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Adaptive Robust Formation Control of Connected
and Autonomous Vehicle Swarm System

Based on Constraint Following
Qinqin Sun , Xiuye Wang , Guolai Yang , Ye-Hwa Chen , and Fai Ma

Abstract—This article proposes an adaptive robust formation
control scheme for the connected and autonomous vehicle (CAV)
swarm system by utilizing swarm property, diffeomorphism
transformation, and constraint following. The control design is
processed by starting from a 2-D dynamics model with (possi-
bly fast) time varying but bounded uncertainty. The uncertainty
bounds are unknown. For compact formation, the CAV system is
treated as an artificial swarm system, for which the ideal swarm
performance is taken as a desired constraint. By this, formation
control is converted into a problem of constraint following and
then a performance measure β is defined as the control object to
evaluate the constraint following error. For collision avoidance,
a diffeomorphism transformation on space measure between two
vehicles is creatively performed, by which the space measure is
positive restricted. For uncertainty handling, an adaptive robust
control scheme is proposed to render the β-measure to be uni-
formly bounded and uniformly ultimately bounded, that is, drive
the controlled (CAV) swarm system to follow the desired con-
straint approximatively. As a result, the system can achieve the
ideal swarm performance; thereout, compact formation is real-
ized, regardless of the uncertainty. The main contribution of this
article is exploring a 2-D formation control scheme for (CAV)
swarm system under the consideration of collision avoidance and
time-varying uncertainty.
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I. INTRODUCTION

AS A TYPICAL connected and autonomous vehicle
(CAV) system, autonomous vehicle platoon system

has attracted many researchers’ attentions in the past two
decades [1]–[6]. Their primary focus is on road vehicles and
the associated issues, such as traffic congestion, fuel con-
sumption, driving safety, etc., in which the (road) vehicle is
supposed to drive in a marked lane on the road and the motion
is usually simplified to be longitudinal linear. However, with
the development of technology, a variety of autonomous func-
tional vehicles has appeared, such as unmanned road roller
(in engineering), unmanned ground vehicle (in military), auto-
matic guided vehicle (in industry), etc. As IoT techniques
seep in, such functional vehicles also can be connected as
an autonomous vehicle platoon for collaborative tasks. In this
sense, the agent of the autonomous vehicle platoon system is
no longer confined to road vehicles; meanwhile, the trajec-
tory is no longer a marked lane on the road but may be an
arbitrary curve determined by the work scenario. By this, the
previous studies [1]–[6] that mainly focus on linear motion
of the autonomous vehicle platoon system are inadequate, and
more explorations on planar motion, including longitudinal
motion and lateral motion, are expected. Motivated by this, this
article focuses on a 2-D platooning problem (i.e., formation
control) of CAV systems. This is the first set of contribution
and innovation of this article.

In formation control of CAV systems, two objectives should
be achieved: 1) compact formation and 2) collision avoid-
ance [3]. The first is for consistency and synergy of the
vehicles when they carry out a collaborative task. The sec-
ond is for safety. Many works have been done for the first
objective of compact formation in the past. As an outstand-
ing representative in this field, Chen et al. ([3]–[7] and their
bibliographies) have addressed this from a novel perspective
of artificial swarm system. They took the CAV system as an
artificial swarm system, and then designed an appropriate con-
trol to drive it to render ideal swarm performance, by which
the distance between two vehicles was neither too far nor too
close, such that compact formation was achieved. They did
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the first work that addresses artificial swarm system issues in
both kinematic and dynamic phases, while the existing related
works usually (only) involve to kinematic phase. Along Chen’s
methodology [3]–[7], this article handles the CAV system as
an artificial swarm system and explores its planar motion in
both kinematic and dynamic phases. This is the second set of
contribution and innovation of this article. For this, we call
the CAV system with N agents as a CAV swarm system in
this article.

The second objective of collision avoidance is a very
common issue in practical engineering (not limited to CAV
system), for which many works have been done from the
perspectives of application and experiment [8], [9], however,
for methodological study, few outstanding work have been
done. As representative research, Aggarwal and Leitmann [10],
Leitmann and Skowronski [11], Corless et al. [12], and Corless
and Leitmann [13] explored a pioneering approach of colli-
sion avoidance control starting from the definition of uniform
boundedness; Petrosjan [14] solved the problem of pursuit-
evasion with an application of noncooperative zero-sum game
theoretic; Stipanovic et al. [15] proposed a cooperative control
of collision avoidance for multiagent systems. In recent years,
Chen et al. ([2]–[7], [16], [17], and their bibliographies) have
opened up a new way of collision avoidance control based on
diffeomorphism transformation. By introducing state transfor-
mation into control design, their proposed control can drive the
system to render two layers performance: 1) collision avoid-
ance and 2) stability (i.e., uniform boundedness and uniform
ultimate boundedness), regardless of the system uncertainty.
Along this way [2]–[7], [16], and [17], this article excepts to
address three problems in the CAV swarm system simulta-
neously: 1) collision avoidance; 2) uncertainty handling; and
3) formation control. This is the third set of contribution and
innovation of this article.

System uncertainty is inevitable in the CAV swarm system
and has a significant impact on system performance; hence,
uncertainty handling is very important in precise forma-
tion control. In the past, many efforts on uncertainty han-
dling have been done [18]–[25]. Wang et al. [26] proposed
an adaptive finite-time fault-tolerant control scheme for the
nonlower-triangular nonlinear systems. This article brings to
an alternative method. The uncertainty considered in this
article is (possibly fast) time varying but bounded, and the
bounds are unknown but their comprehensive effect on system
performance can be estimated with an adaptive parameter
online. By taking the ideal swarm performance of the con-
cerned CAV swarm system as a servo constraint, formation
control is formulated as a task of constraint following, that
is, design proper control to drive the system to follow the
constraint approximatively. For this, two partial controllers
are proposed: one aims at driving the nominal system to fol-
low the constraint strictly and the other one aims at driving
the uncertain portions of the system to follow the con-
straint approximatively. Under the combined action of these
two, the entire system can render approximate constraint
following [27].

This article possesses four significant contributions. First,
it extends formation control of CAV swarm system from a

traditional linear issue to a more generalized planar issue. By
this, both longitudinal motion and lateral motion are involved,
based on which a 2-D formation control problem is explored.
Second, for compact formation, a constraint-following frame-
work is constructed by taking the ideal swarm performance
of the concerned CAV swarm system as a desired constraint.
Third, for collision avoidance, a diffeomorphism transforma-
tion on space measure between two vehicles is creatively
performed, by which the space measure is positive restricted,
while the transformed variable (i.e., the swarm variable) is
unrestricted, such that control design can be out of state
restriction. Forth, for uncertainty handling, an adaptive robust
control scheme is proposed to drive the concerned CAV swarm
system to follow the desired constraint approximately, that is,
render the ideal swarm performance, even with time-varying
uncertainty.

II. PRELIMINARIES: ARTIFICIAL SWARM SYSTEM

Consider an artificial swarm system with N agents. The
ideal kinematic performance of each agent i ∈ N ,N =
{1, 2, . . . , N}, is described by

q̇i = −
N∑

j=1,j �=i

∂Gij

∂qi

(
qi, qj

)
. (1)

Here, qi ∈ Rn is the state vector, and Gij(·) : Rn × Rn → R
is smooth and shows the influence of agent j on i. By (1), we
can see that the accumulation of all influence by other agents
then affects i. Combination of the ideal kinematic performance
of each agent as (1) is called as ideal swarm performance
thereafter.

Define gij(qi, qj) := ∂Gij/∂qi(qi, qj) and then we have the
following properties [28], [29].

Property 1 (State Dilation): For each i, j ∈ N , there is a
mapping Ĝij(·) : Rn → R such that

Gij
(
qi, qj

) = Ĝij
(
qi − qj

)
. (2)

Property 2 (Symmetry): For each i, j ∈ N
Gij

(
qi, qj

) = Gji
(
qj, qi

)
. (3)

Property 3 (Monoticity in Repulsion/Attraction): For each
i, j ∈ N , there exists a ball Bδij(qi), with radius δij and center
qi, such that: 1) if qj ∈ int Bδij(qi), then (qi − qj)

Tgij < 0 and
2) if qj /∈ Bδj(qi), then (qi − qj)

Tgij > 0.
Property 4 (Linear Factorization): There is a function

ḡij(qi, qj), by which the function gij(·) can be linearly fac-
torized with respect to qi − qj as follows:

gij
(
qi, qj

) = (
qi − qj

)
ḡij
(
qi, qj

)
. (4)

Furthermore, there are scalar constants a > 0, φij > 0 such
that

∥∥(qi − qj
)(

ḡij
(
qi, qj

) − a
)∥∥ ≤ φij (5)

for all qi and qj.
Remark 1: Property 1 means the influence of agent j on i is

uniquely determined by the relative position between agent i
and j. Property 2 means the roles acted by qi on qj and qj on
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Fig. 1. CAV swarm system.

qi are the same. Property 3 means the repulsion or attraction
action between agents i and j (i.e., the direction of gij) is
uniquely determined by the relative position qi − qj; thus, the
relative distance between agent i and j will not be too close
or too far away. This is the key factor for an ideal artificial
swarm system to have the capability of automatic formation.
Property 4 means the function gij(·) can be linearly factorized
with respect to qi − qj.

The above analysis shows that subject to the ideal swarm
performance, an artificial swarm system can render the afore-
mentioned Properties 1–4. In this sense, by taking the system
dynamic into account, if we can design an appropriate con-
trol to drive all the agents to subject to the ideal kinematic
performance as (1), the system will render the aforementioned
properties; hence, the desired dynamic behavior of automatic
formation is achieved. Inspired by this, this article treats the
CAV system as an artificial swarm system and proposes an
adaptive control to drive it to subject to the ideal swarm
performance for automatic formation. For control design, the
ideal swarm performance is addressed as a servo constraint,
based on which a problem of approximate constraint-following
control is carried out later on (see Section V).

III. DYNAMIC MODEL OF CONNECTED AUTONOMOUS

VEHICLE SWARM SYSTEMS

Consider a connected autonomous vehicle (CAV) swarm
system consisting of N + 1 vehicles driving on 2-D ground.
Shown as Fig. 1, x−o−y is the ground-fixed coordinate frame
with origin o, lx0 and lxi , respectively, show the lengths of the
leader (i.e., the vehicle 0) and the follower i (i.e., the vehi-
cle i), ly0 and lyi , respectively, show the widths of the leader
and the follower i, x0 ∈ R and y0 ∈ R, respectively, denote
the positions in x and y directions of the leader, meanwhile,
xi ∈ R and yi ∈ R, respectively, denote the positions in x and
y directions of the follower i. We would like to emphasize
that the formation shown as Fig. 1 is only a schematic, while
in practice, it may be different in different cases (such as a
one-line type, a triangular type, a trapezoidal type, etc.).

Let X0 := [x0 y0]T and Xi := [xi yi]T . They, respectively,
denote the positions of the leader and the follower i; there-
out, Ẋ0 = [ẋ0 ẏ0]T , Ẍ0 = [ẍ0 ÿ0]T , Ẋi = [ẋi ẏi]T , and
Ẍi = [ẍi ÿi]T . Let τ0 := [τ x

0 τ
y
0 ]T and τi := [τ x

i τ
y
i ]T . They,

respectively, denote the control input of the leader and the

follower i. The leader can be seen as a virtual vehicle for the
purpose of positioning and guiding. The motion equation of it
is described as

M0Ẍ0(t) = τ0(t) (6)

where Ẍ0 ∈ R2 is the acceleration, t ∈ R is the time, and
M0 ∈ R2, M0 > 0 is the inertia matrix. The motion equation
of follower i is described as

Mi(Xi(t), σi(t), t)Ẍi(t) + Ci
(
Xi(t), Ẋi(t), σi(t), t

)

+ Fi
(
Xi(t), Ẋi(t), σi(t), t

) = τi(t) (7)

where Ẋi ∈ R2 is the velocity, Ẍi ∈ R2 is the acceleration,
σi ∈ �i ⊂ Rpi is the uncertain parameter, which is (possibly
fast) time varying but bounded, and �i ⊂ Rpi is compact and
denotes the possible bounding of σi. What is more, Mi ∈ R2,
Mi > 0 is the inertia matrix, Ci(Xi, Ẋi, σi, t) ∈ R2 is the
aerodynamic drag force, and Fi(Xi, Ẋi, σi, t) ∈ R2 is the collec-
tion rolling resistance force, acceleration resistance, and other
external disturbances. The functions Mi(·), Ci(·), and Fi(·) are
all continuous.

For later formation control, we define an actual horizontal
space between vehicle i and its preceding vehicle i − 1 as

�Sx
i (t) = |xi−1(t) − xi(t)| − lxi−1 + lxi

2
(8)

and an actual vertical space as

�Sy
i (t) = |yi−1(t) − yi(t)| − lyi−1 + lyi

2
. (9)

As the vehicle i may be in front or behind (up or down) of the
vehicle i − 1, it is not sure which is larger, xi−1 or xi (yi−1 or
yi); hence, the signs of xi−1 −xi and yi−1 −yi are not sure. For
this, we number the vehicles naturally, that is, suppose vehicle
i is after vehicle i − 1; hence, xi−1 − xi > 0.

For the sake of analysis, we introduce a horizontal space
measure as

S̃x
i (t) = xi−1(t) − xi(t) − lxi−1 + lxi

2
(10)

to measure the actual horizontal space �Sx
i and a vertical

space measure as

S̃y
i (t) = (yi−1(t) − yi(t))

2 −
(

lyi−1 + lyi
2

)2

(11)

to measure the actual vertical space �Sy
i . Shown as Fig. 1, the

actual horizontal space �Sx
i (8) and the actual vertical space

�Sy
i (9) are greater than zero, meanwhile, their alternatives

S̃x
i (10) and S̃y

i (11)) are also greater than zero.
As the signs of S̃x

i , S̃y
i , and �Sx

i , �Sy
i are coincident, we

use S̃x
i , S̃y

i as in (10)-(11) to replace �Sx
i , �Sy

i as in (8) and
(9) as an indirect measurement of space between two adjacent
vehicles in the following analysis. Suppose the vehicle i and its
preceding vehicle i − 1 except to keep at a desired horizontal
space S̄x

i and a desired vertical space S̄y
i . S̄x

i and S̄y
i are positive

constant scalars. Let Sx
i := S̄x

i and Sy
i := (S̄y

i )
2. We then define

a horizontal space error as

ex
i (t) := Sx

i − S̃x
i (t) (12)
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and a vertical space error as

ey
i (t) := Sy

i − S̃y
i (t). (13)

With (10) and (11), we have

ex
i (t) = Sx

i − xi−1(t) + xi(t) + lxi−1 + lxi
2

ey
i (t) = Sy

i − (yi−1(t) − yi(t))
2 +

(
lyi−1 + lyi

2

)2

. (14)

It is practical and important for the CAV swarm system to
avoidance collision in the process of formation marching. For
this, besides of formation control, collision avoidance is espe-
cially addressed in this article. This brings to the following
definition.

Definition 1: For any initial safe condition (i.e., S̃x
i (t0) > 0)

and S̃y
i (t0) > 0), the CAV swarm system demonstrates colli-

sion avoidance if S̃x
i (t) > 0 and S̃y

i (t) > 0 [i.e., ex
i (t) < Sx

i and
ey

i (t) < Sy
i ] for all t > t0.

Remark 2: S̃x
i > 0 and S̃y

i > 0 can be seen as the original
state of the CAV swarm system. In practical, if the space mea-
sures S̃x

i and S̃y
i are less than or equal to zero in a same time,

the vehicles will hit each other; hence, S̃x
i > 0 and S̃y

i > 0
are excepted for collision avoidance. On the contrary, if any
one of them is too large, the related vehicle will fall behind;
hence, relatively small S̃x

i and S̃y
i are excepted for compact for-

mation. This article aims at an equilibrium solution for such
two seemingly conflicting issues of collision avoidance and
compact formation. This is one of the salient features of this
article.

IV. STATE TRANSFORMATION FOR COLLISION AVOIDANCE

Recalling the definition of collision avoidance as
Definition 1, it imposes positive restrictions on S̃x

i and
S̃y

i (i.e., S̃x
i > 0 and S̃y

i > 0), for which a standard control
method that designs control directly for S̃x

i and S̃y
i would

be invalid. For this, this article proposes an indirect control
approach by transforming S̃x

i and S̃y
i into other variables

qx
i ∈ R and qy

i ∈ R. The transformation is described as

S̃x
i = Sx

i exp
(
qx

i

)
, S̃y

i = Sy
i exp

(
qy

i

)
. (15)

Remark 3: It is easy to see that as exp(qx
i ), exp(qy

i ) > 0
and Sx

i , Sy
i > 0, the transformation will result in strictly pos-

itive S̃x
i , S̃y

i for any |qx
i |, |qy

i | < ∞; thus, collision avoidance
is assured. Furthermore, S̃x

i and S̃y
i are assured to be bounded

with bounded qx
i and qy

i .
As this transformation is bijective, we, in turn, have

qx
i = ln

(
S̃x

i

Sx
i

)
, qy

i = ln

(
S̃y

i

Sy
i

)
. (16)

Note that S̃x
i as in (10) denotes a measure of the horizon-

tal space between two adjacent vehicles, while S̃y
i as in (11)

denotes a measure of the vertical space. If the values of S̃x
i

and S̃y
i are greater than zero, the two adjacent vehicles will

not collide. In other words, as long as the two adjacent vehi-
cles do not collide, the values of S̃x

i and S̃y
i are always greater

than zero. As the later proposed controller has the ability of

anti-collision, as long as the initial states of the vehicles are
reasonable (i.e., ensured not to collide), they will never collide.
By this, as long as the initial values of S̃x

i and S̃y
i are greater

than zero, they will always be greater than zero. Therefore,
the natural log function here will always be greater than zero.

Using (10) and (11) in (16), we then have

xi = xi−1 − Sx
i exp

(
qx

i

) − lxi−1 + lxi
2

yi = yi−1 −
(

Sy
i exp

(
qy

i

) +
(
lyi−1 + lyi

)2

4

) 1
2

. (17)

Let Lx
i := (lxi−1 + lxi )/2 and Ly

i := (lyi−1 + lyi )
2/4. Lx

i and Ly
i are

positive constant scalars. Taking the second-order derivative
of xi and yi with respect to t, we have

ẍi = ẍi−1 − Sx
i exp

(
qx

i

)(
q̇x

i

)2 − Sx
i exp

(
qx

i

)
q̈x

i ,

ÿi = ÿi−1 − 1

2
Sy

i exp
(
qy

i

)(
Sy

i exp
(
qy

i

) + Ly
i

)− 1
2
(
q̇y

i

)2

+ 1

4

(
Sy

i exp
(
qy

i

))2(
Sy

i exp
(
qy

i

) + Ly
i

)− 3
2
(
q̇y

i

)2

− 1

2
Sy

i exp
(
qy

i

)(
Sy

i exp
(
qy

i

) + Ly
i

)− 1
2 q̈y

i . (18)

Denote

Hx
i

(
qx

i , q̇x
i

)
:= −Sx

i exp
(
qx

i

)(
q̇x

i

)2

Hy
i

(
qy

i , q̇y
i

)
:= −1

2
Sy

i exp
(
qy

i

)(
Sy

i exp
(
qy

i

) + Ly
i

)− 1
2
(
q̇y

i

)2

+ 1

4

(
Sy

i exp
(
qy

i

))2(
Sy

i exp
(
qy

i

) + Ly
i

)− 3
2
(
q̇y

i

)2

Qx
i

(
qx

i

)
:= −Sx

i exp
(
qx

i

)

Qy
i

(
qy

i

)
:= −1

2
Sy

i exp
(
qy

i

)(
Sy

i exp
(
qy

i

) + Ly
i

)− 1
2 . (19)

Taking them into (18), we have

ẍi = ẍi−1 + Hx
i + Qx

i q̈x
i

ÿi = ÿi−1 + Hy
i + Qy

i q̈y
i . (20)

Let qi := [qx
i qy

i ]T , qi ∈ R2; thereout, q̇i = [q̇x
i q̇y

i ]T and
q̈i = [q̈x

i q̈y
i ]T , with which we define

Hi(qi, q̇i) :=
[

Hx
i

(
qx

i , q̇x
i

)

Hy
i

(
qy

i , q̇y
i

)
]

Qi(qi) :=
[

Qx
i

(
qx

i

)
0

0 Qy
i

(
qy

i

)
]
. (21)

With it, we can rewrite (20) in matrix form as

Ẍi = Ẍi−1 + Hi + Qiq̈i. (22)

With (7), we have

Ẍi = M−1
i−1(τi−1 − Ci−1 − Fi−1) + Hi + Qiq̈i. (23)

Substituting it into (7), the CAV swarm system as (7) is
redescribed as

MiQiq̈i + Ci + Fi + MiHi

+ MiM
−1
i−1(τi−1 − Ci−1 − Fi−1) = τi. (24)

We then would like to incorporate the swarm performance
into the transformed state qi. Suppose it is constrained by the
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ideal kinematic performance as (1). Let q̄x := (1/N)
∑N

i=1 qx
i

and q̄y := (1/N)
∑N

i=1 qy
i , and define q̄ := [q̄x q̄y]T as the

swarm center. Let S̃x := ∏N
i=1 S̃x

i and S̃y := ∏N
i=1 S̃y

i , and
define S̃ := [̃Sx S̃y]T as the collection of actual space. Let
Sx := ∏N

i=1 Sx
i and Sy := ∏N

i=1 Sy
i , and define S := [Sx Sy]T as

the collection of ideal space. We then reach to the following
performance.

Theorem 1: The product of S̃x
i and S̃y

i remains unchanged
for all time: S̃ = [Sx exp(Nq̄x(t0)) Sy exp(Nq̄y(t0))]T .

Proof: According to [28], we have

q̄x(t) = q̄x(t0), t ≥ t0
q̄y(t) = q̄y(t0), t ≥ t0. (25)

Recalling qx
i = ln(̃Sx

i /Sx
i ) as (16), we have

N∑

i=1

ln

(
S̃x

i

Sx
i

)
=

N∑

i=1

qx
i = Nq̄x(t) = Nq̄x(t0) (26)

such that

ln

(
N∏

i=1

S̃x
i

Sx
i

)
= Nq̄x(t0). (27)

We then have
N∏

i=1

S̃x
i =

N∏

i=1

Sx
i exp

(
Nq̄x(t0)

)
(28)

that is

S̃x = Sx exp
(
Nq̄x(t0)

)
. (29)

Similarly, we have

S̃y = Sy exp
(
Nq̄y(t0)

)
. (30)

With S̃ = [̃Sx S̃y]T , we have

S̃ = [
Sx exp

(
Nq̄x(t0)

)
Sy exp

(
Nq̄y(t0)

)]T
. (31)

Remark 4: With Theorem 1, we can see that the state
transformation as (15) not only implies the collision avoid-
ance condition S̃x

i (t), S̃y
i (t) > 0 but also renders to global

performance.
Remark 5: Recalling the concept of constraint following, it

means to drive the system to follow a constraint. In mechani-
cal systems, the prescribed (desired) system performance can
be always represented as constraint. If we want to drive
the mechanical system to perform in a certain way, we can
design a control to drive the system to follow the desired
constraint. This is the so-called constraint following control.
As for the formation control of the CAV swarm system,
if we can design an appropriate control to drive the trans-
formed state qi to (approximatively) subject to the constraint
as (1), the controlled CAV swarm system not only renders the
swarm Properties 1–4 but also possesses the global invariance
described as Theorem 1. By this, a problem of approximatively
constraint following control is arisen.

Remark 6: The constraint following refers to (servo) con-
straint about the state (i.e., the coordinate), velocity, accelera-
tion, or even a combination of them, while the state constraints

(shown as in [30]) refers to constraint only about the state.
By this, no limitation on practical implication of constraint
exists in the constraint following. In this sense, compared with
the control for state constraints, control for constraint follow-
ing can solve a wider range of control problems and achieve
more complex control goals. This reflects the advantages of
constraint-following control.

V. ADAPTIVE ROBUST CONTROL FOR APPROXIMATE

CONSTRAINT FOLLOWING

By taking the ideal kinematic performance (1) as desired
constraint on the CAV swarm system, an adaptive robust con-
trol scheme is proposed to drive the system to obey such
constraint in this section. That is, a problem of approximate
constraint following control is addressed. This should open a
new door for motion control of the CAV system.

First, for constraint analysis, we consider the ideal kinematic
performance (1) as a first-order constraint on vehicle i. Let

Gi(q) := −
N∑

j=1,j �=i

∂Gij

∂qi

(
qi, qj

)
(32)

where q = [qT
1 , qT

2 , . . . , qT
N]T , q ∈ R2N . By introducing (32),

the constraint (1) can be rewritten as

q̇i = Gi(q). (33)

Taking its first-order derivative with respect to t, and denot-
ing the right-hand side of the derivative as ϕi, we obtain the
second-order constraint as

q̈i = ϕi(q, q̇, t). (34)

Note that the constraint (34) is consistent [27]; hence, for a
given configuration qi and qj of the system, there is at least
one acceleration q̈i that satisfies the constraint. With the first
order constraint (33), define a constraint-following error as

βi := q̇i − Gi (35)

where βi = [βx
i β

y
i ]T . It can be seen as a measure of the degree

to which the desired constraint is followed: for perfect con-
straint following case, βi ≡ 0. For other cases, its magnitude
stands for the extent of constraint violation that is excepted to
be the closer to 0, the better. In this sense, βi = 0 is actually
an ideal condition that is almost impossible to achieve, while
βi → 0 is the actual control objective.

Taking the first-order derivative of βi with respect to t, we
obtain the βi-dynamics as

β̇i = q̈i − ϕi. (36)

With (24), it can be rewritten as

β̇i = Q−1
i M−1

i (τi − Ci − Fi) − Q−1
i Hi

− Q−1
i M−1

i−1(τi−1 − Ci−1 − Fi−1) − ϕi. (37)

Second, for uncertainty handling, we decompose Mi, Ci, and
Fi as follows:

Mi(Xi, σi, t) = M̄i(Xi, t) + �Mi(Xi, σi, t) (38)

Ci
(
Xi, Ẋi, σi, t

) = C̄i
(
Xi, Ẋi, t

) + �Ci
(
Xi, Ẋi, σi, t

)
(39)
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Fi
(
Xi, Ẋi, σi, t

) = F̄i
(
Xi, Ẋi, t

) + �Fi
(
Xi, Ẋi, σi, t

)
. (40)

Here, M̄i, C̄i, and F̄i are the “nominal” portions, and
�Mi,�Ci, and �Fi are the uncertain portions. Suppose
M̄i is symmetric and positive definite and the functions
M̄i(·),�Mi(·), C̄i(·),�Ci(·), F̄i(·), and �Fi(·) are all continu-
ous. Let

Di(Xi, σi, t) := M−1
i (Xi, σi, t) (41)

D̄i(Xi, t) := M̄−1
i (Xi, t) (42)

�Di(Xi, σi, t) := Di(Xi, σi, t) − D̄i(Xi, t) (43)

Ei(Xi, σi, t) := M̄i(Xi, t)M−1
i (Xi, σi, t) − Ii. (44)

Therefore

�Di(Xi, σi, t) = D̄i(Xi, t)Ei(Xi, σi, t). (45)

Based on the decomposition, with (24), we obtain the nominal
system as

M̄iQiq̈i + C̄i + F̄i + M̄iHi

+ M̄iD̄i−1
(
τi−1 − C̄i−1 − F̄i−1

) = τi. (46)

Theorem 2 (Udwadia and Kalaba [31]): Consider the
CAV swarm system (7) or (24) without uncertainty and the
constraint (1). The constraint force

Qc
i = M̄iQiϕi + C̄i + F̄i + M̄iHi

+ M̄iD̄i−1
(
τi−1 − C̄i−1 − F̄i−1

)
(47)

observes Lagrange’s form of d’Alembert’s principle and ren-
ders the system to meet the constraint.

Remark 7: With a control τi = Qc
i , the nominal system can

meet the desired constraint as (1) strictly (i.e., render perfect
constraint following). As for the entire uncertain system (7)
or (24), a more realistic control is needed.

Following analysis is continued for control design of the
entire uncertain system (7) or (24). Upon decomposition, the
β-dynamics can be reexpressed as

β̇i = Q−1
i D̄i

(
τi − C̄i − F̄i

) − Q−1
i Hi

− Q−1
i D̄i−1

(
τi−1 − C̄i−1 − F̄i−1

) − ϕi

+ Q−1
i D̄i

[
Ei(τi − Ci − Fi) − (�Ci + �Fi)

+ M̄i�Di−1(τi−1 − Ci−1 − Fi−1)

+ M̄iD̄i−1(�Ci−1 + �Fi−1)
]
. (48)

Assumption 1: There exist a constant κi ∈ (0,∞) and a
function fi(κi, ·) : R2×R → R2 such that there are a Lyapunov
function Vi(·) : R2×R → R+, and strictly increasing functions
γ l

i (·) : R+ → R+ satisfying

γ l
i (0) = 0

lim
ri→∞ γ l

i (ri) = ∞, l = 1, 2, 3 (49)

such that for all (κi, βi, qi, q̇i, t) ∈ (0,∞)×R2 ×R2 ×R2 ×R

γ 1
i (‖βi‖) ≤ Vi(βi, t) ≤ γ 2

i (‖βi‖) (50)

∂Vi(βi, t)

∂t
+ ∂TVi(βi, t)

∂βi
fi(κi, βi, t) ≤ −κiγ

3
i (‖βi‖). (51)

We now choose

p1
i = M̄iQi(fi + ϕi) + C̄i + F̄i + M̄iHi

+ M̄iD̄i−1
(
τi−1 − C̄i−1 − F̄i−1

)
. (52)

Theorem 3: Subject to Assumption 1, the control τi = p1
i

renders

Q−1
i D̄i

(
τi − C̄i − F̄i

) − Q−1
i Hi

− Q−1
i D̄i−1

(
τi−1 − C̄i−1 − F̄i−1

) − ϕi = fi. (53)

Proof: Using τi = p1
i as (52) in the left-hand side of (53),

we have

Q−1
i D̄i

[
M̄iQi(fi + ϕi) + C̄i + F̄i + M̄iHi

+ M̄iD̄i−1
(
τi−1 − C̄i−1 − F̄i−1

) − C̄i − F̄i
] − Q−1

i Hi

− Q−1
i D̄i−1

(
τi−1 − C̄i−1 − F̄i−1

) − ϕi

= fi + ϕi − ϕi

= fi. (54)

Assumption 2: There exists a (possibly unknown) constant
ρE

i > −1 such that for all (Xi, t) ∈ R2 × R

1

2
min
σi∈�i

λm
(
Ei(Xi, σi, t) + ET

i (Xi, σi, t)
) ≥ ρE

i (55)

where λm(·) denotes the minimum eigenvalue of the concerned
matrix.

Remark 8: The constant ρE
i is generally unknown, since the

uncertainly bound �i is unknown. In the special case, when
no uncertainty exists, Mi = M̄i, Ei = 0, then one can choose
ρE

i = 0.
Assumption 3:
1) There exist an unknown constant vector αi ∈ (0,∞)ki

and a known function �i(·) : (0,∞)ki ×R2 ×R2 ×R2 ×
R2 × R → R+ such that for all (qi, q̇i, Xi−1, Ẋi−1, t) ∈
R2 × R2 × R2 × R2 × R, σi ∈ �i∥∥∥Ei

(
p1

i − Ci − Fi

)
− (�Ci + �Fi)

+ M̄i�Di−1(τi−1 − Ci−1 − Fi−1)

+ M̄iD̄i−1(�Ci−1 + �Fi−1)

∥∥∥

≤ �i
(
αi, qi, q̇i, Xi−1, Ẋi−1, t

)
. (56)

2) For each (qi, q̇i, Xi−1, Ẋi−1, t) ∈ R2 ×R2 ×R2 ×R2 ×R,
the function �i(·, qi, q̇i, Xi−1, Ẋi−1, t) : (0,∞)ki → R+
is: a) C1; b) concave; that is, for any α

1,2
i ∈ (0,∞)ki

�i

(
α1

i , qi, q̇i, Xi−1, Ẋi−1, t
)

− �i

(
α2

i , qi, q̇i, Xi−1, Ẋi−1, t
)

≤ ∂�i

∂αi

(
α2

i , qi, q̇i, Xi−1, Ẋi−1, t
)(

α1
i − α2

i

)
(57)

and c) nondecreasing with respect to each component of
its argument αi.

We now propose the following control:

τi = p1
i + p2

i (58)

with p1
i as (52) and p2

i as

p2
i = −λiD̄iQ

−1
i

∂Vi

∂βi
�2

i (59)
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Fig. 2. Information flow topology of the CAVs: PF.

where the scalar λi > 0 is constant design parameter. The
parameter α̂i in the function �i(α̂i, ·) is governed by the
following leakage-type adaptive law:

˙̂αi = 1

2
k1

i
∂T�i

∂αi

∥∥∥∥
∂TVi

∂βi
Q−1

i D̄i

∥∥∥∥ − k2
i α̂i (60)

where the scalars k1
i , k2

i > 0 are design parameters.
Remark 9: According to (56), αi shows the comprehen-

sive effect of uncertainty on system performance; hence, it
is uncertain. The proposed adaptive law as (60) is used to
estimate such comprehensive effect online. The control p2

i is
the adaptive robust action based on the adaptive parameter
α̂i, with which the controlled system can resist the effects of
uncertainty.

Remark 10: From (52) and (59), it can be seen that besides
their own information, each vehicle only needs to know
information of the preceding vehicle for control design; hence,
the proposed controller is a distributed one. That is to say,
in the proposed formation control scheme, each vehicle is
required to communicate with only the former one and the
latter one. Shown as Fig. 2, the information flow topology of
the CAVs is in type of predecessor following (PF) [32].

Theorem 4: Let δi := [βT
i (α̂i − αi)

T ]T ∈ R2+ki and δ(t) :=
[δT

1 (t) δT
2 (t) · · · δT

N(t)]T ∈ R
∑N

i=1(2+ki). Consider system (7)
or (24). Subject to Assumptions 1–3, the control (58) renders
the following performance.

1) Uniform Boundedness: For any r > 0, there is a d(r) <

∞ such that if ‖δ(t0)‖ ≤ r, then ‖δ(t)‖ ≤ d(r) for all
t ≥ t0.

2) Uniform Ultimate Boundedness: For any r > 0 with
‖δ(t0)‖ ≤ r, there exist a d > 0 and a time T(d, r) < ∞
such that ‖δ(t)‖ ≤ d for any d > d as t ≥ t0 + T(d, r).

Proof: Choose V = ∑N
i=1 Vi as the Lyapunov function

candidate, where

Vi
(
βi, α̂i − αi, t

) = Vi(βi, t) +
(

k1
i

)−1(
α̂i − αi

)T(
α̂i − αi

)

(61)

and Vi(·) is subject to Assumption 1. The Lyapunov derivative
for the system (24) is given by

V̇ =
N∑

i=1

V̇i. (62)

Taking the derivative of (61) yields

V̇i = ∂Vi

∂t
+ ∂TVi

∂βi
β̇i

︸ ︷︷ ︸
=V̇i

+2
(

k1
i

)−1(
α̂i − αi

)T ˙̂αi. (63)

We first focus on V̇i. Recalling β̇i as (48), we have

V̇i = ∂Vi

∂t
+ ∂TVi

∂βi

[
Q−1

i D̄i

(
p1

i − C̄i − F̄i

)
− Q−1

i Hi

− Q−1
i D̄i−1

(
τi−1 − C̄i−1 − F̄i−1

) − ϕi

]

+ ∂TVi

∂βi
Q−1

i D̄i

[
Ei

(
p1

i − Ci − Fi

)
− (�Ci + �Fi)

+ M̄i�Di−1(τi−1 − Ci−1 − Fi−1)

+ M̄iD̄i−1(�Ci−1 + �Fi−1)
]

+ ∂TVi

∂βi
Q−1

i D̄ip
2
i + ∂TVi

∂βi
Q−1

i D̄iEip
2
i . (64)

With (53) and (51), we have

∂Vi

∂t
+ ∂TVi

∂βi

[
Q−1

i D̄i

(
p1

i − C̄i − F̄i

)
− Q−1

i Hi

− Q−1
i D̄i−1

(
τi−1 − C̄i−1 − F̄i−1

) − ϕi

]

= ∂Vi

∂t
+ ∂TVi

∂βi
fi

≤ −κiγ
3
i (‖βi‖). (65)

With (56), we have

∂TVi

∂βi
Q−1

i D̄i

︸ ︷︷ ︸
=:φT

i

[
Ei

(
p1

i − Ci − Fi

)
− (�Ci + �Fi)

+ M̄i�Di−1(τi−1 − Ci−1 − Fi−1)

+ M̄iD̄i−1(�Ci−1 + �Fi−1)
]

≤ ‖φi‖�i(αi, ·). (66)

With (59), we have

∂TVi

∂βi
Q−1

i D̄ip
2
i = −λi‖φi‖2�2

i

(
α̂i, ·

)
. (67)

Note that D̄i and Qi are diagonal matrices. With (55), we
further have

∂TVi

∂βi
Q−1

i D̄iEip
2
i

= −1

2
λi

∂TVi

∂βi
Q−1

i D̄i

︸ ︷︷ ︸
=φi

(
Ei + ET

i

)
D̄iQ

−1
i

∂Vi

∂βi︸ ︷︷ ︸
=φT

i

�2
i

(
α̂i, ·

)

≤ −1

2
λiφiλm

(
Ei + ET

i

)
φT

i �2
i

(
α̂i, ·

)

≤ −λiρ
E
i ‖φi‖2�2

i

(
α̂i, ·

)
. (68)

Introducing (65)–(68) into (64), we have

V̇i ≤ −κiγ
3
i (‖βi‖) + ‖φi‖�i(αi, ·)

− λi
(
1 + ρE

i

)‖φi‖2�2
i

(
α̂i, ·

)
. (69)
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We then focus on the second term of the left-hand side
of (63). Recalling α̂i as (60), we have

2
(

k1
i

)−1(
α̂i − αi

)T ˙̂αi

= (
α̂i − αi

)T ∂T�i

∂αi

(
α̂i, ·

)‖φi‖ − 2
(

k1
i

)−1
k2

i

(
α̂i − αi

)T(
α̂i − αi

)

− 2k2
i

(
α̂i − αi

)T
αi

≤ (
α̂i − αi

)T ∂T�i

∂αi

(
α̂i, ·

)‖φi‖ −
(

k1
i

)−1
k2

i

∥∥α̂i − αi
∥∥2

+
(

k1
i

)−1
k2

i ‖αi‖2. (70)

By combining (69) and (70) in (63), we have

V̇i ≤ −κiγ
3
i (‖βi‖) − (

α̂i − αi
)T ∂T�i

∂αi

(
α̂i, ·

)‖φi‖

+ 1

4λi
(
1 + ρE

i

) + (
α̂i − αi

)T ∂T�i

∂αi

(
α̂i, ·

)‖φi‖

−
(

k1
i

)−1
k2

i

∥∥α̂i − αi
∥∥2 +

(
k1

i

)−1
k2

i ‖αi‖2

= −κiγ
3
i (‖βi‖) −

(
k1

i

)−1
k2

i

∥∥α̂i − αi
∥∥2

+ 1

4λi
(
1 + ρE

i

) +
(

k1
i

)−1
k2

i ‖αi‖2

︸ ︷︷ ︸
=:ζi

= −κiγ
3
i (‖βi‖) −

(
k1

i

)−1
k2

i

∥∥α̂i − αi
∥∥2 + ζi. (71)

Recall δi = [βT
i (α̂i − αi)

T ]T , and let

γ̂ 3
i (νi) := min

δi

{
κiγ

3
i (‖βi‖),

(
k1

i

)−1
k2

i

∥∥α̂i − αi
∥∥2 | νi = ‖δi‖

}

(72)

with which we have

V̇i ≤ −γ̂ 3
i (‖δi‖) + ζi. (73)

Recalling (61), we conclude the uniform boundedness and
uniform ultimate boundedness of the vehicle i ([33]) as
follows.

1) Given any ri > 0, with ‖δ0i‖ ≤ ri, where δ0i = δi(t0)
and t0 is the initial time, there exists

di(ri) =
⎧
⎨

⎩

((
γ 1

i

)−1 ◦ γ 2
i

)
(ri), if ri > Ri((

γ 1
i

)−1 ◦ γ 2
i

)
(Ri), if ri ≤ Ri.

(74)

Ri =
(
γ 3

i

)−1
(ζi) (75)

such that ‖δi(t)‖ ≤ di(ri) for all t ≥ t0.
2) Given any di, with

di >

((
γ 1

i

)−1 ◦ γ 2
i

)
(Ri) (76)

we have ‖δi(t)‖ ≤ di, for all t ≥ t0 + Ti(di, ri), with

Ti
(
di, ri

) =
{

0, if ri ≤ Ri
γ 2

i (ri)−γ 1
i (Ri)

γ 3
i (Ri)−ζi

, otherwise
(77)

Ri =
((

γ 2
i

)−1 ◦ γ 1
i

)
(di). (78)

The following analysis is continued for the global performance
of system (7) or (24). Recalling δ = [δT

1 δT
2 · · · δT

N]T , let

γ1(ν) := min
δ

{
κ1γ

3
1 (‖β1‖) + (k1

1)
−1k2

1

∥∥α̂1 − α1
∥∥2

, . . .

κNγ 3
N(‖βN‖) +

(
k1

N

)−1
k2

N

∥∥α̂N − αN
∥∥2 | ν = ‖δ‖

}

γ2(ν) := max
δ

{
κ1γ

3
1 (‖β1‖) +

(
k1

1

)−1
k2

1

∥∥α̂1 − α1
∥∥2

, . . .

κNγ 3
N(‖βN‖) +

(
k1

N

)−1
k2

N

∥∥α̂N − αN
∥∥2 | ν = ‖δ‖

}
.

(79)

Taking (73) into (62), we have

V̇ ≤ −
N∑

i=1

γ̂ 3
i (‖δi‖) +

N∑

i=1

ζi. (80)

Let

γ3(ν) := min
δ

{
γ̂ 3

1 (‖δ1‖), . . . , γ̂ 3
N(‖δN‖) | ν = ‖δ‖

}
(81)

with which we have

V̇ ≤ −γ3(‖δ‖) +
N∑

i=1

ζi

=: −γ3(‖δ‖) + ζ. (82)

We conclude the uniform boundedness and uniform ultimate
boundedness of the system (7) or (24) ([33]) as follows.

1) Given any r > 0, with ‖δ0‖ ≤ r, where δ0 = δ(t0) and
t0 is the initial time, there exists

d(r) =
⎧
⎨

⎩

(
γ −1

1 ◦ γ2

)
(r), if r > R

(
γ −1

1 ◦ γ2

)
(R), if r ≤ R.

(83)

R = γ −1
3 (ζ ) (84)

such that ‖δ(t)‖ ≤ d(r) for all t ≥ t0.
2) Given any d, with

d >
(
γ −1

1 ◦ γ2

)
(R) (85)

we have ‖δ(t)‖ ≤ d, for all t ≥ t0 + T(d, r), with

T(d, r) =
{

0, if r ≤ R
γ2(r)−γ1(R)

γ3(R)−ζ
, otherwise

(86)

R =
(
γ −1

2 ◦ γ1

)
(d). (87)

The performance is guaranteed.
Remark 11: By taking the ideal kinematic performance (1)

as constraint on vehicle i, we formulate the control of CAV
swarm system as a task of approximative constraint following.
The proposed control (58) not only renders the performance of
uniform boundedness and uniform ultimate boundedness for
individual vehicle i but also renders global one for the entire
CAV swarm system.
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Fig. 3. Design procedure.

VI. DESIGN PROCEDURE

This article propose an adaptive robust formation control
scheme for the CAV swarm system by incorporating swarm
property, diffeomorphism transformation, and constraint fol-
lowing. Shown as Fig. 3, the design procedure is summarized
as follows.

1) Determine the horizontal space measure S̃x
i as (10) and

the vertical space measure S̃y
i as (11), and then formulate

the transformed states qx
i and qy

i as (16).
2) Formulate the function Gij(·) according to

Properties 1 − 4 and obtain Gi(·) according to (32) and
ϕi(·) according to (34). Define the constraint-following
error βi as (35).

3) Determine fi(κi, ·), γ 1,2,3
i (·), Vi(·) according to

Assumption 1, ρE1 according to Assumption 2,
and �i(·) according to Assumption 3.

4) With predetermined fi(κi, ·), ϕi(·), Vi(·),�i(·), deter-
mine the partial controls p1

i as (52), p2
i as (59) and the

adaptive law ˙̂α as (60).
5) With predetermined p1

i and p2
i , design the adaptive

robust control τi according to (58).
Remark 12: The novelty of the proposed method is three-

fold. First, it solves a more generalized planar rather than
linear formation control problem for CAV swarm system
by proposing a 2-D formation control scheme. Second,
it can realize compact formation for the concerned CAV
swarm system by taking the ideal swarm performance as
a desired constraint and formulating a constraint-following
framework. Third, it considers both collision avoidance and
time-varying uncertainty in the process of formation control
design.

VII. APPLICATION: FORMATION MARCHING AND

COOPERATIVE OPERATION

In this section, we consider an application of the proposed
control scheme for formation marching and cooperative opera-
tion of the CAV swarm system. That is, it expects a control to
drive the CAV swarm system close to a predetermined target
object in a compact formation, and go around it for cooper-
ative operation purposes, such as collaborative transportation,
siege, cooperative reconnaissance, etc.

A. System Model and Constraint Analysis

A CAV swarm system usually contains three to six vehi-
cles. As a most complicated case, we consider a CAV swarm
system with seven vehicles (including one virtual leader and
six followers) shown as in Fig. 4. It expects the CAV swarm
system to reach a target object and go around it. The equa-
tion motion of the (virtual) leader is expressed as (6) and
the equation motion of the followers is expressed as (7), in
which the inertia matrices can be detailed as Mi = diag{mi}
(i = 0, 1, 2, 3, 4, 5, 6). mi is the mass of vehicle i. Ignoring
the aerodynamic drag force and external disturbances in y
direction, the terms of Ci and Fi in (7) can be detailed as
Ci = [Cx

i 0]T and Fi = [Fx
i 0]T , in which Cx

i is the aero-
dynamic drag force in x direction and can be expressed as
Cx

i = ci|ẋi|ẋi. ci is the aerodynamic drag coefficient and Fx
i is

the external disturbances in x direction.
As the load in each vehicle is uncertain, and the aero-

dynamic drag force as well as the external disturbance are
inevitable, we suppose the mass mi, the aerodynamic drag
coefficient ci, and the disturbance Fx

i are uncertain: mi =
m̄i +�mi(t), ci = c̄i +�ci(t), Fx

i = F̄x
i +�Fx

i (t). To evaluate
the robustness of the proposed controller, we choose high-
frequency uncertainties as �mi(t) = 40 sin(10t), �ci(t) =
sin(10t), and �Fx

i (t) = 15 sin(10t) as interference signal. The
later simulation results show that the controller can resist such
strong uncertainty interference; hence, has strong robustness.
What is more, in order to further verify the uncertainty resis-
tance ability of the proposed controller, we choose amplified
uncertainty as �mi(t) = 80 sin(t), �ci(t) = 10 sin(t), and
�Fx

i (t) = 30 sin(t), and a set of low-frequency uncertainty
as �mi(t) = 40 sin(t), �ci(t) = sin(t), and �Fx

i (t) = 15 sin(t)
for comparison.

For constraint analysis, we choose the function Gij(·) as

Gij = −
(∥∥qi − qj

∥∥2 + a
) 1

2 + 1

2

∥∥qi − qj
∥∥2 (88)

where a ≥ 0 is a constant scalar. Taking the derivative of it
with respect to qi, we have

∂Gij

∂qi
=
[

1 −
(∥∥qi − qj

∥∥2 + a
)− 1

2
](

qi − qj
)
. (89)

Recalling (32), we have

Gi =
6∑

j=1,j �=i

[(∥∥qi − qj
∥∥2 + a

)− 1
2 − 1

](
qi − qj

)
. (90)
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Fig. 4. CAV swarm system with 6 vehicles.

With (90) and (35), we have

βi = q̇i −
6∑

j=1,j �=i

[(∥∥qi − qj
∥∥2 + a

)− 1
2 − 1

](
qi − qj

)
. (91)

Recalling (34), and taking the derivative of (90) with respect
to t, we have

ϕi =
6∑

j=1,j �=i

{
−
(∥∥qi − qj

∥∥2 + a
)− 3

2 (
qi − qj

)T(
q̇i − q̇j

)

× (
qi − qj

) +
[(∥∥qi − qj

∥∥2 + a
)− 1

2 − 1

](
q̇i − q̇j

)}
.

(92)

B. Assumption Verification

We now focus on the verification of Assumptions 1–3.
First, for Assumption 1, we consider a Lyapunov function as
Vi(βi) = βT

i Piβi, with Pi > 0, Pi ∈ R2×2, and fi(κi, βi) =
−εiκiβi, εi > 0, and then select the corresponding func-
tions γ 1

i (‖βi‖) = λm(Pi)‖βi‖2, γ 2
i (‖βi‖) = λM(Pi)‖βi‖2 and

γ 3
i = εiλM(Pi)‖βi‖2.
Second, for Assumption 2, with (55), we have Ei =

M̄iM
−1
i − Ii. As Mi > 0, M̄i > 0, M̄iM

−1
i > 0; hence,

(1/2) minσi∈�i λm(Ei + ET
i ) ≥ ρE

i > −1, such that (55) is
satisfied.

Third, as all the entries in Mi, Ci, and Fi are either constant,
trigonometric in positions, velocities, or quadratic in velocities,
Assumption 3 is met by choosing

�i(αi, Ẋi) = α1
i

∥∥Ẋi
∥∥2 + α2

i

∥∥Ẋi
∥∥ + α3

i (93)

≤ αi

(∥∥Ẋi
∥∥2 + 2

∥∥Ẋi
∥∥ + 1

)
(94)

= αi
(∥∥Ẋi

∥∥ + 1
)2 (95)

=: αi�̂i(Ẋi) (96)

where α
1,2,3
i > 0 are unknown constant parameters and

αi = max{α1
i , α2

i /2, α3
i }. Here, α1

i ‖Ẋi‖2, α2
i ‖Ẋi‖, and α3

i are,
respectively, determined according to the structures of the
quadratic in velocities, the velocities, and the constant as well
as the trigonometric in positions.

C. Control Design

The leader vehicle is actually a virtual one and we number
it as vehicle 0. As it is virtual, we take it as a moving particle
in our design procedure. First, for the leader (i.e., the vehicle
0), a control τ0 is designed to drive it close to a given position
(xd, yd), where xd, yd are constants. By this, under the guid-
ance of the leader, the followers can also close to the given
position with the later designed control. Define the tracking
error as

e := (x0 − xd)
2 + (y0 − yd)

2 − d2. (97)

Taking the derivative of it with respect to t, we have

ė = 2(x0 − xd)ẋ0 + 2(y0 − yd)ẏ0 (98)

ë = 2(x0 − xd)ẍ0 + 2(y0 − ȳd)ÿ0 + 2ẋ2
0 + 2ẏ2

0. (99)

We consider the leader is constrained by ė + l0e = 0, l0 > 0
is scalar, that is

2(x0 − xd)ẋ0 + 2(y0 − yd)ẏ0

+ l0
[
(x0 − xd)

2 + (y0 − yd)
2 − d2

]
= 0. (100)

Taking differentiation, we have

2(x0 − xd)ẍ0 + 2(y0 − ȳd)ÿd + 2ẋ2
0 + 2ẏ2

0

+ l0
[
2(x0 − xd)ẋ0 + 2(y0 − yd)ẏ0

]
. (101)

We can write (100) and (101) in the form of matrix as

[
2(x0 − x̄d) 2(y0 − ȳd)

]
︸ ︷︷ ︸

=:A

[
ẋ0
ẏ0

]

= −l0
[
(x0 − xd)

2 + (y0 − yd)
2
]

︸ ︷︷ ︸
=:c

(102)

and
[
2(x0 − x̄d) 2(y0 − ȳd)

]
︸ ︷︷ ︸

=:A

[
ẍ0
ÿ0

]

= −2ẋ2
0 − 2ẏ2

0 − l0
[
2(x0 − xd)ẋ0 + 2(y0 − yd)ẏ0

]
︸ ︷︷ ︸

=:b

. (103)

According to [17], we then design τ0 as

τ0 = M1/2
0

(
AM−1/2

0

)+
b. (104)
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TABLE I
PARAMETER SETTING

Second, for the follower i (i.e., the vehicle i), we design a
control τi according to (58). As we choose Vi(βi) = βT

i Piβi,
∂Vi/∂βi = 2Piβi. Taking it and the predetermined fi =
−εiκiβi, βi(·) as (91), ϕi(·) as (92), and �i(·) as (93) into (52)
and (59), we have

τi = p1
i + p2

i (105)

with

p1
i = M̄iQi(−εiκiβi + ϕi) + C̄i + F̄i + M̄iHi

+ M̄iD̄i−1
(
τi−1 − C̄i−1 − F̄i−1

)
(106)

and

p2
i = −2α̂2

i λiD̄iQ
−1
i Piβi�̂

2
i (107)

in which α̂i is determined by

˙̂αi = k1
i �̂i

∥∥∥βT
i PiQ

−1
i D̄i

∥∥∥ − k2
i α̂i. (108)

D. Simulation

For simulation, we set the parameters as in Table I. Note that
there mainly are two types of parameters in the simulation: one
type is the modeling parameters of the CAV swarm system and
the other type is the design parameters. As for the modeling
parameters, they can be selected as arbitrary constants that
correspond to their actual physical meaning. As for the design
parameters, l0, a is constraint design parameters and can be
selected as any scalars l0 > 0, a ≥ 0; k11,21,31,41,51,61 and
k12,22,32,42,52,62 are design parameters of adaptive law and can
also be selected as any positive scalars; ε1,2,3,4,5,6, P1,2 are
auxiliary control design parameters and can be selected as any
scalars/matrix subject to ε1,2,3,4,5,6 > 0, P1,2 ∈ R2×2, P1,2 >

0; κ1,2,3,4,5,6, λ1,2,3,4,5,6 are control design parameters and can
be selected as any positive scalars. We further choose the initial
states x0(0) = −75, ẋ0(0) = 10, y0(0) = −15, ẏ0(0) = −10,
x1(0) = −90, ẋ1(0) = 10.5, y1(0) = −30, ẏ1(0) = −10.5,
x2(0) = −105, ẋ2(0) = 11, y2(0) = −45, ẏ2(0) = −11,
x3(0) = −120, ẋ3(0) = 11.5, y3(0) = −60, ẏ3(0) = −11.5,
x4(0) = −135, ẋ4(0) = 12, y4(0) = −75, ẏ4(0) = −12,
x5(0) = −150, ẋ5(0) = 12.5, y5(0) = −90, ẏ5(0) = −12.5,
x6(0) = −165, ẋ6(0) = 13, y6(0) = −105, ẏ6(0) = −3, and
α̂1,2,3,4,5,6(0) = 1.

Simulation results are shown in Figs. 5–19. Fig. 5 shows
the 3-D trajectories [i.e., the position (x, y) over time t] of the

Fig. 5. 3-D trajectories of the vehicles.

Fig. 6. 2-D trajectories of the vehicles.

Fig. 7. Individual 2-D trajectories of the vehicles.

Fig. 8. Histories of the actual horizontal space between vehicle i and its
preceding vehicle i − 1: �Sx

i .

virtual leading vehicle (marked with a red-dotted line) and the
six following vehicles. It shows that starting from the initial
position, the CAV swarm system arrives to the target object
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Fig. 9. Histories of the actual vertical space between vehicle i and its
preceding vehicle i − 1: �Sy

i .

Fig. 10. Histories of the constraint-following errors: βxi.

Fig. 11. Histories of the constraint-following errors: βyi.

and then goes around it under the guidance of the leading
vehicle. It can be clearly seen that the seven trajectories are
not intersecting at any time and keep at a relatively stable
space. It means that the CAV swarm system can avoid collision
actively. This actually verifies the effect of state transformation
(in Section IV) for collision avoidance. To show the driving
route of the vehicles more clearly, their 2-D trajectories [i.e.,
the position (x, y)] are shown together in Fig. 6 and individ-
ually in Fig. 7. It further shows that leading by the virtual
vehicle, the CAV swarm system can approach to the target
object and drive around it.

Collision avoidance is an important technical target of the
CAV swarm system, for which this article does some elab-
orate efforts in the process of control design. To verify the

Fig. 12. Control inputs: τ x
i .

Fig. 13. Control inputs: τ
y
i .

Fig. 14. Histories of the adaptive parameters: α̂i.

validity of the proposed method, the histories of the actual
horizontal/vertical space �Sx

i and �Sy
i between vehicle i and

its preceding vehicle i−1 are especially shown as Figs. 8 and 9.
It can be seen that the actual horizontal/vertical space �Sx

i and
�Sy

i are always greater than zero, that is to say, the vehicles
will not hit each other any time; thus, the target of collision
avoidance is achieved. It further can be seen that the actual
horizontal/vertical space �Sx

i and �Sy
i reach to a relatively

stable level between t = 10 s and t = 15 s, that is to say,
the vehicles can maintain a relatively stable formation after
t = 15 s; thus, the target of formation control is achieved.

The proposed control scheme is formulated based on con-
straint following, for which constraint-following error βi is
constructed as the core control object. To verify their per-
formances of uniform boundedness and uniform ultimate
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Fig. 15. Comparisons of the actual horizontal space �Sx
i with different

uncertainties.

Fig. 16. Comparisons of the actual vertical space �Sy
i with different

uncertainties.

Fig. 17. Comparisons of the control inputs τ x
i with different uncertainties.

boundedness described as Theorem 4, their histories are shown
as Figs. 10 and 11. It can be seen that the constraint-following
errors βx

i and β
y
i stay in the range of −0.04–0.065 all the time,

and approach to a desirable neighborhood close to 0 before
t = 15 s. By this, the performances of uniform boundedness
and uniform ultimate boundedness are verified. Meanwhile,
Figs. 12 and 13 show the corresponding control inputs and
Fig. 14 shows the corresponding histories of the adaptive
parameters. It can be seen that the control inputs τ x

i and τ
y
i

render to periodic change before t = 10 s, and the adaptive
parameters α̂i get close to 0 before t = 5 s.

Uncertainty handling is one of the important features of the
proposed control scheme. The proposed controller has strong
robustness. In order to fully verify the robustness, comparisons
between high-frequency uncertainty, amplified uncertainty, and
low-frequency uncertainty are carried out and the simulation

Fig. 18. Comparisons of the control inputs τ
y
i with different uncertainties.

Fig. 19. Comparisons of the adaptive parameters α̂i with different uncer-
tainties.

results are shown in Figs. 15–19. Figs. 15 and 16 show the
comparisons of the actual horizontal/vertical space �Sx

i and
�Sy

i between vehicle i and its preceding vehicle i − 1, and
Figs. 14–17 show the comparisons of the corresponding con-
trol inputs and adaptive parameters. It can be seen that no
matter what kind of uncertainty is involved, the actual hor-
izontal/vertical space �Sx

i and �Sy
i are always greater than

zero and tend to be stable in a certain time, while the larger
control input is required for amplified uncertainty. We can
conclude that regardless of the complexity and diversity of
uncertain interference, the controlled CAV swarm system not
only can avoid collision but also can maintain stable space,
that is, render compact formation.

VIII. CONCLUSION

With the development of science and technology, research
of CAVs has attracted much attention. This article aims at an
adaptive robust formation control scheme for the CAV swarm
system. The (possibly fast) time varying but bounded uncer-
tainty is especially considered. The uncertainty bounds are
unknown, for which an adaptive law is proposed to estimate
their comprehensive effect on system performance online.
First, the CAV system is treated as an artificial swarm system.
By taking the ideal swarm performance as the desired con-
straint, the problem of formation control is formulated as a
task of constraint following, for which a β-measure is defined
as the control object to gauge the constraint following error.
Second, state transformation based on diffeomorphism trans-
formation is performed to keep the space measure to be
positive for collision avoidance. Third, an adaptive robust
control scheme is proposed to render the β-measure to be
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uniformly bounded and uniformly ultimately bounded, regard-
less of the uncertainty. By this, the controlled system is driven
to follow the desired constraint approximatively; hence, render
the ideal swarm performance. As a result, compact formation
is realized. In summary, the most important contribution of
this work is doing the first effort that explores formation con-
trol for CAV swarm system by incorporating swarm property
(for compact formation), diffeomorphism transformation (for
collision avoidance), and constraint following (for uncertainty
handling).

The main limitation of the proposed control scheme is that
it is formulated in a pure view of control and fails to address
an overall balance between the control costs and the system
performance. However, in practical engineering problems, the
control input (such as the output torque of motor) is finite and
the system performance does not need to be fully satisfied. It is
realistic to adjust the control parameters to achieve an optimal
balance between the control cost and the system performance.
By this, a problem of optimal parameter design is brought
out. Motivated by this, we expect to do further explorations
on optimal design in formation control of CAV swarm system
in the future.
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