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An Integrated Cluster Detection, Optimization, and
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Abstract—In many financial applications, such as fraud
detection, reject inference, and credit evaluation, detecting clus-
ters automatically is critical because it helps to understand the
subpatterns of the data that can be used to infer user’s behav-
iors and identify potential risks. Due to the complexity of human
behaviors and changing social environments, the distributions
of financial data are usually complex and it is challenging to
find clusters and give reasonable interpretations. The goal of
this study is to develop an integrated approach to detect clus-
ters in financial data, and optimize the scope of the clusters
such that the clusters can be easily interpreted. Specifically, we
first proposed a new cluster quality evaluation criterion, which is
free from large-scale computation and can guide base clustering
algorithms such as k-Means to detect hyperellipsoidal clusters
adaptively. Then, we designed a new solver for a revised support
vector data description model, which efficiently refines the cen-
troids and scopes of the detected clusters to make the clusters
tighter such that the data in the clusters share greater similarities,
and thus, the clusters can be easily interpreted with eigenvec-
tors. Using ten financial datasets, the experiments showed that
the proposed algorithm can efficiently find reasonable number of
clusters. The proposed approach is suitable for large-scale finan-
cial datasets whose features are meaningful, and also applicable
to financial mining tasks, such as data distribution interpretation
and anomaly detection.

Index Terms—Clustering methods, data mining, financial
management, spectral analysis.

I. INTRODUCTION

IN MANY financial applications, such as credit evaluation,
fraud detection, and reject inference, labeled data of ground

truth are highly scarce. Hence, unsupervised models are used
intensively to infer the patterns behind the data. Compared to
supervised learning, unsupervised learning is more challeng-
ing because of lacking objective criteria to guide the learning
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process and evaluate the results. Since most industrial data
are unsupervised, unsupervised models, such as frequent item-
set mining and clustering, all play important roles in certain
domains [1]. This article focuses on clustering for two reasons:
first, one purpose is to analyze the unknown subpatterns that
usually represent users’ changing behaviors and potential risks
in financial data. Clustering can detect groups of similar data
points aggregating in local areas, and thus, it is an appropriate
unsupervised tool for this purpose. Second, this study concerns
about financial data, which are normally numerical or tabular,
and clustering has been widely used to deal with such data
types. This work is motivated by the following observations.

1) It is difficult for most clustering algorithms to deter-
mine the number of clusters in advance due to the
complicated distributions of financial data. Besides, cor-
relations among features are ubiquitous and result in
various shapes of data distributions. Many clustering
algorithms cannot adapt to these varying shapes. For
example, k-Means can only separate space with hyper-
spheres, which are not suitable for rotated strip-shaped
distributions derived from linear correlations [2].

2) The interpretability of a model is crucial in financial
applications. For instance, in credit evaluation, the data
mining results have important impacts on customers;
thus, they must be interpretable to customers and man-
agers. Although there exist many cluster interpretation
approaches [3], few focus on the interpretation of financial
data.

3) The size of financial data is normally huge and the
calculation speed is critical. Although some clustering
techniques are theoretically powerful, they are slow and
infeasible in financial applications. For instance, spec-
tral clustering involves the eigen decomposition of the
Laplacian matrix, and it is very difficult to perform
large-scale matrix decomposition in practice.

Based on the above observations, we need an integrated
clustering approach to address the aforementioned issues
derived from complex distributions and large volumes of finan-
cial data. While traditional clustering algorithms pursue overall
space separation, clustering analysis in this study tries to cap-
ture the landmark characteristics of the data distribution, which
is important for financial applications, such as new pattern
analysis, reject inference, and fraud detection. This work also
considers the computation time and memory cost such that the
models can apply to large-scale financial datasets.

The novel contributions of this work are twofold. First,
we proposed a new criterion to evaluate the cluster quality
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based on the spectral graph theory, which guides base cluster-
ing algorithms to detect hyperellipsoidal clusters iteratively.
Compared to traditional methods, the criterion is free from
large-scale computation, and the automatic clustering frame-
work is well suited to the analysis of large-scale financial
data with complex distributions. Second, we developed a
new penalty-function-based solver for a revised support vec-
tor data description (SVDD) model [4], which conducts the
optimization in the Euclidean space, such that SVDD can be
used to optimize the centroids and the scopes of the detected
clusters more smoothly and efficiently.

The remainder of this article is organized as follows.
Section II reviews the related works. Section III analyzes
the characteristics and major types of financial data distribu-
tions. Section IV describes the proposed approach. Section V
presents an experimental study using ten financial datasets.
Finally, Section VI concludes the article.

II. RELATED WORKS

This section reviewed the related works in correlation
analysis, adaptive clustering, and cluster interpretation.

A. Disentanglement of Features

A hot topic recently is to detect clusters of varying shapes.
Irregularly shaped clusters are usually caused by the interac-
tions between features [5]. Disentanglement learning focuses
on analyzing feature interactions [6]. The efforts to disentangle
the interactions can be divided into two categories.

1) Nonlinear Models: Nowadays, the most state-of-the-art
approaches for nonlinear disentanglement learning are
based on a particular type of deep neural networks, that
is, variational autoencoders (VAE) [7]. The key idea of
VAE is that the high-dimensional entangled features can
be explained by the lower dimensional and simply dis-
tributed latent variables. However, this notion has been
challenged recently. Locatello et al. [8] proved that fea-
tures of unknown and complex distributions are very
difficult to be transformed to latent variables of simple
distributions in an unsupervised manner.

2) Linear Models: Different from the difficulties of nonlin-
ear disentanglement of features, linear disentanglement
analysis is straightforward. Many well-known tools,
such as singular value decomposition (SVD) [9] and
principal component analysis (PCA) [10], can be used
for this purpose. SVD-based methods eliminate the lin-
ear entanglement by transforming the original dataset
with left eigenmatrix, and keep all features orthogo-
nal [11]. PCA eliminates the entanglement through a
transformation with the eigenmatrix of the inverse of the
covariance matrix, and keeps the correlation coefficients
zero [12]. Besides, Sim et al. [13] proposed to find
real-world profitable stocks through clustering in a trans-
formed subspace. Jung and Chang [14] used partial
correlation to study the market structure and conduct
clustering in the disentangled space.

One implicit assumption of correlation analysis is that
data have a uniform pattern, which is not true because

of complicated distributions [15]. Therefore, it is neces-
sary to develop models that can handle heterogeneous data
distributions.

B. Automatic Clustering Algorithms

Many works suggested that practical datasets follow
multimodal multivariate distributions [16]. In this case, there
may be several distinct peaks in the probability density
function of every single variable (feature). Such multimodal
distributions generate clusters located in several areas of the
Euclidean space. Consequently, the analysis of social data dis-
tributions relies on clustering algorithms to conduct spatial
division [17]. In financial data, the cluster distribution could
be very complex due to the noncooperative behaviors of game
partners [18].

The most frequently used clustering algorithm is k-Means
and its variants, which group samples into k hyperspheri-
cal scopes. For instance, Liu et al. [19] suggested that in
social stream data distributions may differ as time passes, and
thus, proposed a heuristic space partitioning method based on
k-Means to improve the concept drift detection. One limitation
of k-Means is that hyperspheres are only appropriate when the
variance of each feature is identical and no linear correlation
exists [20]. In many cases, hyperellipsoids are more suitable
than hyperspheres because correlations and varying variances
of features result in rotated hyperellipsoidal [21]. A frequently
used model that overcomes the limitation of k-Means is the
Gaussian mixed model (GMM), which is a probabilistic model
that assumes all the data points are generated from a mixture
of a finite number of Gaussian distributions with unknown
parameters [22]. The main merit of GMM is that they generate
clusters of hyperellipsoids and take the linear correlations into
consideration [22]. That is why this article uses hyperellipsoids
rather than hyperspheres.

A common difficulty in GMM and k-Means is that it is hard
to determine the appropriate number of clusters in advance.
Many efforts have been made to solve this problem. The
naivest approach is to evaluate the clustering results itera-
tively with different cluster numbers using evaluation criteria,
such as the Akaike information criterion (AIC) [23], Bayesian
information criterion (BIC) [24], and Silhouette score [25],
and then choose the best performed number of clusters. AIC
and BIC usually rely on an elbow test, that is, choose the clus-
ter number at the biggest inflection of the score curve [26].
However, in some cases, the score curve is smooth and it is
unclear which cluster number is the best [27]. The silhou-
ette test is easier to use because the principle is to choose
the cluster number with the highest score [25]. The limita-
tion of the Silhouette test is that its time complexity is high,
and sometimes inclined to high clustering resolution and lose
distribution details [28]. Another well-known theory is spec-
tral analysis, which builds a graph with data points as nodes
and similarities between points as edges, and then studies the
eigenvalues of the normalized graph Laplacian matrix [29].
The graph cut theory suggests that small eigenvalues of the
Laplacian matrix reflect weak connections of components, and
a large eigen gap indicates a proper cluster number [30].
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Fig. 1. Typical types of data distributions. (a) Independent and identical distribution. (b) Non-linearly correlated and identical distribution. (c) Linearly
correlated and identical distribution. (d) Independent and multimodal distribution. (e) Correlated and multimodal distribution.

The advantages of spectral clustering include the detection
of various cluster shapes, utilization of kernel functions, and
cluster number estimation [29]. Chen et al. [17] proposed
a two-Level subspace weighting method and then conducted
spectral clustering to group customers from the commercial
transaction data. Türkmen et al. [31] proposed a method to
recover the accurate representation of the underlying market
graph structure, and then conducted automatic spectral cluster-
ing toward the recovered data. The main limitation of spectral
clustering is that the graph Laplacian matrix’s dimension is
the same as the sample number, which makes it hard to apply
to large-scale datasets [29].

Besides these well-known canonical methods above,
Song et al. [32] used correlation-based agglomerative hierar-
chical clustering to analyze the structure of the cryptocurrency
market. Kingrani et al. [33] suggested that the difference
between the global diversity of clusters and the sum of each
cluster’s local diversity can be used as an effective indicator
of the optimality of the number of clusters. Guo et al. [34]
proposed an approach to achieve low-rank clusters through a
unified scheme for distance metric learning and clustering, and
the clusters can be recognized easily in the low-dimensional
embedding.

However, these cluster number estimation methods, which
were based on connected components, density, hierarchy,
diversity, or low-rank structure, were not designed for space
division methods used in this article (such as GMM and
k-Means). There is no standard solution to this problem yet.

C. Cluster Interpretation

One explanatory clustering method is to keep clusters
tight and use instances or centroids to interpret clusters.
Davidson et al. [35] proposed a method to find a compact
and distinct explanation of each cluster using instance-level
descriptors from a common dictionary. Tightness of clusters
indeed makes great sense because it implies robust underlying
patterns, which are critical to data analysis and interpretation.
However, the tightness of clusters is difficult to guarantee and
thus, centroids are not necessarily representative.

Other methods suggest that density within clusters, noises,
and outliers can be used to interpret clusters. Sakai et al. [36]
argued that the density-based adaptive spatial clustering algo-
rithm extracts areas which mean local topics and, thus, it can
be used as geo-tagged documents topics explanation. Some
researchers suggested that outliers can be expressed as vital
contextual information, which improves the interpretability of
local distribution [37]. Davidson et al. [38] proposed that
noises can also be used to interpret the clusters and enhance
clustering stability.

Although understanding the subpatterns of financial data
is important, studies dedicated toward the integrated cluster
detection, optimization, and interpretation are rare. The clus-
tering analysis can provide important information, such as data
density, outliers, numeric characteristics, and number of poten-
tial modals. Therefore, this work focuses on the automatic
cluster detection and the interpretation of the results.

III. PROBLEM FORMULATION

A. Characteristics of Financial Data

Distributions of financial data are inherently complex, due
to the following reasons.

1) Financial data are social data, which are usually domi-
nated by multiple complicated latent factors, and these
factors can be easily influenced by external changeful
social environments, and even evolving over time.

2) In fraud-related financial data mining tasks, criminals
take countermeasures based on the anti-fraud actions of
financial institutions. Such a game alike phenomenon
has been frequently observed in financial projects [18].

3) Latent factors of financial data are usually correlated and
even autocorrelative, that is, these factors influence each
other mutually and result in complex patterns.

B. Typical Data Distributions of Financial Data

Fig. 1 illustrates typical data distributions using 2-D syn-
thetic datasets.

1) Identical Distribution: In this category, all samples fol-
low the same multivariate distribution. According to the
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interactions between features, this category can be further
divided into independent and identical distribution, nonlinearly
correlated and identical distribution, and linearly correlated
and identical distribution. As shown in Fig. 1(a)–(c), data
points in each figure follow an identical distribution, but their
correlation types vary.

2) Multimodal Distribution: In this category,
multimodality indicates that the samples are not homogenous
and they come from several different distributions. Again,
according to the interactions between features, this distribu-
tion can be further divided into independent and multimodal
distribution, and correlated and multimodal distribution. As
shown in Fig. 1(d) and (e), datasets in this category have
multimodals, that is, several clusters. In Fig. 1(d), each
cluster follows a Gaussian distribution. In Fig. 1(e), samples
in different clusters have different correlation types. Take
clusters A, B, and C in Fig. 1(e) for examples. Samples
in A are linearly correlated, samples in B are nonlinearly
distributed, while samples in C follow the Gaussian distri-
bution. Different linear and nonlinear correlations may exist
simultaneously among different parts of a single dataset. In
practice, correlated and multimodal distribution is common
among financial data.

Due to space limitation, this work focuses on linearly cor-
related types. If the features are nonlinearly correlated or
autocorrelated, they should be preprocessed with disentangled
representation or differencing techniques [39].

Based on the above analysis, the proposed approach is
intended to deal with the following issues.

1) Due to the unknown distributions of data, we need
automatic techniques to detect clusters representing sub-
patterns without losing the details of the distribution.

2) Since correlations are ubiquitous, we also need a mech-
anism to handle linear correlations automatically.

3) Due to the sensibility of financial applications, we
need an interpretability approach to convince financial
managers and customers of the detection results.

IV. PROPOSED APPROACH FOR AUTOMATIC CLUSTER

DETECTION, OPTIMIZATION AND INTERPRETATION

This section introduces the ideas, theoretical background,
and technical details of the proposed approach. The entire
research framework is outlined in Fig. 2.

A. Theretical Background

We first introduce a kernel matrix and explain why it is used
to analyze cluster distribution. A kernel matrix is defined as

K =

⎡
⎢⎢⎣

κ11 κ12 . . . κ1m

κ21 κ22 . . . κ2m

. . . . . . . . . . . .

κm1 κm2 . . . κmm

⎤
⎥⎥⎦ (1)

where κ is the kernel function of pairwise data points. It is
used to measure the similarities between pairwise data points,
and is defined as

κ
(
xi, xj

) = φ(xi)
T · φ

(
xj

)
(2)

where xi and xj are two pairwise data points, and φ is a
transformation function that projects the data points into a

Fig. 2. Research framework of the adaptive clustering.

reproducing kernel Hilbert space [40]. In most kernel func-
tions, transformation with φ is implicit, that is, we can
calculate κ(xi, xj) with data points directly, but an explicit
form of φ cannot be given [40]. However, in recent years,
the random fourier (RF) transform, Nyström method, and ran-
dom kitchen sinks (RKS) have been proposed to approximate
an explicit transformation of φ [41]. The subsequent sections
depend on such an explicit kernel transformation, that is, φ,
and it is marked as P1 in Fig. 2.

In the last two decades, the kernel matrix has been uti-
lized intensively by spectral clustering, which uses the kernel
matrix to represent a weighted adjacency matrix [42]. The
spectral graph theory relates the eigenvalues of the adjacency
matrix or Laplacian matrix, which is the minus of the degree
matrix, to structural properties of graphs [29]. A well-known
property is that the number of eigenvalue 0 of the Laplacian
matrix is equal to the number of connected components, and
the corresponding eigenvectors are the indicator vectors of
the connected components [42]. Then, the trick of spectral
clustering is that the connected components can be viewed as
clusters, and we can perform clustering on the eigenvectors of
the Laplacian matrix corresponding to the 0 or small eigenval-
ues with a base clustering algorithm such as k-Means. Besides,
the position of the biggest eigen gap can be used to infer
the possible cluster number when the eigenvalues are ordered
increasingly [29]. Although this approach has a strong theoret-
ical background, it is usually found impractical in large-scale
financial applications. Because the dimension of the square
Laplacian matrix is n, which is the sample size, and the eigen
decomposition toward it is infeasible when the scales of the
datasets are large, as discussed previously.

B. Criterion for Cluster Quality Evaluation

Due to the above limitation, we utilize SVD to avoid the
computation of the eigen decomposition toward the kernel
matrix, which represents the adjacency matrix, and propose
a criterion to evaluate the quality of a cluster.

Suppose that there is an explicit kernel transform φ(xi), �

is a kernel transformation toward the entire dataset X, where
each column of X represents a data point xi, and each column
of �(X) represents a kernel transformation of xi, that is, φ(xi).
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Now, the kernel matrix can be denoted in such a form

K = �(X)T · �(X) (3)

whose dimension is n × n, and n is the sample size.
Solving the eigenvalues of �(X)T ·�(X) involves large-scale

computation. But there exists a well-known property of SVD
that can facilitate the computation. Suppose an SVD toward
�(X) is

�(X)m′×n = Um′×m′�m′×nVn×n (4)

where m′ is the dimension of a transformed data point φ(xi).
Um′×m′ contains the eigenvectors of �(X) · �(X)T , Vn×n

contains the eigenvectors of �(X)T · �(X), and �m′×n is a
diagonal matrix containing the square root of the eigenvalues
of both �(X) · �(X)T and �(X)T · �(X). �(X) · �(X)T and
�(X)T · �(X) have the same nonzero eigenvalues. Since the
dimension of the matrix �(X) · �(X)T , which is m′ × m′,
is significantly smaller than the dimension of the matrix
�(X)T · �(X), which is n × n, in practice, we can obtain
the eigenvalue of �(X)T · �(X), that is, K , by performing
a much faster and lightweight eigen decomposition toward
�(X) · �(X)T . This trick makes the spectral analysis on the
large-scale kernel matrix feasible. The above idea is outlined
in Fig. 2, the calculation of �(X)T ·�(X) is marked as P2, and
the eigen decomposition of �(X) · �(X)T is marked as P3.

We denote the singular value of �(X) as si, and thus, the
eigenvalue of K is s2

i . With the eigenvalues of the kernel
matrix that represents the adjacency matrix, we can estimate
the eigenvalue distribution of the Laplacian matrix and then
infer the possible cluster number with the position of the
biggest eigen gap [43]. Nevertheless, there are the following
limitations with this approach.

1) The canonical spectral clustering uses the eigenvectors
of the Laplacian matrix as the data representation [29].
However, we cannot obtain the eigenvectors with the
above method.

2) It is hard to control the clustering resolution just with
the position of the biggest eigen gap.

3) It is unavailable when the eigenvalue curve is smooth
and there is no evident big gap between the eigenvalues.

Due to the limitations above, the eigen gap approach is not
well suited to the data distribution analysis tasks proposed
in Section III. Therefore, we take another way to evaluate
the cluster quality and then design an adaptive clustering
framework with the eigenvalues of the kernel matrix.

In the spectral graph theory, the largest eigenvalue of the
adjacency matrix is called “spectral radius,” and it reflects the
bounded degrees of the nodes [29]. A dominantly large eigen-
value indicates that the nodes are densely connected, and the
data points share great similarities mutually. Based on the anal-
ysis above, we propose the following criterion to evaluate the
quality of a cluster:

qci = s2
1

/ m′∑
j=1

s2
j (5)

where sj refers to the singular values of �(Xi) arranged in a
descending order, Xi are the data points within cluster ci, m′ is

the dimension of the transformed space by �, and qci ∈ (0, 1).
Higher qci value indicates that data points within the cluster
share greater similarities measured by κ(xi, xj). This criterion
helps to control the clustering resolution and capture landmark
characteristics of the data distribution. This process is marked
as P4.1 in Fig. 2.

As for computational complexity, eigen decomposition
requires O(m2.376) time, where m is the feature number of
the dataset [44]. In practice, we can solve singular val-
ues efficiently with a power method such as the Lanczos
algorithm [45].

C. Cluster Shape Analysis and Orthogonal Transformation

In an Euclidean space transformed by the explicit kernel �,
a high qci indicates two types of possible distributions.

1) The samples squeeze in a small area, which means that the
samples are determined by some dominant factors.

2) The samples distribute in a large area, but they are
linearly correlated. In this case, the samples usually
distribute along a hyperplane and are low rank [46].

In the first case, the samples can be clustered with a hyper-
sphere. In the second case, the linear correlations usually
mean that the features are not well presented, which may be
inevitable in practice.

Since a high qci value is not capable of determining whether
there are linear correlations or the degree of aggregation
of the data is high, it should work with clustering algo-
rithms to generate hyperellipsoidal clusters, or eliminate linear
correlations before applying clustering algorithms using hyper-
spheres. Without loss of generality, we use a matrix deduced
from (4) to revise the space. Let Pi = �−1

i UT
i , we have

Pi · �(Xi) = �−1
i UT

i �(Xi) = VT
i . (6)

Due to VT
i ’s orthogonality, now we can conduct a linear

transformation toward �(Xi)

Xi → Pi · �(Xi) (7)

such that the data features are kept orthogonal and the data
points locate in a hyperspherical area of unit radius. The
transformation with (7), which is marked as P4.2 in Fig. 2,
can be omitted when the base clustering algorithm uses
hyperellipsoids, such as GMM.

D. Iterative Clustering Algorithm: Ada-Ellip

Since a larger qci indicates that the data points aggregate
better in the hyperellipsoidal scope, we can set a threshold Tq

and split the cluster into ks if qci < Tq. The value of ks can
be 2 or estimated in the following way:

ks = arg min
k

⎛
⎝

k∑
i=1

s2
i /

m′∑
i=1

s2
i > Tq

⎞
⎠, 0 < Tq < 1. (8)

The above solution is marked as P4.3 in Fig. 2. Next, like
spectral clustering, we perform clustering using base algo-
rithms such as GMM with ks as the preset cluster number. The
clustering process carries on with the qci evaluation recursively
until all qci values of clusters satisfy the preset condition:
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Algorithm 1 Ada-Ellip
Input:

X: A normalized or standardized dataset with columns
representing data points.
Tq: A threshold of qcj to check if the data points in
cluster aggregate well.
BCA: Base clustering algorithm, the feasible value is
‘GMM’ or ‘k-Means’.
Tnoise: A threshold to resist noises, default value: 0.05;

Output:
{CLi}: a list of k cluster structs CLi, which has fields
of ci as a centroid in the transformed space, Xi as sub-
dataset allocated to it, Pi as a linear projection matrix,
and qci value of �(Xi), where i = 1, . . . , k.

Method:
1: Calculate Pi if BCA ! = ′GMM′, otherwise P = I;
2: Calculate eigenvalues s2

i of Pi�(X) · (Pi�(X))T ;
3: Calculate ks with Eq. (8);
4: Conduct clustering with BCM on Pi�(X) to find ks

centroids: {ci}; //marked as P5 in Fig.2.
5: Allocate each data points in Pi�(X) to the nearest ci as

Pi�(Xi);
6: for ci in {ci} do // Parallel loop is recommended.
7: Calculate qci with dataset Pi�(Xi) in ci;
8: if qci > Tq then
9: Add CLi(ci, Xi, Pi, qci) to {CLi};

10: else
11: Go to step (1) with Xi as the inputted dataset;

//The following codes are resisting noises.
12: Sort {CLi} based on their inner data points

Xi’s size in descending order, and calculate
k = arg mint(

∑t
i=1 size(CLi.Xi)/

∑total
i=1 size(CLi.Xi) >

1 − Tnoise); //only use dense clusters covering (1 − Tnoise)
proportion of data points in total.

13: Allocate each data points in {CLk+1, . . . , CLtotal} to CLi,
whose centroid ci is the nearest to the data point, and
CLi ∈ {CL1, . . . , CLk};

14: return {CL1, . . . , CLk};

qci < Tq. The idea above is outlined in algorithm Ada-Ellip,
which highlights its characteristic of adaptive hyperellipsoids.

Intrinsically, Ada-Ellip is a framework to add adaptivity to
base clustering algorithms such that automatic clustering can
be achieved. Besides, it is also notable that we have a noise
resisting mechanism in the algorithm.

E. Cluster Optimization Based on Revised SVDD

Ada-Ellip only generates rough scopes of clusters, and the
borders of clusters are ambiguous and easy to be influenced
by outliers near the borders. As suggested by [35], keeping a
cluster tighter makes the data inside share greater similarities
and the cluster easier to be interpreted.

Given the data points in a hyperellipsoidal cluster, the
optimal centroid and scope of the cluster can be solved with
the following optimization model, which is a revised version

of SVDD [4]:

min R2 + C
ni∑

i=1

ξj

s.t.
∥∥Pi

(
φ
(
xj

)) − α
∥∥2 ≤ R2 + ξj, ξj ≥ 0 (9)

where xj is the data points in cluster ci, α is the centroid,
Pi is a projection matrix (it can be solved with (6) using the
data points inside the cluster) to overcome linear correlation in
local area, R is the radius of the cluster ci in the transformed
space, ξj are slack variables, and C is a punishment parameter.
The main difference between the model defined in (9) and the
original SVDD is that (9) learns a hyperellipsoidal scope rather
than a hyperspherical one. Thus, we name it Ellip-SVDD. It
can result in tighter scopes for the clusters learned by Ada-
Ellip. This process is marked as P6 in Fig. 2.

Original SVDD is solved by maximizing the dual Lagrange
problem, that is, utilizing Karush–Kuhn–Tucker (KKT) con-
ditions [4]. This solving approach was used by the original
version partially due to the pursuit of “inner product” forms of
data points such that implicit kernel functions can be adopted
smoothly. In contrast, this study uses an explicit kernel to
transform the datasets into another Euclidean space, and thus,
the original solver of SVDD cannot be used for this study. In
addition, the time complexity of the pairwise “inner product”
computation is O(n2), which is not applicable for large-scale
financial datasets.

Thus, we propose a new solver for SVDD based on
the penalty function method. We first rewrite the objective
function and constraints as follows:

min fc(α, R, ξ) = R2 + C
ni∑

j=1

ξ2
j

s.t. hj(α, R, ξ) = ∥∥Pi
(
φ
(
xj

)) − α
∥∥2 − R2 − ξ2

j ≤ 0. (10)

To transform (10) into an unconstrained problem, we for-
mulate the penalty function of the constraint function as

θ(α, R, ξ) =
ni∑

j=1

max
{
hj(α, R, ξ), 0

}
. (11)

The principle of the penalty function is that when a con-
straint hj is violated, the function will give a punishment.
The transformed unconstrained problem, which is formulated
by adding the smooth penalty function term to its objective
function, is as follows:

LC,β(α, R, ξ) = fc(α, R, ξ) + βθ(α, R, ξ) (12)

where β is a penalty coefficient. During the optimization pro-
cess, we need to increase β iteratively by: β(T + 1) = δβ(T),
where δ > 1. As β increases, the problem converges to the
optima. Now, LC,β(α, R, ξ) is a quadratic function and strictly
convex. The partial derivatives of α, R, and ξi are

∂L

∂α
= −2β

ni∑
j=1

{
Piφ

(
xj

) − α, hj(α, R, ξ) > 0
0, hj(α, R, ξ) ≤ 0

(13)

∂L

∂R
= 2R − 2β

ni∑
j=1

{
R, hj(α, R, ξ) > 0
0, hj(α, R, ξ) ≤ 0

(14)
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∂L

∂ξj
= 2Cξj − 2β

{
ξj, hj(α, R, ξ) > 0
0, hj(α, R, ξ) ≤ 0.

(15)

Thus, the gradient of LC,β is: gC,β(α, R, ξ) =
((∂L/∂α)T , (∂L/∂R)T , ([∂L/∂ξ1], . . . , [∂L/∂ξni])

T)T , and the
problem can be solved with the quasi-Newton method. We
can also use the centroids generated by the Ada-Ellip as the
initial value of α when solving the optimization problem.

The proposed SVDD solver works in the Euclidean space
and, thus, it is compatible with the theoretical framework of
this study and the base clustering algorithms. Besides, it is free
from kernel matrix computation and, thus, fast on large-scale
financial datasets.

After solving the optimal centroid and radius of a cluster
with (12) in the transformed space, we can mark the data
points outside the scope of the hyperellipsoid as “outliers.”
Eliminating outliers in each cluster can make the cluster tighter
and data points share higher similarities, which facilitates the
interpretability of the clusters described in the next section.

F. Cluster Interpretation

Based on the clusters detected and refined by the previous
steps, this section aims to give interpretation of the results.

1) Robust Subpattern Analysis: After the refinement with
Ellip-SVDD, data points inside each cluster are very similar
to each other. We can view these tight clusters as robust sub-
patterns, and use the centroids as the landmark data points. It
is easy to attach financial meanings to these clusters and ana-
lyze financial implications behind these landmark samples and
their scopes, which are expressed by the radii and the revised
projection matrices P̂i. Such subpatterns are frequently used
for distribution analysis and reject inference.

2) Each Feature’s Role in a Cluster: A large qci means
that there is only one large singular value in the transformed
data, and the dataset can be reduced to one dimension. SVD
in (4) can be rewritten as an orthogonal projection form. The
projection eigen vector, which performs dimension reduction,
is the one in the first column of the left eigen matrix U cor-
responding to the largest singular value of �(X−

m×ni
), where

X−
m×ni

denotes samples in cluster ci without outliers. Now, the
values of the elements in the projection vector can represent
the roles of the features transformed by φ

Wi = Ui_1 (16)

where each element of vector Wi interprets the importance
of the corresponding transformed feature and the direction
of its influence, that is, positive or negative. Since we use
an explicit kernel transformation φ, the transformed features
are generally a combination of the original features, and it is
easy to interpret the meanings. Furthermore, if we use a linear
kernel, the features transformed by φ are the original features
themselves.

3) Outliers as Potential Financial Anomalies: In a tight
hyperellipsoidal cluster refined by Ellip-SVDD, many out-
liers can be excluded from the cluster scopes. These outliers
are important because they contain anomalous financial activ-
ities hiding beneath the data, and investigating the reasons
behind them may provide valuable information to financial
institutions.

TABLE I
DETAILS OF THE BENCHMARK DATASETS

V. EXPERIMENTS AND EVALUATION

We implemented the proposed approach using the Julia lan-
guage,1 and the comparative algorithms were invoked from
ScikitLearn.jl2 and Smile.3 All of the experiments were con-
ducted on a Lenovo server of 6 CPU cores (12 threads) and
32-GB RAM.

A. Benchmark Datasets

We used ten financial benchmark datasets for the exper-
iments. CreditCard is a dataset collected from the UCI’s
machine learning repository.4 ChineseBank is a real financial
dataset from a Chinese commercial bank. The others are col-
lected from Kaggle’s data repertory.5 The three largest datasets
(GiveMeCredit, ChineseBank, and CreditRisk) are also used
to test the models’ performance on large-scale datasets. Table I
summarizes the details of the datasets. To reflect the correla-
tions among the features, the maximal and average Pearson
correlation coefficient, which indicates pairwise linear corre-
lations, and variance inflation factor (VIF), which indicates
multicollinearity, are also recorded in Table I.

As shown in Table I, there are severe linear correlations in
most datasets, and handing correlations using (7) or GMM is
necessary. To demonstrate the distributions of these datasets,
we reduced their dimensions to 2 using t-SNE [47], and illus-
trated them in Fig. 3. The colors and transparent scopes are
manually estimated clusters for reference only.

B. Explicit Kernel Transformation

As introduced in Section IV-A, we have a built-in explicit
kernel transformation mechanism φ(xi). The transformation is
needed when the data in the original space cannot be sepa-
rated well. As shown in Fig. 3, data points in CreditCard and
GiveMeCredit are not clustered well. We applied an RKS [48]
kernel transformation to CreditCard and an RF [49] kernel
to GiveMeCredit, to explore the effects of kernel transforma-
tion. The dimensions of the two datasets in the target space
were both set to 100, which are much higher than their orig-
inal dimensions. After the transformation, we used t-SNE to
visualize them in Fig. 4.

1https://julialang.org/
2https://scikitlearnjl.readthedocs.io
3https://haifengl.github.io/
4http://archive.ics.uci.edu/ml/index.php
5https://www.kaggle.com/datasets
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3. Distributions of the benchmark datasets and the estimated clus-
ters. (a) CC-GENERAL. (b) FinancialDistress. (c) BankruptcyPredict.
(d) FinanceWellBeing. (e) CreditCustomer. (f) CreditCard.
(g) BankMarketing. (h) GiveMeCredit. (i) ChineseBank. (j) CreditRisk.

As shown in Fig. 4, after the kernel transformation, both
of the datasets can be easily clustered. Explicit kernel trans-
formations are important techniques for clustering when the
datasets are inseparable in the original space. When we do
not apply any kernel function toward a dataset, it is actually
a linear kernel, that is, inner products of the pairwise data
points. It is a particular case of the research framework of the
study.

C. Cluster Number Estimation

This section compares the cluster number estimated by our
approach with other well-known methods, including the Elbow

(a) (b)

Fig. 4. Distributions of datasets transformed by explicit kernel methods.
(a) CreditCard trans. by RKS. (b) GiveMeCredit trans. by RF.

TABLE II
ESTIMATED CLUSTER NUMBER AND TIME COST (SECONDS)

test [26] and Silhouette test [25], and then explained why the
proposed approach is well suited to financial data.

1) Proposed Approach: Ada-Ellip used GMM as the base
clustering algorithm to estimate the cluster number of the
ten datasets, along with the two datasets transformed by
kernel methods. The estimation results and the time cost were
recorded in Table II, and the parameters of Tq in Ada-Ellip
were set to 0.9, 0.95, 0.95, 0.85, 0.75, 0.8, 0.6, 0.9, 0.9, 0.88,
0.9, and 0.94 for the 12 datasets, respectively.

2) Elbow Test: An Elbow test uses score curves of AIC or
BIC to estimate the cluster number, and chooses the clus-
ter number generating the biggest inflexion on the score
curve [26]. AIC is defined as [23]

AIC(k) = 2mk + 2 ln(SSE). (17)

BIC replaces the constant coefficient of 2 in AIC with a
logarithm of the sample number n, and is defined as [24]

BIC(K) = mk ln(n) + 2 ln(SSE). (18)

The smaller of the above two criteria, the better of the
clustering results.

3) Silhouette Test: A Silhouette test evaluates the
Silhouette coefficient of clustering results iteratively with
different preset cluster numbers, and then chooses the cluster
number that maximizes the Silhouette (SI) score, which is
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(a) (b) (c) (d)

(e) (f) (g) (h)

(k) (l) (m) (n)

Fig. 5. Distributions of the benchmark datasets and the estimated clusters. (a) CC-GENERAL. (b) FinancialDistress. (c) BankruptcyPredict.
(d) FinanceWellBeing. (e) CreditCustomer. (f) CreditCard. (g) BankMarketing. (h) GiveMeCredit. (i) ChineseBank. (j) CreditRisk. (k) ChineseBank.
(l) CreditRisk.

defined as [25]

SI =
n∑

i=1

bi − ai

max(ai, bi)
(19)

where ai is the average distance between a data point i and
all the other points in the same cluster, and bi is the average
distance between a data point i and all the other points in the
next nearest cluster. A higher SI score indicates that the model
generates better defined clusters.

To compare the results with our approach fairly, GMM was
used as the base clustering algorithm for all three methods. The
AIC score, BIC score, and Silhouette score were illustrated in
Fig. 5. The Silhouette test starts from two clusters because its
score is unavailable for one cluster. The estimation results and
time costs of them were recorded in Table II.

As shown in Fig. 5, AIC and BIC curves were almost over-
lapped on all the datasets except FinancialDistress. The Elbow
test is sometimes unreliable because the AIC/BIC score curves
may be smooth and it is hard to find an elbow. For instance,
no evident inflexions were found on the datasets CreditCard,
ChineseBank, and CreditCard-RKS, and thus, it is unclear
which was the best cluster number.

The Silhouette test estimated that most datasets, except
CreditCustomer, BankMarketing, and ChineseBank, have two
clusters. The results showed that it was prone to estimate
small cluster numbers, which result in large-scope clusters.
With a higher Silhouette score, the clustering algorithms

mainly keep the maximal variances or the best space divi-
sions, and such a global mechanism was inclined to overlook
the small clusters located in the sparse areas and lose land-
mark information. Besides, the time costs recorded in Table II
showed that Silhouette was significantly slower than the other
two estimation methods.

Compared with the Elbow test and Silhouette test, Ada-Ellip
is more suitable for evaluating the distribution characteris-
tics of a dataset, rather than just a cluster number estimation
method. By filtering qci criteria for each cluster, the clustering
resolution can be controlled and no major local distribution
information will be lost. It is well suited for the financial data
distribution analysis.

D. Evaluation of Clustering Results

We used the following three unsupervised criteria to evalu-
ate the clustering results.

1) Weighted q (WQ) is proposed here based on qci to eval-
uate the overall aggregation degree of the clustering
results

weighted q =
k∑

i=1

ni

n
qcj (20)

where ni refers to the sample number in cluster ci, and
n refers to the total number of data points. The larger
the weighted q, the better the aggregation of data points
insides clusters.
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TABLE III
COMPARISON OF WQ AND CLUSTER NUMBER

TABLE IV
COMPARISON OF SILHOUETTE COEFFICIENT (SI)

2) Silhouette coefficient (SI) is as it is introduced
in (19).

3) The Davies-Bouldin Index (DBI) is defined as the aver-
age similarity between each cluster ci and its most
similar one cj [50]

DBI = 1

k

k∑
i=1

si + sj

n
qdij (21)

where si is the average distance between each point in
cluster ci and the centroid of the cluster cj, and dij is
the distance between the centroids of cluster ci and cj.
Lower DBI indicates that a model has better separation
between clusters.

Ada-Ellip can guild the clustering process for both k-Means
and GMM. Therefore, we examined two versions of it:
1) Ada-Ellip (k-Means) and 2) Ada-Ellip (GMM). To eval-
uate the performance of the proposed approach, we selected
eight well-known automatic (without preset k) clustering algo-
rithms [51], including DBSCAN, Ward Hierarchical, Optics,
Spectral, MeanShift, G-Means, DENCLUE, and CLARANS,
for comparison. Besides, we also evaluated the GMM and its
variational Bayesian version: BayesGMM, with the estimated

cluster numbers by BIC, which were recorded in Table II.
All of the comparative algorithms used their default parame-
ters in ScikitLearn.jl and Smile. The performances of these
algorithms on WQ, SI, DBI, and time cost were list in
Tables III–VI, respectively.

As shown in Table III, DBSCAN and Optics tended to gen-
erate too many clusters. Hierarchical always generated two
clusters. G-Means detected too many clusters in some datasets,
which is partially due to G-Means’s assumption that the sam-
ples in each cluster follow a strict normal distribution, yet,
in practice, most clusters cannot hold the assumption and
the clusters are split unduly. The cluster number detected by
MeanShift is unreasonably large in many datasets. DENCLUE
was not effective because it did not detect most clusters in the
datasets. Above all, only Ada-Ellip and Spectral estimated rea-
sonable cluster numbers automatically, but Spectral ran out of
memory on the datasets with more than 30 000 samples.

Ada-Ellip performed well on most datasets in terms of WQ.
Although Hierarchical and Optics also had the best WQ on
some datasets, they generated too many clusters, which indi-
cates that WQ does not discriminate the situation when an
algorithm achieves high score by generating excessive number
of clusters.
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TABLE V
COMPARISON OF THE DBI

TABLE VI
COMPARISON OF THE TIME COST (SECONDS)

SI prefers clusters far apart from each other. Take dataset
CC-GENERAL for example. Both DBSCAN and Hierarchical
detected two clusters, and fewer clusters certainly make data
points in a cluster more apart from samples in other clusters
and result in higher SI scores. In contrast, Optics tended to
generate too many clusters and result in lower SI scores, indi-
cating that the clusters were not well apart from each other.
Ada-Ellip generated a reasonable number of clusters and guar-
anteed that data points inside tight clusters shared numerical
similarities. Its SI scores (k-means and GMM) were among
the best on six datasets, including all the three large-scale
datasets.

DBI reflects the quality of space separation by clusters.
Ada-Ellip’s performances were among the best DBI on five
datasets. The reason Ada-Ellip did not achieve the best DBI
on all the datasets is that space separation is not its most
important objective. Take the two clusters located at the right
of FinancialDistress in Fig. 3(b) as an example. The two clus-
ters were not well separated in the space. If we merge them
into one cluster, its DBI can be improved to 1.2441 by lower-
ing the Tq value to 0.9, which will result in three clusters. But
the data points in the two clusters do not squeeze tightly and
share lower similarities. Ada-Ellip treated them as two clus-
ters for the sake of interpretabilit. Thus, Ada-Ellip does not

necessarily beat other models on DBI while it pursues high
tightness.

Table VI showed that Ada-Ellip was faster than all the
other models, which were especially notable on the last three
large-scale datasets. As discussed in Section IV, eigen decom-
position of the m−dimension matrix is not computationally
extensive, and the experimental results proved that the time
costs of Ada-Ellip were trivial. This merit of Ada-Ellip is
significant in large-scale financial applications.

E. Case Study

Because the proposed models are designed for unsupervised
learning, it is inherently hard to evaluate the performance of
SVDD and numerical interpretation of the clusters. This sec-
tion uses the dataset CreditRisk to further explain how these
models work.

As recorded in Table II, Ada-Ellip detected seven clusters
on the dataset CreditRisk. These clusters can be considered as
seven subpatterns of the dataset, the centroids can be viewed as
the representatives of the clusters, and the large qcj guaranteed
the similarities of data points inside each cluster. The linear
correlations of features can be interpreted by the projection
matrix P̂i attached in each cluster.
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TABLE VII
NORMALIZED SINGULAR VALUES IN EACH CLUSTER OF “CREDITRISK”

AND OUTLIERS

After performing SVD with the data points inside each
cluster, the top four normalized squared singular values were
recorded in Table VII, along with the number of outliers found
by SVDD for each cluster.

As shown in Table VII, the largest squared singular value
accounts for the major proportion in each cluster. It means
that the dataset inside each cluster was inherently dominated
by one “principal component,” and it can be interpreted by
the first eigenvector, which corresponds to the largest singular
value. The elements of the eigenvector, which can be inter-
preted as features’ weights in each cluster, were illustrated in
Fig. 6.

As shown in Fig. 6(a), in cluster 1, the 4th, 6th, 12th, 14th–
16th, and 18th features were the most important ones and took
negative effects, while the 5th feature took no effect. Cluster 2
was almost the same as cluster 1 except the weight of the 15th
feature was zero. Clusters 3–7 were slightly different from
each other with varying weights of certain features.

Plus, it can be deduced from the above distributions of fea-
ture weights in U1 of each cluster that which features resulted
in the divergence of the clusters. It can be observed from Fig. 6
that the 15th feature played an important role in differentiating
clusters 2, 3, 6, and 7 from clusters 1, 4, and 5, and the 19th
feature was the key in distinguishing clusters 1, 2, 3, and 5
from clusters 4, 6, and 7. It was also notable that the 12th and
16th features were only prominent in clusters 1 and 2.

Finally, the number of outliers was also recorded in
Table VII. These outliers are important clues for detecting
potential anomalous activities. The analysis of them depends
on domain knowledge, and it is out of the scope of this article.

F. Further Discussion

1) Setting of the Tq Value: Tq is the threshold of qcj, and
a large Tq value in Ada-Ellip tends to generate more clusters,
which also means that samples in the clusters share greater
similarities, and increases the interpretability of the clusters.
Generally speaking, clusters of wider hyperellipsoidal scopes
require smaller Tq values, such as CreditCard, because data
points in those clusters distribute in a larger area. On the other
hand, clusters of narrower scopes require larger Tq values,
such as “FinancialDistress,” because data points in these clus-
ters squeeze in a small area. Our experiences showed that an
interval [0.85, 0.95] of Tq would be appropriate in most cases,
and the setting of Tq depends on the specific distribution of
the data. Too small Tq value indicates that the dataset (such
as BankMarketing) cannot be clustered well.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 6. Distributions of features’ weights in clusters. (a) Distribution of
features’ weights in cluster 1. (b) Distribution of features’ weights in clus-
ter 2. (c) Distribution of features’ weights in cluster 3. (d) Distribution of
features’ weights in cluster 4. (e) Distribution of features’ weights in clus-
ter 5. (f) Distribution of features’ weights in cluster 6. (g) Distribution of
features’ weights in cluster 7.

2) Impacts of Data Features: The efficiency of the
proposed approach depends on an assumption that the feature
number of a financial dataset is far less than the sample num-
ber. Besides, the interpretation function requires that the fea-
tures themselves are interpretable. The proposed approaches
were motivated by financial applications where most features
have explainable management or economical meanings, and
the number of them is finite. If the feature number of a dataset
is too large, the computation of the proposed models, such as
qcj, will no longer be efficient. If the features are uninter-
pretable, such as text or graph embedded features and image
channel features, the clusters are then uninterpretable. When
the dimension of a dataset is extremely high, the Euclidean
distance is not reliable anymore because of the dimension
curse, not to mention the algorithms based on it. Therefore,
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the proposed approaches are not intended to be applied to data,
such as texts, voices, images, and videos.

VI. CONCLUSION

Distributions of financial datasets are always complex
due to changing social environments and human activities.
Interpretability, adaptivity, and speed are of great importance
to financial data mining. To conduct cluster analysis for unla-
beled financial datasets and give reasonable interpretations,
we proposed a criterion qci to evaluate the quality of a clus-
ter by measuring the aggregation degree of data points inside
the cluster. Then, we designed an adaptive algorithm Ada-
Ellip to detect hyperellipsoidal clusters automatically with the
help of qci. We also proposed a revised SVDD model with
a new solver based on a penalty function to refine the cen-
troids and hyperellipsoidal scopes of the clusters. As a result,
the clusters are made tighter and easier to be interpreted. The
adaptively detected clusters can be used to analyze the subpat-
terns of financial datasets, and the first vector in the left eigen
matrix after SVD can be used to interpret the roles of the
features.

Experiments on ten financial benchmark datasets, along with
two datasets transformed by kernel functions, showed that the
proposed Ada-Ellip estimated reasonable cluster numbers, and
generated tight clusters containing data points that share great
similarities. Most importantly, it was fast and, thus, highly
applicable to large-scale financial datasets. Besides, a case
study on the dataset CreditRisk explained how the dataset can
be interpreted using the detected clusters. Experiments showed
that Ada-Ellip was fast, reliable, free from sophisticated
parameter tuning techniques, and well suited for unsupervised
financial data mining tasks, such as fraud detection, reject
inference, and credit evaluation.

Theoretically, the proposed clustering framework also has
the potential to be used for other types of data, as long as the
applied domain faces similar circumstances and challenges as
we discussed in Section III. Finally, the clustering evaluation
criterion proposed in (20) cannot discriminate the situation
when an algorithm achieves high score by generating too many
clusters. Our future works will focus on the improvement of
this criterion and other clustering evaluation methods.

REFERENCES

[1] J. María Luna, P. Fournier-Viger, and S. Ventura, “Frequent itemset
mining: A 25 years review,” Wiley Interdiscipl. Rev. Data Min. Knowl.
Discov., vol. 9, no. 6, p. e1329, 2019.

[2] J. VanderPlas, Python Data Science Handbook, O’Reilly Media, Inc.,
Sebastopol, CA, USA, 2019, pp. 433–479.

[3] R. Guan, H. Zhang, Y. Liang, F. Giunchiglia, L. Huang, and
X. Feng, “Deep feature-based text clustering and its explana-
tion,” IEEE Trans. Knowl. Data Eng., early access, Oct. 6, 2020,
doi: 10.1109/TKDE.2020.3028943.

[4] D. M. J. Tax, and R. P. W. Duin, “Support vector data description,”
Mach. Learn., vol. 54, no. 1, pp. 45–66, 2004.

[5] Y. Pang, J. Xie, F. Nie, and X. Li, “Spectral clustering by joint spectral
embedding and spectral rotation,” IEEE Trans. Cybern., vol. 50, no. 1,
pp. 247–258, Jan. 2020.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[7] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
[Online]. Available: arXiv:1312.6114.

[8] F. Locatello et al., “Challenging common assumptions in the unsuper-
vised learning of disentangled representations,” in Proc. ICML, 2019,
pp. 4114–4124.

[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear sin-
gular value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4,
pp. 1253–1278, 2000.

[10] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52, 1987.

[11] X. Cheng and T. J. Dunkerton, “Orthogonal rotation of spatial patterns
derived from singular value decomposition analysis,” J. Climate, vol. 8,
no. 11, pp. 2631–2643, 1995.

[12] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular value decom-
position and principal component analysis,” A Practical Approach
to Microarray Data Analysis. Boston, MA, USA: Springer, 2003,
pp. 91–109.

[13] K. Sim, G.-E. Yap, D. R. Hardoon, V. Gopalkrishnan, G. Cong, and
S. Lukman, “Centroid-based actionable 3D subspace clustering,” IEEE
Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1213–1226, Jun. 2013.

[14] S. S. Jung and W. Chang, “Clustering stocks using partial correla-
tion coefficients,” Physica A, Stat. Mech. Appl., vol. 462, pp. 410–20,
Nov. 2016.

[15] D. Hübner and M. Tangermann, “Challenging the assumption that audi-
tory event-related potentials are independent and identically distributed,”
in Proc. 7th Int. Brain Comput. Interface Meeting, 2017, pp. 192–197.

[16] Q. Yang, W.-N. Chen, Y. Li, C. L. P. Chen, X.-M. Xu, and
J. Zhang, “Multimodal estimation of distribution algorithms,” IEEE
Trans. Cybern., vol 47, no. 3, pp. 636–650, Mar. 2017.

[17] X. Chen, W. Sun, B. Wang, Z. Li, X. Wang, and Y. Ye, “Spectral clus-
tering of customer transaction data with a two-level subspace weighting
method,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3230–3241, Sep. 2019.

[18] B.-S. Chen, W.-Y. Chen, C.-T. Yang, and Z. Yan, “Noncooperative game
strategy in cyber-financial systems with Wiener and poisson random
fluctuations: LMIs-constrained MOEA approach,” IEEE Trans. Cybern.,
vol. 48, no. 12, pp. 3323–3336, Dec. 2018.

[19] A. Liu, J. Lu, and G. Zhang, “Concept drift detection via equal inten-
sity k-means space partitioning,” IEEE Trans. Cybern., vol. 51, no. 6,
pp. 3198–3211, Jun. 2021.

[20] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 7, no. 7,
pp. 881–892, Jul. 2002.

[21] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[22] C. E. Rasmussen, “The infinite Gaussian mixture model,” in Advances
in Neural Information Processing Systems. Cambridge, MA, USA: MIT
Press, 2000.

[23] Y. Sakamoto, M. Ishiguro, and G. Kitagawa, Akaike Information
Criterion Statistics, vol. 81. Dordrecht, The Netherlands: D. Reidel,
1986.

[24] R. E. Kass and A. E. Raftery, “Bayes factors,” J. Amer. Stat. Assoc.,
vol. 90, no. 430, pp. 773–795, 1995.

[25] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20,
pp. 53–65, Nov. 1987.

[26] J.-P. Baudry, A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo,
“Combining mixture components for clustering,” J. Comput. Graph.
Stat., vol. 19, no. 2, pp. 332–353, 2010.

[27] Y. Huang, Y. Zhang, P. Shi, Z. Wu, J. Qian, and J. A. Chambers, “Robust
Kalman filters based on Gaussian scale mixture distributions with appli-
cation to target tracking,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49,
no. 10, pp. 2082–2096, Oct. 2019.

[28] L. C. Matioli, S. R. Santos, M. Kleina, and E. A. Leite, “A new algorithm
for clustering based on kernel density estimation,” J. Appl. Stat., vol. 45,
no. 2, pp. 347–366, 2018.

[29] U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput.,
vol. 17, no. 4, pp. 395–416, 2007.

[30] Z. Wu, S. Liu, C. Ding, Z. Ren, and S. Xie, “Learning graph similarity
with large spectral gap,” IEEE Trans. Syst., Man, Cybern., Syst, vol. 51,
no. 3, pp. 1590–1600, Mar. 2021.

[31] A. C. Türkmen, G. Çapan, and A. T. Cemgil, “Clustering event
streams with low rank Hawkes processes,” IEEE Signal Process.
Lett., vol. 27, pp. 1575–1579, Aug. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9178953

[32] J. Y. Song, W. Chang, and J. W. Song, “Cluster analysis on the structure
of the cryptocurrency market via Bitcoin–Ethereum filtering,” Physica
A, Stat. Mech. Appl., vol. 527, Aug. 2019, Art. no. 121339.

http://dx.doi.org/10.1109/TKDE.2020.3028943


LI et al.: INTEGRATED CLUSTER DETECTION, OPTIMIZATION, AND INTERPRETATION APPROACH FOR FINANCIAL DATA 13861

[33] S. K. Kingrani, M. Levene, and D. Zhang, “Estimating the number of
clusters using diversity,” Artif. Intell. Res., vol. 7, no. 1, pp. 15–22, 2018.

[34] W. Guo, Y. Shi, and S. Wang, “A unified scheme for distance metric
learning and clustering via rank-reduced regression,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 51, no. 8, pp. 5218–5229, Aug. 2021.

[35] I. Davidson, A. Gourru, and S. Ravi, “The cluster description problem-
complexity results, formulations and approximations,” in Advances in
Neural Information Processing Systems. Red Hook, NY, USA: Curran,
2018.

[36] T. Sakai, K. Tamura, and H. Kitakami, “Identifying main topics in
density-based spatial clusters using network-based representative docu-
ment extraction,” in Proc. IEEE 8th Int. Workshop Comput. Intell. Appl.
(IWCIA), Hiroshima, Japan, 2015, pp. 77–82.

[37] J. Zhang, X. Yu, Y. Xun, S. Zhang, and X. Qin, “Scalable mining of
contextual outliers using relevant subspace,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 50, no. 3, pp. 988–1002, Mar. 2020.

[38] G. S. Davidson, B. N. Wylie, and K. W. Boyack, “Cluster stability
and the use of noise in interpretation of clustering,” in Proc. INFOVIS,
San Diego, CA, USA, 2001, pp. 23–30.

[39] G. He, Y. Pan, X. Xia, J. He, R. Peng, and N. N. Xiong, “A fast
semi-supervised clustering framework for large-scale time series data,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 7, pp. 4201–4216,
Jul. 2021.

[40] P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon, “Metric and kernel
learning using a linear transformation,” J. Mach. Learn. Res., vol. 13,
pp. 519–547, Mar. 2012.

[41] S. Si, C.-J. Hsieh, and I. S. Dhillon, “Memory efficient kernel approxi-
mation,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 682–713, 2017.

[42] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing
Systems. Cambridge, MA, USA: MIT Press, 2002.

[43] M. Honarkhah and J. Caers, “Stochastic simulation of patterns using
distance-based pattern modeling,” Math. Geosci., vol. 42, no. 5,
pp. 487–517, 2010.

[44] S. Shalev-Shwartz, A. Gonen, and O. Shamir, “Large-scale con-
vex minimization with a low-rank constraint,” in Proc. ICML, 2011,
pp. 329–336.

[45] K. Wu and H. Simon, “Thick-restart Lanczos method for large symmet-
ric Eigenvalue problems,” SIAM J. Matrix Anal. Appl., vol. 22, no. 2,
pp. 602–616, 2000.

[46] X. B. Zhu, P. Witold, and Z. Li, “Granular data description: Designing
ellipsoidal information granules,” IEEE Trans. Cybern., vol. 47, no. 12,
pp. 4475–4484, Dec. 2017.

[47] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[48] R. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. 20th Int. Conf. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, Dec. 2007, pp. 1177–1184. [Online]. Available:
https://dl.acm.org/doi/10.5555/2981562.2981710

[49] F. Li, C. Ionescu, and C. Sminchisescu, “Random Fourier approxima-
tions for skewed multiplicative histogram kernels,” in Proc. Joint Pattern
Recognit. Symp., 2010, pp. 262–271.

[50] H. Maria, B. Yannis, and M. Vazirgiannis, “On clustering validation
techniques,” J. Intell. Inf. Syst., vol. 17, nos. 2–3, pp. 107–145, 2001.

[51] P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to
Data Mining, 2nd ed. New York, NY, USA: Pearson, 2018.

Tie Li received the Ph.D. degree in management
science and engineering from the University of
Electronic Science and Technology of China,
Chengdu, China, in 2018.

He was a Visiting Scholar with the University
of Illinois at Chicago, Chicago, IL, USA. He
is currently a Lecturer with the School of
Management and Economics, University of
Electronic Science and Technology of China.
He has authored four software and 13 papers.
His research interests include big data mining,
distributed computing, and information management.

Gang Kou received the B.S. degree in physics
from Tsinghua University, Beijing, China, in 1997,
and the M.S. degree in computer science and the
Ph.D. degree in information technology from the
University of Nebraska at Omaha, Omaha, NE,
USA, in 2003 and 2006, respectively.

He is a Professor and the Executive Dean of the
School of Business Administration, Southwestern
University of Finance and Economics, Chengdu,
China. His research interests include data mining,
multiple criteria decision making, and optimization.

Prof. Kou has been selected to the list Highly Cited Researchers 2016 in
the field of computer science published by Clarivate Analytics.

Yi Peng received the B.S. degree in manage-
ment information systems from Sichuan University,
Chengdu, China, in 1997, and the M.S. degree
in management information systems and the
Ph.D. degree in information technology from the
University of Nebraska at Omaha, Omaha, NE,
USA, in 2003 and 2007, respectively.

She is currently a Professor with the School of
Management and Economy, University of Electronic
Science and Technology of China, Chengdu. Her
research interests include multiple criteria decision

making, mathematical modeling, and data mining techniques and applica-
tions.

Prof. Peng has been selected to the list Highly Cited Researchers 2016
in the field of computer science published by Clarivate Analytics (formerly,
Thomson Reuters).

Philip S. Yu (Life Fellow, IEEE) received the
M.B.A. degree from New York University, New
York, NY, USA, in 1982, and the Ph.D. degree in
EE from Stanford University, Stanford, CA, USA,
in 1978.

He is a Distinguished Professor with the
Department of Computer Science, University of
Illinois at Chicago, Chicago, IL, USA, and
also holds the Wexler Chair in Information and
Technology. He spent most of his career with IBM
Thomas J. Watson Research Center, where he was

the Manager of the Software Tools and Techniques Department. He has pub-
lished more than 970 papers in refereed journals and conferences with more
than 74 500 citations and an H-Index of 127. He holds or has applied for more
than 300 U.S. patents. His main research interests include big data, data min-
ing, social network, privacy-preserving data publishing, data stream, database
systems, and Internet applications and technologies.

Dr. Yu is on the Steering Committee of ACM Conference on Information
and Knowledge Management and was a Steering Committee Member
of the IEEE Conference on Data Mining and the IEEE Conference on
Data Engineering. In addition to serving as program committee member
on various conferences, he was the Program Chair or Co-Chairs of the
2009 IEEE International Conference on Service-Oriented Computing and
Applications, the IEEE Workshop of Scalable Stream Processing Systems
(SSPS’2007), the IEEE Workshop on Mining Evolving and Streaming
Data in 2006, the 2006 joint conferences of the 8th IEEE Conference
on E-Commerce Technology (CEC’2006), the 3rd IEEE Conference on
Enterprise Computing, E-Commerce and E-Services (EEE’2006), the 11th
IEEE International Conference on Data Engineering, the 6th Pacific Area
Conference on Knowledge Discovery and Data Mining, the 9th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, the 2nd IEEE International Workshop on Research Issues on
Data Engineering: Transaction and Query Processing, the PAKDD Workshop
on Knowledge Discovery from Advanced Databases, and the 2nd IEEE
International Workshop on Advanced Issues of E-Commerce and Web-based
Information Systems. He is the Editor-in-Chief of ACM Transactions on
Knowledge Discovery from Data. He was the Editor-in-Chief for IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING from 2001 to
2004. He had also served as an Associate Editor for ACM Transactions on
the Internet Technology from 2000 to 2010 and Knowledge and Information
Systems from 1998 to 2004. He is a Fellow of ACM.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


