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Hybrid Dynamic Event-Triggered Load Frequency
Control for Power Systems With Unreliable

Transmission Networks
Guopin Liu , Ju H. Park , Senior Member, IEEE, Changchun Hua , Senior Member, IEEE, and Yafeng Li

Abstract—In this article, we consider the load frequency
control problem for a class of power systems based on the
dynamic event-triggered control (ETC) approach. The trans-
mission networks are unreliable in the sense that malicious
denial-of-service (DoS) attacks may arise in the power system.
First, a model-based feedback controller is designed, which
utilizes estimated states, and thus can compensate the error
between plant states and the feedback data. Then, a dynamic
event-triggered mechanism (DETM) is proposed by introducing
an internal dynamic variable and a timer variable with jump
dynamics. The proposed (DETM) can exclude Zeno behavior
by regularizing a prescribed strictly positive triggering interval.
Incorporated in the ETC scheme, a novel hybrid model is
established to describe the flow and jump dynamics of the
power system in the presence of DoS attacks. Based on the
hybrid dynamic ETC scheme, the power system stability can be
preserved if the attacks frequency and duration sustain within an
explicit range. In addition, the explicit range is further maximized
based on the measurement trigger-resetting property. Finally, a
numerical example is presented to show the effectiveness of our
results.

Index Terms—Denial-of-service (DoS) attacks, dynamic event-
triggered mechanism (DETM), hybrid system approach, load
frequency control, power systems.

I. INTRODUCTION

IN PRACTICE, the power system frequency is a cru-
cial performance index, which should tightly maintain
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around an expected nominal value (50 or 60 Hz). The system
frequency is essentially connected with real power balance,
hence in the past decades, a traditional solution is to control
real power output in the generator side, for instance, the auto-
matic generation control (AGC) system approach. Nowadays,
power systems are faced with new challenges, such as increas-
ing stress in the transmission system and high penetration of
renewable energies. Renewable power outputs with intermit-
tent and large instantaneous variations limit the generation
controllability [1], [2]. In addition, the increasing stress in
the transmission system may limit the effective power transfer
from generation to load [3]. Thus, researchers in recent years
are revisiting the frequency control problem under this new
paradigm [3], [4].

Compared with the frequency regulation methods that focus
on power generation, direct load side control attracts an
increasing interests as an alternative solution for frequency
regulation due to its distinct merits, such as instantaneous
response and distributed availability via the grid [2]. Many
works on the implementation of load frequency control have
been reported in the literature, see for instance [5]–[8]. In [9],
based on the decentralized sliding-mode control technique,
a load frequency control scheme is presented for multiarea
power systems with uncertainties. By modeling the disturbance
and parameter uncertainties into the power system, an adaptive
dynamic programming-based load frequency control approach
is proposed in [10] for the single area and multiarea power
systems. In particular, numerous load frequency control results
have been reported for power systems with the incorporation
of electric vehicles (EVs), which can be adopted to suppress
the fluctuations caused by load disturbances [11]–[16].

As a matter of fact, the power systems can be concep-
tualized as a class of networked control systems (NCSs),
where distributed resources and assets of power systems are
connected through wide-area transmission networks. This con-
ceptualization can enhance the control and operation abilities.
While, on the other hand, it triggers numerous theoretical and
practical challenges to frequency regulation of power system,
such as transmission delay [17] and faults of sensor [18].
In particular, the power systems transmit regulation control
signals through public networks, which makes the networked
power systems safety critical to malicious cyber attacks [19].
The safety sensitivity has promoted considerable attention to
the cyber-security problems that arisen in the network power
systems.
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For NCSs, one of the most common attacks is denial-of-
service (DoS) attack, which primarily aims at compromising
the availability of data and thus causing packet losses. The
research on NCSs with DoS attacks has been widely inves-
tigated for the past decades [20]–[25]. For instance, Persis
and Tesi [20] proposed a general DoS attack model based
on its frequency and duration, then the input-to-state stabil-
ity is analyzed for a class of NCSs subject to DoS attacks.
Under switching communication network, Wang et al. [24]
proposed a novel cooperative output-feedback control strat-
egy for a class of cyber–physical systems with intermittent
DoS attacks. However, due to the new challenges as men-
tioned above for power systems, there are still many open
problems for the load frequency control of power systems in
the presence of DoS attacks.

Traditional load frequency control approaches are imple-
mented by the sample-data scheme, which usually utilizes
time-triggered sampling approach. In this framework, net-
worked congestion problems may arise due to the excessive
transmission data or node energy. Therefore, it is of signifi-
cant importance to design a load frequency control scheme
such that the power system frequency can be well regu-
lated, and the network resources consumption can be reduced
as well. Over the past years, event-triggered control (ETC),
which updates the control input only when the designed trig-
gering rules are satisfied, has been verified as an effective
strategy in saving transmission data. The research on ETC
has been well investigated for NCSs [26]–[28]. For instance,
Dimarogonas et al. [26] proposed an ETC scheme with inte-
grator dynamics, based on which, the control input updates
in accordance to the state measurement error ratio. A novel
dynamic triggering mechanism is proposed for ETC in [29].
Zhao et al. [30], [31] then extended the dynamic trigger-
ing mechanism to multiagent systems in a hybrid system
framework. The research of [32] inspires our article from
a theoretical perspective, which presents a hybrid dynamic
event-trigger mechanism for a class of nonlinear NCSs in
the presence of DoS attacks. For LFC of power systems,
Peng [33] proposed an adaptive ETC scheme by dynami-
cally regulating the triggering threshold. The event-triggered
strategies also have been incorporated for NCSs in the pres-
ence of cyber-attacks [34]–[38]. Liu et al. [36] investigated
event-triggered LFC control for multiarea power systems in
the presence of hybrid cyber-attacks. Observer-based ETC
methods are proposed in [37] and [38] for NCSs subject
to DoS attacks. While that the event-triggered approach
has been extensively investigated, few of them focus on
dynamic ETC of power systems in the presence of DoS
attacks.

Motivated by the above observation, this article is con-
cerned with the dynamic event-triggered LFC problem for
a class of power systems with DoS attacks via a hybrid
system approach. The main contributions are summarized as
follows.

1) A hybrid dynamic ETM is proposed for load frequency
control of power systems, which introduces an internal
dynamic variable and a timer variable with jump dynam-
ics. To the best of our knowledge, it is the first

TABLE I
PARAMETERS AND VARIABLES OF THE LFC POWER SYSTEM

attempt to develop a hybrid dynamic ETM for power
systems, which extends the application field of theoret-
ical dynamic ETM results [29], [31], [32].

2) With the proposed dynamic ETM, a novel hybrid model
is established for the closed-loop LFC power system,
which can describe the flow and jump dynamics of the
power system in the presence of DoS attacks.

3) A sufficient stability condition is provided, which explic-
itly characterizes the restriction on DoS attacks by its
frequency and duration. Besides, compared with existing
results [32], [39], the stability threshold is maximized
based on the trigger-resetting property of estimated
states, which significantly improve the power system
robustness in the presence of DoS attacks.

The remainder of this article is organized as follows.
Section II provides system description and preliminaries. In
Section III, the hybrid dynamic ETM is presented and a hybrid
model is established for the closed-loop power system with
DoS attacks. Section IV presents the main results, which pro-
vides sufficient conditions and stability analysis for the LFC
of a power system. In Section V, a numerical example is pro-
vided to verify the validity of the proposed approach. The final
conclusion is given in Section VI.

Notation: Let R represent the set of reals. Given any α ∈ R,
we denote the set of reals greater than (respectively, no less
than) α by R>α (respectively, R≥α). Denote R

n to be a set
of all n dimensional real column vectors. For any matrix
Q, QT and ‖Q‖ represent its transpose and spectral norm,
respectively. The smallest and largest eigenvalues of Q are
represented by λmin(Q) and λmax(Q), respectively. Given a
measurable time function g(t) mapping R≥0 to R

n, denote
the L∞ norm of g(·) on time interval [0, t) by ‖gt‖∞ :=
sups∈[0,t) ‖g(s)‖. For any sets A and B, let B\A represent the
relative complement of A in B, that is, the set of all elements
that belong to B, but not to A.

II. PROBLEM FORMULATION

A. Systems Description

We consider the dynamic event-triggered LFC for a class
of power systems, whose block diagram is shown as Fig. 1.
The explanations for corresponding parameters and variables
are listed in Table I [12], [39].
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Fig. 1. Block diagram of the hybrid dynamic event-triggered power system with network attacks.

The dynamics of the power system can be derived as

ẋ(t) = Ax(t) − Buu(t) + Bwω(t)

y(t) = Cx(t) (1)

where xT(t) = [f (t) Xg(t) Pg(t) Pe(t) �(t)] is the system
states, u(t) ∈ R, y(t) ∈ R

2, and ω(t) ∈ R represent the control
input, system output, and external disturbance, respectively. A,
Bu, Bw, and C are matrices in the following form:

A =

⎡
⎢⎢⎢⎢⎢⎣

− D
M 0 1

M
1
M 0

− 1
RgTg

− 1
Tg

0 0 0

0 1
Tt

− 1
Tt

0 0

−ρeK̄e
Te

0 0 − 1
Te

0
b 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

BT
u =

[
0 αg

Tg
0 αeK̄e

Te
0
]

C =
[

1 0 0 0 0
0 0 0 0 1

]

BT
w = [− 1

M 0 0 0 0
]
.

In this article, the control action is finalized through a
sensor-actuator network. We assume that (A, Bu) is stabiliz-
able, and the control input applied to the power system is
designed by

u(t) = Kx̂(t) (2)

where feedback matrix K = αBT
u P, α is a positive constant.

P > 0 is the solution to the algebraic Riccati equation

PA + ATP − αPBuBT
u P + Q = 0 (3)

where Q > 0. x̂(t) is the estimator states, which is specified by
{ ˙̂x(t) = Ax̂(t), t ∈ (tk, tk+1]

x̂+(t) = x(t), t = tk
(4)

in which {tk}k∈N represents the instant sequence of trigger.
Define e(t) as the state estimated error in the form

e(t) = x̂(t) − x(t) (5)

and denote the performance output of the power system by
z(t) = Czx(t), where Cz is constant matrix with appropriate
size.

According to (1), (2), and (5), one can obtain the following
results:

ẋ(t) = Ax(t) − BuKx̂(t) + Bwω(t)

= Ac
11x(t) + Ac

12e(t) + Bwω(t)

ė(t) = Ae(t) + BuK(e(t) + x(t)) − Bwω(t)

= Ac
21x(t) + Ac

22e(t) − Bwω(t) (6)

where Ac
11 = A − BuK, Ac

12 = −BuK, Ac
21 = BuK, and Ac

22 =
A + BuK.

Remark 1: In our article, an estimator (4) is estab-
lished, which compared with the zero-order-hold strategy, can
improve the control performance by eliminating the possible
large error between plant state and the kept feedback data at
the controller side. The variable x̂(t) is thus introduced and will
be utilized as an estimation of x(t). In fact, the design idea
behind (2) and (4) is the well known model-based approach
in NCSs, which have been studied in [40]–[43], just to name
a few. In addition, the estimator with resetting property plays
another crucial way in maximizing the stability condition char-
acterized by the frequency and duration of DoS attacks. This
property will be revisited in Section IV.

Remark 2: As illustrated in Fig. 1, the control action is
implemented through a sensor-to-actuator network, which con-
sequently indicates the malicious attacks can degrade the
measurement (sensor-to-controller) channel. While, it should
be pointed out that the proposed hybrid dynamic ETC scheme
framework also can be extended to other practical configura-
tions, such as decentralized control [44].

B. Denial-of-Service Attacks

The DoS in our article is referred as the phenomenon that
communication is blocked by a malicious attacker and con-
sequently prevent the control input (2) from being executed
at a desired time. Specifically, the mth DoS attack period is
denoted as Hm = {hm}∪[hm, hm +τm), where hm ∈ R≥0 repre-
sents the instant when the mth DoS period starts and τm ∈ R≥0
is the length of the period. As illustrated in Fig. 1, this article
only consider the influence of DoS attacks on measurement
(sensor-to-controller) channel.

For T1, T2 ∈ R≥0 with T1 < T2, define �(T1, T2) :=
[T1, T2] ∩ IDoS, where IDoS =⋃m∈N0

Hm, as the sets of time
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instants where communication is denied for interval [T1, T2].
Then, for the interval [T1, T2], the sets of time instants over
which communication is free from the attacks can be obtained
as 	(T1, T2) := [T1, T2]\�(T1, T2). The length of time
interval �(T1, T2) and 	(T1, T2) are denoted as |�(T1, T2)|
and |	(T1, T2)|, respectively. Denote n(T1, T2) as the attack
numbers that the power system suffered during time interval
[T1, T2]. Let � ∈ R>0 represent the minimum sample interval,
namely, � ≤ tk+1−tk for all k ∈ N0. We propose the following
assumptions to characterize the DoS attack sequence.

Assumption 1 (DoS Frequency [20]): Given any T1, T2 ∈
R≥0 with T1 ≤ T2, one can find constants κf ∈ R≥0, τf ∈ R≥�

such that

n(T1, T2) ≤ κf + T2 − T1

τf
. (7)

Assumption 2 (DoS Duration [20]): Given any T1, T2 ∈ R≥0
with T1 ≤ T2, one can find constants κd ∈ R≥0, τd ∈ R>1 such
that

|�(T1, T2)| ≤ κd + T2 − T1

τd
. (8)

Remark 3: Assumptions 1 and 2, proposed by [20], charac-
terize a class of time-constrained DoS attacks model, which is
quite general since it constrains nothing but the frequency and
duration properties of attacks. Therefore, these assumptions
are widely utilized in existing works on DoS attacks, such as
[21]–[23], and [32]. In this article, we use these assumptions
to determine the amount of attacks that the power system can
tolerate, see (21) in Theorem 1 and (45) in Lemma 3.

C. Problem Statement

The control objective of this article is as follows.
Design the control input as (2) and the hybrid dynamic

event-triggered mechanism (DETM) described by (10) such
that under DoS attacks which satisfy Assumption 1 and 2, the
power system (1) is globally uniformly exponentially stable
(GUES) if ω(t) = 0. While if ω(t) 	= 0, the power system is
L∞ stable from ω(t) to z(t). In addition, maximize the amount
of DoS attacks that characterized by its frequency and duration
without destroying the stability of LFC for the power system.

III. HYBRID POWER SYSTEM MODEL

SUBJECT TO DOS ATTACKS

A. Hybrid Dynamic ETM

In this part, a hybrid dynamic ETM is presented. Before
that, a new time variable τ(t) ∈ R≥0 is introduced to represent
the elapsed time after the latest trigger attempt. The hybrid
dynamics of τ(t) is set as

{
τ̇ (t) = 1, τ (t) ∈ C

τ+(t) = 0, τ (t) ∈ D
(9)

where C represents the flow set and D denotes the jump set,
which both will be specified later.

With that, the hybrid dynamic ETM is designed as

tk+1 = inf
{

t ≥ tk + τ
m(t)
miet |η(t) ≤ 0, k ∈ N0

}
(10)

where m(t) ∈ {0, 1} is an symbol variable, which is used
to show the allowed or denied status of latest transmission
attempt at time t. Without loss of generality, let m(t) = 0
denote that the latest transmission attempt is allowed and
let m(t) = 1 represent the attempt is denied. τ

m(t)
miet > 0 is

a predetermined minimum event-triggering interval satisfying
0 < τ 1

miet < τ 0
miet and τ 0

miet ≤ �, where � is as in Assumption
1. η(t) is a crucial dynamical variable for the event-triggered
scheme, which satisfies the following hybrid dynamics:

η̇(t) = �(m(t), η(t), ς(t)), t ∈ (tk, tk+1)

η+(tk) =
{

η̄(tk), tk /∈ IDoS
η(tk), tk ∈ IDoS

(11)

where ς(t) = (e(t), τ (t), φ(t)) ∈ R
5 × R≥0 × [λ, λ−1]. φ ∈

[λ, λ−1] is an auxiliary variable for the hybrid event-triggered
scheme and λ is a tuning parameter satisfying 0 < λ < 1.
�(·) is a function that depends on local variables.

Now, we present the specification of φ(t), τ
m(t)
miet , �(·), and

η̄(tk).
First, the follow dynamics of φ(t) is set as:

φ̇(t) = fφ(t)

where

fφ(t) =
{

(m(t) − 1)(2Lφ(t) + γ (φ2(t) + 1)), τ (t) ≤ τ
m(t)
miet

0, τ (t) ≥ τ
m(t)
miet

(12)

with that L = ‖A+BuK‖, γ is a positive constant that satisfies
the conditions specified in Theorem 1.

The time constant τ
m(t)
miet in this article is selected no larger

than τM , which is denoted as the allowable bound for trans-
mission interval. Specifically, τM is given in the following
form [45]:

τM =

⎧⎪⎪⎨
⎪⎪⎩

1
Lr arctan

(
r(1−λ)

ϒ

)
, γ > L

1
L

1−λ
1+λ

, γ = L
1
Lr arctanh

(
r(1−λ)

ϒ

)
, γ < L

(13)

where r = √|(γ /L)2 − 1|, ϒ = (2λ/1 + λ)([γ /L]−1)+1+λ.
Consider τM given in (13). The following result holds.
Lemma 1 [45]: Let φ̃(0) = λ−1, where φ̃(t) is the

solution to

˙̃
φ(t) = −2Lφ̃(t) − γ

(
φ̃2(t) + 1

)
. (14)

If τM is determined by (13), then one has φ̃(t) ∈ [λ, λ−1] for
all t ∈ [0, τM], and φ̃(τM) = λ.

Lemma 1 indicates that the solution φ̃(t) to (14) will always
be positive for t ∈ [0, τM], which is a crucial property for
stability analysis. With the selection τ 1

miet ≤ τ 0
miet ≤ τM ,

define φmiet = φ̃(τ 0
miet), then the triggering function �(·) is

designed as

�(·) =
⎧⎨
⎩

−βη(t), τ (t) ≤ τ 0
miet−βη(t) − γ̄ ‖e(t)‖2, τ (t) > τ 0
miet

0, m = 1, τ (t) ∈ R≥0

(15)

where γ̄ = γ (2φmietL + γ (1 + φ2
miet)).
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In addition, for variable η(t), the reset initial value η̄(t)
in (11) and (18) is defined as η̄(t) = γφmiet‖e(t)‖2.

The following lemma gives some properties on function
φ(t), η(t), and constant φmiet.

Lemma 2 [32]: Denote R(X0) as the reachable states of the
hybrid system HDoS (16)–(18) with ξ(0, 0) ∈ X0, then for any
ξ ∈ R(X0), the following results hold:

1) τ(t) ≥ τ 0
miet ⇔ φ(t) = φmiet;

2) φmiet ≤ φ(t) ≤ λ−1;
3) η(t) ≥ 0.
Remark 4: According to the hybrid ETM (10), a transmis-

sion attempt will occur after the elapsed time τ
m(t)
miet provided

that η(t) ≤ 0. In fact, after the triggered condition is satisfied
at the instant when η(t) = 0, it will be reset to a positive
value according to (11). Therefore, as indicated by Lemma 2,
we have η(t) ≥ 0 for all t ≥ 0. On the other hand, the status of
the measurement channel determines whether the transmission
attempt is denied (m(t) = 1) or allowed (m(t) = 0). If a DoS
sequence is affecting the channel, transmission attempts should
be triggered frequently compared with when m(t) = 0 to fig-
ure out the end of attack. Hence, we can set 0 ≤ τ 1

miet ≤ τ 0
miet,

which indicates the triggering interval can be adjusted accord-
ing to the DoS attack status. While to finalize the foremen-
tioned schedule, it assumes that the hybrid dynamic ETM can
obtain the reception information of packages at the controller
side.

Remark 5: A hybrid system exhibits both continuous and
discrete dynamic behavior, which has benefit in modeling
systems with ETC mechanism. In control literature, hybrid
dynamic ETC strategies have also been investigated in some
existing works for NCSs, such as [30] and [31]. Compared
with above works, the specific event-triggered mechanism is
different in our article. Besides, we also concerns the mali-
cious attacks in the transmission network, which complicates
the design procedure and stability analysis. In addition, to our
best knowledge, this is the first attempt that concerns hybrid
dynamic ETC for LFC of power systems in the presence of
DoS attacks.

B. Hybrid Model of Power Systems

In this part, a hybrid model is proposed to describe the
power system with both flow and jump dynamics.

Define ξ(t) := [xT(t), eT(t), ηT(t), τT(t), φT(t)]T. Then, we
can rewrite the power system with DoS attacks by the hybrid
model as follows:

HDoS :

{
ξ̇ (t) = F(ξ(t), ω(t)), ξ(t) ∈ C

ξ+(t) ∈ G(ξ(t)), ξ(t) ∈ D
(16)

where F(ξ(t), ω(t)) represents the flow dynamics and
G(ξ(t)) represents the jump dynamics. C and D are as
in (9).

According to (6), (9), and (11), the flow dynam-
ics for the power system is derived in the following
form:

ξ̇ (t) = F(ξ(t), ω(t)), ξ ∈ C (17)

where

F(ξ, ω) =

⎡
⎢⎢⎢⎢⎣

ẋ(t)
ė(t)
η̇(t)
τ̇ (t)
φ̇(t)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

Ac
11x(t) + Ac

12e(t) + Bwω(t)
Ac

21x(t) + Ac
22e(t) − Bwω(t)
�(·)

1
fφ(t)

⎤
⎥⎥⎥⎥⎦

.

The flow set is defined as

C :=
{
ξ(t) ∈ X|τ(t) ≤ τ

m(t)
miet or η(t) > 0

}

where X = R
5 × R

5 × R≥0 × R≥0 × [λ, λ−1].
Recall (6), (9), and (11), and one can obtain the jump

dynamics for the power system as

ξ+(t) ∈
{

G0(ξ(t)), ξ ∈ D and t /∈ IDoS
G1(ξ(t)), ξ ∈ D and t ∈ IDoS

(18)

where

G0(ξ(t)) =

⎡
⎢⎢⎢⎢⎣

x(t)
0

η̄(t)
0

λ−1

⎤
⎥⎥⎥⎥⎦

, G1(ξ(t)) =

⎡
⎢⎢⎢⎢⎣

x(t)
e(t)
η(t)

0
φ(t)

⎤
⎥⎥⎥⎥⎦

.

The dynamic set is defined as

D := {ξ(t) ∈ X|τ(t) > τ
m(t)
miet and η(t) ≤ 0}.

From (18), some variables in ξ(t) do not show discrete
dynamic behavior if the trigger instance is affected by a DoS
sequence. Based on suitable restrictions on DoS frequency
and duration, this problem is compensated by the convergence
property in a normal working period. For the closed-loop
hybrid power system model (16)–(18). The following defini-
tions on its stability and performance are provided.

Definition 1: For the power system described by hybrid
model (16)–(18), the set Ā = {ξ(t) ∈ X|x(t) = 0, e(t) = 0} is
said to be GUES if there exist constants C > 0, a > 0 such
that

|ξ(t)|Ā ≤ C|ξ(0)|Ā exp(−at) (19)

holds for any initial condition ξ(0) ∈ X0, where X0 = {ξ(t) ∈
X|τ(t) ≥ τ 0

miet, η(t) = 0, φ(t) = φmiet}, φmiet is a constant
specified in Section IV.

Definition 2: For the power system described by hybrid
model (16)–(18), if there exist K∞ function β and positive
constant γ ∗ such that

‖z(t)‖L∞ ≤ β(|ξ(0)|Ā) + γ ∗‖ω(t)‖L∞

holds for any initial condition ξ(0) ∈ X0 and exogenous distur-
bance ω ∈ L∞, then the closed set Ā as given in Definition 1
is said to be L∞ stable from ω(t) to z(t) with an L∞-gain no
larger than γ ∗.

IV. MAIN RESULTS

In this section, we present sufficient conditions for the LFC
of power systems, under which the closed-loop stability can
be preserved in the presence of DoS attacks.
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A. Stability Performance Under DoS Attacks

First, we present the main result of this section.
Theorem 1: Consider the power system with hybrid

model (16)–(18). If there exist constants c ≥ ‖αPBuBT
u P‖,

ε > 0, γ > ε + c, 0 < ρ < 1, and γω > 0 such that
⎡
⎣

�11 0 �13
∗ �22 0
∗ ∗ �33

⎤
⎦ ≤ 0 (20)

where �11 = −(1−ρ)Q+(BuK)TBuK, �13 = −(BuK)TBw +
PBw, �22 = −γ 2 + c + ε, and �33 = BT

wBw − γ 2
ωI. Then, for

any DoS attacks characterized by (7) and (8) with parameters
τd and τf satisfying

τ 1
miet

τf
+ 1

τd
<

λs

λs + λu
(21)

the designed controller (2) with (4) and hybrid dynamic
ETM (10) can ensure the closed set Ā = {ξ(t) ∈ X|x(t) =
0, e(t) = 0} is GUES in case of ω(t) = 0, and the power
system is L∞-stable in case of ω(t) 	= 0 with a finite L∞-
gain less than γω

√
(αzκ∗)/λ∗, where αz ≥ ‖cT

z cz/P‖, λs =
min{[λmin(Q)ρ/λmax(P)], (λ/γ )ε, β}, λu = ([γ̄ − ε]/γ φmiet),
κ∗ = (λs + λu)κdos, and λ∗ = λs − (λs + λu)/τdos.

Proof: In order to construct a proper Lyapunov function,
which decreases at the triggering instant, consider the locally
Lipschitz function Ve(e(t)) = ‖e(t)‖ : R5 → R≥0. Recall (4)
and (5), one has e+(t) = 0 due to that x̂(t) resets to x(t) at
triggering instant. Hence, we can find constants 0 < αe ≤ ᾱe,
and 0 < λe < 1 such that αe‖e(t)‖ ≤ Ve(e(t)) ≤ ᾱe‖e(t)‖ and
V+

e (e(t)) ≤ λeVe(e(t)) for all e(t) ∈ R
5. In the remainder of

this article, we adopt the notation ‖e(t)‖ instead of Ve(e(t)).
According to (6), one has that the upper bound of the derivative
of ‖e(t)‖ satisfies

〈
∂‖e(t)‖
∂e(t)

, ė(t)

〉
≤ L‖e(t)‖ + ‖BuKx(t) − Bωω(t)‖ (22)

where L = ‖A + BuK‖, which is as defined in (12).
Then, the candidate Lyapunov function is constructed as

V(ξ(t)) = xT(t)Px(t) + γφ(t)‖e(t)‖2 + η(t). (23)

From Lemma 2, we know that φ(t) ≥ φmiet(t) > 0 and η(t) ≥
0. Thus, the radial unboundedness of V(ξ(t)) can be verified
according to that xT(t)Px(t) and ‖e(t)‖ are radially unbounded.
Therefore, we can find positive constant αV ∈ R≥0 such that
αV |ξ |2Ā ≤ V(ξ) for all ξ ∈ Ā(X0), where Ā is as defined
in Definitions 1 and 2. Therefore, we have that V(ξ) is an
appropriate candidate Lyapunov function.

Now, we analyze the closed-loop hybrid power system with
jump dynamics and flow dynamics subject to DoS attacks.

Jumps: We first prove that the Lyapunov function does not
increase at the triggering instants, that is, t = tk, k ∈ N.

For the case tk /∈ IDoS, the transmission channel is free from
the DoS attacks. According to the trigger condition (10), we
have η(tk) = 0. From (18), one has

V(ξ+(t)) − V(ξ(t)) = η̄(t) − γφ(τ(t))‖e(t)‖2. (24)

Since τ ≥ τ 0
miet at the triggering instant, one has φ(t) = φmiet,

which yields

V
(
ξ+(t)

)− V(ξ(t)) = 0. (25)

For the case tk ∈ IDoS, from (18), one has e+(t) = e(t),
φ+(t) = φ(t), η+(t) = η(t), which indicates that (25) still
hold. Thus, we claim that the at the triggering instants, the
constructed Lyapunov function does not increase no matter
the transmission channel is under attacks or not.

Flows: Now, we analyze the stability of the closed-loop
hybrid power system during the flow.

First of all, consider the case that the latest transmission
attempt is successful, that is, m(t) = 0. For almost all ξ(t) ∈
R(X0), one has

〈∇V(ξ(t)), F(ξ(t), ω(t))〉
= xT(t)(PAc

11 + AcT
11P) + 2xT(t)PAc

12e(t)

+ 2xT(t)PBwω(t) + γ ‖e(t)‖2φ̇(t)

+ 2γφ(τ)‖e(t)‖ė(t) + η̇(t)

= xT(t)
[
P(A − BuK) + (A − BuK)TP

]
x(t)

+ 2xTP(−BuK)e(t) + 2xT(t)PBwω(t)

+ γ ‖e(t)‖2φ̇(t) + 2γφ(τ)‖e(t)‖ė(t) + η̇(t) (26)

where the second equality is obtained according to Ac
11 =

A − BuK and Ac
12 = −BuK. Substituting K = αBT

u P into (26),
one has

〈∇V(ξ(t)), F(ξ(t), ω(t))〉
≤ xT(t)

[
PA + ATP − (2α − α)PBuBT

u P
]
x(t)

+ αeT(t)‖PBuBT
u P‖e(t) + 2xT(t)PBwω(t)

+ γ ‖e(t)‖2φ̇(t) + 2γφ(τ)‖e(t)‖ė(t) + η̇(t)

≤ −xT(t)Qx(t) + αeT(t)‖PBuBT
u P‖e(t)

+ 2xT(t)PBwω(t) + γ ‖e(t)‖2φ̇(t)

+ 2γφ(τ)‖e(t)‖ė(t) + η̇(t). (27)

If (20) can be satisfied, the following results can be
obtained by letting the matrix in (20) left multiplied by
[xT(t) eT(t) ωT(t)] and right multiplied by [xT(t) eT(t) ωT(t)]T

−xT(t)Qx(t) + 2xT(t)PBwω(t)

≤ −ρxT(t)Qx(t) + (γ 2 − c − ε)‖e(t)‖2

+ γ 2
w‖ω(t)‖2 − ‖BuKx(t) − Bwω(t)‖2. (28)

From (27) and (28), when τ(t) ≤ τ 0
miet, one has

〈∇V(ξ(t)), F(ξ(t), ω(t))〉
≤ −ρxT(t)Qx(t) + (γ 2 − c − ε)‖e(t)‖2

+ γ 2
w‖ω(t)‖2 − ‖BuKx(t) − Bwω(t)‖2

+ γ ‖e(t)‖2
(
−2Lφ(τ) − γ (φ(τ)2 + 1)

)

+ αeT(t)PBuBT
u Pe(t) − βη(t)

+ 2γφ(τ)‖e(t)‖(L‖e(t)‖ + ‖BuKx(t) − Bwω(t)‖). (29)

Select parameter c such that c ≥ ‖αPBuBT
u P‖, then we can

obtain

〈∇V(ξ(t)), F(ξ(t), ω(t))〉
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≤ −ρxT(t)Qx(t) − ε‖e(t)‖2 − βη(t) + γ 2
w‖ω(t)‖2

− (‖BuKx(t) − Bwω(t)‖ − γφ(τ)‖e(t)‖)2

≤ −λsV(ξ(t)) + γ 2
w‖ω(t)‖2 (30)

where λs = min{[λmin(Q)ρ/λmax(P)], (λ/γ )ε, β}.
When τ(t) ≥ τ 0

miet, according to (12), (15), (27), and (28),
we have

〈∇V(ξ(t)), F(ξ(t), ω(t))〉
≤ −ρxT(t)Qx(t) + (γ 2 − c − ε)‖e(t)‖2

+ γ 2
w‖ω(t)‖2 − ‖BuKx(t) − Bwω(t)‖2

+ αeT(t)PBuBT
u Pe(t) − βη(t) − γ̄ ‖e(t)‖2

+ 2γφ(τ)‖e(t)‖(L‖e(t)‖ + ‖BuKx(t) − Bwω(t)‖). (31)

According to Lemma 2, τ(t) ≥ τ 0
miet implies φ = φmiet.

Substituting γ̄ into (31), we can obtain that (30) still hold.
Now, we consider the case m(t) = 1, namely, the latest

transmission attempt fails due to the effects caused by DoS
attacks. From (12) and (15) for this case, one has φ̇(τ ) = 0,
η̇(t) = 0. Continued from (27) and (28), we have

〈∇V(ξ(t)), F(ξ(t), ω(t))〉
≤ −ρxT(t)Qx(t) + (γ 2 − ε)‖e(t)‖2

+ γ 2
w‖ω(t)‖2 − ‖BuKx(t) − Bwω(t)‖2

+ 2γφ(τ)‖e(t)‖(L‖e(t)‖ + ‖BuKx(t) − Bwω(t)‖). (32)

Since 2γφ‖e(t)‖‖BuKx(t) − Bwω(t)‖ ≤ γ 2φ2‖e(t)‖2 +
‖BuKx(t) − Bwω(t)‖2, one has

〈∇V(ξ(t)), F(ξ(t), ω(t))〉
≤ −ρxT(t)Qx(t) + γ 2

w‖ω(t)‖2

+
(
γ 2 + 2Lγφ(τ) + γ 2φ2 − ε

)
‖e(t)‖2

≤ (γ̄ − ε)‖e(t)‖2 + γ 2
w‖ω(t)‖2. (33)

We can conclude that when m(t) = 1, one has

〈∇V(ξ(t)), F(ξ(t), ω(t))〉 ≤ λuV(ξ(t)) + γ 2
w‖ω(t)‖2 (34)

where λu = ([γ̄ − ε]/γ φmiet).
From previous analysis, we can find the Lyapunov function

has different behaviors depending on the cases of m(t) = 0 or
m(t) = 1. The proof idea is to decompose the time axis and
determine the collection of time intervals where the DoS attack
is either on (m(t) = 1) or off (m(t) = 0). However, the DoS
attacks will cause attack-induced actuation delay, which arises
due to the lower bound of the intertriggering interval τ 1

miet, that
is to say, the states cannot updated immediately when a DoS
signal is over until after a time interval with length τ 1

miet.
To address this problem, we consider the effective time

intervals, over which either (30) or (34) hold. Given any
0 ≤ T1 ≤ T2, consider the component ξ(t) in hybrid
system (16)–(18) and define 	̄(T1, T2) = {s ∈ (T1, T2)|m(s) =
0} and �̄(T1, T2) = [T1, T2]\	̄(T1, T2). Then the interval
[T1, T2] is the disjoint union of 	̄(T1, T2) and �̄(T1, T2),
where 	̄(T1, T2) [respectively, �̄(T1, T2)] is the union of
subintervals of [T1, T2] over which the transmission is reli-
able (respectively, blocked), see example (Lemma 2, [20]) for
details.

It is easy to find that the mth effective time interval over
which condition (34) hold consist of Hi

m and the corresponding
attack-induced actuation delay. Thus, one can obtain the upper
bound of |�̄(T1, T2)| by

|�̄(T1, T2)| ≤ |�(T1, T2)| + n(T1, T2)τ
1
miet. (35)

Substitute (7) and (8) into (35), it holds that

|�̄(T1, T2)| ≤ κdos + T2 − T1

τdos
(36)

where κdos = κd + κf τ
1
miet, τdos = τdτf /(τdτ

1
miet + τf ).

In order to analyze the bounds of the constructed Lyapunov
function, we represent �̄(T1, T2) and 	̄(T1, T2) by the follow-
ing disjoint unions:

�̄(T1, T2): =
⋃
k∈N

Zk ∩ [T1, T2] (37)

	̄(T1, T2): =
⋃
k∈N

Wk−1 ∩ [T1, T2] (38)

where

Zk :=
{

[ζk, ζk + vk], if vk > 0
{ζk}, if vk = 0

Wk :=
{[

ζk + vk, ζk+1
]
, if vk > 0

(ζk, ζk+1), if vk = 0

where {ζk}k∈N is an auxiliary sequence representing the time
instants at which the effective attacks begin (ζ0 := h0).
vk represents the time elapsed from ζk to the next allowed
transmission attempt.

The intervals Zk and Wk actually represent the power
system’s stable and unstable mode subject to DoS attacks.
Consider the intervals Wk, k ∈ N. According to (30), one has

V(ξ(t)) ≤ e−λs(t−ζk−vk)V(ξ(ζk + vk))

+ γ 2
w

∫ t

ζk+vk

e−λs(t−s)|ω(s)|2ds. (39)

Next, consider the intervals Zk, k ∈ N. Recall (34), and we
obtain

V(ξ(t)) ≤ eλu(t−ζk)V(ξ(ζk))

+ γ 2
w

∫ t

ζk

eλu(t−s)|ω(s)|2ds. (40)

With (39) and (40), and according to (25), one can obtain
the following upper bound [20]:

V(ξ(t)) ≤ e−λs|	̄(0,t)|eλu|�̄(0,t)|V(ξ(0))

+ γ 2
ω

∫ t

0
e−λs|	̄(s,t)|eλu|�̄(s,t)||ω(s)|2ds. (41)

According to (35) and (36) and the relationship that
|	̄(T1, T2)| = T2 − T1 − �̄(T1, T2), (41) can be rewritten as

V(ξ(t)) ≤ κ∗e−λ∗tV(ξ(0))

+ κ∗γ 2
ω‖ω‖2

L∞

∫ t

0
e−λ∗(t−s)ds (42)

where κ∗ = (λs + λu)κdos and λ∗ = λs − (λs + λu)/τdos.
With (42) and the properties that αV |ξ |2Ā ≤ V(ξ), αe‖e‖ ≤

‖Ve(e(t))‖ ≤ ᾱe‖e(t)‖ and η(0) = 0, the following results
hold.
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1) In the case ω(t) = 0

|ξ(t)|Ā ≤
√

κ∗ max{ᾱx, α̃e}
αV

e− λ∗
2 t|ξ(0)|Ā (43)

where ᾱx = λmax(P) and α̃e = γφmietᾱ
2
e . Under the

condition (21), we obtain λ∗ > 0. Thus, we can claim
that the closed set Ā is GUES.

2) In the case ω(t) 	= 0, from (42), one has

V(ξ(t)) ≤ κ∗V(ξ(0)) + κ∗γ 2
ω‖ω‖2

L∞

∫ t

0
e−λ∗(t−s)ds.

For any constant αz such that αz ≥ ‖cT
z cz/P‖, it holds

that |z(t)|2 ≤ αzV(ξ(t)). In addition, since V(ξ(0)) ≤
max{ᾱx, α̃e}|ξ(0)|2Ā, one has that

‖z‖L∞ ≤ β(|ξ(0)|Ā) + γ ∗‖ω‖L∞ (44)

where β(|ξ(0)|Ā) = √
αzκ∗ max{ᾱx, α̃e}|ξ(0)|Ā and

γ ∗ = γω

√
(αzκ∗)/λ∗. According to Definition 2, we

finally conclude that the power system is L∞ stable.
This completes the proof.

The condition (21) in Theorem 1 illustrates tradeoff between
attack intensity and closed-loop stability. To be specific,
increasing the DoS intensity can be implemented by decreas-
ing τd and τf , which definitely increase the left-hand side
of (21). Consequently, this stability criterion may be destroyed.
In order to compensated the influence from DoS attacks,
one may increase the convergence rate in the attack-free
period, that is, the value of λs, to make condition (21)
hold.

Remark 6: In order to make the proposed results technically
clear, we summarize the design procedure as follows.

1) Initialize the parameters of the LFC power system as
given in Table I.

2) Select proper parameter α > 0 and matrix Q > 0 for
the Riccati equation (3).

3) Obtain control gain K by solving (3) and K = αBT
u P.

4) Select proper c such that c ≥ ‖αPBuBT
u P‖, and obtain

parameter L by L = ‖A + BuK‖.
5) Select proper ε > 0 and γ such that γ > ε + c.
6) Select positive parameters β for (15), and λ ∈ (0, 1) for

initialization of φ̃(t) of (14) by φ̃(0) = λ−1.
7) Obtain τM according to (13), and obtain φmiet from (14)

by φmiet = φ̃(τ 0
miet).

8) Derive γ̄ for (15) by γ̄ = γ (2φmietL + γ (1 + φ2
miet)).

9) Specify trigger intervals τ 0
miet and τ 1

miet. With η̄ =
γφmiet‖e(t)‖2, the HDETS (10) can be finalized accord-
ing to (11) and (15).

10) Select proper 0 < ρ < 1, and specify λs, λu. Allowable
DoS sequence can be obtained by (21) in Theorem 1.

From Remark 6, one may notice the various parameters in
our ETC mechanism. Following a rough guidance, one can
increase the control gain K by enlarging the parameter α and
matrix Q for the Riccati equation (3) to obtain a rapid conver-
gence rate of x(t) and e(t). As for the triggering mechanism,
the selection of parameter λ can influence the solution of φ̃(t)
in (14). A smaller value of β can result in a slow convergence

of η, which according to (10) can reduce the triggering num-
ber. Although this is also suit for parameter γ̄ , it is not easy to
directly adjust this parameter since γ̄ depends on many other
parameters, such as α, ε, and λ.

B. DoS-Tolerance Maximization

According to (4) and (5), the estimation error e(t) will reset
to zero if the measured data is transmitted successfully through
the measurement channel. If the resetting of e(t), could be
guaranteed, we know the attacks amount is tolerable intu-
itively. Bearing that in mind, in this part, we investigate the
maximal amount of DoS attacks described by Assumptions 1
and 2 that the LFC power system can tolerant.

Define {zm}m∈N as the time instant sequence of successful
transmission. The following lemma is crucial for this part.

Lemma 3: Consider the transmission network for the power
system with the sampling interval larger than τ 1

miet. If the DoS
sequence characterized by Assumptions 1 and 2 satisfies

1

τd
+ τ 1

miet

τf
< 1 (45)

then
{

z0 ≤ �dos

zm+1 − zm ≤ �dos + τ 1
miet

(46)

where �dos = (κd + κf τ
1
miet)(1 − [1/τd] − [τ 1

miet/τf ])−1.
Proof: Since |	̄(hm, t)| = t − hm − �̄(hm, t), from (36), one

has

|	̄(hm, t)| ≥ (t − hm)

(
1 − 1

τd
− τ 1

miet

τf

)
− κd − κf τ

1
miet. (47)

If |	̄(hm, t)| > 0, one has that at least one successful trans-
mission occurs within the interval [hm, t], which shows that
the [hm, t] includes a interval without DoS attacks larger than
τ 1

miet. Suppose no successful transmission attempt occurs dur-
ing [hm, hm + �dos], then there exists a time th ≥ hm + �dos
such that |	̄(hm, th)| = 0. However, recall (47), and one has
|	̄(hm, t)| > 0 for all t > hm + �dos, which contradicts
the above hypothesis. Therefore, one has that a successful
transmission always occur within [hm, hm + �dos].

Bearing that in mind, we now prove (46). First of all, con-
sider the first inequality. If h0 > 0, then z0 = t0 = 0 ≤ �dos.
While if h0 = 0, based on above arguments, one success-
ful transmission will occur within [h0, h0 + �dos]. Therefore,
z0 ≤ �dos still holds. Next, consider the second inequality.
If the transmission at instant zm + τ 1

miet is successful, one
immediately has zm+1 − zm ≤ �dos + τ 1

miet. While if the trans-
mission at zm +τ 1

miet is failed, it indicates one DoS attack must
occur within [zm, zm + τ 1

miet]. Namely, there exists k ∈ N0

such that hk ∈ [zm, zm + τ 1
miet]. In a similar analysis frame-

work, we know one successful transmission will occur within
[zm + τ 1

miet, hk +�dos], therefore, zm+1 − zm ≤ �dos + τ 1
miet.

Remark 7: Lemma 3 shows that the estimation error e(t)
can always reset to zero in a finite-time provided that the DoS
sequence characterized by Assumptions 1 and 2 satisfies (45).
Therefore, condition (45) in fact provides a kind of stability
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Fig. 2. Trajectory of DoS attack signal.

threshold under which the power system can preserve its sta-
bility under DoS attacks specified by Assumptions 1 and 2.
Considering that τd > 1 and τf > τ 1

miet, condition (45) illus-
trates the maximum amount boundary of DoS attacks with
respect to τd and τf that the power system can tolerate.

The following proposition delivers the main idea of this
section.

Proposition 1: Consider the power systems with DoS attacks
that described by the hybrid model (16)–(18). Let the param-
eters and variables are as in Theorem 1. If the matrix
condition (20) can be satisfied, then under the designed con-
troller (2) with (4), and the hybrid dynamic ETM, the closed
set Ā = {ξ(t) ∈ X|x(t) = 0, e(t) = 0} is stable provided that
the DoS attacks described by Assumptions 1 and 2 satisfy (45).

Proof: With the boundedness of e(t) under condition (45),
the stability can be obtained immediately, and the detailed
proof is thus omitted.

With Proposition 1, the restriction on DoS attacks can
be significantly relaxed compared with (21) in Theorem 1.
Therefore, the family of satisfactory DoS sequence is obvi-
ously increased.

V. EXAMPLE

This section provides a numerical example to verify the
proposed result of this article. Consider the LFC power system
with incorporation of EVs, which has also been investigated
in [12] and [39]. The power system parameters are given as

D = 0.0083 M = 0.1667 Rg = 2.4 Tg = 0.08

Tt = 0.3 ρe = 0.4167 Ke = 1 Te = 1

b = 0.425 αg = 0.8 αe = 0.2.

Select parameters as α = 0.08, Q = I, ε = 0.1, λ = 0.21,
and β = 1. Solving the Riccati equation (3), we can obtain
the control gain

K = [0.0863 0.0936 0.0651 0.2812 0.2828]. (48)

In addition, one obtains L = ‖A + BuK‖ = 20.6216, c =
2.2442, γ = 2.3542, τM = 0.0650, φmiet = 0.2100, and γ̄ =
26.1760.

With the results proposed in Section IV-B, the restriction on
DoS attacks frequency and duration is significantly relaxed.
One DoS attack signal example is illustrated in Fig. 2.

(a)

(b)

Fig. 3. Trajectories of states x(t) in the presence of DoS attacks. (a) State
response with ω(t) = 0. (b) State response with ω(t) 	= 0.

(a)

(b)

Fig. 4. Trajectories of estimate error e(t). (a) Trajectories of e(t) with ω(t) =
0. (b) Trajectories of e(t) with ω(t) 	= 0.

Under the proposed hybrid dynamic event-triggered LFC
scheme, the simulation results are shown in Figs. 3–6, respec-
tively. The state responses are illustrated in Fig. 3, where both
Fig. 3(a) and (b) clearly verified the convergence of power
system states in the presence of DoS attacks. The estimation
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(a)

(b)

Fig. 5. Triggering instants for the power system. (a) Triggering instants for
the power system with ω(t) = 0. (b) Triggering instants for the power system
with ω(t) 	= 0.

Fig. 6. Random external disturbances.

errors e(t) are displayed in Fig. 4(a) [respectively, (b)] with
the external disturbance ω(t) 	= 0 [respectively, ω(t) = 0]. The
corresponding triggering instants are shown in Fig. 5, and the
external disturbance applied to the simulation is illustrated in
Fig. 6.

In order to illustrate the impact of design parameters on the
control performance, we reset α = 0.4, β = 0.45, and keep
the other parameters as in previous setup. Solving the Riccati
equation (3), we obtain another control gain as

K = [0.3202 0.3522 0.2446 0.7981 0.6325].

One also can obtain other parameters according to the
design procedure demonstrated by Remark 6.

As mentioned in the context, this adjustment can increase
the convergence rate of x(t) and e(t). The triggering number
can be decreased as well. The simulation results are provided
in Figs. 7–9.

(a)

(b)

Fig. 7. Closed-loop state response in the presence of DoS attacks. (a) State
response with ω(t) = 0. (b) State response with ω(t) 	= 0.

(a)

(b)

Fig. 8. Trajectories of estimate error e(t). (a) Trajectories of e(t) with ω(t) =
0. (b) Trajectories of e(t) with ω(t) 	= 0.

VI. CONCLUSION

This article investigates the LFC problem for a class
of power systems with unreliable measurement channel. A
model-based controller is designed by equipping a state
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(a)

(b)

Fig. 9. Triggering instants for the power system. (a) Triggering instants for
the power system with ω(t) = 0. (b) Triggering instants for the power system
with ω(t) 	= 0.

estimator for the power system. Then a hybrid dynamic ETM
is proposed, which regularizes a strictly positive triggering
interval by a timer variable and thus exclude the Zeno behav-
ior. In the presence of DoS attacks, a novel hybrid system
model is established to describe the closed-loop power system
with flow dynamics and jump dynamics. Based on a hybrid
system approach, a sufficient stability condition is proposed for
the LFC of power system, which explicitly illustrate the allow-
able DoS-range that the power system can tolerant. Besides,
the allowable range is maximized using the resetting prop-
erty of estimated states. Finally, an illustrative example is
given to verify the proposed results. Future work may concern
decentralized LFC for multiarea power systems.
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