Xj .
The simplest definition of its saliency is the sum of the
absolute values of the weights leaving the input neuron corre-
sponding to Xj . We adjust this measure based on the fact that
if we divide all the weights entering an FS layer neuron by a
constant and simultaneously multiply all the weights leaving
this neuron in the next layer by the same constant, we obtain
an identical solution in terms of prediction.

Because we cannot exclude cases where the standard devi-
ation of the activation value std(Ak) in the optimal model
deviates significantly from 1, we use normalized weights
when calculating the saliency; i.e., we divide each weight
entering the k-th neuron of the FS layer by std(Ak), for
k ∈ {1, . . . , dim}. In addition, to eliminate the dependence
of the saliency value on the number of FS layer neurons, we
divide the sum of the normalized weights by dim. Then, we
define the so-called sum-weight saliency of the input variable
Xj for the weight matrix Ŵ as follows:

SSW(Xj , Ŵ ) =
1

dim

dim∑
k=1

|wjk|
std(Ak)

. (17)

It can be proven that the defined sum-weight saliency
measure has the following property:

Lemma 3. Let {X1, X2, . . . , Xm} be the set of m variables
of a standardized dataset X . If the weights Ŵ of the FS layer
satisfy conditions (1) and (2), then the sum of the sum-weight
saliency values of all variables of X for the weight matrix
Ŵ is equal to one; i.e.,

m∑
j=1

SSW(Xj , Ŵ ) = 1. (18)

2) Max-weight Saliency: The second approach is based on
the assumption that each FS layer neuron selects one variable.
It does not matter whether a variable has been selected one or
more times. Then, the weights entering an FS layer neuron can
be normalized by dividing by the sum of all these weights. The
max-weight saliency of the variable Xj for the weight matrix
Ŵ is defined as the maximum of all normalized weights
leaving the input neuron corresponding to the variable Xj :

SMW(Xj , Ŵ ) =
dim

max
k=1

|wjk|∑m
i=1 |wik|

. (19)

3) Comparison of Saliency Measures: It is easy to see that
under conditions (1) and (2), the sum-weight saliency values,
like the max-weight saliency values, are from the interval [0, 1]
for all input variables. For variables clearly selected by the FS
layer neurons, the max-weight saliency values are close to
1, whereas according to Lemma 3, the sum-weight saliency
values are usually smaller.

With the optimal weights of the FS layer obtained by
training the modified neural network, the sum-weight saliency
distinguishes in more detail the importances of individual
variables, whereas the second measure based on the maximum
value seems to separate the relevant variables more signifi-
cantly from the irrelevant ones. The difference between these
two measures is illustrated on the MNIST dataset in online
supplementary material.
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III. IMPLEMENTATION ASPECTS OF SNEL-FS

In this section, we describe in more detail the individual
steps of the proposed SNeL-FS method, focusing on the
choice of network architecture, weight initialization, network
training with dynamic FS layer hyperparameters, selection of
the optimal model and final determination of the important
input variables according to the defined saliency measures.

A. Neural Network for FS

The choice of an appropriate network architecture signif-
icantly affects the results of the proposed FS method. We
always assume that the feedforward neural network used as
the basis of the method is suitable for solving a given problem.
Finding the ideal network architecture for a task is a specific
problem that should be solved through experiments guided by
monitoring the error on the validation set [25].

In our experiments, we usually use a simple network with
one or two hidden dense layers composed of rectified linear
unit (ReLU) neurons as a basis. The number of hidden neurons
is affected by the number of samples available in a given
dataset. For high-dimensional small-sample-size data, we try
to reduce the number of network parameters due to the risk
of overfitting, and therefore we use architectures with a small
number of hidden neurons.

The output layer and the type of loss function depend on the
problem being solved. In the case of classification, we utilize
one sigmoid neuron for binary tasks. For multiclass tasks with
k classes, we chose k softmax neurons. The cross-entropy loss
function is used. In the case of regression problems, one linear
neuron and the mean squared error (MSE) loss function are
utilized.

B. Network Training

The modified neural network containing the added FS layer
is trained to minimize the objective function F (θ̃) defined
by (11). The first step is to initialize the network weights.
We assume that in all layers except the FS layer, the initial
weights are randomly generated, for example, from a uniform
distribution. The weights of the FS layer are initialized to
a constant value of 1

2m , where m is the total number of input
variables. Such initial weights satisfy constraint (1) because for
each FS layer neuron, the sum of the weights entering it is 1

2 .
On the other hand, they do not satisfy constraint (2) because
the variance of the new variables Ak is at most 1

4 . To reduce
the penalty ΩA and increase the prediction performance, the
weights increase during training, especially the weights of the
relevant variables.

The amounts of penalization ΩS and ΩA are controlled by
the hyperparameters λS and λA, respectively. Like the other
hyperparameters, these can also be chosen through common
practices, such as a grid search, a random search, or manual
tuning [25]. Another method is presented in [18], [26], where
instead of fixed regularization parameters, iteratively adapted
parameters are used.

We utilize the dynamic hyperparameter approach shown
in [27]. This methodology seems to be effective in finding

a balance between the minimization of the prediction error
and the penalties for the breach of conditions (1) and (2).

During network training, we let the values of λS and λA
cyclically vary within given ranges. We utilize a triangular
window, where the values in a cycle first linearly increase and
then linearly decrease. The values of λS are evenly distributed
in the range [min λS ,max λS ], and the number of values
used in one half of the cycle is given by steps λS . Similar
approach is used for λA. During the network training, λS
passes the number of cycles given by cycles λS , and for
each of its values, λA passes cycles λA cycles. For each
stage defined by the pair (λS , λA), the same number of
epochs is used for training and is given by the value of
epochs per stage. The total number of epochs is determined
by the number of cycles, steps, and epochs per stage. The idea
is illustrated in Fig. 2.

max λS

min λS

max λA

min λA

steps λS

steps λA

Fig. 2. The idea of applying cyclic hyperparameters λS (in orange) and λA
(in blue) with the number of cycles cycles λS = cycles λA = 1 and the
numbers of steps steps λS = 4 and steps λA = 3. The number of stages is
48.

The optimal settings of the FS layer hyperparameters de-
pend on the properties of a particular dataset. In our ex-
periments, we utilize the following ranges of λS and λA,
which can be combined: smaller [0.001, 0.01], [0.001, 0.02]
and larger [0.01, 0.1], [0.01, 0.2]. Experience shows that the
best choice is to use one cycle of λS and two cycles of λA
for each value of λS . For high-sample datasets, we usually
train 10 epochs per stage, whereas for small-sample datasets,
1 epoch is used per stage.

Although the FS layer weights are forced to be small,
the weights of the next layers may increase during network
training, and overfitting may occur, especially in the case of
small-sample datasets. To avoid this, a suitable regularization
can be used in the layers following the FS layer.

The objective function F (θ̃) in (11) can be minimized with
any optimizer. We use the Adam optimization algorithm [28]
with learning rates of 5.10−5, 10−4, or 10−3. For high sample-
size datasets, the network can be trained with minibatches,
which are also utilized for computing the variance of the FS
layer activations.

C. Optimal Model and FS

We select the optimal model with the validation set. Before
training, we split the dataset X into a training set and a
validation set with a ratio of 80 : 20, and as an optimality
criterion, we use the maximum prediction performance on the
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validation set determined by a suitable metric. If more models
have the same performance, then the model with the smallest
value of the objective function on the validation set is selected.

In addition, we require the model that best satisfies condi-
tions (1) and (2). Therefore, when choosing the optimal model,
we take into account only models whose average penalties for
the breach of conditions (1) and (2) per FS layer neuron do not
exceed the given limit. For the weight matrix W , the average
penalty for condition (1) is the value ΩS(W )/dim, and for
condition (2), it is the value ΩA(W )/dim. We use a value of
0.3 for both penalties in our experiments.

The FS layer weights of the optimal model are used to cal-
culate the sum-weight saliency or alternatively the max-weight
saliency values of all features (input variables). Through the
saliency values, the presented method provides a ranking of
the features according to their importance. Then, the desired
number of the most important features can be selected. An-
other possible approach is to select the features whose saliency
values are greater than a given threshold. The advantage of
either of these two saliency measures depends on the dataset
used and the task to be solved.

IV. EXPERIMENTAL RESULTS

We examined the performance of the SNeL-FS method
from two important aspects. We first evaluated its ability to
identify features important for determining the target vari-
able, and then we examined its influence on the prediction
accuracy. The ability to identify relevant features was tested
on synthetically generated datasets, where the required output
is known, and thus FS methods can be evaluated regardless
of the classifier used. Experiments to evaluate the improve-
ment in the prediction performance after applying SNeL-FS
were conducted on twelve publicly available real-world high-
dimensional datasets.

In the numerical experiments, we demonstrated the usability
of the proposed SNeL-FS method for binary and multiclass
classification problems, as well as for regression problems.
As a baseline for comparison, we included three frequently
used FS methods, mRMR with a mutual information (MI)
criterion [29], reliefF [30], and f-score [31].

All presented results of the SNeL-FS method were obtained
by the computationally effective TensorFlow [32] framework.

A. Experimental Results on Artificial Datasets

1) Evaluation Method: To measure the performance of the
mentioned FS methods on artificial datasets, we used the index
of success (Suc.), which evaluates how well an FS method
selects known relevant features (true features) [33]. The Suc.
score rewards the selection of relevant features and penalizes
the inclusion of irrelevant features. The index of success is
defined as follows:

Suc. =
Rs

Rt
− αIs

It
, (20)

where Rs is the number of selected relevant features, Is is the
number of selected irrelevant features, Rt is the total number
of relevant features, and It represents the total number of

irrelevant features. The parameter α = min
{

1
2 ,

Rt

It

}
is used

to express that the selection of irrelevant features is preferred
to the omission of relevant ones. If FS ranks features by their
importance and all the known relevant features are selected at
first, we set Suc. = 1, which is the best value.

2) Datasets: We compared the Suc. score of the FS
methods on eight synthetic datasets, four of which constitute
binary classification problems and four constitute regression
problems.

The Madelon dataset presents a binary classification task
with numerical features. It is constructed by clusters of ran-
domly generated points normally distributed with the standard
deviation of 1 about some vertices of the hypercube in Ninf -
dimensional space, where Ninf is the number of true features.
All the points of one cluster have the same class, the class 0
is assigned to half of the clusters and the class 1 is assigned
to the other half. In our experiments, we used a 5-dimensional
hypercube with edges of length 2 ∗ 2 and 4 clusters per class.

The XOR dataset represents a binary classification task with
binary features. The class value is determined by the logical
XOR operation of two relevant features.

The linear regression dataset represents a regression prob-
lem, where the output is generated by applying a random linear
regression model with Ninf nonzero regressors to the well-
conditioned, centered, Gaussian input with unit variance.

The Friedman dataset is a nonlinear regression dataset with
independent features uniformly distributed on the interval
[0, 1]. The target variable is created according to the rule for
the Friedman 1 dataset [34] with the polynomial and sine
transformations of Ninf = 5 true features.

In the experiments, we used the Madelon, XOR, linear
regression, and Friedman datasets of two variants differing
in the number of samples. Small-sample datasets (denoted
as Mad, XOR, Reg, Fri) consist of 200 samples, and high-
sample datasets (Mad5k, XOR5k, Reg5k, Fri5k) contain 5,000
samples. All the datasets contain 500 features (input variables).
Their basic characteristics are described in Table I.

TABLE I
CHARACTERISTICS OF THE ARTIFICIAL DATASETS.

Dataset Acronym Samples Features (Ninf )
Madelon Mad 200 500 (5)
XOR XOR 200 500 (2)
Lin. Regression Reg 200 500 (5)
Friedman Fri 200 500 (5)
Madelon 5k Mad5k 5,000 500 (5)
XOR 5k XOR5k 5,000 500 (2)
Lin. Regression 5k Reg5k 5,000 500 (5)
Friedman 5k Fri5k 5,000 500 (5)

3) SNeL-FS Setting: For the high-sample datasets (denoted
by 5k), we used SNeL-FS based on the network with one
hidden layer composed of 10 ReLU neurons. For the small-
sample datasets, we chose a network with two hidden layers,
each with 5 ReLU neurons, as the base. Between the input
layer consisting of 500 neurons and the first hidden layer, the
FS layer with 15 neurons was added. The number of FS layer
neurons corresponds to the number of features returned by the
FS method, which was determined as 3% according to [33].
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In the case of the high-sample datasets, we applied the uni-
versal range of [0.01, 0.2] for the λS and λA hyperparameters
with 19 steps, and we trained 10 epochs per stage. For the
small-sample datasets, Mad, Reg, and Fri, the same range for
λS and λA was used, and only XOR required a smaller range
of [0.001, 0.02]. For these four datasets, the number of steps
was doubled to 38, and the value of epochs per stage was
decreased to 1. For all datasets except XOR5k and Mad5k,
we used `1 and `2 regularizations with the regularization
parameters 0.01 in all layers following the FS layer.

As criteria for selecting the optimal model, we utilized the
maximum accuracy for classification and the minimum MSE
for regression and evaluated the model on the validation set.

4) Results: The Suc. results of the SNeL-FS method are
shown in Table II. They are compared with the Suc. rates
of three conventional FS methods. We present the SNeL-FS
results achieved with the sum-weight saliency, and the Suc.
rates determined by the max-weight saliency were similar. The
best score for each dataset is emphasized in bold font.

TABLE II
INDICES OF SUCCESS ON EIGHT ARTIFICIAL DATASETS.

Dataset mRMR/MI reliefF f-score SNeL-FS
Mad 0.40 0.60 0.60 0.99
XOR 0.00 0.50 0.00 1.00
Reg 0.60 0.40 0.60 0.99
Fri 0.80 0.99 0.80 0.80
mean 0.45 0.62 0.50 0.95
Mad5k 0.80 1.00 0.80 1.00
XOR5k 0.00 1.00 0.00 1.00
Reg5k 0.99 0.80 1.00 1.00
Fri5k 1.00 1.00 0.99 1.00
mean 0.70 0.95 0.70 1.00

For the small-sample datasets, SNeL-FS obtained an average
score of Suc. = 0.95 and clearly outperformed the other three
methods. For the high-sample datasets, the values of the Suc.
scores are generally higher than the values on the small-sample
datasets because the availability of a higher number of samples
allows algorithms to better recognize patterns in data. The
SNeL-FS method achieved an average Suc. = 1.00 on the 5k
datasets, which means that it identified all relevant features
in all these datasets as important features. Among the other
methods, the reliefF method obtained a result closest to the
result of the SNeL-FS method with an average Suc. = 0.95.
A more detailed analysis reveals the weaknesses of the uni-
variate f-score, especially in identifying the relevant features
of the XOR datasets. Similarly, the mRMR method cannot
discover the two features that together determine the target
variable. On the other hand, on the XOR5k dataset, SNeL-FS
found the FS layer weights that ideally satisfy conditions (1)
and (2) and selected exactly two relevant features.

Table II shows that the SNeL-FS method was able to
detect all relevant features in the examined artificial datasets
except the Friedman dataset (Fri), where 80% of the relevant
features were identified. These results confirm the ability of the
proposed method to identify relevant features in classification
and regression tasks.

B. Experimental Results on Real-world Datasets
1) Datasets: The influence of the proposed FS method on

the prediction performance was evaluated on publicly available
microarray datasets, which represent high-dimensional clas-
sification tasks characterized by a small number of samples,
imbalanced classes, and data complexity [35]. Our experiments
were performed on eight binary and four multiclass microarray
datasets, whose basic properties are described in Table III. The
last column shows the number of classes in the datasets and,
in brackets, the number of samples in each class.

TABLE III
CHARACTERISTICS OF THE REAL-WORLD DATASETS.

Dataset [Source] Samples Features Classes (Samples)
Colon [36] 62 2,000 2 (40, 22)
Crohn [37] 127 22,283 2 (85, 42)
Breast Cancer [38] 118 22,215 2 (43, 75)
Breast [39] 104 22,283 2 (62, 42)
Leukemia [40] 72 7,129 2 (47, 25)
Lung [41] 181 12,533 2 (94, 87)
Prostate [42] 102 12,600 2 (52, 50)
Bone Lesion [43] 173 12,625 2 (36, 137)
SRBCT [44] 83 2,309 4 (29, 11, 18, 25)
Glioma [45] 50 12,625 4 (14, 7, 14, 15)
MLL [46] 72 12,533 3 (24, 20, 28)
Lung Cancer [47] 203 12,600 5 (139, 17, 6, 21, 20)

2) Evaluation Method: When evaluating the impact of
the FS methods on prediction performance, several machine
learning algorithms are usually used to obtain an objective
assessment. We employed four well-known algorithms based
on different underlying concepts, namely, the Gaussian naive
Bayes (NB) classifier, the support vector classifier (SVC) with
a radial basis function (RBF) kernel and a penalty parameter
C = 1, the random forest (RF) classifier with 1,000 base
estimators and the entropy function to measure the quality
of a split, and the k-nearest neighbors (kNN) classifier with
k = 5.

Because most of the datasets examined present classification
problems with a class imbalance, we used the F1 score as
a measure of the prediction performance of the classifiers. The
F1 score is defined as a harmonic mean of the precision and
recall, i.e., F1 = 2. precision.recallprecision+recall , and expresses the balance
between them. For multiclass problems, we calculated scores
for each label and found their average weighted by support,
which is the number of true samples for each label.

We used k-fold stratified cross validation (CV) to validate
the results, where k was set to 10 for the binary datasets and
decreased to 5 for the multiclass datasets due to the very small
number of samples in some classes. The individual feature
selectors were included in the CV loop. For each CV fold,
a feature subset was obtained by an FS method with the
respective training data, and then the chosen classifier was
trained on the same training data with selected features. To
evaluate the F1 score, the testing data for the fold were used.
The final F1 score was achieved by averaging the scores over
all CV folds. This FS protocol avoids biased estimations of
the prediction performance [48].

3) SNeL-FS Settings: For all real-world datasets used, we
utilized a network with one hidden layer consisting of 10 or 20
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ReLU neurons as a basis. Twenty hidden neurons were applied
for the glioma and lung cancer datasets. The FS methods
selected the 30 most important features, so the FS layer with
30 neurons was included. This number was derived from [35],
where the ranker FS methods applied on DNA microarray
datasets selecting the top 10 and 50 features were compared.

The FS layer hyperparameter settings were optimized for
each dataset with respect to the F1 score obtained by CV and
averaged over all four classifiers used. We typically utilized
the range of [0.01, 0.1] for λS and λA with 18 steps. For the
MLL dataset, the range for λS was increased to [0.01, 0.2] with
19 steps, and for the breast cancer and glioma datasets, this
range was used for both λS and λA. The smaller interval of
[0.001, 0.01] was utilized for the breast and leukemia datasets,
and [0.001, 0.02] was used for the lung dataset. Additionally,
the regularization parameters for `1 and `2 regularizations
applied to the other layers were fine tuned. The networks were
trained with 1 epoch per stage.

For each CV fold, the respective training data were divided
into training and validation parts with a ratio of 80 : 20, and
the optimal model for a given fold was chosen according to
the maximum F1 score on the validation set.

4) Results: To evaluate the performance of the proposed
FS method, three conventional FS methods, mRMR with the
MI criterion, reliefF, and f-score, were compared. The F1 pre-
diction scores after applying the FS methods are presented in
Table IV. For each examined dataset, we provide the individual
F1 score for each classifier computed as a mean along with
the standard deviation of CV as well as the average of the four
applied classifiers. For SNeL-FS, the results achieved with the
max-weight saliency are shown.

In the last row of Table IV, we present the results of
the win/tie/loss (WTL) statistics that represent the number of
datasets for which the average F1 score obtained after applying
the SNeL-FS method is greater than, equal to or less than
the average F1 score achieved by performing the respective
classical method. The results show that SNeL-FS significantly
outperforms the other FS methods. With the sign test [49], the
null hypothesis that SNeL-FS and any compared method are
equivalent is rejected at an 0.05 level of significance.

The summary WTL statistic in the last column of the
last row of Table IV compares the average F1 score of the
SNeL-FS method with the best average scores among the
three classical FS methods for each particular dataset. The
table shows that SNeL-FS is almost always better than the
conventional FS methods, and the two exceptions are only on
the breast cancer and lung datasets. However, it can be seen
that the results on the lung dataset are balanced, and all the
methods achieved an average F1 score of approximately 99%.
The best average score, obtained by mRMR, outperformed
the average score of SNeL-FS by less than 0.1%. In contrast,
SNeL-FS achieved the best score with the SVC and kNN
classifiers on this dataset. In the case of the breast cancer
dataset, the results are also very balanced. Additionally, SNeL-
FS and f-score obtained the best average F1 scores of 91.57%.

We can conclude that the proposed method performed better
in terms of the F1 score than the other evaluated FS methods
when the specified settings were used. This is consistent with

the results obtained from the artificial data, where SNeL-FS
showed a higher rate of detection for the relevant variables.

When comparing the results in terms of the two proposed
saliency measures, for the real-world datasets, better F1 scores
were obtained by applying the max-weight saliency. For the
synthetic datasets, the results of the Suc. score based on the
sum-weight saliency and the max-weight saliency were almost
equivalent.

5) Comparison of Computational Performance: One of the
advantages of FS is that it saves computational resources.
Table V compares the training times of the individual learning
algorithms used in this section before and after the FS method
was applied. As a training set, we chose the breast cancer
dataset with 22,215 features and 118 samples represented by
a matrix with 2,621,370 real numbers. After selecting 30
features, the dataset is reduced to a new dataset with 3,540
real numbers.

TABLE V
COMPARISON OF COMPUTATIONAL PERFORMANCE.

Classif. Training time Training time Acceleration
algorithm before FS (s) after FS (s) ratio
NB 0.04635 0.00062 74.47
SVC 0.47195 0.00099 476.27
RF 5.25366 0.98497 5.33
k-NN 0.09270 0.00076 122.05

The experiments were performed on an Intel Core i5-8250U
CPU with 8.00 GB RAM and scikit-learn classifiers [50]. The
displayed results are the averages of 200 repetitions.

V. DISCUSSION

Although the experiments demonstrate the effectiveness of
the SNeL-FS method, there are several open possibilities for
further research. The intended use of SNeL-FS presented in
this paper is as a layer of a fully connected neural network. The
extension of SNeL-FS for specific types of neural networks,
such as convolutional neural networks (CNNs), is not straight-
forward. Generally, the application of any FS for natural
images where the object of interest can have an arbitrary
position is not expected to be beneficial. FS can be useful
in cases where the object of interest is centered in images,
as is frequently the case in medical imaging, such as X-
ray and computer tomography. However, also in this case,
the embedding of the FS layer is not trivial since a CNN
works with a specific structure of features that are processed
by filters of particular size. Leaving some features can disrupt
this structure, which is crucial for CNNs. Since CNNs are a
popular topic, the implementation of FS in CNNs will be the
object of future research.

Moreover, the original implementation of SNeL-FS can be
compared to the implementation with a smoothed maximum
in the penalty terms of the objective function. Other criteria
for the selection of the optimal model and other optimization
algorithms can also be considered. The approach with cyclic
hyperparameters appears to be promising; hence, it can be
useful to focus on a more effective determination of their
range and an analysis of the effect against overfitting. A deeper
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comparison of the introduced saliency measures is another
direction for further research.

VI. CONCLUSION

FS is an important data preprocessing strategy applied
in many data mining and machine learning problems. FS
methods select a subset of relevant features from original,
often high-dimensional, data, thereby improving the learn-
ing performance, decreasing the computational requirements,
and building better generalization models. Neural networks
have the built-in ability to reduce the naturally embedded
dimensions; however, the results are difficult to interpret,
and further analyses are problematic. On the other hand,
neural networks can be used as a basis for FS methods to
preserve some original features and provide better readability
and interpretability of models.

This paper presented a new supervised FS method, SNeL-
FS, which uses neural networks to select important input
variables. The method came from an idea inspired by the batch
normalization approach. SNeL-FS constructs a special network
layer, which is forced to be sparse through two constraints
leading to the standardization of its activations, for variable
selection. To evaluate the importance of features, two novel
saliency measures based on FS layer weights were introduced.

Numerical experiments were performed on two types of
data: eight artificial datasets and twelve high-dimensional real-
world datasets. The results show that the proposed method is
suitable for binary and multiclass classification problems as
well as for regression problems. On the synthetically gener-
ated datasets, the SNeL-FS method effectively identified the
relevant features. The results on the real-world datasets proved
that the method is able to efficiently reduce dimensionality and
achieve the best predictive performance in terms of the average
F1 score. All the experiments were executed by effective GPU
implementation with the TensorFlow framework.
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TABLE IV
F1 SCORES ON THE REAL-WORLD DATASETS. 30 FEATURES WERE SELECTED.

Dataset Classif. no FS mRMR/MI reliefF f-score SNeL-FS
NB 0.5867 ± 0.1384 0.7624 ± 0.1992 0.7957 ± 0.1632 0.7850 ± 0.1624 0.7790 ± 0.1829
SVC 0.5300 ± 0.3761 0.6924 ± 0.2838 0.7957 ± 0.1632 0.7757 ± 0.1486 0.8290 ± 0.1674

Colon RF 0.6867 ± 0.2810 0.8090 ± 0.1575 0.7757 ± 0.1486 0.7900 ± 0.1620 0.7757 ± 0.1486
kNN 0.4267 ± 0.3518 0.7257 ± 0.1488 0.6957 ± 0.2753 0.7757 ± 0.1486 0.7790 ± 0.1829
avg 0.5575 ± 0.2868 0.7474 ± 0.1973 0.7657 ± 0.1876 0.7816 ± 0.1554 0.7907 ± 0.1704
NB 0.7887 ± 0.2007 0.9294 ± 0.0813 0.7654 ± 0.1214 0.9020 ± 0.0923 0.9126 ± 0.0845
SVC 0.8403 ± 0.2276 0.9603 ± 0.0612 0.8909 ± 0.1096 0.9524 ± 0.0590 0.9635 ± 0.0564

Crohn RF 0.8873 ± 0.1459 0.9181 ± 0.1117 0.8083 ± 0.1329 0.9210 ± 0.0859 0.9159 ± 0.1029
kNN 0.8644 ± 0.0863 0.9429 ± 0.0700 0.8667 ± 0.1116 0.9496 ± 0.0836 0.9635 ± 0.0564
avg 0.8452 ± 0.1651 0.9377 ± 0.0810 0.8328 ± 0.1189 0.9313 ± 0.0802 0.9389 ± 0.0750
NB 0.8895 ± 0.0616 0.9055 ± 0.0606 0.9058 ± 0.0749 0.9124 ± 0.0748 0.9124 ± 0.0748
SVC 0.8941 ± 0.0567 0.9150 ± 0.0594 0.9215 ± 0.0521 0.9215 ± 0.0521 0.9163 ± 0.0525

Breast- RF 0.9163 ± 0.0525 0.9249 ± 0.0542 0.9198 ± 0.0607 0.9073 ± 0.0556 0.9139 ± 0.0553
Cancer kNN 0.8876 ± 0.0605 0.8955 ± 0.0525 0.9138 ± 0.0451 0.9215 ± 0.0521 0.9201 ± 0.0531

avg 0.8969 ± 0.0578 0.9102 ± 0.0567 0.9152 ± 0.0582 0.9157 ± 0.0586 0.9157 ± 0.0589
NB 0.8816 ± 0.0984 0.9201 ± 0.0707 0.9657 ± 0.0698 0.9556 ± 0.1018 0.9746 ± 0.0513
SVC 0.9460 ± 0.0667 0.9455 ± 0.0716 0.9464 ± 0.0864 0.9639 ± 0.0786 0.9746 ± 0.0513

Breast RF 0.9496 ± 0.0836 0.9746 ± 0.0513 0.9464 ± 0.0864 0.9746 ± 0.0513 0.9746 ± 0.0513
kNN 0.9103 ± 0.0989 0.9460 ± 0.0667 0.9492 ± 0.0630 0.9746 ± 0.0513 0.9635 ± 0.0564
avg 0.9219 ± 0.0869 0.9466 ± 0.0651 0.9519 ± 0.0764 0.9672 ± 0.0708 0.9718 ± 0.0526
NB 0.9800 ± 0.0600 0.9217 ± 0.1234 0.9350 ± 0.1001 0.9350 ± 0.1001 0.9350 ± 0.1001
SVC 0.6233 ± 0.3426 0.9514 ± 0.0756 0.9514 ± 0.0756 0.9057 ± 0.1821 0.9657 ± 0.0698

Leukemia RF 0.9800 ± 0.0600 0.9067 ± 0.1200 0.9657 ± 0.0698 0.9200 ± 0.1833 0.9600 ± 0.0800
kNN 0.6300 ± 0.2747 0.9200 ± 0.1833 0.9200 ± 0.1833 0.8867 ± 0.1956 0.9200 ± 0.1833
avg 0.8033 ± 0.1843 0.9249 ± 0.1256 0.9430 ± 0.1072 0.9118 ± 0.1653 0.9452 ± 0.1083
NB 0.9901 ± 0.0212 1.0000 ± 0.0000 0.9825 ± 0.0286 0.9894 ± 0.0227 0.9931 ± 0.0138
SVC 0.9864 ± 0.0166 0.9933 ± 0.0134 0.9968 ± 0.0097 0.9935 ± 0.0129 0.9968 ± 0.0097

Lung RF 0.9968 ± 0.0097 0.9968 ± 0.0097 0.9935 ± 0.0129 0.9968 ± 0.0097 0.9935 ± 0.0129
kNN 0.9471 ± 0.0271 0.9903 ± 0.0148 0.9808 ± 0.0210 0.9935 ± 0.0129 0.9935 ± 0.0129
avg 0.9801 ± 0.0187 0.9951 ± 0.0095 0.9884 ± 0.0180 0.9933 ± 0.0146 0.9942 ± 0.0123
NB 0.7120 ± 0.0825 0.9075 ± 0.1058 0.9018 ± 0.0985 0.9184 ± 0.0996 0.9184 ± 0.0996
SVC 0.8826 ± 0.1043 0.9070 ± 0.0876 0.9181 ± 0.0916 0.9206 ± 0.0926 0.9290 ± 0.0829

Prostate RF 0.9226 ± 0.0921 0.9305 ± 0.0953 0.9290 ± 0.0829 0.9215 ± 0.0877 0.9270 ± 0.0836
kNN 0.8277 ± 0.1043 0.9247 ± 0.0538 0.9124 ± 0.0838 0.9270 ± 0.0836 0.9290 ± 0.0829
avg 0.8362 ± 0.0958 0.9174 ± 0.0856 0.9153 ± 0.0892 0.9219 ± 0.0909 0.9259 ± 0.0873
NB 0.8472 ± 0.0624 0.8465 ± 0.0561 0.7854 ± 0.0696 0.8243 ± 0.0603 0.8427 ± 0.0507
SVC 0.8843 ± 0.0115 0.8736 ± 0.0406 0.8435 ± 0.0539 0.8658 ± 0.0454 0.8907 ± 0.0324

Bone- RF 0.8843 ± 0.0115 0.8796 ± 0.0474 0.8849 ± 0.0246 0.8782 ± 0.0311 0.8885 ± 0.0198
Lesion kNN 0.8794 ± 0.0267 0.8720 ± 0.0220 0.8786 ± 0.0305 0.8782 ± 0.0415 0.8830 ± 0.0272

avg 0.8738 ± 0.0280 0.8679 ± 0.0415 0.8481 ± 0.0447 0.8616 ± 0.0446 0.8762 ± 0.0325
NB 0.9726 ± 0.0338 0.9482 ± 0.0264 0.7971 ± 0.1188 0.9526 ± 0.0447 0.9868 ± 0.0264
SVC 0.9279 ± 0.0525 0.9511 ± 0.0247 0.8319 ± 0.1314 0.9769 ± 0.0283 0.9869 ± 0.0261

SRBCT RF 1.0000 ± 0.0000 0.9767 ± 0.0285 0.8576 ± 0.0988 0.9887 ± 0.0226 0.9887 ± 0.0226
kNN 0.7938 ± 0.0699 0.9399 ± 0.0635 0.8170 ± 0.0855 1.0000 ± 0.0000 0.9756 ± 0.0300
avg 0.9236 ± 0.0390 0.9540 ± 0.0358 0.8259 ± 0.1086 0.9795 ± 0.0239 0.9845 ± 0.0263
NB 0.6863 ± 0.0752 0.6235 ± 0.1354 0.5620 ± 0.1408 0.6655 ± 0.1764 0.7174 ± 0.1093
SVC 0.6131 ± 0.0815 0.6300 ± 0.1394 0.6428 ± 0.1579 0.6758 ± 0.1011 0.7552 ± 0.0746

Glioma RF 0.6474 ± 0.1307 0.7104 ± 0.1737 0.6024 ± 0.1551 0.6498 ± 0.0805 0.7753 ± 0.0969
kNN 0.5711 ± 0.1014 0.6028 ± 0.1971 0.7438 ± 0.0415 0.7226 ± 0.1300 0.7583 ± 0.0542
avg 0.6295 ± 0.0972 0.6417 ± 0.1614 0.6378 ± 0.1238 0.6784 ± 0.1220 0.7515 ± 0.0837
NB 0.9598 ± 0.0328 0.9714 ± 0.0352 0.9714 ± 0.0352 0.9264 ± 0.0492 0.9868 ± 0.0264
SVC 0.8913 ± 0.0545 0.9430 ± 0.0554 0.9321 ± 0.0422 0.9587 ± 0.0337 0.9598 ± 0.0328

MLL RF 0.9868 ± 0.0264 0.9576 ± 0.0348 0.9593 ± 0.0333 0.9587 ± 0.0337 0.9730 ± 0.0330
kNN 0.9072 ± 0.0670 1.0000 ± 0.0000 0.9450 ± 0.0276 0.9431 ± 0.0287 0.9550 ± 0.0590
avg 0.9363 ± 0.0452 0.9680 ± 0.0313 0.9519 ± 0.0346 0.9468 ± 0.0363 0.9687 ± 0.0378
NB 0.8847 ± 0.0450 0.9166 ± 0.0355 0.8076 ± 0.0309 0.7946 ± 0.0598 0.9262 ± 0.0452
SVC 0.8589 ± 0.0566 0.9289 ± 0.0508 0.7824 ± 0.0618 0.7481 ± 0.0492 0.9162 ± 0.0325

Lung RF 0.8835 ± 0.0682 0.9315 ± 0.0276 0.7968 ± 0.0705 0.8686 ± 0.0528 0.9363 ± 0.0235
Cancer kNN 0.8767 ± 0.0471 0.8996 ± 0.0641 0.8293 ± 0.0752 0.8572 ± 0.0418 0.9163 ± 0.0430

avg 0.8759 ± 0.0542 0.9191 ± 0.0445 0.8040 ± 0.0596 0.8171 ± 0.0509 0.9238 ± 0.0360
WTL avg 11/0/1 12/0/0 11/1/0 10/1/1
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