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Abstract—The main challenge for industrial predictive models

is how to effectively deal with big data from high-dimensional

processes with nonstationary characteristics. Although deep net-

works, such as the stacked autoencoder (SAE), can learn useful

features from massive data with multilevel architecture, it is

difficult to adapt them online to track fast time-varying process

dynamics. To integrate feature learning and online adaptation,

this paper proposes a deep cascade gradient radial basis function

(GRBF) network for online modeling and prediction of nonlinear

and nonstationary processes. The proposed deep learning method

consists of three modules. First, a preliminary prediction result is

generated by a GRBF weak predictor, which is further combined

with raw input data for feature extraction. By incorporating

the prior weak prediction information, deep output-relevant

features are extracted using a SAE. Online prediction is finally

produced upon the extracted features with a GRBF predictor,

whose weights and structure are updated online to capture fast

time-varying process characteristics. Three real-world industrial

case studies demonstrate that the proposed deep cascade GRBF

network outperforms existing state-of-the-art online modeling

approaches as well as deep networks, in terms of both online

prediction accuracy and computational complexity.

Index Terms—High-dimensional and nonstationary processes,

deep learning, stacked autoencoder, gradient radial basis function

network, output-relevant features, online adaptation

I. INTRODUCTION

To achieve energy efficiency and operational effectiveness

as well as to maintain safety for industrial processes, it is

essential to carry out real-time process control, optimization

and monitoring [1]. This critically depends on timely identifi-

cation and prediction of key process variables. However, due

to process drifts resulting from operating condition changes,

equipment aging, or catalyst deactivation, etc, most industrial

processes exhibit severe nonstationary characteristics [2]–[5].

Time-varying process dynamics impose the need that nonlinear

predictive models must have online adaptation capacity [6]–

[8]. Another serious problem encountered in industry is that

abundant process data are often high-dimensional with strong
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correlations and redundancies. This may lead to instability

and poor robustness as well as unsatisfactory performance

of predictive models. Hence, effective features that contain

essential and compressed data information should be extracted

first during process modeling [9]–[12]. This is often achieved

by a deep network with multilevel feature extraction layers.

However, integrating feature extraction and online adaptation

into one model is very challenging, since it is prohibitive to

adapt large deep networks within a small sampling period

in order to track fast time-varying process dynamics. This

motivates our current work to develop an effective model that

combines both feature extraction and online adaptation.

Radial basis function (RBF) network as a shallow learn-

ing model has found wide-ranging applications in diverse

engineering fields [13]–[17]. With a set of nonlinear kernels

imposed on training input data, the orthogonal least squares

(OLS) learning can be applied to construct a compact RBF

model [18]–[20]. This procedure can be interpreted as en-

coding the process’s nonlinear dynamics in the hidden layer

nodes, with each RBF node storing an independent process

state. To provide some adaptive capability, the RBF network

can update its weight vector using some adaptive estimators,

such as the recursive least square (RLS) [21]–[23]. However,

during the online operation of nonstationary processes, the

process dynamics can vary dramatically and new process

states may appear. In order to capture the newly emerged

process state, the model structure should also be updated

in real time. An effective approach to achieve this goal is

the fast tunable RBF (TRBF) [24]. Starting with an initial

compact RBF model, the TRBF method adjusts the RBF

nodes as well as the weights online to adaptively modeling

nonstationary data. Experimental results of [24] show that

this TRBF outperforms many state-of-the-art online modeling

approaches for nonstationary data.

For nonstationary time series involving variations of lo-

cal mean and trend, the series can be made stationary by

applying a difference operation on the raw data [25]. By

integrating a similar mechanism of differencing the original

time series data into the RBF network and modifying each

hidden node as a local predictor, the gradient RBF (GRBF)

network was proposed for nonlinear and nonstationary time

series prediction [26]. The OLS learning can also be applied

to construct a compact GRBF model from the training data.

For time series with highly time-varying characteristics other

than variations of local mean and trend, a fast adaptive GRBF

(AGRBF) algorithm was proposed for online time series

modeling and prediction [27]. A recent work [28] has extended

this AGRBF to online modeling and prediction of nonlinear
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and nonstationary dynamic processes. Similar to the TRBF

[24], during online operation when the error for the current

data is unacceptable, the AGRBF adapts the model structure

by replacing the worst node with a new node to encode the new

data. Owing to the local prediction property of GRBF node,

this new node optimization is much more efficient than the

TRBF, and it imposes little online computation. This AGRBF

outperforms the TRBF, in terms of both online modeling

accuracy and computational complexity [28].

Beyond the aforementioned shallow networks, deep learning

has gained growing influence in machine learning [29], [30].

Owing to deep architecture with multilevel nonlinearities,

deep learning can learn hierarchical feature representations

effectively for large-scale complex data. Since deep networks

are good at discovering intricate data patterns through fea-

ture learning, they have been used for big data modeling

and achieved excellent results in the industrial field [31]–

[33]. Deep learning methods for process modeling typically

include two models: the recurrent neural network (RNN) or

its long short-term memory (LSTM) variant and the stacked

autoencoder (SAE). RNN-like models are designed to extract

dynamic temporal information from data, and they have been

successfully applied to many prediction problems [34], [35].

However, with multiple loops and gates, the complex structure

of RNN deters its use in online modeling task. The SAE is

generally used to extract latent useful features from massive

data, and a regression model is then developed based on the ex-

tracted features for prediction [36]. Since SAE can learn more

complex and abstract features with a hierarchical structure,

it can provide a better approximation for complex nonlinear

systems. Several works have improved the performance of the

SAE by incorporating quality-relevant information [9], [31],

[37] or data augmentation [38] to enhance feature representa-

tion. To our best knowledge, the most improvements in SAE

are from a feature learning perspective, and applying SAE

in nonstationary environments for online modeling remains

largely under-studied. This is particularly challenging, since

adapting a deep model online is computationally very expen-

sive, and it is impossible to optimize the SAE’s structure in real

time in order to track fast time-varying process characteristics.

Since optimizing a deep model structure online is impossi-

ble, an alternative solution is sought in this paper, in order to

develop an adaptive deep model for online modeling and pre-

diction of nonlinear and nonstationary processes. Specifically,

we propose a deep cascade GRBF network that integrates

seamlessly the fast GRBF model adaptation and deep layer-

wise feature extraction. The proposed method consists of three

components, namely, the GRBF weak predictor, the SAE

feature extraction, and the GRBF adaptive predictor. These

three parts are connected in series. First, a GRBF model is

trained to produce a preliminary prediction of the target value,

which is termed as the weak prediction. This GRBF weak

predictor is a shallow network and its task is to provide the

prior output information to the SAE. After combining the

weak prediction with the raw input data, the new expanded

input vector that contains the output information is ready for

feature extraction. By stacking multiple autoencoders (AEs),

high-level output-relevant features are progressively learned

from their previous low-level ones layer by layer. Finally, the

extracted deep output-relevant features are fed into an adaptive

GRBF predictor, whose weights as well as model structure are

updated online to capture time-varying process characteristics.

Our novel contributions can be summarized as follows.

1) To effectively deal with high-dimensional and nonstation-

ary data, a deep cascade GRBF network is proposed,

which integrates output-relevant feature learning and on-

line adaptation naturally.

2) The proposed scheme with very deep architecture is com-

putationally very efficient for online model adaptation to

track time-varying process characteristics, and it does not

require any complicated online structure optimization.

3) Extensive results demonstrate that our deep cascade

GRBF network outperforms existing state-of-the-art on-

line adaptive models as well as deep-learning models for

nonlinear and nonstationary data prediction.

The rest of this paper is organized as follows. Section II

reviews the related algorithms, including the GRBF network

and its online adaptive mechanism as well as the SAE feature

extraction. Section III presents the proposed deep cascade

GRBF network in detail. Section IV evaluates the proposed

method with three case studies. Section V concludes the paper

with remarks about future works.

II. REVISIT OF RELATED ALGORITHMS

A. GRBF Neural Network

The GRBF neural network is an effective tool for model-

ing nonlinear and nonstationary data [26]–[28]. Consider a

nonlinear and nonstationary process with ni system inputs

ut =
[
u1,t · · ·uni,t

]T
∈ R

ni having input lag nu and the

system output yt ∈R having output lag ny . Assume that we

have collected a training data set composed by
{
xt, dt; yt

}N
t=1

,

where N is the number of training samples, and

xt=
[
(yt−1−yt−2) · · · (yt−ny+1−yt−ny

) uT
t−1 · · ·u

T
t−nu

]T

(1)

denotes the input vector to the GRBF model, while

dt =yt − yt−1 (2)

is the system output gradient. Observe that the differenced past

outputs rather than the past outputs form the part of the input

vector xt. If the system output lag is ny = 0 or no output

information is provided, the input vector is reduced to xt =[
uT
t−1 · · ·u

T
t−nu

]T
, while for time series nu=0 and the input

vector becomes xt=
[
(yt−1−yt−2) · · · (yt−ny+1−yt−ny

)
]T

.

Like the classic RBF node, the Gaussian function typically

serves as the GRBF node’s nonlinearity. The main difference

is that the response of a GRBF node is further multiplied by

an additional term
(
yt−1 + δ

)
. Hence, the response of the jth

GRBF hidden node to the input vector xt is given by

pj(xt) = exp

(
−‖xt − cj‖

2

2σ2

)
×
(
yt−1 + δj

)
, (3)

where σ is the width of Gaussian kernel, cj is the node center,

and δj is a scalar associated with the hidden node. The width
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σ can be set to the maximum Euclidean distance among nodes,

and the term
(
yt−1+δj

)
can be interpreted as a local prediction

of yt by the jth hidden node [28]. From (3), if the input vector

is very similar to the jth center, the value of the jth Gaussian

function is close to 1 and the predictor
(
yt−1+δj

)
becomes

fully active. Let M be the number of hidden nodes. The GRBF

network can then be formulated as the linear combination of

its hidden layer’s response to model yt as

yt =
∑M

j=1
pj(xt)θj + ξt, (4)

where θ = [θ1 · · · θM ]T is the weight vector, and ξt is a zero-

mean model residual sequence.

A compact M -term GRBF network with M ≪ N can read-

ily be constructed from the training data set
{
xt, dt; yt

}N
t=1

using the OLS algorithm [18], [19]. In particular, if xt is

selected as the jth center cj , we set δj = dt to ensure

that the jth hidden node is a perfect local predictor of yt
[27], [28]. In this way, the problem of constructing a GRBF

network is equivalent to the task of selecting a M -term subset

model
{
cj , δj

}M
j=1

from the full N -term model
{
xt, dt

}N
t=1

.

The forward OLS selection algorithm selects a subset of M
centers cj and scalars δj one by one from the full model.

At each step, a candidate with maximum error reduction ratio

(ERR) is chosen. The selection procedure is terminated when

some termination criterion is met, yielding to a M -term subset

model
{
cj , δj

}M
j=1

. Then the weight vector of the selected

M -term subset GRBF network can readily be solved by the

backward substitution. Details of the OLS model selection

based on the ERR criterion can be found in [18]–[20].

B. Online Adaptive Learning of GRBF Neural Network

During online operation, the weight vector of the GRBF

model can be updated using the RLS algorithm to provide

some tracking capability for time-varying processes. However,

for highly nonstationary processes, this is insufficient, and the

structure or the hidden layer of the GRBF model needs to be

adapted to encode the newly emerging process state [28]. Thus,

during online operation, the residual error of the GRBF net-

work is monitored. Specifically, let pt = [p1(xt) · · · pM (xt)]
T

denote the hidden layer response vector for the given input xt

and θt−1 = [θ1,t−1 · · · θM,t−1]
T be the weight vector obtained

at the previous sample. Then the residual for the prediction of

yt based on the current model is given by

et = yt − pT
t θt−1. (5)

The model performance can be measured by the cost

ẽt =
e2t
y2t

(6)

with respect to a given threshold ε.

If ẽt < ε, then the model structure is unchanged and only

the weight vector is updated using the RLS algorithm




kt = Γt−1pt

(
γ + pT

t Γt−1pt

)−1
,

Γt =
(
Γt−1 − ktp

T
t Γt−1

)
γ−1,

θt = θt−1 + ktet,

(7)

where kt ∈ R
M is the Kalman gain vector, 0.9 ≤ γ < 1

is the forgetting factor, and the inverse of covariance matrix

Γt∈R
M×M is initialized to Γ0=ϑIM in which ϑ is a large

positive constant and IM is the M ×M identity matrix.

If ẽt ≥ ε, the model performs inadequately. Thus, the

network structure needs to be updated according to the newly

emerged process state by replacing the worst performing

node with a new node [28]. The node contribution to the

model performance is measured by the weighted node-output

variance (WNV) defined by

WNVj = (θj,t−1pj(xt))
2
, 1 ≤ j ≤ M. (8)

We can compare the nodes’ WNVs and select the one with

the smallest value as the worst performing node. Let

m =arg min
1≤j≤M

WNVj , (9)

Then the mth node is the worst node and is replaced by a

new one. Since the goal of the new replacement node is to

encode the newly emerged process state, we can simply set

the new node center as cm = xt and scalar as δm = yt−yt−1

to ensure that the new mth node is a perfect local predictor

of yt. Because the set of centers now contain a new one, the

width of the Gaussian response σ is recalculated based on the

maximum Euclidean distance among the centers.

After the new hidden node is determined, the weight vector

of the new GRBF network is calculated by the regularized

least square (LS) estimator as

θt =
(
p̃tp̃

T
t + λIM

)−1
p̃tyt, (10)

where p̃t is the new hidden layer response vector after the

new node replacement, and λ is a positive small regularization

parameter. After the regularized LS estimation (10), the inverse

covariance matrix is re-initialized according to

Γt =
(
p̃tp̃

T
t + λIM

)−1
(11)

to ensure a smooth transition from one mode to another at the

next sample. The threshold ε is the only algorithmic parameter

of this AGRBF algorithm.

C. SAE

SAE is a deep network with hierarchical multiple AEs. Each

AE is a three-layer unsupervised self-learning network with

encoder and decoder. Let the inputs of the AE be x′
t. The

encoder projects x′
t from the input layer onto the hidden layer

ht =
[
h1(x

′
t) · · ·hs(x

′
t)
]T

by the nonlinear mapping f as

ht = f
(
Wx′

t + b
)

(12)

where s is the dimension of the hidden layer, W and b are

the weight matrix and bias vector, respectively, connecting the

input layer to the hidden layer. The decoder reconstructs the

input vector x′
t by mapping ht onto the output layer as

x̃′
t =f̃

(
W̃ht + b̃

)
, (13)

where f̃ is the output layer’s nonlinear mapping, W̃ and b̃

are the connecting weight matrix and bias vector, respectively,

from the hidden layer to the output layer. From (12) and (13),
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the task of AE is to learn a mapping F (x′
t)= f̃

(
f(x′

t)
)
≈x′

t

that keeps the reconstructed output x̃′
t as similar as possible

to the original input x′
t. Denote the training input data as x′

t∈
{x′

1, · · · ,x
′
N}, where N is the number of training samples,

and the corresponding features and reconstructed input data as

ht ∈{h1, · · · ,hN} and x̃′
t ∈
{
x̃′
1, · · · , x̃

′
N

}
, respectively. To

obtain the model parameters {W , W̃ , b, b̃
}

, the AE is trained

by minimizing the mean squared reconstructed error

Junsup
(
W , W̃ , b, b̃

)
=

1

2N

N∑

t=1

‖x̃′
t − x′

t‖
2
, (14)

using the gradient descend algorithm.

Multiple n AEs can be hierarchically stacked to construct a

deep SAE network. Training the SAE involves the layer-wise

unsupervised pre-training and supervised fine-tuning. In pre-

training, the first AE maps the raw input data onto its hidden-

layer features by minimizing the reconstruction error. After the

first AE is trained, its hidden layer parameters {W1, b1} are

fixed, and the obtained hidden layer features hAE,1 serve as

the input to the second AE. Then, the second AE is trained to

obtain its hidden layer parameters {W2, b2} and the associated

features hAE,2. In a progressive way, the whole SAE is pre-

trained layer by layer until the last (nth) AE is obtained.

After the unsupervised pre-training, a regression layer with

single output neuron having the weight vector wo and bias

bo is added on the top of the SAE to produce the prediction

ỹt of the process output yt based on supervised learning. The

entire network is fine-tuned by the back propagation with the

training data {x′
t; yt}

N
t=1 based on the cost function

Jsup
(
wo, bo,Wi, bi, 1 ≤ i ≤ n

)
=

1

2N

N∑

t=1

(ỹt − yt)
2
, (15)

with the pre-trained SAE’s parameters used to initialize the

hidden layers {Wi, bi}
n
i=1 of the supervised SAE.

Since multiple AEs already provides highly nonlinear fea-

tures, adopting a linear regression layer in the supervised

fine-tuning is sufficient, and there is no need to employ a

nonlinear regression layer. The nonlinear output neuron in the

regression layer would possibly slow down training and lead

to premature convergence, both due to gradient modulation

effects in backpropagation.

III. DEEP CASCADE ADAPTIVE GRBF NETWORK

As depicted in Fig. 1, the proposed deep cascade GRBF

network consists of three parts: the GRBF weak predictor, the

SAE for feature extraction and the GRBF adaptive predictor. In

the first part, the raw input data are fed into a GRBF network

trained as an initial or weak predictor of the process output.

In the second part, by combing the weak prediction of the

weak GRBF predictor and the raw input data into a new input

vector, the SAE is employed to extract its useful features.

Through layer-wise feature extraction, deep output-relevant

features are obtained hierarchically. Finally, the output-relevant

features are fed into an adaptive GRBF predictor to make

the accurate prediction adaptively. The advantage of this deep

cascade GRBF network is two-fold.

First, the weak predictor provides a preliminary prediction

of the target value. This output information is incorporated

into the layer-wise feature extraction to extract the deep

output-relevant features by the SAE. It is well known that

enhanced nonlinear feature extraction can be achieved by in-

corporating quality-relevant information [9], [31], [37] or data

augmentation [38] to the SAE. Explicitly, by incorporating

the output information, namely, yt, into the input to the SAE,

it can extract better-quality nonlinear features. However, in

our predictive modeling application, the current output yt is

unknown. In fact, given the input xt, the sole purpose of

the SAE is to extract the nonlinear features for predicting or

modeling the unknown current output yt. In order to provide

the SAE with the output-relevant information, we use the

‘second-best’, that is, we provide the SAE with an estimate

ŷt for the unknown yt. This is achieved by the first GRBF

predictor. It is called the ‘weak’ predictor for the reason that its

prediction ŷt is not our final prediction for the current output

yt. But this weak predictor provides the essential and vital

output-relevant information to the SAE feature extractor.
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Fig. 1. Schematic diagram of deep cascade GRBF network.
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Second, the proposed method can handle severe nonstation-

arity in the process data well. This capability comes from the

GRBF adaptive predictor, not from the GRBF weak predictor

and the SAE feature extractor. True, the GRBF weak predictor

differences the output variable in the raw input data and it

does make the underlying process less nonstationary, since the

difference operation removes the local mean and trend [25].

But this GRBF weak predictor is fixed after training and only

acts as a part of the input to the SAE during online operation.

The SAE is also fixed after training, as it is impossible to

optimize the multiple deep AE layers of the SAE online.

However, the GRBF adaptive predictor can track the fast

time-varying underlying process characteristics by updating its

weights and structure effectively. It can be seen that our deep

cascade GRBF network consists of two learning phases: initial

training as well as online prediction and adaptive modeling.

A. Training Deep Cascade GRBF Network

The construction of the deep cascade GRBF network in-

volves three stages, namely, training the GRBF weak predictor,

training the SAE, and training the GRBF adaptive predictor,

respectively. Both GRBF networks are constructed using the

OLS algorithm, while the SAE is trained by an unsupervised

pre-training and a supervised fine-tuning as discussed in

Subsection II-C.

In the first stage, we have the training data set DW =
{Xtr,dtr;ytr}= {xt, dt; yt}

Ntr

t=1, where xt and dt are given

by (1) and (2), respectively, and Ntr is the number of training

data, while Xtr =
[
x1 x2 · · ·xNtr

]
∈ R

ntr×Ntr , ytr =[
y1 y2 · · · yNtr

]T
∈ R

Ntr and dtr =
[
d1 d2 · · · dNtr

]T
∈ R

Ntr

are the input, desired output and desired output difference

data, respectively, with ntr = ny − 1 + nuni being the

input dimension. A compact MW -term GRBF network is con-

structed from the training set DW using the OLS algorithm.

With this trained GRBF weak predictor, the weak predictions

ŷtr =
[
ŷ1 ŷ2 · · · ŷN

]T
∈ R

Ntr are generated for the desired

values ytr.

In the second stage, the training data set is expanded

to DF = {X ′
tr;ytr} = {x′

t; yt}
Ntr

t=1 by including the weak

prediction ŷtr as the part of the input to the SAE, where the

training input data x′
t for the SAE is defined as

x′
t=
[
ŷt yt−1 · · · yt−ny

uT
t−1 · · ·u

T
t−nu

]T
∈R

(ntr+2). (16)

The new training data DF are fed into the SAE so as to learn

the corresponding useful features. Specifically, the layer-wise

unsupervised pre-training is carried out from the first AE to

the last AE by optimizing the objective function (14). After

the pre-training, a linear regression output layer is added on

the top of the last AE to form the supervised SAE. With the

true target values ytr, the gradient descend optimization is

employed to minimize the objective function (15), so as to

fine-tune the whole SAE network. After the SAE is trained,

the extracted features Ftr can be obtained from the last AE for

the input X ′
tr. Then the regression output layer is removed,

and the last AE is connected to the GRBF adaptive predictor.

In the third stage, the extracted features Ftr by the SAE

serve as the input to the GRBF adaptive predictor. Note that

there is no differencing operation in the input layer of this

GRBF network. The training data set DA={Ftr,dtr;ytr} is

utilized to construct a compact MA-term GRBF model using

the OLS algorithm. The output of this model provides the

prediction of the process output. After this stage, the training

of the deep cascade GRBF network is completed, and the

trained deep cascade GRBF network is readily for online

prediction and modeling.

B. Online Prediction and Adaptive Modeling

During online operation, it is impossible to optimize the

whole deep cascade GRBF network within a small sampling

period for tacking the fast time-varying process characteristics.

Since the main focus of the first two components is feature

learning to provide the essential and compressed input data for

the third module, during online operation, it is sufficient to fix

the structures and parameters of the weak GRBF predictor and

the SAE, and only to adapt the final GRBF adaptive predictor

for tracking the time-varying underlying dynamics between

the extracted features and the process output.
Predicting process output: At sample time t, given the

process’s raw observations or the process input vector at t

xpt
=
[
yt−1 · · · yt−ny

uT
t−1 · · ·u

T
t−nu

]T
∈ R

np , (17)

the new input xt for the GRBF weak predictor is formed,

and the hidden layer response of the weak GRBF predictor

pWt
is obtained by the nonlinear mapping (3). The weak

prediction result is then produced as ŷt = pT
Wt

θW , where

θW is the weight vector of the weak predictor. The weak

prediction ŷt is further combined with the raw observations

xpt
to form the new input vector x′

t to the SAE. Through

forward propagation from the first feature layer to the last one,

the deep output-relevant features are extracted at the last AE as

ft. The extracted features ft serve as the input to the adaptive

GRBF predictor, whose hidden layer response vector pAt
is

obtained according to (3). Then the model output, which is

produced as ỹt=pT
At
θAt−1

with θAt−1
being the weight vector

obtained at sampling time t − 1, provides the deep cascade

GRBF network’s prediction of the process output yt.
Adapting deep cascade GRBF network: When the obser-

vation of the process output yt arrives, the newest output

difference dt also becomes available, and yt and dt are used

with the input vector ft to update the adaptive GRBF predic-

tor’s structure and weights. Specifically, given the prediction

ỹt by the current GRBF predictor, the modeling performance,

defined as ẽt =
(
yt − ỹt)

2/y2t of (5) and (6), is measured. If

ẽt < ε, the model structure remains unchanged and only the

current weight vector θAt−1
is updated into the new one θAt

with the RLS (7). If ẽt ≥ ε, the node replacement takes place.

The values of WNVj , 1 ≤ j ≤ MA, are calculated using (8),

and the worst performing node is identified by (9) as the mth

node, which is then replaced by a new node. To be specific,

the new mth node’s center and scalar are set to cm = xt

and δm = yt − yt−1, respectively, to ensure that it becomes a

perfect local predictor of yt. After the node replacement, the

new weight vector of the GRBF predictor θAt
is calculated by

the regularized LS estimation (10), and the inverse covariance

matrix Γt is updated with (11).
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Algorithm 1 Deep cascade GRBF network

1: Initial training

2: Construct MW -term GRBF weak predictor based on train-

ing data set DW ={Xtr,dtr;ytr} using OLS algorithm.

3: Calculate model output ŷtr of trained weak predictor, and

combine it with original training data to form training data

set DF ={X ′
tr;ytr} for SAE.

4: Utilize X ′
tr as input to progressively pre-train multiple

AEs by minimizing cost (14) in unsupervised manner.

5: Stack multiple AEs with an output regression layer, and

fine-tune SAE based on DF by minimizing cost (15).

6: Obtain feature data Ftr from trained SAE, and form

training data set DA = {Ftr,dtr;ytr}.

7: Construct initial MA-term GRBF adaptive predictor based

on DA using OLS algorithm.

8: Online prediction and adaptive modeling

9: Set sample index t = 1.

10: Collect process’s observations xpt
of (17).

11: Form input xt from xpt
, and calculate GRBF weak

predictor’s output ŷt=pT
Wt

θW .

12: Combine ŷt with xpt
to form input x′

t, and propagate x′
t

through SAE to obtain deep output-relevant features ft.

13: With input ft, calculate GRBF adaptive predictor’s output

ỹt=pT
At
θAt−1

, which is prediction of process output yt.
14: When measurement of yt arrives, form dt=yt − yt−1.

15: Calculate model performance ẽt using (5) and (6).

16: IF ẽt < ε:

17: Update GRBF adaptive predictor weight vector to θAt

with RLS algorithm (7).

18: ELSE IF ẽt ≥ ε:

19: Calculate WNV values for all MA nodes using (8), and

find m=argmin1≤j≤MA
WNVj .

20: Replace mth node with a new node by setting new center

to cm=xt and new scalar δm=dt.
21: Calculate adaptive predictor’s weight vector θAt

as

regularized LS estimate (10) and update Γt with (11).

22: END IF

23: Set t = t+ 1 and go to line 10.

C. Algorithm Summary

The proposed deep cascade GRBF network is summarized

in Algorithm 1. Our proposed algorithm is computationally

very efficient during online operation. This is because the first

two components of the cascade network are both fixed, and

online complexity is determined by the adaptive GRBF pre-

dictor. If the GRBF adaptive predictor performs only weight

adaptation, the complexity comes from the RLS algorithm (7),

which is on the order of O(MA
2), while if the node replace-

ment occurs, the WNV calculation in (8) costs O(MA) and

the regularized LS estimator (10) has the complexity no more

than O(MA
3). Thus, the online computational complexity per

sample of the proposed algorithm is no more than O(MA
3),

which is clearly affordable as MA is very small.

We expect that the online complexity of the proposed deep

cascade GRBF network will be lower than that of the AGRBF

[28]. This is because the AGRBF has the same structure as the

GRBF weak predictor. Specifically, the input to the AGRBF

is xt, which is also the input to the cascaded network. But the

input to the GRBF adaptive predictor in the cascaded network

is ft. Through layer-wise feature compression and extraction

in the deep cascade network, the dimension of the input feature

data ft to the GRBF adaptive predictor is much smaller than

the dimension of the original input data xt. Consequently,

the online computational complexity of the GRBF adaptive

predictor in the cascaded network will be smaller than that of

the original AGRBF.

IV. EXPERIMENTAL RESULTS

Three industrial applications, a debutanizer column process,

a microwave heating process, and a penicillin fermentation

process, are carried out to demonstrate the effectiveness of

our deep cascade GRBF network.

A. Experimental Setup

To measure the online prediction performance of an adaptive

model, we consider the mean squared error (MSE)

MSEt =
1

t

∑t

i=1

(
yi − ỹi

)2
, (18)

and the mean absolute error (MAE)

MAEt =
1

t

∑t

i=1
|yi − ỹi| , (19)

where ỹi denotes the model prediction for the process output

yi. The online computational complexity of the adaptive model

is quantified by the averaged computation time per sample

(ACTpS). The computer for carrying out the experiments has

the following configuration: Windows 10, 16 GB of RAM,

CPU i7-9750 (2.60 GHz), and Matlab version R2018b.

The proposed deep cascade GRBF network is compared

with existing well-known online modeling approaches, includ-

ing the RBF network [19], the GRBF network [28] which

is also presented in Subsection II-A of this paper, the TRBF

network [24], and the AGRBF network [28], whose online pre-

diction and adaptive modeling procedure is also presented in

Subsection II-B of this paper. Additionally, two deep-learning

models, the SAE [9], [10] and the LSTM [34], are also used

for comparison. The original SAE [9], [10] is nonadaptive. We

extend this SAE model to the adaptive SAE, and use it as the

third deep-learning model benchmark. Explicitly, during the

online operation, the adaptive SAE utilizes the RLS algorithm

to update the weights of its linear regression layer.

The initial RBF, GRBF, TRBF and AGRBF models are all

constructed from the training data set with the OLS learning.

During online operation, the RBF and GRBF networks only

perform weight adaptation by the RLS algorithm, while the

TRBF and the AGRBF adjust both weights and structure with

the online prediction and adaptive learning procedures given

in [24] and [28], respectively. For the SAE, multiple AEs are

first pre-trained in an unsupervised way layer by layer. After

pre-training, a linear regression layer with single output neuron

is added on the top of the stacked AEs for supervised fine-

tuning. The whole SAE is trained by the stochastic gradient

descent algorithm. For the LSTM with single hidden layer,
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TABLE I
VARIABLE DESCRIPTION IN THE DEBUTANIZER COLUMN PROCESS.

Process and quality variables Description

Inputs u1,t Top temperature

u2,t Top pressure

u3,t Reflux flow

u4,t Flow to next process

u5,t 6th tray temperature

u6,t Bottom temperature A

u7,t Bottom temperature B

Output yt Butane content

Adam optimizer [39] is used to train the model based on the

MSE cost. During online operation, the network structures and

parameters of both the SAE and LSTM are fixed. The adaptive

SAE has an identical training procedure to the SAE. During

online operation, however, the adaptive SAE utilizes the RLS

algorithm to update the weights of its linear regression layer.

The forgetting factor of the RLS algorithm is set to γ=0.98
for all adaptive models. The node replacement of the TRBF

involves a gradient descent optimization [24] whose step

size and iteration number are empirically set to 0.1 and 5,

respectively. The adaptive procedure of the AGRBF [28] is

identical to the one for the GRBF adaptive predictor in the

deep cascade network. The regularization parameter is set to

λ=0.001 for the regularized LS estimator (10). The important

hyperparameters of all the models are chosen carefully by

experiments, as detailed in the three case studies.

B. Case Study-I: Debutanizer Column Process

The debutanizer column [9], [34], [37] is an important

unit of petroleum refinery industry, used to split desulfuration

and naphtha. For process and product quality control, it is

necessary to minimize butane content at the bottom of the

column. The butane content measurement is normally obtained

by the gas chromatography with large measurement delay. To

deal with this problem, predictive model can be employed

online to timely estimate the butane content. Seven process

variables measured by sensors have good relevance with the

quality variable, which can be used to construct the inferential

model. Since there are strong nonlinearities and nonstationarity

between the quality variable (output) and process variables

(inputs), the proposed method with deep feature extraction

capability is ideal for this online prediction and adaptive

modeling task. Descriptions of the process inputs and output

are given in Table I.
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Fig. 2. The impact of node replacement threshold on the adaptive modeling
accuracy and the online complexity (the black number [ms] denotes the
ACTpS) of the proposed method for debutanizer column process.

Based on the physio-chemical insight and expert knowledge,

the debutanizer column process can be represented by the

following time-varying nonlinear system [9]:

yt =fsys
(
xpt

; t
)
, (20)

where fsys(·; t) denotes the unknown time-varying nonlinear

mapping of the system, and the input vector xpt
is given by

xpt
=
[
yt−1 yt−2 yt−3 yt−4 u1,t u2,t · · ·u5,t

(u6,t + u7,t)/2 u5,t−1 u5,t−2 u5,t−3

]T
. (21)

Since the size of xpt
is np = 13, the dimension of the input

vector xt to the GRBF weak predictor is 12, and the dimension

of the input vector x′
t to the SAE unit in our deep model is 14.

A total of 2390 samples of {xpt
; yt} are collected from the

process, and the first 1000 samples are for training while the

rest of them are for online prediction and adaptive modeling.

The sizes of the RBF, GRBF, TRBF and AGRBF networks

are all empirically chosen to be 10, as suggested in [28]. For

a fair comparison, the size of the GRBF weak predictor in the

proposed method is set to MW =10. For simplicity, we also

set the size of the GRBF adaptive predictor to MA=10. The

SAE unit in the proposed method consists of n=3 AEs, and

the neurons in the first, second, and third hidden layers are set

to {10, 7, 4}, as suggested in [9]. With one output neuron at its

regression output layer, the SAE unit has the network structure

of {10, 7, 4, 1}. The training learning rate and maximum

training epochs for the SAE unit are set to 0.01 and 200,

respectively, as the training achieves convergence within 200

TABLE II
PERFORMANCE COMPARISON OF RBF, GRBF, LSTM, SAE, ADAPTIVE SAE, TRBF, AGRBF AND PROPOSED METHOD FOR DEBUTANIZER COLUMN

PROCESS.

Methods
Initial training Online prediction/modeling

MSE (dB) MAE MSE (dB) MAE ACTpS (ms)

RBF -38.8106 0.0081 -18.8683 0.0490 0.0067

GRBF -41.5539 0.0062 -27.3516 0.0231 0.0077

TRBF -38.8106 0.0081 -33.4602 0.0133 0.2015

AGRBF -41.5539 0.0062 -38.4860 0.0080 0.4989

LSTM -35.1764±1.1892 0.0134±0.0018 -30.3595±0.7991 0.0209±0.0024 NA

SAE -51.3509±0.6323 0.0018±4.84e-5 -34.2239±4.4788 0.0092±0.0030 NA

Adaptive SAE -51.0977±0.6402 0.0018±4.82e-5 -36.4189±4.0396 0.0084±0.0036 0.0021

Proposed -42.4724±1.6812 0.0052±7.71e-4 -40.5255±0.8252 0.0053±4.43e-4 0.2477
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Fig. 3. MSE learning curves for online modeling of debutanizer column
process by various models.

epochs. The node replacement threshold ε for the GRBF

adaptive predictor is a vital hyperparameter, and we conduct

a grid search over ε ∈ {1, 0.1, 0.01, 0.001, 0.0001, 0.00001}.

The results obtained are depicted in Fig. 2. It can be seen

that the best modeling accuracy is attained with ε = 0.001.

Hence, we set ε=0.001. Fig. 2 also indicates that reducing ε
increases the ACTpS. This is expected, as smaller ε leads to

more frequent node replacements which in turn increases the

computational complexity. The node replacement thresholds

for the TRBF and AGRBF are also empirically set to 0.01

and 0.001, respectively. The SAE model has the same structure

of the SAE unit in the proposed method. The adaptive SAE

has the same network structure as the SAE model as well

as the same training setting. For the LSTM, the hidden-

layer size is determined by the grid search over the set of

{16, 32, 64, 128, 256}, and the size of 32 is used as it attains

the best performance. The learning rate and training epochs for

the LSTM are empirically set to 0.001 and 200, respectively.

Both the training and online prediction performance attained

by the 8 models are compared in Table II, while Fig. 3 depicts

the MSE learning curves for online prediction by these 8

methods. It is well-known that the performance of deep neural

networks, such as the SAE, adaptive SAE, LSTM, and our

deep cascade network, depend on initialization. Therefore,

the average MSE and MAE over 20 independent experiments

together with the corresponding standard deviations are listed

in Table II for the SAE, adaptive SAE, LSTM and the proposed

method. The proposed method achieves much smaller standard

deviations for the test MSE and MAE than those of the SAE

and adaptive SAE. This means that our method is more robust

than the SAE and adaptive SAE regarding initialization. Also

observe that the standard deviations of our method are similar

to those of the LSTM.

Clearly, the training performance of both the RBF and

TRBF are identical, while the training performance of the

GRBF and AGRBF are the same, as training is carried out

by the same OLS learning on the same training data. During

online prediction, however, the TRBF is more than 14 dB

better than the fixed-structure RBF while the AGRBF is

more than 11 dB better than the fixed-structure GRBF. The

online prediction performance of both the nonadaptive LSTM

and SAE as well as the adaptive SAE degrade considerably

200 400 600 800 1000 1200

Test sample (t)

0

0.2

0.4

0.6

0.8

1
Real value

Predicted by Adaptive SAE
MSE=-36.4189 dB

200 400 600 800 1000 1200

Test sample (t)

-0.1

-0.05

0

0.05

0.1

Prediction error by Adaptive SAE

(a)

200 400 600 800 1000 1200

Test sample (t)

0

0.2

0.4

0.6

0.8

1 Real value

Predicted by TRBF
MSE=-33.4602 dB

200 400 600 800 1000 1200

Test sample (t)

-0.1

-0.05

0

0.05

0.1

Prediction error by TRBF

(b)

0 200 400 600 800 1000 1200

Test sample (t)

0

0.2

0.4

0.6

0.8

1
Real value

Predicted by AGRBF
MSE=-38.4860 dB

200 400 600 800 1000 1200

Test sample (t)

-0.1

-0.05

0

0.05

0.1

Prediction error by AGRBF

(c)

200 400 600 800 1000 1200

Test sample (t)

0

0.2

0.4

0.6

0.8

1
Real value

Predicted by proposed MSE=-40.5255 dB

200 400 600 800 1000 1200

Test sample (t)

-0.1

-0.05

0

0.05

0.1

Prediction error by proposed

(d)

Fig. 4. Online prediction and error of: (a) adaptive SAE, (b) TRBF,
(c) AGRBF, and (d) proposed method for debutanizer column process.
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from their respective training performance, particularly the

SAE type models, because their parameters and/or structures

are fixed. This shows a serious drawback of applying deep

neural networks, namely, inability to adapt their structures

and parameters online. The adaptive SAE does attain a better

performance when compared with the nonadaptive SAE, as it

adapts its weights of the linear regression layer. Our proposed

method outperforms all the other 7 methods, attaining the

smallest test MSE and MAE values. In particular, the online

prediction MSE of our method is 2 dB lower than that of the

second-best AGRBF. Also observe that the online prediction

MSE of the adaptive SAE is 4 dB higher than our method. This

clearly demonstrates an important advantage of our proposed

deep cascade GRBF network over the existing deep models,

namely, our model is capable of adapting its structure online

to track fast time-varying process characteristics.

In terms of online computational complexity, the RBF,

GRBF and adaptive SAE have the lowest ACTpSs, as they

only update the models’ linear weights using the RLS. By

comparison, the ACTpSs of the TRBF, AGRBF and our pro-

posed deep cascade GRBF network are higher, because these

models also adapt their networks’ structures. But these three

adaptive models all achieve very fast model structure updating

at each sampling period, specifically, within a fraction of

millisecond (ms). Therefore, even the process has a very

high sampling rate, for instance, a sampling period of 1 ms,

all the six adaptive models are capable of completing their

adaption well within the sampling period constraint. Observe

that the proposed deep cascade GRBF network imposes lower

online complexity than the AGRBF. Specifically, the ACTpS

of the AGRBF is 0.4989 ms, which is twice of the proposed

method. The reason for this complexity reduction is explained

in Subsection III-C.

To offer an intuitive comparison of the four adaptive models,

the adaptive SAE, TRBF, AGRBF and proposed method, their

online predictions and errors are shown in Fig. 4. Observe

that the error curve of the TRBF shows large fluctuations,

indicating that it contains un-modeled parts. The AGRBF

performs better but still has difficulty to predict some ‘turning

points’ (around 150, 600 and 1000 test samples). The error

curve of the adaptive SAE also exhibits some un-modeled

parts. The proposed method enables best tracking of this time-

varying process with the smallest prediction errors.

C. Case Study-II: Microwave Heating Process

Microwave energy, as a source of heat, has been widely

used in industrial heating applications. However, due to the

electromagnetic waves propagation properties and permittivity

variation in materials, thermal runaway often occurs, leading

to destructive results [40]. Therefore, it is crucial to predict

the heating temperature online and detect thermal runaway in

advance. Microwave heating process is time-varying in nature,

and the heating temperature is influenced not only by multi-

physical field coupling but also by the permittivity variation

in materials [41], [42]. This motivates us to investigate online

adaptive model for real-time temperature prediction.

In the laboratory-scale microwave heating system [43],

there are five microwave power sources of 3 kW each for a

maximum power supply of 15 kW at 2.45 GHz. Microwave

generated by each microwave source is transmitted through

the corresponding waveguide, fed into multi-mode cavity, and

finally absorbed by heated materials. The conveyor belt, whose

speed is controlled by the motor driver, enables to continuously

transport materials. Material temperature is measured by fiber

optic sensors, which is sent to the host computer for monitor

and control purpose. Five microwave powers and conveyor

speed can be adjusted to control the temperature through the

programmable logic controller (PLC) linked to the computer.

Therefore, the process has 6 process input variables: the five

microwave powers upi,t, 1 ≤ i ≤ 5, and the conveyor

speed uv,t. The nonlinear time-varying relationship between

the process inputs and the output, namely, the temperature yt,
can be described by the system yt = fsys

(
xpt

; t
)
, with the

system input vector defined by

xpt
=
[
yt−1 yt−2 yt−3 up1,t−1 · · ·up5,t−1 uv,t−1

]T
. (22)

Since the dimension of xpt
is np = 9, the dimension of the

input vector xt to the GRBF weak predictor is 8, and the

dimension of the input vector x′
t to the SAE unit in our deep

cascade network is 10. From this microwave heating system,

3000 samples {xpt
; yt} are collected in a real experiment [43].

We normalize the data into the range [0, 1], and separate

them into the training (1000 samples) and online testing (2000

samples) sets.

Again, the structures of all the models are carefully chosen

by trial and error. Specifically, the numbers of nodes in the

RBF, GRBF, TRBF and AGRBF networks are all set to 10.

For our deep cascade network, we choose MW = MA = 10

TABLE III
PERFORMANCE COMPARISON OF RBF, GRBF, LSTM, SAE, ADAPTIVE SAE, TRBF, AGRBF AND PROPOSED METHOD FOR MICROWAVE HEATING

PROCESS.

Methods
Initial training Online prediction/modeling

MSE (dB) MAE MSE (dB) MAE ACTpS (ms)

RBF -33.0872 0.0166 -32.2692 0.0179 0.0054

GRBF -30.1656 0.0210 -28.6259 0.0272 0.0057

TRBF -33.0872 0.0166 -39.6183 0.0047 0.0320

AGRBF -30.1656 0.0210 -41.7033 0.0041 0.0372

LSTM -30.0209±2.0842 0.0256±0.0074 -30.3644±1.5311 0.0229±0.0066 NA

SAE -42.4144±4.5252 0.0066±0.0034 -44.0824±4.1411 0.0054±0.0028 NA

Adaptive SAE -40.6789±9.8211 0.0152±0.0224 -44.2089±4.5475 0.0061±0.0065 0.0020

Proposed -43.9761±1.2653 0.0048±5.52e-4 -46.0683±1.1564 0.0032±3.49e-5 0.0121
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Fig. 5. The impact of node replacement threshold on the adaptive modeling
accuracy and the online complexity (the black number [ms] denotes the
ACTpS) of the proposed method for microwave heating process.

for its weak and adaptive GRBF predictors, while its SAE

unit has the structure of {7, 5, 3}. The learning rate and the

number of training epochs for the SAE unit are again set to

0.01 and 200, respectively. Based on the results of Fig. 5, we

set the node replacement threshold for our proposed method

to ε= 0.001. The LSTM network has 64 hidden nodes, and

the structure of the SAE and adaptive SAE models are chosen

to be {7, 5, 3, 1}. The learning rate and the number of training

epochs are again set to 0.001 and 200, respectively for the

SAE, the adaptive SAE and the LSTM. The node replacement

thresholds are empirically chosen to be 0.1 and 0.01 for the

TRBF and AGRBF, respectively.

Table III lists both the training and online prediction per-

formance achieved by the 8 models, while Fig. 6 depicts the

online MSE learning curves for the various models compared.

Observe that both the SAE and adaptive SAE achieve very

similar performance. Clearly, our method attains the best

online prediction accuracy, and its online prediction MSE is

2 dB smaller than the second-best adaptive SAE. Moreover, the

performance of the adaptive SAE exhibits a large fluctuation,

owing to its sensitivity to training initialization. Specifically,

the standard deviation of the adaptive SAE’s test MSE is

4.5475 dB, which is four times of our proposed method. In

terms of online computational complexity, the adaptive SAE

has the lowest ACTpS of 0.0020 ms among the three weight-

adapting models, since it only updates three weights, while
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Fig. 6. MSE learning curves for online modeling of microwave heating
process by various models.
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Fig. 7. Online prediction and error of: (a) adaptive SAE, (b) TRBF,
(c) AGRBF, and (d) proposed method for microwave heating process.
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the proposed method attains the smallest ACTpS of 0.0121 ms

among the three structure-adaptive models. Clearly, all the

these six adaptive models are capable of meeting a very small

sampling period constraint. The online predictions and errors

of the four adaptive models, the adaptive SAE, TRBF, AGRBF

and proposed deep cascade network, are presented in Fig. 7,

where it can be seen that the TRBF and AGRBF produces

some large-magnitude online prediction errors. The adaptive

SAE model has much better online prediction performance

than the TRBF and AGRBF models, while the proposed

method has the best online tracking accuracy.

D. Case Study-III: Penicillin Fermentation Process

The penicillin fermentation process is an industrial bio-

chemical fed-batch process with nonlinear dynamics and

multi-mode characteristics, which has been widely adopted

for performance assessment of adaptive soft sensors [44],

[45]. The biomass concentration is a hard-to-measure key

variable of this fermentation process, which is chosen as the

system output, while other 10 process variables are used as

the system inputs, as tabulated in Table IV. This system can

be represented by yt=fsys
(
xpt

; t
)

[44], [45], with the system

input vector specified by

xpt
=
[
u1,t u2,t · · ·u10,t

]T
. (23)

Thus the dimension of xt is 10 and the dimension of x′
t is

11. For this fermentation process, 800 samples are collected

from the PenSim tool [46] with default simulation condition.

We separate them into the training (400 samples) and online

testing (400 samples) sets.

Similarly, the structures of all the models are carefully

chosen by experiments. Specifically, the numbers of nodes in

TABLE IV
VARIABLE DESCRIPTION IN THE PENICILLIN FERMENTATION PROCESS.

Process and quality variables Description

Inputs u1,t Aeration rate

u2,t Agitator power

u3,t Substrate feed rate

u4,t Substrate feed temperature

u5,t Dissolved oxygen concentration

u6,t Culture volume

u7,t Carbon dioxide concentration

u8,t pH

u9,t Fermentor temperature

u10,t Generated heat

Output yt Biomass concentration
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Fig. 8. The impact of node replacement threshold on the adaptive modeling
accuracy and the online complexity (the black number [ms] denotes the
ACTpS) of the proposed method for penicillin fermentation process.
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Fig. 9. MSE learning curves for online modeling of penicillin fermentation
process by various models.

the RBF, GRBF, TRBF and AGRBF networks are all set to

10. For our deep cascade network, we choose MW =MA=10
for its weak and adaptive GRBF predictors, while its SAE unit

has the structure of {10, 7, 4}. Based on the results of Fig. 8,

we set the node replacement threshold to ε=0.1 for the GRBF

adaptive predictor in our deep cascade network. The LSTM

network has 64 hidden nodes, and the structure of the SAE

and adaptive SAE models are both chosen to be {10, 7, 4, 1}.

The learning rate and and the number of training epochs for

these three deep models are the same as the previous case.

The node replacement thresholds are empirically chosen to be

0.1 and 1 for the TRBF and AGRBF models, respectively.

Table V lists the both training and online prediction per-

formance of the 8 models compared, while Fig. 9 plots the

TABLE V
PERFORMANCE COMPARISON OF RBF, GRBF, LSTM, SAE, ADAPTIVE SAE, TRBF, AGRBF AND PROPOSED METHOD FOR PENICILLIN FERMENTATION

PROCESS.

Methods
Initial training Online prediction/modeling

MSE (dB) MAE MSE (dB) MAE ACTpS (ms)

RBF -33.0446 0.0178 -23.5707 0.0548 0.0128

GRBF -33.5760 0.0132 -22.9912 0.0520 0.0141

TRBF -33.0446 0.0178 -31.6866 0.0141 0.1685

AGRBF -33.5760 0.0132 -40.3049 0.0059 0.0600

LSTM -32.6484±4.7905 0.0233±0.0138 -26.1942±4.4434 0.0507±0.0272 NA

SAE -89.0346±9.7129 4.26e-5±3.72e-5 -45.9289±6.4825 0.0056±0.0041 NA

Adaptive SAE -73.4173±10.2068 3.21e-4±5.46e-4 -48.7861±5.2173 0.0022±0.0010 0.0033

Proposed -37.6025±1.1217 0.0139±7.75e-4 –51.7963±1.9480 0.0012±1.09e-4 0.0498
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Fig. 10. Online prediction and error of: (a) adaptive SAE, (b) TRBF,
(c) AGRBF, and (d) proposed method for penicillin fermentation process.

online MSE learning curves of these models. One may observe

in Table V that the SAE and the adaptive SAE attain a

spectacularly low training MSE performance but their online

prediction accuracy degrade dramatically from the training

performance. As expected, the adaptive SAE does attain the

better test MSE than its nonadaptive counterpart. Again, our

proposed deep method achieves the best online prediction

accuracy, as evidenced by the smallest test MSE and MAE.

The online prediction MSE of our method is 3 dB lower than

the second-best adaptive SAE. Also observe that the deep

cascade GRBF network imposes a lower online computational

complexity than the AGRBF. Specifically, the online ACTpS

of our deep model is less than 0.05 ms, compared to 0.06 ms

imposed by the AGRBF. The online predictions and errors of

the adaptive SAE, TRBF, AGRBF and our proposed model are

presented in Fig. 10, which again demonstrates the superior

online tracking performance of our proposed method over the

other models.

E. Discussion of the Results

Experimental results involving three real-world industrial

processes demonstrate that the proposed deep cascade GRBF

network achieves the state-of-the-art adaptive modeling perfor-

mance for high-dimensional nonlinear and nonstationary pro-

cesses. Our proposed method not only consistently attains the

best online prediction accuracy but also imposes sufficiently

low online adaptation computational complexity that easily

meets the constraint of small sampling period. In particular,

compared with the current state-of-the-art deep neural network

model, namely, the adaptive SAE, the online prediction MSE

attained by our method is significantly lower than that of the

adaptive SAE. Unlike our method, which can adapt its GRBF

predictor’s structure and weights online, the adaptive SAE

can only adjust its output regression layer’s weights, which

is insufficient for tracking fast time-varying process’s charac-

teristics. The same limitation of the adaptive SAE, however,

gives it an advantage in the online computational complexity,

and the ACTpS of the adaptive SAE is significantly lower than

that of our deep cascade GRBF network.

It can be seen that our proposed deep cascade GRBF

network is particularly well designed for highly nonstationary

data. If the underlying process is stationary or the process’s

dynamics only change slowly with time, our method may

lose its competitive edge over the adaptive SAE. For high-

dimensional slow time-varying nonlinear processes, the fixed

SAE latent space is capable of extracting the compressed

nonlinear features from raw data, and an adaptive linear

regression layer becomes sufficient to track the slowly time-

varying process characteristics. However, we emphasize again

that this research is devoted specifically for severely time-

varying data with nonlinear high-dimensionality, and for such

challenging application area, our deep cascade GRBF network

shows considerable advantages over the existing state-of-the-

art, as evidenced by the experimental results.

V. CONCLUSIONS

In this paper, we have proposed a deep cascade GRBF

network, consisting of a weak GRBF predictor, a SAE fea-
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ture extractor and a final GRBF adaptive predictor, aiming

online prediction and modeling of nonlinear and nonstationary

processes. The weak GRBF predictor provides a preliminary

prediction result, which is combined with the raw input data

to define the attribute input vector of a SAE. Deep output-

relevant features are then extracted by the SAE, which provide

the inputs of a GRBF adaptive predictor to improve modeling

performance. Our deep cascade network seamlessly integrates

deep learning with an adaptive GRBF model. The proposed

deep model with multilevel architecture can perform model

adaptation very efficiently, enabling real-time tracking of quick

changes in process dynamics within a small sampling period.

Applications to three real-world industrial processes have

validated the effectiveness of the proposed method over the

existing state-of-the-art online adaptive modeling approaches

and deep learning networks.

It is worth mentioning that supervised training of SAE with

error backpropagation is prone to the local minimum problem,

and therefore the training is very sensitive to parameter ini-

tialization, which degrades the feature extraction robustness.

If the training of the SAE unit can be made more robust by

ensuring that the training procedure converges to a global or

near global optimal solution, the nonlinear modeling capability

of the entire deep cascade GRBF network can be further

enhanced. How to construct a robust and an optimal SAE

is an open research direction for a future works. A possible

approach is adopting evolutionary optimization algorithms,

such as differential evolutionary algorithm and swarm particle

optimization, for supervised training.
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