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Dendrite Net: A White-Box Module for
Classification, Regression, and System Identification

Gang Liu, Jing Wang

Abstract—The simulation of biological dendrite computations
is vital for the development of artificial intelligence (AI). This
paper presents a basic machine learning algorithm, named
Dendrite Net or DD, just like Support Vector Machine (SVM)
or Multilayer Perceptron (MLP). DD’s main concept is that
the algorithm can recognize this class after learning, if the
output’s logical expression contains the corresponding class’s
logical relationship among inputs (and\or\not). Experiments and
main results: DD, a white-box machine learning algorithm,
showed excellent system identification performance for the black-
box system. Secondly, it was verified by nine real-world applica-
tions that DD brought better generalization capability relative
to MLP architecture that imitated neurons’ cell body (Cell
body Net) for regression. Thirdly, by MNIST and FASHION-
MNIST datasets, it was verified that DD showed higher testing
accuracy under greater training loss than Cell body Net for
classification. The number of modules can effectively adjust DD’s
logical expression capacity, which avoids over-fitting and makes
it easy to get a model with outstanding generalization capability.
Finally, repeated experiments in MATLAB and PyTorch (Python)
demonstrated that DD was faster than Cell body Net both in
epoch and forward-propagation. The main contribution of this
paper is the basic machine learning algorithm (DD) with a white-
box attribute, controllable precision for better generalization
capability, and lower computational complexity. Not only can DD
be used for generalized engineering, but DD has vast development
potential as a module for deep learning. DD code is available at
GitHub:Gang neuron.

Index Terms—Machine learning, algorithms, engineering, ar-
tificial intelligence, pattern recognition.

I. INTRODUCTION

THE simulation of biological neuron computations has
long been a question of great interest in a wide range

of fields. In 70 years ago, researchers thought that biological
dendrites did not perform logic operations [1]. Therefore,
McCulloch and Pitts proposed a simple neuron model “f(wx+
b)”. Today, it was discovered that the previous neuron model
is only a cell body model. Nowadays, biological dendrites in
brains have been proven to have and\or\xor logic operations
[2]–[5]. The simulation of dendrite computations is to realize
the multiple logical operations in essence. The multiple-valued
logic network (MVL) proposed by Zheng Tang et al. in 1988
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Fig. 1. Testing accuracy, training loss, and computational complexity on
MNIST with Cell body Nets and DDs. (1) Interestingly, DD shows higher
testing accuracy under greater training loss. (2) DD shows the controllable
training loss related to the number of DD modules, compared to the sustained
decline of cell body’s training loss with iteration. (3) As the number of DD
modules increases, training loss decreases, and testing accuracy increases. (4)
DD shows lower computational complexity in the same number of parameters.
Similar phenomenons are presented in Fig. 12 and Fig.14. [ We stress the basic
module’s essential properties instead of accuracy because all modules can be
inserted into larger architecture for outstanding performance. These properties
are base.]

is a classic algorithm for multiple logical operations [6]. MVL
consists of three basic operations denoted by “+” (sum),
“·” (multiplication), and “f” (piecewise linear operation). In
2019, Yuki Todo et al. optimized MVL using a sigmoidal
thresholding nonlinear operation to simulate biological den-
drites and proposed neurons with multiplicative interactions of
nonlinear synapses [7]. In 2020, Jian Sun et al. extended MVL
to multiobjective optimization algorithm from single-objective
optimization [8]. Additionally, in 2019, Shangce Gao et al.
proposed a dendritic neuron model (DNM) with synaptic layer,
dendrite layer, membrane layer, and soma layer and solved
the parameters of DNM by biogeography-based optimization,
particle swarm optimization, genetic algorithm, ant colony
optimization, evolutionary strategy, and population-based in-
cremental learning [9]. However, both MVL-based algorithms
and DNM contain a function (“f”) and are too complicated.
Furthermore, the literature [10] showed a product unit with
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multiplication and addition. Nevertheless, its expressive ability
is insufficient, it can only express the first-order input, and it
is very complicated for the computer to realize it.

Based on the characteristic of biological dendrites, the simu-
lation of dendrite computations should be as straightforward as
possible. In order to combine with a cell body in the existing
neural networks in the future, the optimization algorithm is
better if it is error-backpropagation. In addition, perhaps we
should implement dendrites’ functions (and\or\xor) in the
simplest and most conducive form for computer operation,
instead of pursuing the physical form of dendrites. After
all, the computing form of the computer and the brain are
different; however, the functions can be the same. Too much
pursuit of the shape of dendrites may cause a lot of extra
calculations for the computer.

Additionally, the definition of a many-valued logic (also
multi- or multiple-valued logic) is a propositional calculus
in which there are more than two truth values [11], [12].
Therefore, we can redefine the expression of multiple logical
operations instead of using the MVL in 1988. “xor” can be
expressed by basic logical element (and\or\not). Thus, we
can define multiple logical operations which only contain
basic logical elements (and\or\not). Besides, a study showed
that the integration of simultaneous excitatory postsynaptic
potentials (EPSP) and inhibitory postsynaptic potentials (IPSP)
could be described well in multiplicative form [13]. Therefore,
this paper presented DD that only contains matrix multipli-
cation and Hadamard product. There is no doubt that the
logical relationship (and\or\not) among features determines
the sample’s class [14]. DD is to extract the amount of log-
ical relationship information. If one class’s output expression
contains its logical relationship information among features,
this output expression can be regarded as the corresponding
class’s logical extractor according to many-valued logic theory
[11], [12]. In this way, each class has a logical extractor.
These extractors, like a graduated pipette, can extract logical
information from the data. When an unknown sample appears,
the class whose logical extractor extracts more information can
“grab” this sample (see Fig. 2).

The main contribution of this paper is the basic machine
learning algorithm (DD) with the white-box attribute, control-
lable precision for better generalization capability, and lower
computational complexity. Additionally, DD is first proposed
in this paper. As a basis for new studies in the future [15], this
paper focuses on DD’s characteristics in terms of a basic ML
algorithm. The remainder of this paper is divided as follows:
Related work, DD, System identification, Regression, Classifi-
cation, Computational complexity, Additional discussion, and
Conclusion.

II. RELATED WORK

A. Basic ML Algorithms

So far, some basic ML algorithms have been proposed.
However, there is no DD. This section briefly reviews these
basic algorithms. (See supplementary materials.)

The review contains Least Squares Regression, Logistic
Regression, Linear discriminant analysis (LDA), Decision

Trees, Naive Bayes Classification, Naive Bayes Classifica-
tion, Support Vector Machines, Ensemble Methods, Clustering
Algorithms, Random forests or random decision forests, and
Artificial Neural Networks (ANN).

It is worth emphasizing that the above algorithms have
their own advantages in different aspects; however, there is
no DD. The benefits of DD, such as white-box attribute,
controllable precision for better generalization capability, and
lower computational complexity, might pose new changes in
many fields in the future.

B. Easily-confused Work

Self-attention mechanism [16]: From a particular perspec-
tive, DD can be regarded as a self-attention module. However,
DD is simpler and “rude”. All parameters are in one weight
matrix and rely on the self-adaption of the model. The more
modules are connected in series, and the more detailed features
are extracted. The simpler architecture makes DD easier to use
and becomes a white-box algorithm.

ANN with polynomial activation function [17], [18]:
DD is not an ANN with a polynomial activation function.
A polynomial activation function is a non-linear function with
a definite form, and the inputs are as independent variables of
the function. However, DD is with Hadamard product between
the current inputs and previous inputs. DD and model in [17],
[18] are entirely different. It’s just that the diagram drawn
is somewhat similar. The diagram represents a completely
different meaning. [17], [18] also showed an ANN with a
polynomial activation function. Of course, DD can be regarded
as a function whose form is indeterminate. Nevertheless, we
think it is unreasonable to regard it as an activation function.
We should not force it into the previous concept. There is
no activation function in DD. Hadamard product is used to
establish logical relationships among inputs.

Polynomial regression (PR) [19], [20]: From the expanded
form, DD looks like a polynomial regression. Nevertheless,
there are four obvious differences. (1) Traditional multiple
regression cannot be applied to classification problems. (2)
Traditional multiple regression is converted into linear regres-
sion through linear processing. Then, the least square method
or error backpropagation is used to solve the preset parameters,
which is different from DD. (3) As the order increases, the
computational complexity of PR models increases exponen-
tially. However, for each additional order, DD only needs
to add one module, no matter how many modules DD has
currently. (4) PR has only one output value, but DD can have
multiple outputs.

A basic algorithm is an information processing method
essentially. Therefore, all algorithms are somewhat similar
from some particular perspective. DD contains all logical
relationships information under a certain degree. It is very
simple [only one line of code: X =W@X ∗X (Python)] and
is suit for problems with a large number of features like image
classification. Because of DD’s straightforward architecture,
one can imagine its potential for development and application
in engineering fields.
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Fig. 2. Interpretation of DD. (a) DD aims to design the output’s logical expression of the corresponding class (logical extractor). DD’s logical extractors look
like some graduated pipettes. When an unknown sample appears, the logical extractor that extracts more information “ grabs” this sample. (b) DD achieves
the controllable precision of the logical extractor by the number of DD modules. The figure shows an example using 3 modules (The last one is a linear
module). (c) The expanded form of the logical extractor in (b). DD contains all logical relationships information under a certain degree. x0 can be set as 1.
“and”: multiplication (e.g.,x1x2 ); ”or”: addition (e.g., x1 + x2 );”not”: minus (e.g., −x1 or −x2 ).
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Fig. 3. DD module.

III. DD

Uppercase letters denote a matrix, and lowercase letters
denote an element in the following formulas.

A. Architecture

DD consists of DD modules and linear modules. The DD
module is straightforward (see Fig. 3) and is expressed as
follows.

Al =W l,l−1Al−1 ◦X (1)

where Al−1 and Al are the inputs and outputs of the module.
X denotes the inputs of DD. W l,l−1 is the weight matrix from
the (l−1)-th module to the l-th module.” ◦ denotes Hadamard
product. Hadamard product is a binary operation that takes two
matrices of the same dimensions and produces another matrix
of the same dimension as the operands, where each element i,
j is the product of elements i, j of the original two matrices.

The overall architecture of DD is shown in Fig. 4. The
architecture can be represented according to the following
formula.

Y =WL,L−1[· · ·W l,l−1(· · ·W 21(W 10X ◦X) ◦X · · · ) ◦X
· · · ], L ∈ N+

(2)

where X and Y denote the input space and the output space.
W l,l−1 is the weight matrix from the (l − 1)-th module to
the l-th module. The last module is linear. L expresses the
number of modules. The calculation of DD only contains
matrix multiplication and Hadamard product. It is well known
that the computational complexity of Hadamard product is
significantly lower than non-linear functions.

B. Learning Rule

The graphical illustration of learning rule is shown in Fig.
5. As an example, we use one-half of the mean squared
error (MSE) as the loss function. We describe an error back-
propagation-based learning rule for DD [21]. The simplicity
of the learning method makes it convenient for DD to be used
in different areas. The following set of equations describes the
simple gradient descent rule.

The forwardpropagation of DD module and linear module:
{
Al =W l,l−1Al−1 ◦X
AL =WL,L−1AL−1

(3)

The error-backpropagation of DD module and linear mod-
ule:
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Fig. 4. The overall architecture of DD with 6 inputs and 4 outputs. The figure is the example visualization of Eq 2.

A
1

W
21

X A
l-1

W
l,l-1

XXW
10

X A
L-1

W
L,L-1

Y-Y

<

X
A

1

A
l-1

A
2

A
l

A
L-1

Y

<

dA
L

dA
L-1

dA
l

W
L,L-1

dZ
L

dA
l

X

W
l,l-1

dZ
L

dA
L

=dZ
l

===

= dZ
l

dA
l-1

=

dA
l-1

dA
2

dA
1 dA

l

X

W
21

dZ
2

dA
1

X

dZ
L

A
L-1

m
1

W
L,L-1

-αdW
L,L-1

dZ
L

dW
L,L-1

W
L,L-1

dZ
l

A
l-1

m
1

W
l,l-1

-αdW
l,l-1

dZ
l

dW
l,l-1

W
l,l-1

dZ
2

A
1

m
1

W
21

-αdW
21

dZ
2

dW
21

W
21

dZ
1

Xm
1

W
10

-αdW
10

dZ
1

dW
10

W
10

dA
L-1

=

dZ
2

dA
1

dZ
1

Fig. 5. Graphical illustration of learning rule.

dAL = Ŷ − Y (4)
{
dZL = dAL

dZl = dAl ◦X
(5)

dAl−1 = (W l,l−1)T dZl (6)

The weight adjustment of DD:

dW l,l−1 =
1

m
dZl(Al−1)T (7)

W l,l−1(new) =W l,l−1(old) − αdW l,l−1 (8)

where Ŷ and Y are DD’s outputs and labels, respectively.
m denotes the number of training samples in one batch. The
learning rate α can either be adapted with epochs or fixed to
a small number based on heuristics.

C. Theoretical proofs

See supplementary materials.

D. Notes and Tips

See supplementary materials.

IV. SYSTEM IDENTIFICATION

Unlike previous basic ML algorithms, DD is a white-box al-
gorithm. The trained logical extractors of DD can be translated
into the relation spectrum about inputs and outputs by formula
simplification with software (e.g., MATLAB). Concretely, the
optimized weights are assigned to the corresponding matrixes
in Eq 2. Then the relation spectrum was obtained through
formula simplification of Eq 2 in software because DD only
contains matrix multiplication and Hadamard product. The
example and code can be found in GitHub. To illustrate the
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characteristics of DD intuitively, we show some simple and
representative examples in this section.

A. Identification comparison with Taylor’s expansion

As an example, we select three-modules DD with two inputs
and one output. To illustrate the process of formula simplifi-
cation in software, we show it with labour (See supplementary
materials.).
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where x0 can be set as 1. Thus, the simplified DD consists
of constant c , x31 , x1, and x21 items. The coefficients are in
terms of DD’s weights. For DD with more inputs and more
modules, the result can be shown as a relation spectrum where
the items and coefficients are the abscissa and ordinate, similar
to Fourier spectrum.

To test whether the three-modules DD is similar to a three-
order Taylor’s expansion, we selected f(x) = ex as an
example. Furthermore, we compared DD’s output with two-
order, three-order, and four-order functions to explore the
influence of DD modules’ redundancy and inadequacy. For
a more comprehensive comparison, we ran the algorithms
200 times using 200 different initial parameters for each DD,
as shown in Fig. 6. These results indicate three attractive
properties of DD.

(1) DD is similar to the Taylor expansion at the optimal
combination points. (at 0 in Fig. 6).

(2) DD can converge to the global optimum with high
probability, as evidenced by the similar identifications in 200
runs.

(3) When the number of DD modules is inadequate, DD
will search for the global optimum weights to approach the
labels, as evidenced by the similar identification results in 200
runs for four-order functions.

B. Identification for multiple-inputs system with noise

As an example, we select three-modules DD with three
inputs and one output. To illustrate the process of formula
simplification in software, we show it with labour (See sup-
plementary materials.).
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Fig. 6. Identification comparison with Taylor’s expansion. The left figures are
the approximation to the function value. The right figures are the comparison
between the real system and DD’s identifications. All DDs for 200 runs with
different initial parameters. Taylor series: mean± SD.

where x0 can be set as 1. Thus, the simplified DD consists of
constant c , x31 , x32 , x1 , x2 , x21 , x22 , x21x2 , x1x22 , and
x1x2 items.

To assess DD’s identification performance to a multiple-
inputs system with noise, we constructed the three-order
system.

f(u, v) = 0.1 + 0.2u+ 0.3v + 0.4uv + 0.5u2 + 0.6v2

+0.7u2v + 0.8uv2 + 0.9u2 + v3
(11)

Then, we added white Gaussian noise to f(u, v) to generate
the output labels F (u, v) of DD.

F (u, v) = f(u, v) +N (12)
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where N was the Gaussian noise. We explored identification
performance with a signal-to-noise ratio (SNR) of -10, 0, and
10 db, respectively, when the input is defined by:




u(t) =sin

(1
2
t+ 60

)

v(t) =sin(3t+ 20)
(13)

where we defined t ∈ [0, 40]. We ran DD 200 times using
200 different initial parameters for each condition, as shown
in Fig. 7. It should be noted that we compared the DD model
with the three-order system f(u, v) to be identified rather than
the output labels F (u, v) . These results indicate two attractive
properties of DD.

(1) DD shows excellent identification performance to a
multiple-inputs system with noise even in the case of -10 SNR.

(2) As SNR decreased, MSE of system identification and
output increased. Interestingly, MSE of higher items increased
greater than lower items with SNR decreased [Note that
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the ordinate is logarithmic coordinates in Fig. 9 (MSE)].
According to DD’s learning rule, the outline of output space
is fitted by lower items, and later the higher items modify the
details, which interprets this phenomenon.

C. DD’s approximation property

For an unknown system, we should tune the numbers of DD
modules to simulate the real system and then translate DD into
a relation spectrum among input and output space. In order to
investigate DD’s approximation property, we considered the
function fitting of the normalized Bessel function defined by:

f(x) =
sin(x)

x2
− cos(x)

x
(14)

where we defined x ∈ [−10, 0) ∪ (0, 10] , then x and f(x)
were normalized to [−1, 1] , respectively.

We gradually increased DD modules to approach the nor-
malized Bessel function. All DDs ran 200 times with different
initial parameters (see Fig. 8). In this experiment, the accuracy
increased with the number of DD modules. This increasing
property corresponds to the property in Taylor’s expansion, as
expected from the formula.

This approximation property seems to be similar to polyno-
mial regression. Thus this paper compares DD with polyno-
mial regression. In order to directly evaluate the difference be-
tween DD and PR, we compared the approximate performance
of 8 inputs to 1 output. The approximation data is shown in
Fig. 9. The simulation function is as follows.

O =sin(I1)− cos(2I3) + sin(4I24 )− I4sin(5I5) + cos(8I26 )

− I4sin(I7)
(15)

where O is Output, Ii denotes Input i. The inputs and
output were normalized to [−1, 1] , respectively. This paper
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Fig. 9. Comparison between DD and PR from 2 order to 7 order. Data: The
size of inputs\output:1× 100000. DDs were trained for 1000000 epoch, and
each epoch contains 2 data points. All algorithms for 20 runs in MATLAB
2019b.

compared the approximation error, the approximation time,
and the online running time of the trained model ( forward-
propagation time of calculating the output through the input
data in MATLAB 2019b).

Fig. 9 shows the comparative results. The approximation
error of DD is larger than PR because of the suppression of
higher-order terms by DD. However, as the order increases, all
PR’s approximation and online speed slow down rapidly, yet
the DD does not change much. This means that DD is more
suitable for online use in engineering, such as fitting sensor
data and then running the model online.

V. REGRESSION

Generally, a good algorithm should have considerable gen-
eralization capability.

Using nine realworld datasets obtained from different fields,
we compared DD with MLP architecture that imitated the cell
body of neurons in MATLAB 2019b Neural Net toolbox for
regression.

A. Datasets for regression

See supplementary materials.

B. Experiments and results

In practice, many essential factors potentially influence the
test results of generalization capability for an algorithm and
are critical to consider in our analyses. Here are some factors
we try our best to consider. Firstly, for Cell body Net, these
factors include the number of neurons in the hidden layer,
initial weights, activation function, and the training termination
condition. Secondly, for DD, these factors are the number of
DD modules and the training termination condition. Last but
not least, in the aspect of data, these factors are the division

of data, the number of training samples, and the distribution
of the dataset itself.

First of all, we tested Cell body Net ten times to adjust
training parameters for each dataset to be as comprehensive
as possible. We found Cell body Net had better generalization
capability for these datasets we obtained when the number
of neurons in the hidden layer was 10. Besides, the training
termination condition is to reach the preset training error
(0.0001), maximum training times (5000), or validation checks
(6).

Additionally, in order to increase the diversity of com-
parison, this paper also adds PR and SVM as comparison
algorithms. Among them, SVM uses a linear kernel function,
and the order of PR is equal to the order of transformed DD.

In this paper, we aim to explore the impact of as many data
factors as possible on generalization capability, such as the
number of training samples. Thus, we did not select cross-
validation test methods used in previous literature (i.e., 5-fold
cross-validation, 10-fold cross-validation or jackknife cross-
validation test) and took the following exhaustive approach
under the independent dataset test (See supplementary mate-
rials Algorithm: Testing the performance under different
numbers of training samples. ) [22].

Comparing Cell body Net with DD on various datasets, we
found that DD gave results at least as good as, and often
better than, Cell body Net (see Fig. 10). Cell body Net looks
like a black box. We have to adjust the hyperparameters over
and over. DD is a “white box”. The number of DD modules
controls DD’s expression capacity. Excitingly, there is a one-
to-one correspondence between the number of DD modules
and precision from the outline to details. The white-box DD
algorithm seems to get the model with excellent generalization
capability more easily. In addition, DD and SVM have their
own advantages and disadvantages for different datasets. For
the same order, DD outperforms PR, especially in high order,
which benefits from the learning rule of DD where the outline
of output space is fitted by lower items first, and later the
higher items modify the details (the suppression of high-order
terms).

VI. CLASSIFICATION

DD is the basic algorithm; thus, this paper mainly explores
the fundamental properties of DD. We take the most com-
monly used MLP architecture as an example. The cell body’s
and dendritic modules’ classification performances under sim-
ilar architecture are explored on MNIST and FASHION-
MNIST datasets (see Fig. 11).

A. Datasets for classification

This paper used Dataset 1: MNIST [23] and Dataset 2:
FASHION-MNIST [24]. See supplementary materials.

B. Experiments and results

Fig. 11(a) shows the models in the experiment clearly. First,
we compared the performance of the Cell body Net and DD
when using the two modules. Among them, we analyzed Cell
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Fig. 10. Comparison of generalization capability between Cell body Net, DD, PR, and SVM for regression problems. The order of PR is equal to the order
of transformed DD. The inputs and outputs were normalized into [-1,1]. As an example, we selected tansig as the activation function of Cell body Net. Cell
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body Nets using different activation functions, respectively.
Then, we explored the performance changes after adding a
DD module. Meanwhile, we also added a module to the Cell
body Net using the relu function for comparison.

Fig. 12 shows the results of the experiment clearly. Exciting
results only need a few words with firm evidence to explain.

(1) Interestingly, DDs show higher testing accuracy
under greater training loss, which means better general-
ization capability. In statistical learning theory, generalization
originally refers to the model’s ability to generalize well the
results obtained from the training set to a set of unseen samples
drawn from the distribution same as that of the training set
[25], [26]. The cell body has learned too many personal
characteristics of the training set; thus, its loss to the training
set is smaller, yet its loss to the test set is larger, which is
over-fitting. Compared with the cell body, DD is easier to learn
the common features in the data rather than the personalized
features. Evidence: MNIST and FASHION-MNIST results.

(2) DD shows the controllable training loss related to
the number of DD modules, compared to the sustained
decline of cell body’s training loss with iteration. Evidence:
Training loss of MNIST and FASHION-MNIST.

(3) As the number of DD modules increases, training
loss decreases. Evidence: “Training loss” in MNIST and
FASHION-MNIST.

(4) As the training loss decreases, testing accuracy
increases for MNIST dataset. Evidence: MNIST results.

(5) We can improve DD’s generalization capability by
adjusting the number of modules. The complexity of the
logical relationships within different data sets is different.
DD’s logical expression capacity can be effectively adjusted
by the number of modules, which avoids over-fitting and
generates a better generalization model. On the contrary, there
is no one-to-one correspondence between Cell body Net’s
logical expression capability and the number of modules.
Thus, they are prone to over-fitting. Evidence: MNIST and
FASHION-MNIST results.

(6) DD shows faster effective convergence. Evidence:
“Testing accuracy with epoch” in MNIST and FASHION-
MNIST.

Additionally, Fig. 13 shows the confusion matrix for clas-
sification of MNIST and FASHION-MNIST using DD. The
accuracy of MNIST is 98.59%, and the accuracy of FASHION-
MNIST is 89.60%. The accuracy is higher than some typical
basic machine learning algorithms (See TABLE I).

VII. COMPUTATIONAL COMPLEXITY

The operation of DD only contains matrix multiplication
and Hadamard product. It is well known that the computational
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Fig. 11. Classification experiments. (a) The cell body’s and DD’s models under similar architecture. (2) Examples from MNIST and FASHION-MNIST
datasets.

TABLE I
THE COMPARISON OF TEST ACCURACY BETWEEN DD WITH SOME BASIC

ALGORITHMS

Classifier MNIST FASHION-MNIST
Linear Classifiers [27] 92.40 % -

K-Nearest Neighbors (Euclidean) [27] 97.60 % -

Boosted Stumps (17 leaves) [27] 98.47 % -

40 PCA + quadratic classifier [27] 96.70 % -

3-layer NN,500+150 HU [27] 97.5 5% -

Convolutional net LeNet-1 [27] 98.30% -

Decision Tree [24] 88.60% 79.80 %

Extra Tree [24] 84.70% 77.50 %

GaussianNB [24] 52.40% 51.10 %

GradientBoosting [24] 96.9% 88.0 %

k-Nearest Neighbors in [24] 95.9% 85.4 %

LinearSVC [24] 91.9% 83.6 %

Logistic Regression [24] 91.7% 84.2 %

MLP in [24] 97.2% 87.1 %

Random Forest [24] 97.0% 87.3 %

SVC [24] 97.3% 89.7 %

DD (our) 98.59% 89.60 %

complexity of Hadamard product is significantly lower than
non-linear functions. Thus, the computational complexity of
DD may be far lower than Cell body Net. To validate this
conjecture, we designed two experiments about training net-

works and applications in real-time when using MATLAB and
PyTorch.

Multiple factors influence the networks’ running time or
running speed (e.g., the learning rate and the termination
condition for training networks). To eliminate these effects,
we focus on the network’s running time in the same number
of epochs and forward propagations.

For MATLAB, we tested the running time of Cell body
Net and DD for 1000 epochs with 4898 samples from Wine
Quality Dataset. One epoch is one forward-propagation plus
one error-backpropagation for 4898 samples. In the aspect of
an application in real-time, we tested the running time of Cell
body Net and DD for 1000 forward-propagations with 4898
samples (see Fig. 14).

For PyTorch, we tested the running time of Cell body Net
and DD for 100 epochs with 1024 samples from MNIST
dataset. One epoch is one forward-propagation plus one error-
backpropagation for 1024 samples. In the aspect of an appli-
cation in real-time, we tested the running time of Cell body
Net and DD for 100 forward-propagation with 1024 samples
(see Fig. 15).

Computer performance may vary between times. We wrote
the models under the same testing conditions into a loop
to ensure that they ran under similar computer performance
as possible. Thus, the running speed of the models under
the same conditions could be compared with each other. As
we expected, DD’s computational complexity was far lower
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than Cell body Net’s, whether in an epoch or a forward-
propagation.

VIII. ADDITIONAL DISCUSSION

A. Definition of new concepts clearly

Dendrite Net or DD : Dendrite Net or DD refers to the
whole fully connected network using DD modules and linear

modules. As an analogy to “MLP,” MLP refers to the whole
fully connected network using cell body modules. Because this
paper is the first paper about DD modules, we did not embed
DD modules to complex architecture(e.g., CNN, LSTM) and
only explored the Dendrite Net. Besides, considering the
combination with cell body modules in the future, Dendrite
Net also can be called DD (Dendrite).

Cell body Net: Cell body Net refers to MLP.
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Fig. 14. Comparison of running time in MATLAB 2019b on a 2.2-GHz laptop
PC. All the networks for 200 runs. “xB” expresses the three-layers Cell body
Net with “x” neurons in the hidden layer. “DD(y)” expresses DD with “y”
modules. For “5B”, the running time in forward-propagation is less than in
the epoch. This is because they are under different computer performance.

DD module: DD module refers to a “WX ◦X” module.
Cell body module: Cell body module refers to a “f(WX)”

module.
Swish and Mish activation function [28], [29]: Swish is

defined as f(x) = x · sigmoid(x) [28], and Mish is defined
as f(x) = x · tanh(softplus(x)) [29]. They are activation
function constructed by multiplying an input of the function
and the output of traditional activation function. It is worth
noting that the x in their definition refers to the input of the
activation function, rather than the input of the entire network.
Therefore, they are essentially an activation function. However,
DD is with Hadamard product between the current inputs and
the entire network’s inputs and without activation function.

DD’s white-box attribute and “interpretation” of other
NNs: “Interpretation” in other NNs is the ability to provide
explanations in understandable terms to a human for a black-
box model (e.g., deep neural networks) [30]–[33]. However,
the white-box attribute is different. All terms in the white-box
model have the physical meaning that humans can understand.
In other words, there are no parameters without physical
meaning in the model, and the model is the interpretation itself.
In order to assign the physical meaning to the parameters,
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the traditional white-box model is modeled based on physical
properties [34], [35]. Nevertheless, modeling based on physical
properties is one of the ways, but not the only one, to assign
the physical meaning to the parameters. Fourier transform
decomposes the signal into components with periodic mean-
ing. DD decomposes the complex system into independent
components and interactive components (Contribution of input
variables to results). The independent component and interac-
tive components can be presented in a spectrum, just like the
Fourier spectrum. Concretely, the white-box attribute refers to
fully decompose an unknown composition into some simple
components with physical meaning (e.g., Fourier transform
and Fourier spectrum for decomposing signals) and read
parameters of the white-box model, that is, simple components
[36]. In analogy to Fourier transform (trigonometric series
means periodic components), the DD terms have physical
meaning (the influence of inputs on the output). For example,
DD terms contain x1 (first-order independent component),
x21 (second-order independent component), and x1x2 (second-
order interactive component), etc ., where x1 and x2 are inputs.
Similar to the result of Fourier transform, the application of
DD’s white-box attributes needs to be combined with specific
engineering problems. For example, in this paper [37], we
analyzed the brain’s EEG-intent system using the white-box
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attributes. It is worth pointing out that, for classification tasks,
it was shown as the contribution of the DD term for the
corresponding class.

Summary of DD’s attributes: DD inherits the gradual ap-
proximation properties of Taylor’s expansion, DD has con-
trollable precision. DD can generate a model with better
generalization capability because of its controllable precision
and learning rule where the outline of output space is fitted
by lower items first, and later the higher items modify the
details (the suppression of high-order terms). DD has lower
computational complexity (O(2n − 1) where n is the order
of DD polynomial) because its operations only contain matrix
multiplication and Hadamard product.

B. Supplementary of theoretical proofs

Weierstrass approximation theorem proved that DD could
uniformly approximate any function that is merely continuous
over a closed interval, and the unknown function need not
be analytic (nor differentiable) [38], [39]. Thus, any function
that is merely continuous over a closed interval can be
approximated by the Dendrite Net after squashed to [−1, 1]
[40], [41].

C. Classification and regression

Classification and regression are the fundamental problems
in many fields, such as fault diagnosis [42], automation
[43]–[45], computer vision (CV) [46], and natural language
processing (NLP) [47]. Machine learning (ML) has been a
useful tool to solve classification and regression problems [41],
[48]–[59]. However, two key issues in ML algorithms remain
to be resolved. (1) The existing ML algorithms only generate
a black-box model [41], [48]–[50], [52], [54], [55], [60]. (2)
We cannot understand the detailed changes in the model’s
expression capacity and then achieve targeted precision, when
tuning the hyperparameters. Thus, it is easy to cause over-
fitting [61].

Classification is the task of dividing data according to
sample features [49]–[52], [54], [55], [62]. Therefore, it is
natural to think that we can solve the problem by find-
ing an appropriate classification curve or surface. However,
ML algorithms using this strategy only generate a black-
box model. Here, this paper presents a new strategy (DD).
There is no doubt that the logical relationship (and\or\not)
among features determines the sample’s class [14]. DD is to
extract the amount of logical relationship information instead
of finding a classification curve or surface. This paper designs
the logical relationship expression (DD) with parameters to be
solved and solve them. Then the sample can be classed with
logical relationship expression according to many-valued logic
theory [11], [12].

Regression is the task of realizing the mapping between
inputs (features) and outputs, and the outputs are continuous
values rather than discrete classes [19], [41], [50]. In terms
of interpretability, regression algorithms can be classified into
black-box and white-box algorithms. White-box algorithms are
more applicable to system identifications [63]. ML algorithms,

WX○X

Simple and beautiful

Fig. 16. Example of DD, Dendrite Net or DD Net (Python code). DD can
be seen as a module plugged into other large networks, or as an independent
neural network for use alone. Its use can be understood by analogy with MLP
or Cell body which can be used alone or inserted into other large networks.

such as SVM and MLP, are black-box [41], [50]. Typi-
cal white-box algorithm is polynomial regression [19], [20].
However, the computational complexity of PR does increase
exponentially with the polynomial order. Here, DD is the
white-box algorithm with lower computational complexity.

D. Limitations

As the first paper that proposed DD, this paper does not
emphasize the application of DD to a specific field. We
hope that DD will be applied to various basic engineering
fields in the future. Because DD is a basic machine learning
algorithm, this paper only explores the characteristics of
general engineering. These characteristics are frequently used
in the engineering field. In fact, in general engineering, the
typical BP neural network (i.e., MLP), SVM, and other small
and simple algorithms rather than large-scale algorithms are
commonly used at present. For some special field data sets,
such as image recognition data sets (e.g., CIFAR-10, CIFAR-
100, COCO, and Places365-Challenge), this paper did not
study them. CIFAR-10, CIFAR-100, COCO, and Places365-
Challenge are the datasets of color images; thus, special
processing in the network is required. Simply using basic
networks (e.g., DD, SVM, MLP) is generally inferior to private
networks (e.g., AlexNet [64]). For general engineering, the
input data dimension (784) and the number of categories of
MNIST and FASHION-MNIST are generally relatively larger
than engineering datasets, such as the data set composed
of various sensors in robot control. In the future, we will
improve the DD module and use it in special fields such as
image recognition [15]. Based on maintaining its advantages,
extending DD to a deeper model with more complex structures
will be further studied in the future [15].

IX. CONCLUSION

In this paper, a basic machine learning algorithm, named
Dendrite Net or DD, is proposed. DD is a white-box ML algo-
rithm for classification, regression, and system identification.
DD aims to design the logical expression among inputs with
controllable precision.
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We highlight DD’s white-box attribute, controllable preci-
sion for better generalization capability, and lower compu-
tational complexity. Needless to say, the experiment results
are exciting, DD is open source, and everyone can verify
these. Additionally, for basic algorithms, many factors can
affect performance. This paper proved the nature of DD
by comparison under the same conditions from the basic
definition.

DD module is simple and beautiful. In the future, DD is
not only used for generalized engineering as other basic ML
algorithms but also has vast development potential as a module
for deep learning. A combination of Dendrite Net and Cell
body Net maybe improve the present artificial neuron or ANNs
[15].
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I. RELATED WORK

A. Basic ML Algorithms

So far, some basic ML algorithms have been proposed.
However, there is no DD. This section briefly reviews these
basic algorithms.

Least Squares Regression [1]: The least-squares method is
a statistical procedure to find the best fit for a set of data points
by minimizing the sum of the offsets or residuals of points
from the plotted curve. It is a typical method for performing
linear regression.

Logistic Regression [2]: Logistic regression measures the
relationship between the categorical dependent variable and
one or more independent variables by estimating probabilities
using a logistic function, which is the cumulative distribution
function of logistic distribution.

Linear discriminant analysis (LDA) [3]: LDA is a dis-
criminant approach that attempts to model differences among
samples assigned to certain groups. The method aims to
maximize the ratio of the between-group variance and the
within-group variance.

Decision Trees [4]: A decision tree is a decision support
tool that uses a tree-like graph or model of decisions and possi-
ble consequences, including chance-event outcomes, resource
costs, and utility.

Naive Bayes Classification [5]: Naive Bayes classifiers are
a family of simple probabilistic classifiers based on applying
Bayes’ theorem with strong (naive) independence assumptions
between the features.

Support Vector Machines [6]: A support vector machine
constructs a hyperplane or set of hyperplanes in a high- or
infinite-dimensional space, which can be used for classifica-
tion, regression, or other tasks like outliers detection.

Ensemble Methods [7]: Ensemble methods are learning
algorithms that construct a set of classifiers and then classify
new data points by taking a weighted vote of their predictions.
The original ensemble method is Bayesian averaging, but
more recent algorithms include error-correcting output coding,
bagging, and boosting.

Clustering Algorithms [8]: Clustering is the task of group-
ing a set of objects such that objects in the same group (cluster)
are more similar to each other than to those in other groups
(e.g., k-means clustering algorithm).

Random forests or random decision forests [9]: These are
an ensemble learning method for classification, regression, and
other tasks that operate by constructing a multitude of decision
trees at training time and outputting the class that is the mode
of the classes (classification) or mean prediction (regression)
of the individual trees.

Artificial Neural Networks (ANN) [10]: An ANN is based
on a collection of connected units or nodes called artificial
neurons, which loosely model the neurons in a biological
brain. However, the existing ANN does not consider dendrite’s
logical operation. From a particular perspective, the existing
neural networks also have the fuzzy concept of information
extraction. Nevertheless, this is a fuzzy non-linear mapping,
not a clear, logical relationship extractor.

In addition to the above typical basic algorithms, some
algorithms, such as memristive neural networks [11], are
combined with the application environment. These will not be
covered here. It is worth emphasizing that the above algorithms
have their own advantages in different aspects; however, there
is no DD. The benefits of DD, such as white-box attribute,
controllable precision for better generalization capability, and
lower computational complexity, might pose new changes in
many fields in the future.

II. DD
A. Theoretical proofs

Two points need to be proved: (1) the ability of DD to
approximate any continuous function, to any desired accuracy,
over a prescribed interval. (2) the characteristics of DD.

Proof 1:Weierstrass approximation theorem [12], [13].
The expanded form of DD is a polynomial (x0 = 1, where x0
is an element of inputs). Based on Weierstrass approximation
theorem, given any continuous function f(x) on an interval
[a, b] and a tolerance ε > 0, a polynomial pn(x) of sufficiently
high degree n exists, such that

|f(x)− pn(x)| ≤ ε for all x ∈ [a, b] (1)

Therefore, DD can uniformly approximate any function that
is merely continuous over a closed interval. Additionly, the
function need not be analytic (nor differentiable) according to
the above Weierstrass approximation theorem.
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Proof 2:Taylor’s expansion and Error-backpropagation
[14]. Consider first a function f(x) of a single variable.
Taylor’s expansion for f(x) about the point a is

f(x) = f(a) +
f
′
(a)

1!
(x− a) + f

′′
(a)

2!
(x− a)2+

f
′′′
(a)

3!
(x− a)3 + · · · f

n(a)

n!
(x− a)n +Rn

=

N∑

n=0

f (n)(a)

n!
(x− a)n +Rn

(2)

where f (n)(a) denotes the n-th derivative of f evaluated at
the point a . Rn is the higher order infinitesimal of (x −
a)n. Suppose we have gotten m points of f(x) . The Taylor’s
expansion at each point is as follows.
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Then, f(x) can be expressed as including Taylor’s expan-
sion with all sample points.
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Eq 4 can also be generalized to functions of more than one
variable.

f(x1, · · · , xd) =
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As is known from the above derivation, we found both
fascinating characteristics.

(1) The coefficients of higher-order terms is suppressed
by “ f(n)(∗)

n! ” in Taylor’s expansion, which makes Taylor’s
expansion first use the lower order term for approximation
and then use the higher-order term to compensate for the error,
and the high-order term can be infinitesimal in infinite terms.
It is well known that the higher-order terms of polynomials
are unstable, and the high-order polynomial models are prone
to overfitting in engineering applications. The characteristic of
Taylor’s expansion makes it avoid this problem.

(2) A function can be represented by a multi-point Taylor’s
expansion.

Additionally, in analogy to Fourier transform (trigonomet-
ric series, periodic components), the polynomial terms has
physical meaning (the influence of inputs on the output). For
example, polynomial terms contain x1 (first-order independent
component), x21 (second-order independent component), and
x1x2 (second-order interactive component), etc., where x1 and
x2 are inputs.

The special form of DD makes it inherit the above charac-
teristics. The detail is as follows (see Fig. 1).

We set Zl =W l,l−1Al−1. Then, DD module ( Eq 3 in the
main paper ) can be expressed as follows.

{
Zl =W l,l−1Al−1

Al = Zl ◦X
(6)

The error backpropagation of the DD module based on the
chain rule can be expressed as follows.

dAl−1
prerious error =

dAl

dAl−1
dAl

later error

=
dZ

dAl−1
·
(
dAl

dZ
· dAl

later error

)

= (W l,l−1)T ·
(
X ◦ dAl

later error

)
(7)

where dAl−1
prerious error and dAl

later error denote the error of the
front module and later module, respectively. It should be noted
that X denotes the inputs of Dendrite Net; thus, it is seen as
a constant in the derivative of the single DD module (see Eq
7) .

Then, dZl = X ◦ dAl
later error is brought into Eq 7 in

the main paper. The weight adjustment can be expressed as
follows.





dW l,l−1 =
1

m
X ◦ dAl

later error

(
Al−1

)T

W l,l−1(new) =W l,l−1(old) − αdW l,l−1
(8)

Since the expanded form of Dendrite Net is a polynomial,
the derivative of Dendrite Net with respect to X is composed
of coefficients and Dendrite Net reduced by one order. For
one DD module, the Dendrite Net reduced by one order
happens to the inputs of the single modules. Let us look
now at Eq 8, the “dW l,l−1” contains “Al−1” (the key of
the derivative of Dendrite Net with respect to X), which is
similar to “f

′
(x)” in Taylor’s expansion. Additionally, becasue

of X ∈ [−1, 1], the suppression of “X ◦dAl
later error ” is similar
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Fig. 1. Graphical illustration of learning rule.

to “ 1
n!”. Therefore, DD suppresses the high-order terms, which

is similar to Taylor’s expansion.
Additionally, the derivation of computational complexity of

Dendrite Net is briefly described as follows (see Fig. 1). The
initial order (X) of the polynomial (the expanded form of
Dendrite Net) is 1. The DD module (“WA ◦ X”) contains
2 matrix multiplication and can added 1 order to polyno-
mial. The last linear module contains 1 matrix multiplication.
Therefore, the computational complexity of Dendrite Net is
O(2n − 1) where n is the order of DD polynomial. As it is
known, the computational complexity of polynomial is O(n2).
Therefore, the computational complexity of PR is larger than
DD module. Furthermore, the computational complexity of the
nonlinear function is larger than multiplication. Therefore, the
computational complexity of cell body module is larger than
DD module.

Taken together, these theoretical derivations indicate DD’s
white-box attribute (the polynomial decompositions), better
generalization capability (low-order approximation first and
the suppression of high-order terms), and lower computational
complexity (O(2n− 1)).

B. Notes and Tips

(1) The diagonal matrix can be selected as the initialized
weight matrix, and the initialized weight should be as small
as possible. (2) We recommend that the inputs and outputs are
normalized to [−1, 1]. (3) When DD is upgraded, the weights
can be initialized using low-order DD’s trained weights. The
recommended strategy is to gradually increase DD modules
as the method indicated in Reference [15] (see Fig. 2). (4)
We recommend adding a linear module in front of the DD
module to increase or decrease the input data dimension to the
dimension of the DD module (see Fig. 11 in the main paper).
The dimension of the DD module is determined according to
the complexity of the data. Generally, the simpler the data,
the smaller the dimension. The number of DD modules is
recommended to be gradually increased from 1 to find the
optimal number.

W  X  X
10

W  A  X
21 1

W  A 
32 2

A
1

A
2

W  A  X
10

W  A  X
21 1

W  A 
32 2

A
1

A
2

W  X  X
10 A

Fig. 2. Example of inheritance initialization. The red module is the added
module. The weight matrix of the added module is initialized to a diagonal
matrice with equal element values.

III. SYSTEM IDENTIFICATION

A. Identification comparison with Taylor’s expansion

As an example, we select three-modules DD with two
inputs and one output. To illustrate the process of formula
simplification in software, we show it with labour.

f(X) =W 32(W 21((W 10X) ◦X) ◦X)

=W 32

(
W 21

([
w10

11 w10
12

w10
21 w10

22

] [
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[
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)
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11x
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])

=
[
w32

11 w32
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]
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(9)

where x0 can be set as 1. Thus, the simplified DD consists
of constant c , x31 , x1, and x21 items. The coefficients are in
terms of DD’s weights. For DD with more inputs and more
modules, the result can be shown as a relation spectrum where
the items and coefficients are the abscissa and ordinate, similar
to Fourier spectrum.



DENDRITE (DD): A NEW “BLOCK” 4

B. Identification for multiple-inputs system with noise

As an example, we select three-modules DD with three
inputs and one output. To illustrate the process of formula
simplification in software, we show it with labour.
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(10)
where x0 can be set as 1. Thus, the simplified DD consists of
constant c , x31 , x32 , x1 , x2 , x21 , x22 , x21x2 , x1x22 , and
x1x2 items.

IV. REGRESSION

A. Datasets for regression

1) Dataset 1: Yacht Hydrodynamics [16]: Prediction of
residuary resistance of sailing yachts at the initial design
stage is of excellent value for evaluating the performance and
estimating the required propulsive power. The dataset com-
prises 308 full-scale experiments that were performed at the
Delft Ship Hydromechanics Laboratory. Attribute information
includes six hull geometry coefficients, the Froude number,
and the residuary resistance per unit weight of displacement. In
this test, the model was used to predict the residuary resistance
based on hull geometry coefficients and the Froude number.

2) Dataset 2: Wine Quality [17]: Wine certification is an
essential link to assure the quality of the wine market. The
quality evaluation is often part of the certification process
and can improve winemaking and stratify wines such as
premium brands. The dataset is considered, with a total of
4898 white samples. Attribute information includes eleven
physicochemical data of wines and quality evaluation from
wine taster. In this test, the model was used to predict white
wine quality based on physicochemical data.

3) Dataset 3: Behavior of the urban traffic [18]: The
prediction of the traffic behavior could help to make a decision
about the routing process. The database was created with
records of behavior of the urban traffic of the city of Sao
Paulo in Brazil from December 14, 2009, to December 18,
2009 (From Monday to Friday), with a total of 135 samples.
Attribute information includes seventeen behavior of urban
traffic and slowness in traffic (%). In this test, the model was
used to predict slowness in traffic based on the behavior of
urban traffic.

4) Dataset 4: QSAR fish toxicity [19]: To prove that
products are safe for both human health and the environment,
REACH requires the evaluation of the short-term toxic effects
on fish for substances imported or manufactured in quantities
greater than 10 tonnes per year. The dataset is acute aquatic
toxicity towards the fish Pimephales promelas (fathead min-
now) on a set of 908 chemicals. In this test, the model was
used to predict LC50 data that is the concentration that causes
death in 50% of test fish over a test duration of 96 hours.

5) Dataset 5: Auto MPG [16]: This dataset is a slightly
modified version of the dataset provided in the StatLib library.
The data concerns city-cycle fuel consumption in miles per
gallon, to be predicted in terms of three multivalued discrete
and five continuous attributes [20]. In this paper, we removed
a few samples that include unknown values and remained 392
samples. The model was used to predict “mpg”.

6) Dataset 6: Stock portfolio performance [21]: The return
of investment portfolios can be increased by adopting the
appropriate factors in stock. The database includes six weights
of stock-picking concepts and six performances of portfolios
with 315 samples from US stock market historical data. In this
test, the model was used to predict the relative winning rate
based on stock-picking concepts’ weights.

7) Dataset 7: Real estate valuation [22]: The market
historical data set of real estate valuation is collected from
Sindian Dist, New Taipei City, Taiwan, with 414 samples.
Attribute information includes house price of the unit area and
six attribute variables of house, such as the transaction date,
the house age, and the nearest MRT station’s distance. In this
test, the model was used to predict the unit area’s house price
based on the attribute variables of houses.

8) Dataset 8: Daily Demand Orders [23]: The dataset was
collected a real database of a Brazilian logistics company for
60 days. The data has twelve predictive attributes and a target
that is the total of orders for daily treatment.

9) Dataset 9: Concrete Compressive Strength [24]: Con-
crete is the most important material in civil engineering. The
dataset includes eight concrete attributes and concrete com-
pressive strength, with 1030 samples. In this test, the model
was applied to predict the concrete compressive strength.

B. Experiments and results
In this paper, we aim to explore the impact of as many data

factors as possible on generalization capability, such as the
number of training samples. Thus, we did not select cross-
validation test methods used in previous literature (i.e., 5-fold
cross-validation, 10-fold cross-validation or jackknife cross-
validation test) and took the following exhaustive approach
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under the independent dataset test (See supplementary materi-
als Algorithm 1: Testing the performance under different
numbers of training samples. ) [25].

Algorithm 1: DD vs. Cell body Net vs. PR vs. SVM
Input: Dataset
Output: MSE

1 for i = 1 to 100 do
2 for n = t to end with c interval do
3 Randomly choose n samples from Dataset as

the training samples;
4 Choose residual data as the testing samples;
5 Train DD;
6 Train Cell body Net;
7 Train PR;
8 Train SVM;
9 Test DD;

10 Test Cell body Net;
11 Test PR;
12 Test SVM;

V. CLASSIFICATION

A. Datasets for classification

1) Dataset 1: MNIST [26]: The MNIST database of hand-
written digits has a training set of 60,000 examples and a test
set of 10,000 examples. It is a subset of a larger set available
from NIST. The digits have been size-normalized and centered
in a fixed-size image.

2) Dataset 2: FASHION-MNIST [27]: FASHION-MNIST
is a dataset of Zalando’s paper images—consisting of a train-
ing set of 60,000 examples and a test set of 10,000 examples.
Each example is a 28x28 grayscale image, associated with a
label from 10 classes.
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