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Smoothness Sensor: Adaptive
Smoothness-Transition Graph Convolutions

for Attributed Graph Clustering
Chaojie Ji , Hongwei Chen, Ruxin Wang , Yunpeng Cai, and Hongyan Wu

Abstract—Clustering techniques attempt to group objects with
similar properties into a cluster. Clustering the nodes of an
attributed graph, in which each node is associated with a
set of feature attributes, has attracted significant attention.
Graph convolutional networks (GCNs) represent an effective
approach for integrating the two complementary factors of node
attributes and structural information for attributed graph clus-
tering. Smoothness is an indicator for assessing the degree of
similarity of feature representations among nearby nodes in a
graph. Oversmoothing in GCNs, caused by unnecessarily high
orders of graph convolution, produces indistinguishable rep-
resentations of nodes, such that the nodes in a graph tend
to be grouped into fewer clusters, and pose a challenge due
to the resulting performance drop. In this study, we propose
a smoothness sensor for attributed graph clustering based on
adaptive smoothness-transition graph convolutions, which senses
the smoothness of a graph and adaptively terminates the cur-
rent convolution once the smoothness is saturated to prevent
oversmoothing. Furthermore, as an alternative to graph-level
smoothness, a novel fine-grained nodewise-level assessment of
smoothness is proposed, in which smoothness is computed in
accordance with the neighborhood conditions of a given node at a
certain order of graph convolution. In addition, a self-supervision
criterion is designed considering both the tightness within clusters
and the separation between clusters to guide the entire neu-
ral network training process. The experiments show that the
proposed methods significantly outperform 13 other state-of-the-
art baselines in terms of different metrics across five benchmark
datasets. In addition, an extensive study reveals the reasons for
their effectiveness and efficiency.
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I. INTRODUCTION

CLUSTERING techniques attempt to group objects with
similar properties into a cluster [1], [2]. Various meth-

ods have been proposed to solve real-world problems via
text [3] and image [4] clustering. Recently, with the emer-
gence of graph-structured data, such as social networks and
biological networks [5]–[7], the partitioning of the nodes of
an attributed graph, in which each node is associated with a set
of feature attributes, has attracted significant attention [8], [9].
For example, potential criminal organizations can be identified
based on frequent contacts among known criminals [10]. In a
graph, attributes represent the feature values of a vertex itself,
while the structural information indicates the underlying simi-
larity among graph nodes, including not only the relationships
within a one-hop distance but also more complex relation-
ships at higher order distances [11], [12]. The question of how
to effectively integrate these two complementary factors of
attributes and structural information for the task of clustering
an attributed graph has attracted the interest of researchers.

Classical data clustering algorithms take the similarity
matrix of node representations as the input [13]. Graph-
structure-based approaches only exploit structural information
to group nodes [14]. Although later research attempts to
integrate both the node feature and network structure [15],
[16], these methods explore deep representation learning less.
Recently, deep-learning-related methods have been exploited
to learn graph representations based on both node content and
network structure information [17]. GCNs [18] are designed
to naturally incorporate information on the nodes themselves
and the relationships among nodes. Then, classical clustering
techniques, for example, k-means and spectral clustering, can
be stacked on the low-dimensional representations learned by
deep learning networks.

Most of the existing methods rely on the application of
fixed, usually shallow (low-order), graph convolutions. To
capture structural information, a structural deep clustering
network (SDCN) [19] was proposed with three layers of
an autoencoder and a GCN. Wang et al. [20] proposed
marginalized graph autoencoders (MGAEs), which increased
the possible number of convolutional layers to three.
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Fig. 1. Framework of the proposed smoothness sensor of NAS-GC. (a) Perform convolution based on the node level and detect the fine-grained saturation
of smoothness. (b) Core smoothness-transition component operates to quantify the saturation of smoothness in the form of standard sequence-to-sequence
prediction, considering a gradual smoothness process. (c) Once clustering partitioning is achieved by applying the k-means algorithm to the learned represen-
tations, the proposed self-supervised clustering strategy is employed to each node pair in accordance with both the tightness within clusters and the separation
between clusters.

Smoothness is an indicator for assessing the degree of sim-
ilarity of feature representations among nearby nodes in a
graph. With higher orders of graph convolution, smoother fil-
tered graph signals are obtained. However, graph convolution
with an excessively large order k results in oversmooth node
representations. Oversmoothing has been identified as a major
cause of performance degradation in deep graph convolutional
networks and the downstream tasks thereafter [21].

Specifying a graph-level order of graph convolution is a
general practice in GCNs. However, the node density in the
entire graph can vary greatly in attributed graphs. A relatively
isolated node with few neighbors could require a larger k
(stronger smoothing) to introduce more distant nodes to obtain
more information, while a node with more neighbors usually
can efficiently gather information with a smaller k (weaker
smoothing). Thus, fixed k-order graph convolution at the graph
level is a coarse solution.

In this study, to address the problem of smoothness, we
propose an adaptive smoothness-transition graph convolution
method for attributed graph clustering as Fig. 1, which oper-
ates like a smoothness sensor. In particular, the smoothness is
sensed at the fine-grained node level instead of at the level of
the entire graph. Finally, a self-supervision strategy is designed

to enable the training of our proposed model with respect to
various graph structures.

Smoothness-Transition Adaptivity: To overcome the over-
smoothing in GCNs, it is necessary to adaptively customize
the order k of graph convolution. We explore how k-order
filtered graph signals are transited from (k − 1)-order filtered
signals, and we define an assessment of smoothness saturation
related to iterative graph convolution operations as a standard
sequence-to-sequence prediction problem, in which the sat-
uration of smoothness is taken as an indicator of whether
the convolution process should be terminated as shown in
Fig. 1(b).

Fine-Grained Smoothness: To further detect the saturation
of smoothness at a fine-grained level that can adaptively
consider the surrounding environment of each node, we
first introduce a preliminary model—adaptive smoothness-
transition graph convolution (AS-GC)—for detecting graph-
wise smoothness and then evolve it into a mature version
based on nodewise smoothness, that is, nodewise adaptive
smoothness-transition graph convolution (NAS-GC), as illus-
trated in Fig. 1(a).

Self-Supervised Clustering Criterion: Clustering is a typical
unsupervised learning problem. To adapt traditional GCNs,
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which requires semisupervision, to clustering scenarios, we
propose a complete clustering criterion that can directly
consider both the tightness within clusters and the sepa-
ration between clusters to guide the self-supervised learn-
ing process of NAS-GC (AS-GC). It is integrated as a
component of self-supervised clustering learning shown in
Fig. 1(c).

We conduct a series of experiments to investigate the
proposed approaches. The experiments prove that the proposed
methods significantly outperform 13 other state-of-the-art
baselines in terms of popular metrics across five benchmark
datasets. Our extensive study shows the effectiveness and
efficiency of our proposed methods and further reveals their
implicit mechanisms.

The remainder of this article is organized as follows.
Section II reviews the related work of attributed graph clus-
tering in terms of machine learning and deep learning. We
elaborate on the details of the procedure of evolution and
details of the proposed AS-GC and NAS-GC in Section III. In
Section IV, experimental results are given for evaluating the
proposed models with respect to effectiveness and efficiency,
and an extensive study is conducted to reveal the intrinsic
mechanism of our methods. Finally, conclusion and future
work are given in Section V.

II. RELATED WORK

Our work focuses on attributed graphs, in which every node
is associated with a set of feature attributes and the nodes are
connected to each other [22], [23]. Then, these nodes are clus-
tered in accordance with both their feature attributes and the
structural information of the graph [24]. Related methods can
be mainly categorized into two classes—1) machine-learning-
and 2) deep-learning-based representations.

A. Graph Clustering Through Machine Learning

A series of classical methods based on node features
has been proposed. Although the graph structure, in some
cases, is not provided, a similarity matrix can be naturally
constructed based on the node features. The k-means algo-
rithm can be run directly on the given graph structure or on
the constructed similarity matrix to obtain clustering results.
Eigenvalue decomposition is introduced through a normal-
ized graph Laplacian matrix, and then, eigenvectors with
relatively small eigenvalues are fed into a clustering algo-
rithm to obtain clusters [13], [25]. Newman [14] further used
Laplacian eigenmaps to group nodes with a higher-than-
average density of edges. In addition to eigenvalue decom-
position, Girvan and Newman [26] proposed a method in
which centrality indices are used to locate cluster boundaries.
Wang et al. [27] exploited first-order and second-order prox-
imity to jointly preserve the global and local structures of a
network. Hastings [29] resorted to the techniques of belief
propagation [28], observing that a graph has a low density of
loops. By combining both node features and graph structure
information, a non-negative matrix factorization method has
also been proposed in which the node attribution matrix is
decomposed and the graph structure is utilized to construct

regularization terms [15], [16]. Because DeepWalk is con-
sidered equivalent to matrix factorization, Yang et al. [30]
proposed text-associated DeepWalk (TADW) to incorporate
text features of nodes into network representation learning
within the matrix factorization framework. It is observed that
there may exist considerable noise in real-world data, espe-
cially in each view of them [31], [32]. To avoid blindly
combining the information from multiview data with potential
noise, Xia et al. [33] proposed robust multiview spectral clus-
tering, in which each transition probability matrix with respect
to an individual view is decomposed into two parts: 1) a shared
latent transition probability matrix and 2) a deviation error
matrix that encodes the noise.

B. Deep Representations for Graph Clustering

With its powerful representation capabilities [34],
deep learning has been widely applied in the graph
domain [35], [36]. We intuitively split the deep learning
methods used in this field into two main categories—
1) autoencoders and 2) GCNs [37]. The autoencoders
are usually designed as unsupervised learning models.
Tian et al. [38] first proposed GraphEncoder, which learns
a nonlinear embedding of the original graph by means of
stacked autoencoders. This method differs from the singular
value decomposition-based dimension reduction method in
which the original representation space is merely projected
into a new space with a lower rank through linear projection.
Later, a random surfing model, called deep neural networks
for graph representation (DNGR), combined with stacked
denoising autoencoders was designed [39]. Another class of
graph clustering methods is based on GCNs, in which node
representations can be updated by aggregating messages from
neighboring vertices. Graph autoencoders (GAEs) and varia-
tional graph autoencoders (VGAEs) apply GCNs to encode
representations and an inner product decoder for learning [40].
To handle sparse data, second-order proximity (local pairwise
second-order similarity within one hop) was exploited in [27]
to preserve both global and local network structures through
a deep structural network embedding method. By combining
autoencoders and GCNs, Wang et al. [41] also proposed a
goal-directed deep attentional autoencoder that simultaneously
learns the importance of neighboring nodes and soft labels
from the graph embedding itself.

Although deep learning techniques have been widely
applied, the aforementioned methods can merely aggregate
information from neighbors within a limited distance. To
address this shortcoming, the SDCN was developed by design-
ing a delivery action to construct a connection between an
autoencoder and a GCN with three layers, combining both
low-order and high-order information [19]. MGAEs were
developed in an attempt to extend autoencoders to deep convo-
lutions to learn more effective representations [20]. However,
the number of layers in an MGAE is still limited to three.
AGC was recently proposed to support higher order graph
convolution with a novel low-pass graph filter, which uti-
lizes the smoothness of the graph signals [42]. Our method,
NAS-GC (AS-GC), is closely related to deep approaches of
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TABLE I
IMPORTANT NOTATIONS USED IN THIS ARTICLE

this kind. Concretely, based on the smoothness saturation of
attributed graphs and the surrounding environment of each
node, we propose a smoothness sensor that can adaptively
choose the appropriate order of graph convolution and a fine-
grained nodewise mechanism for every vertex, along with an
effective self-supervision criterion.

III. METHOD

A. Preliminaries

Given a graph G = (V, E, X), V = {v1, . . . , vn} is the set
consisting of all nodes and E is the edge set that can be rep-
resented as an adjacency matrix A. X is the feature matrix
[x1, . . . , xn]T ∈ R

n×m, where xi denotes the feature represen-
tation of vertex vi, and m represents the number of features.
Our goal is to assign each node to a cluster. All possible clus-
ters are collected in a set C = {c1, . . . , cr}, where r is the
number of candidate clusters. In addition, we define two oper-
ations that will be frequently used in our paper. [X]j denotes
the collection of the jth column in matrix X, while [X]j repre-
sents the extraction of the jth row. Table I lists some important
notations that will be used throughout the rest of this article.

B. Smoothness of Graph Signals

We first introduce some basic notations. Given the adjacency
matrix A of graph G, the degree matrix and the graph Laplacian
can be expressed as D = diag(d1, . . . , dn) and L = D − A,
respectively. This Laplacian can be eigen-decomposed as
U�U−1, where � = diag(λ1, . . . , λn) is a diagonal matrix
of the eigenvalues and U = [u1, . . . , un] is the matrix of the
corresponding eigenvectors. Moreover, the symmetrically nor-
malized graph Laplacian is Ls = I − D−(1/2)AD−(1/2), which
can also be eigen decomposed in the same way as L.

A graph signal can be represented as a vector f =
[f (v1), . . . , f (vn)]T , where f : V → R is a real-valued function
on the nodes of a graph. The input feature matrix X ∈ R

n×m

can be split into m individual graph signals, where the column
[X]j corresponds to the jth signal.

Equipped with the Laplacian matrix, the smoothness of
a graph signal f can be quantified by the graph Laplacian
quadratic form [43] as

f TLf = 1

2

∑

(vi,vj)∈E

(
f (vi) − f

(
vj

))2
. (1)

It shows that smoother signals tend to assign similar values
for connected nodes.

A graph signal can be decomposed into a linear combination
of the eigenvectors [43]

f =
n∑

i=1

eiui (2)

where ei is the coefficient of ui for the graph signal, and the
magnitude of the coefficient |ei| is proportional to the strength
of the basis signal ui.

Then, the smoothness of a basis signal uq can be calculated
using the Laplacian–Beltrami operator [44]

�
(
uq

) = 1

2

∑

(vi,vj)∈E
ai,j

∥∥∥∥∥
ui

q√
di

− uj
q√
dj

∥∥∥∥∥

2

2

= uT
q Lsuq = λq (3)

where ui
q denotes the ith element of the eigenvector uq, and

ai,j is the element located in the ith row and jth column of the
adjacency matrix A. It can be observed that the smoothness of
a basis signal is equivalent to the corresponding eigenvalue,
with smaller eigenvalues indicating smoother basis signals. We
thus refer to signals with small eigenvalues as low-frequency
(smoother) signals.

C. Nodewise Adaptive Smoothness-Transition Graph
Convolution

In this section, we seek a graph convolutional approach to
obtain better graph representations for clustering. We first pro-
pose a naive but intuitive prototype and gradually evolve it
into its mature version, NAS-GC. The entire framework of
NAS-GC is illustrated in Fig. 1.

1) Evolutionary Process of the Overall Objective of the
Smoothness Sensor:

a) Order-fixed graph convolution: Smooth graph signals
tend to cause nearby nodes to have similar representations,
which is consistent with the way a cluster in a graph tends
to be composed of adjacent nodes. Lower frequency signals
correspond to smoother graph signals and, thus, help to form
the nodes in an attributed graph into clusters more easily.

A low-pass graph filter is a function for producing low-
frequency basis signals from relatively high-frequency signals
for various downstream tasks. We first define a frequency
response function for a filter as follows: G = Up(�)U−1,
where p(�) = diag(p(λ1), . . . , p(λn)).

Given a specified graph filter, we can execute a first-order
graph convolution as follows:

[
X

]

j
= [GX]j =

[
Up(�)U−1X

]

j
=

n∑

i=1

p(λi)eiui (4)
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where [X]j is the filtered version of the jth graph signal
from X. p(λi) is assigned to preserve low-frequency basis sig-
nals and remove high-frequency ones by scaling the values
of ei.

When a first-order convolution is conducted, the represen-
tation of every node is updated by aggregating its 1-hop
neighbors. In this way, the information from long-distance
neighbors is discarded, which could lead to severe problems
in a large but highly sparse graph, resulting in an undersmooth
graph signal. To alleviate this problem, the concept of k-order
graph convolution is introduced.

We formulate the k-order graph convolution process as
follows: [

X
]

j
=

[
GkX

]

j
=

[
Up(�)kU−1X

]

j
. (5)

Finally, with a predefined k, the filtered graph signals can
be fed to a downstream algorithm to perform clustering.
[GkX]j represents the jth filtered graph signal under k-order
convolution.

b) Adaptive graph convolution: Oversmooth graph sig-
nals can exert a clear negative effect on clustering by causing
two vertices that should belong to distinct clusters to pos-
sess similar representations with limited discriminability. To
achieve a balance between undersmoothness and oversmooth-
ness, the selection of a suitable k for the convolution process is
naturally critical for learning effective representations of the
graph and, consequently, for ensuring good performance in
downstream tasks, for example, attributed graph clustering.

A naive paradigm for solving this problem is to adopt a
score function or probability maximization model. We first
define a maximum order K. Then, graph signals filtered by
graph convolutions of different orders are fed into this model
one by one, and the corresponding levels of smoothness sat-
uration are evaluated. We can choose the order with the
maximum smoothness saturation as the optimal order for graph
convolution as follows:

K = arg max
k=1,...,K

pagc

(
GkX

)
(6)

where pagc(·) denotes a score function or probabilistic model
to output the value of smoothness saturation associated with
k-order graph convolution.

c) Adaptive smoothness-transition graph convolution:
The above solution simply assumes that there is no relation-
ship among the filtered graph signals obtained under different
orders of graph convolution. Considering that the low-pass
frequency response function p(·) should be constantly nonin-
creasing and non-negative for all the inputs, the smoothness
of the filtered node features will monotonically increase with
increasing k [42]. This can be expressed as follows:

�

⎛

⎜⎝

[
GkX

]
j∣∣∣

∣∣∣
[
GkX

]
j

∣∣∣
∣∣∣
2

⎞

⎟⎠ ≤ �

⎛

⎜⎝

[
Gk−1X

]
j∣∣∣

∣∣∣
[
Gk−1X

]
j

∣∣∣
∣∣∣
2

⎞

⎟⎠ (7)

where || · ||2 is used to project different graph signals to a
common scale.

Thus, we can theoretically consider graph convolutions
of increasing order as a process of a gradual change in

smoothness. Inspired by this observation, we convert the afore-
mentioned smoothness saturation objective equation (6) into a
sequence prediction problem, in which the smoothness satu-
ration associated with the current order of graph convolution
depends on the previously filtered signals. We formulate a state
transition model pGst(·) for the entire graph as follows:

qk
ss = pGst

(
sk−1, GkX

)
(8)

K = arg max
k=1,...,K

qk
ss (9)

where sk−1 denotes the smoothness state of the entire graph
resulting from the last graph convolution.

Once K is fixed, we can achieve the final representation of
the nodes through K-order graph convolution

X = GKX. (10)

Considering the possible variance caused by noise and the
resulting accumulated influence on the gradients [45], we
further propose a linear composition of multiple graph convo-
lutions of distinct orders. We represent the accumulated value
of smoothness saturation with respect to a threshold ε. The
ultimate form of our task objective can be written as follows:

K = min

⎧
⎨

⎩k′ :
k′∑

k=1

qk
ss ≥ ε

⎫
⎬

⎭ (11)

X =
K∑

k=1

qk
ss · GkX (12)

where qk
ss is accumulated to ε.

d) Nodewise adaptive smoothness-transition graph con-
volution: Notably, in the above solutions, the optimal order
K of graph convolution is determined only by the global
smoothness saturation of the entire graph. In the k-order
graph convolution, the node representations are updated by
iteratively aggregating the features of all k-hop neighbors.
However, the smoothness saturation of different nodes sub-
jected to a convolution of the same order K could differ
considerably. Intuitively, the density of the nodes can vary
greatly in attributed graphs. A relatively isolated node with
few neighbors could require a larger K to introduce more
distant nodes to obtain more information, while a node with
more neighbors usually can efficiently gather information in
fewer hops. Thereafter, we should consider the surrounding
environment of every node and adjust the optimal order K of
graph convolution separately for each node to guarantee the
collection of sufficient information from within an appropri-
ate distance without introducing irrelevant noise. Accordingly,
we further optimize our objective equation (8) in a more
fine-grained, nodewise manner

qk,i
ss = pVst

(
sk−1

i ,
[
GkX

]i
)

(13)

where the smoothness state of node vi resulting from k-
order graph convolution is denoted by sk−1

i , and pVst (·) is the
corresponding nodewise state transition function.

Driven by the motivation similar to that for (12), we
accumulate the node representation of node vi produced
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by graph convolutions of distinct orders k, combining with
the corresponding smoothness saturation. We formulate this
process as follows:

Ki = min

⎧
⎨

⎩k′ :
k′∑

k=1

qk,i
ss ≥ ε

⎫
⎬

⎭ (14)

xi =
Ki∑

k=1

qk,i
ss ·

[
GkX

]i
. (15)

2) Internal Structure of the Smoothness Sensor: With the
established overall objective of customizing the order of graph
convolution in (12) and (15), in this section, we illustrate the
internal structure of our proposed AS-GC and NAS-GC meth-
ods. We build our methods upon an adaptive computation time
mechanism that has been proposed for RNNs [46]. We first
present the details of realizing adaptive graph convolution at
the graph level, as in (12), and then extend the operations to
the node level, as in (15).

To compute the accumulated smoothness saturation, the
remaining challenge is to design an effective smoothness-
transition model, as in (8), and adapt it to the graph domain
with graph convolution.

First, we choose a low-pass graph filter such as that in [42].
The corresponding frequency response function is

p
(
λq

) = 1 − 1

2
λq (16)

where λq is the qth eigenvalue derived from the symmetrically
normalized graph Laplacian. Accordingly, the filtered graph
signals under k-order convolution can be specified as follows:

GkX = U
(

I − 1

2
�

)k

U−1X. (17)

We model the gradual smoothing process as a sequence
in which the smoothness under k-order graph convolution
depends on the historical smoothness states, that is, 1, . . . ,
k − 1. A variable sk records the state under k-order graph
convolutions

sk =
{S(

0, g
(
G1X

))
, if k = 1

S(
sk−1, g

(
GkX

))
, otherwise

(18)

where X is the original feature matrix of the graph and GkX
represents the filtered signals under k-order graph convolu-
tion. The function g(·) is a neural network projecting R

n×m

to R
m. The model S(·) can be implemented with RNNs [47]

and GRUs [48], in which the first and second parameters
correspond to the previous state under (k − 1)-order graph
convolution and the current filtered graph signal. In particular,
the state in the initial step is set to a zero vector.

Once the current state is recorded, we introduce an extra
unit to sense whether the smoothness is already saturated

hk = σ
(

whsk + bh

)
(19)

where wh and bh represent the trainable parameters and bias,
respectively. σ(·) denotes the sigmoid function, which projects
the output to a fixed range of (0, 1). We then accumulate the

estimated {h1, h2, . . .}. Once the accumulated value exceeds
the threshold, the smoothness is saturated and K is achieved

K = min

⎧
⎨

⎩K, min

⎧
⎨

⎩k′ :
k′∑

k=1

hk ≥ ε

⎫
⎬

⎭

⎫
⎬

⎭ (20)

where K is a hyperparameter to limit the maximum order of
graph convolution.

To guarantee that the accumulated value reaches exactly
ε, we especially address the K-order graph convolution. The
complete calculation of the smoothness saturation can be
written as follows:

qk
ss =

{
ε − ∑K−1

k=1 hk, if k = K
hk, otherwise.

(21)

Thus, the smoothness-transition model is complete. Finally,
an updated representation can be obtained via (12). The graph
convolution based on the accumulated smoothness-transition
model at the graph level is achieved. We can similarly adopt
the aforementioned operations at the node level.

Given a specific node, a variable sk
i is assigned to replace

sk for recording the smoothness state of node vi under k-order
graph convolution

sk
i =

⎧
⎨

⎩
S

(
0,

[
G1X

]i
)
, if k = 1

S
(

sk−1
i ,

[
GkX

]i
)
, otherwise.

(22)

Similarly, hk is transformed into hk
i , which is associated with

node vi

hk
i = σ

(
whsk

i + bh

)
. (23)

By accumulating the estimated values {h1
i , h2

i , . . .}, the
boundary of smoothness saturation can be drawn as follows:

Ki = min

⎧
⎨

⎩K, min

⎧
⎨

⎩k′ :
k′∑

k=1

hk
i ≥ ε

⎫
⎬

⎭

⎫
⎬

⎭. (24)

Finally, we utilize the maximum accumulated value ε to
obtain the ultimate smoothness saturation of node vi under
k-order graph convolution

qk,i
ss =

{
ε − ∑Ki−1

k=1 hk
i , if k = Ki

hk
i , otherwise.

(25)

Thus, the nodewise adaptive smoothness-transition model
becomes approachable.

D. Self-Supervised Clustering Learning

Although NAS-GC (AS-GC) has the potential to enable
graph convolution to yield effective node representations for
downstream clustering tasks, a supervision mechanism to
guide the training process of the proposed model for a typical
unsupervised clustering task is still lacking. Furthermore, it
should be noted that NAS-GC provides a local perspective for
evaluating smoothness in which the smoothness of each node
is assessed in accordance with the surrounding environment
within a relatively limited radius, but without any potential
cluster-related information for the node. To be concrete, the
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global outlook—the distribution of the nodes with respect to
clusters—is neglected, which leads to that node pairs sepa-
rated by a long distance may nevertheless belong to the same
cluster, whereas pairs located nearby may belong to different
clusters. Based on this intuition, we propose and illustrate a
self-supervision strategy that fills in the gap between the local
and global perspectives and, thus, provides adaptability with
respect to any graph structures. In addition, this learning tactic
is also available for AS-GC.

Given the learned features X = [x1, . . . , xn]T , we apply a
linear kernel M = XX

T
to quantify the similarity of node pairs.

Then, we use W = (1/2)(|M| + |MT |) to make M symmetric
and non-negative [49]. The function | · | represents taking the
absolute value of each element in the matrix. Once the sim-
ilarity matrix has been obtained, the eigenvectors associated
with the r largest eigenvalues of W, where r is the number
of expected clusters, are calculated and passed to the k-means
algorithm to obtain the ultimate cluster partitions. To more
effectively perform the clustering task, the following factors
should be considered.

Intracluster Tightness: A good cluster partition should have
a small intracluster distance. It is natural to apply the indicator
of tightness, which is the average length of all lines in C(i)
connected to node vi [50]

tig(i) =
∑

vj∈C(i) dis(i, j)

|C(i)| (26)

where C(i) denotes the node set belonging to the cluster to
which vertex vi is assigned and dis(·) is a function for mea-
suring the dissimilarity between two objects. Benefiting from
this global measurement, the representations of two nodes sit-
uated far from each other but belonging to the same cluster can
be detected and adjusted. We then extend tig(i) to the entire
graph and adopt it as a part of our loss function, denoted by
Ltig

Ltig = 1

|C|
∑

c∈C

1

|c|(|c| − 1)

∑

vi,vj∈c,vi �=vj

∣∣∣∣xi − xj
∣∣∣∣

2. (27)

Intercluster Separation: A good cluster partition should
have a large intercluster distance. Compared with the tightness,
although the separation between clusters also plays a criti-
cal role, the intercluster separation is unfortunately neglected
by other methods. For instance, in AGC [42], the node fea-
tures become smoother as the order k of graph convolution
increases, which will ultimately reduce both the intracluster
and intercluster distances. Based on our proposed algorithm,
however, intercluster separation can be equally considered in
the opposite direction—the separation is expected to be large,
while the tightness should be small. We formally define the
intercluster separation as follows:

sep(i) =
∑

vj∈C′(i) dis(i, j)

|C′(i)| (28)

where C′(i) represents the set of nodes belonging to a different
cluster than that to which the vertex vi belongs. Similar to the
benefit offered by the intracluster tightness, the representations
of nodes located nearby but assigned to different clusters are

highlighted under this intercluster separation indicator. We also
adopt this indicator as a part of our loss function, denoted by
Lsep

Lsep = 1

|C|
∑

c∈C

1

|c|(n − |c|)
∑

vi∈c,vj /∈c

∣∣∣∣xi − xj
∣∣∣∣

2. (29)

Tradeoff Between Tightness and Separation: Some bias
between tightness and separation is inevitable with respect to
the number of expected clusters and the distribution of nodes
in the graph; this is the previously mentioned global structure
information. From this global perspective, local observations
can be compensated. To be precise, this adaptivity is empow-
ered by the fact that the tradeoff between tightness and
separation can be adjusted with respect to different graph
structures. We consider the tightness and separation across all
nodes for a cluster partition and combine them into an overall
expression

L = λtigLtig + λsep
1

Lsep
(30)

where a larger λtig drives the vertices within a cluster to be
tighter and λsep drives the nodes to be well separated between
clusters. λtig and λsep are adversarial parameters used to con-
trol the tradeoff between these two indicators and adapt the
method to distinct graph networks.

Considerable effort could be required to determine the
optimal parameters, λtig and λsep, through a comprehensive
analysis of the nature of the data of interest. Therefore, we pro-
pose a practical and automatic selection strategy for seeking
the optimal parameters for various datasets.

Instead of directly tuning the hyperparameters λtig and λsep
by exploring the dataset characteristics, we start by observ-
ing the proportion of Ltig with respect to (1/Lsep), which can
be roughly approximated by the value obtained after execut-
ing the first epoch. Thereafter, we can balance the two terms
λtigLtig and λsep(1/Lsep) in (30). We conduct a grid search on
the proportion sequence, with the proportion between the two
terms ranging from 1:3 to 1:50. Then, a favorable choice can
be automatically revealed.

IV. EXPERIMENTS

A. Data

We apply five datasets as our benchmark datasets. Cora,
Citeseer, and Pubmed [51] can be characterized as citation
networks in which nodes represent various documents and
edges connect two documents with a citation relation. Each
document is classified into a particular class. Wiki [30] is
a webpage network in which webpages (nodes) are con-
nected by page link relations (edges). In Cora and Citeseer,
the initial node features are represented through the bag-
of-words approach, while in Pubmed and Wiki, tf-idf word
vectors are used. We completely inherit the format from the
original works.

The dataset ogbn-arxiv [52] is utilized to verify the scalability
of the proposed method, in which the numbers of the nodes,
edges and, clusters are roughly 63, 215, and 6 times the size
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TABLE II
BASIS STATISTICS OF DATASETS

of the Cora dataset, respectively. The ogbn-arxiv dataset1 is
a citation network of papers. Each paper is represented via a
128-D feature vector obtained by averaging the embeddings
of words in its title and abstract. The Word2Vec model [53]
is applied over the Microsoft Academic Graph corpus [54] to
calculate the embeddings of individual words [52]. The details
of the numbers of nodes, edges, features, and classes are listed
in Table II.

B. Baselines and Evaluation Metrics

To evaluate the performance of the proposed method, 13
state-of-the-art methods are used as baseline methods, which
can be grouped into three categories according to their inputs.

1) Node Feature-Based Methods: The similarity matrices
are first constructed from the input node representations,
and clustering techniques are then conducted on the con-
structed matrices. Typical examples are k-means [1] and
spectral clustering (spectral-f).

2) Graph Structure-Based Methods: Adjacency matrices
and other graph representations are mainly considered,
such as structure-based spectral clustering (spectral-g),
DeepWalk [55], and DNGR [39].

3) Methods Based on Both Node Features and Graph
Structures: TADW [30] was designed to integrate
these two kinds of information under the DeepWalk
framework, while deep graph neural networks are
employed to combine them in the GAE, VGAE, MGAE,
adversarially regularized graph autoencoder (ARGE),
adversarially regularized variational graph autoencoder
(ARVGE) [56], SDCN, and AGC approach.

The parameter settings of the TADW,2 SDCN,3 and AGC4

methods are consistent with their published codes. The imple-
mentations of the other baselines are inherited from their original
papers and several parameters are optimized as mentioned
in [42].

Two kinds of metrics are utilized for the evaluation. Ground-
truth-based metrics compare the detected clusters with the
ground-truth labels, such as clustering accuracy (Acc), nor-
malized mutual information (NMI), and macro F1-score (F1),
as in [42] and [57].

Modularity-based metrics [14], [58] are employed to handle
the situation where ground-truth labels are not provided or
ignored. The metric of Dist-Modularity (DM) [58] is applied in
our work, in which both the structural closeness of graph and

1https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
2https://github.com/benedekrozemberczki/TADW
3https://github.com/bdy9527/SDCN
4https://github.com/karenlatong/AGC-master

attribute homogeneity of a node are considered. The available
range of DM is [−1, 1], and a higher value indicates a greater
performance.

C. Implementation Details

For NAS-GC, the maximum order of graph convolution is
set to 40 for Cora, Citeseer, Wiki, and ogbn-arxiv, and 120 for
Pubmed. GRUs with a hidden size of 200 are chosen as the
function S(·) for Cora, Citeseer, and Wiki. RNNs equipped
with 50 hidden units are employed for Pubmed and ogbn-
arxiv. We uniformly set the smoothness saturation to 1 for all
datasets. We train all models with the Adam optimizer [59].
The learning rate is 0.01 for Cora and ogbn-arxiv, 0.005 for
Pubmed, 0.003 for Citeseer, and 0.0001 for Wiki. For Wiki,
the learning rate is also annealed by 0.96 when the epoch
index is larger than 10. The bias hyperparameter λtig is uni-
formly set to 1 for all datasets, while λsep is chosen to be
50, 350, 0.0005, 10, and 8 for Cora, Citeseer, Pubmed, Wiki,
and ogbn-arxiv, respectively. These bias hyperparameters are
automatically obtained via our proposed automatic selection
strategy for self-supervised clustering learning. In addition, we
will present a detailed analysis of this hyperparameter later.

The implementation details of AS-GC are similar to those
of NAS-GC, with the exception that the maximum order of
graph convolution is set to 25 and 30 for the Cora and Wiki
datasets, respectively, and the learning rate for Citeseer is 0.03.

We uniformly customize an early termination mechanism
such that if the standard deviation of the losses produced in
the last five epochs is smaller than 0.001 (NAS-GC) or 0.1
(AS-GC), the training process will be terminated in advance.
This mechanism is applied on all datasets, with a maximum
of 200 epochs.

Our hardware environment consists of two 3.00 GHz Intel
Xeon E5-2687W CPUs, 512 GB of memory, and two Nvidia
Titan RTX GPUs. The code of the proposed model can be
downloaded from https://github.com/aI-area/NASGC.

D. Results

Table III records the average performance over ten repeti-
tions of the clustering task on each dataset.

Comparing the node feature-based methods with the graph-
structure-based methods, we can observe that there is no clear
superiority between these two approaches. The node feature-
based spectral-f method performs better on Citeseer and
Wiki, while the graph structure-based DNGR and Deepwalk
method work better on Cora. On Pubmed, DeepWalk achieves
better ACC and DM performance but worse NMI and F1
performance than spectral-f. Therefore, we cannot draw a
clear conclusion regarding the superiority of either node- or
graph-based methods.

In comparison with the baselines utilizing either node
features or graph structure information alone, we note a sig-
nificant improvement in the third group of methods, which
combine these two kinds of information. On Cora, all of these
methods outperform the methods in the first two groups by
a considerable margin. As a reference, we average the scores
of the methods in the first two groups and those of the meth-
ods in the third group. Compared to the first two groups, the
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TABLE III
PERFORMANCE ON CLUSTERING TASKS

maximum improvement of the third group is by 20.73% (Acc),
19.38% (NMI), 21.34% (F1), and 39.27% (DM) on Cora, and
the minimum improvement is on Wiki, with improvements
of 2.63%, 2.65%, 6.67%, and 32.29%, respectively. It can
be concluded that effectively combining node features and
graph structure information can be beneficial for the node
representations used for the downstream clustering task.

With respect to Acc, NMI, and F1, the proposed meth-
ods, both NAS-GC and AS-GC, achieve the best results
across all datasets. Compared with AGC that obtains the best
performance among the baselines, NAS-GC outperforms AGC
by 8.59% (Acc), 5.79% (NMI), 4.43% (F1), and 1.63% (DM)
on Wiki. We note that the improvement on Wiki is more sig-
nificant than that on Cora, Citeseer, and Pubmed. Consider
the numbers of classes, 7 in Cora, 6 in Citeseer, 3 in Pubmed,
and 17 in Wiki, which means that the internal structures of
clusters in Wiki may have larger variance. It can be recalled
that the proposed method is more adaptive in dealing with
the situation where the node density in a graph varies much
in attributed graphs. NAS-GC gains more margin than AS-
GC in Wiki, which is consistent with our core intuition that
nodewise smoothness can further enhance the adaptiveness.

As for DM, following the paper [58], we specify
exp(−(d/σ)2) to measure node similarity, where d is the
Euclidean distance between two nodes, and σ is set to 0.35d,
in which d is the average distance across all node pairs.
We also test the different values of σ , and the trend for
performance evaluation does not change much. The proposed
methods slightly lag behind VGAE on the Pubmed dataset,
while they outperform the other baselines in the other three
datasets.

In the third group, the numbers of convolutional lay-
ers applied differ among the different methods. The GAE,
VGAE, ARGE, and ARVGAE methods all employ second-
order convolutions, while the MGAE and SDCN methods
rely on third-order convolutions; hence, these convolutions are
relatively shallow. In contrast, AGC performs 12th-, 55th-,
60th-, and 8th-order graph convolutions on Cora, Citeseer,

TABLE IV
PERFORMANCE ON CLUSTERING TASKS IN A LARGE GRAPH

Pubmed, and Wiki, respectively; these convolutions are much
deeper than those of the other baselines and achieve better
performance. The maximum order of graph convolution in our
proposed method NAS-GC is 40 for Cora, Citeseer, and Wiki
and 120 for Pubmed. We will analyze the impact of the order
of graph convolution in detail in the next section.

E. Scalability Test

To verify the scalability of our proposed approach, we chose
ogbn-arxiv [52] as our test target following the definition of
a large graph in [60]. K-means, spectral-g, DNGR, TADW,
MGAE, SDCN, and AGC were selected as our reference, due
to the space and time cost limitations of our hardware envi-
ronment even if we trained models on CPUs with 512 GB of
memory.

The results are shown in detail in Table IV. The overall ten-
dency of the performance keeps unchanged. The approaches
that take both graph structures and node features as input
achieve greater performance than others. The proposed AS-GC
and NAS-GC take advantage over the baseline methods across
all metrics. NAS-GC outperforms AGC by 7.31% (Acc),
5.70% (NMI), 2.78% (F1), and 16.13% (DM), respectively.
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TABLE V
PERFORMANCE OF NAS-GC WITH DIFFERENT MAXIMUM ORDERS OF GRAPH CONVOLUTION

This result is consistent with the forementioned explana-
tion that the proposed algorithm performs better in relatively
complex networks containing more diverse clusters. It also
proves that the proposed methods can be applied to large
graphs.

An interesting finding is that AS-GC significantly outstrips
NAS-GC under the metric of DM. According to [61], in a
large network, DM encourages an algorithm to merge the small
clusters to form a larger group. The proposed AS-GC, in which
smoothness saturation is shared across all nodes, results in
more similar representations among nodes to form a bigger
cluster and may obtain higher evaluation from DM.

F. Extensive Study

In this section, we will present several extensive experi-
ments to further examine the proposed methods NAS-GC and
AS-GC.

1) Does the Performance of NAS-GC Merely Depend on
Higher Orders of Graph Convolution?: Although our method
significantly outperforms all other baselines via relatively high
orders of graph convolution, there is a concern of whether the
performance of our approach merely depends on performing
convolutions of a higher order. To eliminate this concern, we
conduct a series of experiments to witness the performance
changes as the order of graph convolution gradually increases.
We follow the same hyperparameter settings as in the above
evaluation test except for the order of graph convolution. We
continuously increase the magnitude of the maximum order
of graph convolution until the results outperform AGC, which
almost achieves the best performance across all datasets. The
results are recorded in Table V.

Our model performs better than AGC across all four
datasets. To be precise, when 10th-, 7th-, and 5th-order graph
convolutions are applied, the proposed method already outper-
forms AGC with 12th-, 55th- and 8th-order graph convolutions
in the Cora, Citeseer, and Wiki dataset, respectively. This
experiment proves that the superiority of our model does not
completely rely on higher orders of graph convolution.

2) Does the Nodewise Mechanism Contributes to the
Performance of NAS-GC?: We have proven that deeper graph
convolution operations are not the sole reason that NAS-GC
can significantly outperform the considered baselines. Another

Fig. 2. Number of vertices with respect to the selected order of graph
convolution for the Cora dataset.

Fig. 3. Number of vertices with respect to the selected order of graph
convolution for the Wiki dataset.

possible influential factor could be the nodewise mechanism,
which is based on the premise that the order of graph convolu-
tion should be chosen for each node individually in accordance
with its concrete surroundings. Although the superiority of
this approach has already been verified through performance
experiments in which NAS-GC outperforms AS-GC across all
datasets, we further present an extensive investigation of the
nodewise order of graph convolution, the variable Ki, to more
comprehensively illustrate this point.

We first trained models on the Cora and Wiki datasets indi-
vidually and recorded the selected order of graph convolution
Ki for each node vi. We then calculated the distribution of
the number of corresponding nodes relative to the selected
order. The results are depicted in Figs. 2 and 3. Note that our
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Fig. 4. Training times for the baselines and our proposed methods.

algorithm imposes a maximum value on the order of graph
convolution, which is set to 40 for both Cora and Wiki.

We can observe that the finally selected Ki values differ
tremendously among the nodes, and the distribution has a long
tail. In Fig. 2, on Cora, although saturation can be reached for
most nodes with an order of graph convolution that is below
approximately 23, some nodes still require deeper convolution,
even deeper than the maximum order of 40. These two distri-
butions prove the necessity and effectiveness of our proposed
nodewise mechanism.

Furthermore, we can also gain some interesting clues from
these distributions regarding the possible reasons for the
performance difference between our work and previous study.
In the distribution obtained on Cora, the nodes for which the
selected order of graph convolution is below 12 account for
75.44% of the entire graph. This result is surprisingly con-
sistent with AGC, which chooses 12 as the order of graph
convolution. Nevertheless, our method chooses to halt con-
volution at exactly the 12th order for only 3.43% of the
nodes, while for the others, graph convolution is terminated
at an order below 12. From another perspective, the results
reveal that 24.56% of the nodes still require further convo-
lution. However, if a higher order of graph convolution was
to be applied in AGC, this would result in oversmoothness
and worsen the performance in the clustering task because
AGC determines the order of graph convolution only at the
graph level. From Fig. 3, we can also learn the reason why
the MGVAE method can achieve relatively high performance
on Wiki compared with the other baselines. The frequency Ki

peaks at 3, and then a sharp drop occurs, which is consistent
with the selected order of graph convolution in the MGVAE
method.

3) What Is the Efficiency of Our Proposed Method?: To
compare the time efficiency among the baselines, we present
experiments conducted to quantify the training time for each
method. The detailed training times are depicted in Fig. 4. In
this experiment, for a fair comparison, CPUs are uniformly
adopted to train all models since some baselines cannot be
trained on GPUs. It can be observed that the classical cluster-
ing method, k-means, has the lowest time consumption across
all datasets and models, followed by AGC, in which no neural

network parameters need to be trained. In contrast, there is
a common characteristic of other deep learning methods—
many parameters need to be learned. To be concrete, the
GAE and VGAE models can be trained most quickly on
the Cora and Citeseer datasets, respectively. AS-GC takes the
least time on Pubmed and Wiki, followed by NAS-GC on
the Pubmed dataset. Although it seems that the utilization of
more fine-grained training targets—the nodes—instead of the
entire graph in NAS-GC may lead to extra computations, the
fact is that these more precise training units can be tremen-
dously beneficial for speeding up the process of convergence.
This superiority is especially obvious for large-scale graph
structures, for example, the Pubmed dataset, which is a graph
network composed of 19 717 nodes and 44 338 edges.

We also conducted a theoretical time cost analysis for the
proposed method NAS-GC, given a graph with n nodes and m
features. The entire process of the proposed method, for one
input graph instance, can be divided into four subsequent steps:
1) obtaining the filtered graph signals under k-order convolu-
tion (17); 2) calculating the final node representations (15) and
(22)–(25); 3) performing spectral clustering; and 4) computing
loss value (27), (29), (30). The computation in the first step is
related to eigenvalue decomposition and matrix multiplication,
and the result keeps unchanged once calculated. Therefore, the
time cost is constant and can be omitted here. For the second
step, it is O(nKd2) complexity, where K is the maximum num-
ber of convolution layers, and d is the dimension of hidden
states of the state transition model (e.g., RNNs). The time
complexity of performing spectral clustering is O(n2m + n2r)
and can be considered as O(n2m) since r is the number of
clusters and usually much smaller than m. The action of com-
puting intracluster tightness and intercluster separation cost is
O(n2m) complexity. In conclusion, the overall complexity is
O(n2m + nKd2).

With respect to memory complexity, for simplicity, we omit
the memory for storing the graph as [62]. O(dm + d2) is for
storing parameters inside the model. Besides, the variables
used to compute the gradient require O(Knd) space. Thus,
the overall complexity is O(dm + d2 + Knd).

4) Does the Excellent Performance of NAS-GC Heavily
Depends on Delicate Bias Hyperparameters?: The parame-
ters λtig and λsep control the tradeoff between the tightness
and separation of the clusters in a dataset. When λtig is equal
to 1, a larger λsep places a higher emphasis on a greater sep-
aration among clusters, while a smaller λsep focuses on a
closer intracluster relationship. Therefore, this hyperparame-
ter is responsible for adapting this tradeoff to various graph
networks with different characteristics. The problem addressed
here is whether the performance of NAS-GC is tightly corre-
lated with the selection of these bias hyperparameters.

As mentioned earlier, instead of directly tuning the hyper-
parameters through a painstaking exploration of the dataset
characteristics, we can start by observing the proportion of
λtigLtig with respect to λsep(1/Lsep) after executing the first
epoch. We present a group of experiments conducted on Cora
and Wiki by adjusting the proportion between the two terms
from 1 : 3 to 1 : 50 by modifying λtig and λsep, with the cor-
responding performance results recorded in Table VI. A grid
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(a) (b) (c) (d) (e) (f)

Fig. 5. 2-D visualizations of the learned representations from NAS-GC with an increasing number of epochs. (a) Before training. (b) Epoch 1. (c) Epoch 20.
(d) Epoch 50. (e) Epoch 100. (f) Epoch 200.

TABLE VI
PERFORMANCE OF NAS-GC WITH VARIOUS SETTING OF λtig AND λsep

search on the proportion sequence can automatically reveal the
optimal hyperparameters settings, the results of which are indi-
cated with bold font in this table. We also note that within this
proportion range, NAS-GC, the proposed method, consistently
outperforms the baseline method with the best performance—
either AGC or MGAE. This consistent excellent performance
proves that the proposed self-supervision strategy indeed seeks
a “best” setting, not merely a “good” setting, and the excellent
performance of NAS-GC is robust.

5) Can the Learned Representations Provide Intuitive
Visualization?: A meaningful visualization of the learned rep-
resentations can usually provide an indicator for qualifying the
learned representations. We select the Cora dataset for such
visualization because of its moderate number of classes.

We first map Cora into a low-dimensional space, project
the learned representations into a similarity matrix through
a linear kernel, and then apply the t-SNE algorithm [63] to
further project the representations into a 2-D space. To show
the gradual training process, we present visualizations of the
representations learned in different epochs.

The results are depicted in Fig. 5, in which seven different
colors denote the seven originally labeled document classes.
We can observe that the clustering effect already seems rea-
sonable, with separated pink and purple clusters, when the
number of epochs reaches 20. However, there are still over-
laps among the cyan and blue groups. These overlaps remain
until approximately the 200th epoch when the cyan and blue
nodes are approximately separated, although the clusters col-
ored in red, green, and yellow still cannot be clearly separated
yet. It can be concluded that these three categories are similar
enough that they cannot be split in 2-D space. The subjects

of genetic algorithms (red), reinforcement learning (green),
and theory (yellow) are distinct, yet are inevitably connected
to each other.

V. CONCLUSION AND FUTURE WORK

Oversmoothing in GCNs will cause the nodes of a graph to
be grouped into fewer clusters and, thus, pose a challenge
in terms of performance degradation. This article proposes
a solution to overcome the oversmoothing in GCNs and the
resulting performance degradation of downstream clustering
for attributed graphs. Convolution at a fixed order k at the
graph level tends to cause either undersmoothing or over-
smoothing. In this study, we explore how k-order filtered graph
signals can evolve via a transition from (k − 1)-order filtered
signals in terms of smoothness. We design a smoothness sensor
to sense the graph smoothness and terminate the graph convo-
lution process once the smoothness is saturated. Furthermore,
we propose a nodewise smoothness-transition mechanism by
adaptively customizing the order k of graph convolution for
each node. Finally, a clustering criterion considering both the
tightness within clusters and the separation between clusters
is defined as the loss function to guide the training of the
entire model. The experiments prove that the proposed meth-
ods significantly outperform 13 other state-of-the-art baselines
in terms of different metrics across five benchmark datasets. In
addition, an extensive study reveals the reasons for their effec-
tiveness and efficiency. In the future, the potential of nodewise
smoothness can be further utilized for other downstream tasks
of GCNs, such as node classification.
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