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Efficient algorithm for approximating Nash

equilibrium of distributed aggregative games
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Abstract—In this paper, we aim to design a distributed approx-
imate algorithm for seeking Nash equilibria of an aggregative
game. Due to the local set constraints of each player, projection-
based algorithms have been widely employed for solving such
problems actually. Since it may be quite hard to get the exact
projection in practice, we utilize inscribed polyhedrons to approx-
imate local set constraints, which yields a related approximate
game model. We first prove that the Nash equilibrium of the
approximate game is the ǫ-Nash equilibrium of the original
game, and then propose a distributed algorithm to seek the ǫ-
Nash equilibrium, where the projection is then of a standard
form in quadratic programming. With the help of the existing
developed methods for solving quadratic programming, we show
the convergence of the proposed algorithm, and also discuss the
computational cost issue related to the approximation. Further-
more, based on the exponential convergence of the algorithm, we
estimate the approximation accuracy related to ǫ. Additionally,
we investigate the computational cost saved by approximation on
numerical examples.

Index Terms—ǫ-Nash equilibrium; Approximation; Distributed
algorithm; Aggregative game.

I. INTRODUCTION

Seeking Nash equilibria (NE) in non-cooperative games has

been widely investigated in social sciences and engineering.

As one of the important non-cooperative games, the aggrega-

tive game has drawn much growing interest in many fields,

such as demand response management [1] and multi-product

enterprise oligopoly [2]. Particularly, because of complex

topologies, or communication burdens, or privacy issues in

large-scale networks, it is of great practical significance to seek

NE in a distributed manner, where players achieve the NE with

local data and communications through networks [3]–[6].

Since players’ actions are usually constrained by local sets,

projection-based distributed algorithms for NE or general-

ized Nash equilibria (GNE) seeking have been developed.

For aggregative games, [7] studied projected distributed syn-

chronous and asynchronous algorithms for NE computation

over a network, while [8] investigated a projection-based
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distributed asymmetric algorithm for GNE seeking with affine

coupling constraints. Then [9] designed a projected distributed

continuous-time algorithm for non-smooth tracking dynamics

with coupled constraints. Moreover, [10] proposed a pro-

jected distributed algorithm for NE seeking based on iterative

Tikhonov regularization methods, while [11] discussed another

projection-based algorithm on a time-varying communication

network for seeking GNE with partial-decision information.

Various methods are usually adopted for projection oper-

ation, such as the sequential quadratic program (SQP) [12],

the interior point method (IPM) [13], and the augmented

Lagrangian method (ALM) [14]. However, the computational

complexity may be exceptionally high for high-dimensional

constraint sets, and the computational error may increase

with the expansion of data and model scales. On the other

hand, hyperplane approximation was widely employed in var-

ious practical situations such as multi-objective optimization

problems [15], object tracking in video images [16], and

feature categorization of machine learning [17]. With this

inspiring idea, the players’ feasible sets are approximated

by constructing inscribed polyhedrons, which are thereby

enclosed by a series of hyperplanes. Therefore, it is easier

to obtain the projection on the hyperplanes than that on

the boundaries of convex sets, because a general projection

operation is converted into a standard quadratic program, and

many developed methods for quadratic programming can be

effectively adopted. Although the computational complexity

can be reduced effectively in this way, the approximate process

inevitably brings the loss of accuracy, related to the discussion

of ǫ-NE. However, considering the applications in distributed

computing with large-scale models, it makes sense to sacrifice

a little accuracy for time saving and complexity reduction.

The motivation of this paper is to explore efficient NE

seeking of a distributed aggregative game, where we promote

to use inscribed polyhedrons to approximate players’ feasible

sets.

The main contributions of this paper are listed in the

following.

• We consider a distributed approximate NE seeking algo-

rithm for aggregative games. Different from those in [6],

[10], [11], we approximate players’ local feasible sets

with inscribed polyhedrons, which converts the general

projection operation into a standard quadratic program.

With the approximation, we study the seeking of an ǫ-
NE of the original game.

• We discuss the approximation procedure and analyze the

approximation. To be specific, we provide an approxi-

mate method for constructing inscribed polyhedrons and
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discuss the computational cost saved by approximation.

Then we prove that the NE of the approximate game is

the ǫ-NE of the original game and analyze the factors

influencing the accuracy of ǫ.
• We show that the proposed algorithm converges to the

ǫ-NE with an exponential rate, and then give an upper

bound of the value ǫ. Moreover, we discuss relationships

between the computational cost and approximation from

different viewpoints.

The remainder is organized as follows: Section II provides

notations and preliminary knowledge as well as our problem

formulation, while Section III discusses the approximation of

players’ local feasible sets with inscribed polyhedrons, and

shows a relationship between the equilibria of the approximate

game and the original one. Then Section IV obtains the

convergence of a distributed approximate algorithm to seek

the NE with treating the projection as a standard quadratic

program and gives an upper bound of the value ǫ, and Section

V shows numerical examples for illustration of the proposed

algorithm. Finally, Section VI concludes the paper.

II. AGGREGATIVE GAME MODEL

In this section, we first give some basic notations and

preliminary knowledge, and then formulate our problem.

A. Notations and preliminaries

Denote R
n(or R

m×n) as the set of n-dimensional (or m-

by-n) real column vectors (or real matrices), and In as the

n × n identity matrix. Let 1n(or 0n) be the n-dimensional

column vector with all elements of 1 (or 0). Denote A ⊗
B as the Kronecker product of matrices A and B. Take

col(x1, · · · , xn)= (xT1 , · · · , x
T
n )

Tand ‖ · ‖ as the Euclidean

norm of vectors. Denote ∇f as the gradient of function f .

Denote Br(x) ⊆ R
n as a ball with the center at point x and

the radius r. Moreover, denote Ev(c) ⊆ R
n as an ellipsoid

that
n
∑

i=1

(xi − ci)
2

v2i
≤ 1,

with the center at point c , (c1, · · · , cn) and the semiaxis

v , (v1, · · · , vn).
A set K ⊆ R

n is convex if ωx1 + (1 − ω)x2 ∈ K for any

x1, x2 ∈ K and 0 ≤ ω ≤ 1. For a closed convex set K , the

projection map ΠK : Rn → K is defined as

ΠK(x) , argmin
y∈K

‖x− y‖.

The following basic property hold:

‖ΠK(x) −ΠK(y)‖ ≤ ‖x− y‖, ∀x, y ∈ R
n.

A function f : Rn → R is convex on K if

f(ωx1 + (1− ω)x2) ≤ ωf(x1) + (1− ω)f(x2),

for any x1, x2 ∈ K and 0 ≤ ω ≤ 1.

A mapping F : Rn → R
n is said to be κ-strongly monotone

on a set D if there exists a constant κ > 0 such that

(F (x) − F (y))T(x− y) ≥ κ‖x− y‖2, ∀x, y ∈ D.

Given a set D ⊆ R
n and a map F : D → R

n, the variational

inequality problem VI(D,F ) is defined to find a vector x∗ ∈
D such that

(y − x∗)
T
F (x∗) ≥ 0, ∀y ∈ D,

whose solution is denoted by SOL(D,F ).

The following lemma shows an equivalent relationship

between the solution of VI(D,F ) and the projection map, and

discusses the properties of the solution of VI(D,F ). Readers

can find more details in [18, Proposition 1.5.8, Corollary 2.2.5,

and Theorem 2.3.3].

Lemma 1 Consider VI(D,F ), where the set D ⊆ R
n is

convex and the map F : D → R
n is continuous. The following

statements hold:

(1) x ∈ SOL(D,F ) ⇔ x = ΠD(x− θF (x)), ∀θ > 0;

(2) if D is compact, then SOL(D,F ) is nonempty and com-

pact;

(3) if D is closed and F (x) is strongly monotone, then

VI(D,F ) has at most one solution.

Take X, Z ⊆ R
n as two non-empty sets. For y ∈ R

n, denote

dist(y, Z) as the distance between y and Z , i.e.,

dist(y, Z) = inf
z∈Z

‖y − z‖.

Define the Hausdorff metric of X,Z ⊆ R
n by

H(X,Z) = max{sup
x∈X

dist(x, Z), sup
z∈Z

dist(z,X)}.

The Hausdorff metric integrates all compact sets into a metric

space.

A directed graph is defined as G = (I, E) with the node set

I = {1, 2, · · · , N} and the edge set E . A = [aij ] ∈ R
n×n is

the adjacency matrix of G such that if (j, i) ∈ E , then aij > 0,

which means that j belongs to i’s neighbor set and i can

receive the message sent from agent j, and aij = 0 otherwise.

A graph is said to be strongly connected if there is a sequence

of intermediate vertices connected by edges for any pair of

vertices. A graph is weight-balanced if
∑N

j=1 aij =
∑N

j=1 aji
for every i ∈ I. The Laplacian matrix is L = ∆ − A, where

∆ = diag {d1, . . . , dN} ∈ R
N×N with di =

∑N
j=1 aij .

The following lemma is about the Laplacian matrix [19].

Lemma 2 Considering a directed graph G,

(1) G is weight-balanced if and only if L + LT is positive

semidefinite;

(2) G is strongly connected if and only if zero is a simple

eigenvalue of L.

B. Problem Formulation

Consider an N -player aggregative game, where the play-

ers are indexed by I = {1, · · · , N}. For each i ∈ I,

the ith player has an action variable xi in a local feasible

set Ωi ⊆ R
n. Denote Ω ,

∏N
i=1 Ωi ⊆ R

nN , x ,

col{x1, ..., xN} ∈ Ω as the action profile for all players, and

x−i , col{x1, ..., xi−1, xi+1, ..., xN} as the action profile for

all players except player i.
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The ith player has a payoff function Ji(xi,x−i) : R
nN →

R. Define an aggregative term as

Q(x) ,
1

N

N
∑

i=1

qi (xi) .

Here qi : R
n → R

M is a map for the local contribution to the

aggregation. Specifically, Ji (xi,x−i) = fi(xi,Q(x)) with the

function fi : R
n+M → R. Given x−i, the ith player intends

to solve

min
xi∈Ωi

Ji (xi,x−i) . (1)

Definition 1 (Nash equilibrium) A profile x∗ is said to be a

Nash equilibrium (NE) of game (1) if

Ji
(

x∗i ,x
∗
−i

)

≤ Ji
(

xi,x
∗
−i

)

, ∀i ∈ I, ∀xi ∈ Ωi.

In reality with various uncertainties, NE may not exist or

be easily calculated. Therefore, we introduce the following

definition.

Definition 2 (ǫ-Nash equilibrium) A profile x∗ is said to be

an ǫ-Nash equilibrium of game (1) if

Ji
(

x∗i ,x
∗
−i

)

≤ Ji
(

xi,x
∗
−i

)

+ ǫ, ∀i ∈ I, ∀xi ∈ Ωi, (2)

where the constant ǫ > 0. Particularly, x∗ is said to be a NE

when ǫ = 0.

The local payoff functions Ji, set constraints Ωi, and

decision variables xi are the private information. Moreover,

the aggregative term Q(x) contains all the players’ decisions,

which cannot be observed by each player directly. Thus,

player i generates an estimate ζi of this aggregative term and

exchange this information with its local neighbors through a

network G.

For clarification, we denote the pseudo-gradient by

F (x) , col {∇x1
J1 (·,x−1) , . . . ,∇xN

JN (·,x−N )} .

Define the map Ui : R
n × R

M → R as

Ui (xi, ζi) , ∇xi
Ji (·,x−i)

∣

∣

∣

Q(x)=ζi
(3)

=

(

∇xi
fi(·,Q) +

1

N
∇Qfi (xi, ·)

T
∇qi

)
∣

∣

∣

∣

Q=ζi

.

Let

U(x, ζ) , col (U1 (x1, ζ1) , . . . , UN (xN , ζN )) .

Obviously, U (x,1N ⊗Q(x)) = F (x).

We give the following assumptions for game (1).

Assumption 1

• For i ∈ I, Ωi is compact and convex.

• For i ∈ I, the payoff function Ji(·) is Lipschitz con-

tinuous in x, while Ji(·,x−i) and the map qi(xi) are

continuously differentiable in xi. Moreover, the pseudo-

gradient F (x) is κ-strongly monotone on the set Ω.

• The map U(x, ζ) is c1-Lipschitz continuous in x ∈ Ω

and c2-Lipschitz continuous in ζ for some constants c1,

c2 > 0. Besides, for i ∈ I, qi is c3-Lipschitz continuous

on Ωi for a constant c3 > 0.

• The communication network G is strongly connected and

weight-balanced.

The assumptions of convexity and differentiability about

payoff functions are quite common and have been widely

used in the literature. Besides, the strong monotonicity of the

pseudo-gradient map F has been widely adopted to guarantee

the uniqueness of NE [20]–[22]. Additionally, the assump-

tion about the Lipschitz continuity of U(x, ζ) and qi is the

same as that given in [23]. Moreover, the strongly connected

and weight-balanced digraph is a generalization of connected

undirected graphs in [24], [25], and is also employed in some

other distributed algorithms [26], [27].

The following lemma reveals the relationship of a NE x∗

and a solution to VI(Ω, F (x)), referring to [18, Proposition

1.4.2] and Lemma 1.

Lemma 3 Under Assumption 1, a profile x∗ is a NE if and

only if

x∗ ∈ SOL(Ω, F (x)).

Moreover, the game (1) admits a unique Nash equilibrium x∗.

Therefore, the main task of this paper is to design a

distributed algorithm for seeking a NE of the aggregative

game (1). Due to players’ local feasible sets, projection-based

methods have been widely used to solve related problems in

the literature, e.g. [6], [10], [11]. Sometimes, it is not so easy to

obtain the exact projection points in practice. In the following

sections, we provide a scheme to reduce the complexity with

an approximate solution.

III. PROBLEM APPROXIMATION

As we know, it is always easier to obtain the projection

points on the hyperplanes than on the boundaries of general

set constraints. Therefore, in this section, we use inscribed

polyhedrons to approximate the players’ local feasible sets.

An inscribed polyhedron of a closed convex set is defined

as a polyhedron with all its vertices on the boundary of the

convex set. These vertices construct a series of hyperplanes

naturally, which enclose an inscribed polyhedron. Denote

Ds =
∏N

i=1 D
i
si , where Di

si is an inscribed polyhedron of

Ωi with si vertices, expressed as

Di
si =

{

xi ∈ R
n : Bixi ≤ bi

}

. (4)

Here Bi ∈ R
pi×n represent normal vectors of the hyperplanes

enclosing Di
si with normalized rows, bi ∈ R

pi are the

distances from the hyperplanes to the origin point, and pi is

the number of hyperplanes for i ∈ I.

The approximation of convex sets by inscribed polyhedrons

has been studied in different problems [28], [29], which

can be explicitly expressed by linear inequalities. Here our

approximation of inscribed polyhedrons concentrates on play-

ers’ local feasible sets, different from the approximate view

angles [30], and the approximation for system parameters [31].

In fact, the approximate process with inscribed polyhedrons

makes projection on a polyhedron easier than directly on a
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general set, because the projection of point x0 on a hyperplane

D =
{

x|BT
0 x = b0

}

can be written explicitly as ΠD(x0) =
x0+(b0−B

T
0 x0)B0/‖B0‖

2, which can save the corresponding

computational cost.

Thereby, with the help of inscribed polyhedrons, we con-

sider a related approximate game,

min
xi∈Di

si

Ji (xi,x−i) . (5)

Before revealing the relationship between the approximate

game (5) and the original game (1), we first discuss how

the Hausdorff distance between two different inscribed poly-

hedrons influences the relationship of the normal vectors of

their hyperplanes. Denote D1
s1 as an inscribed polyhedron of

a convex and compact set Ω ⊆ R
n with W1 as the set of

vertices on the boundary of Ω, i.e.,

D1
s1 =

{

x ∈ R
n : B1x ≤ b1

}

. (6)

Similarly, denote D2
s2 as another inscribed polyhedron with

W2 as the set of vertices on the boundary of Ω, where W2 =
W1 ∪ {w0} with w0 as an additional vertex, i.e.,

D2
s2 =

{

x ∈ R
n : B2x ≤ b2

}

. (7)

Suppose that there are p1 rows of B1 and b1, p2 rows of B2

and b2, the first p1 − 1 rows of B1 are the same as the first

p1−1 rows of B2. As a result, the two matrices can be written

by row as

B1 =











B1

...

Bp1−1

B1
p1











, B2 =





















B1

...

Bp1−1

B2
p1

...

B2
p2





















. (8)

Lemma 4 For B2
i as any row of matrix B2, there exists a

corresponding row B1
j(i) of matrix B1 such that

∥

∥

∥
B2

i −B1
j(i)

∥

∥

∥
→ 0, as H(D1

s1 ,D
2
s2) → 0.

The proof of Lemma 4 can be found in Appendix A. In

addition, the following lemma describes the Hausdorff metric

between a convex set and its inscribed polyhedron, referring

to [32].

Lemma 5 For a convex set Ω ⊆ R
n, there exists an inscribed

polyhedron Ds of Ω such that the upper bound of the Haus-

dorff metric between Ω and Ds satisfies

H(Ds,Ω) ≤
CΩ

s2/(n−1)
,

where CΩ is a constant related with the curvature of Ω and s
is the number of vertices in Ds.

Based on Lemmas 4 and 5, it is time to reveal the relation-

ship between the approximate game (5) and the original game

(1). Note that the Nash equilibrium x∗ of game (5) is the

unique solution to VI(Ds, F (x)) by Lemma 3. If the payoff

function Ji is fixed, then different polyhedron approximations

result in different variational inequality solutions. Thereby, we

write x∗ = x∗(Ds) for game (5). Moreover, denote the unique

Nash equilibrium by x∗(Ω) for game (1). Then we have the

following result.

Theorem 1 Under Assumption 1, the NE of the approximate

game (5) is the ǫ-NE of the original game (1).

Proof. Take

Ds1 =

N
∏

i=1

Di
s1,i , Ds2 =

N
∏

i=1

Di
s2,i

as two arbitrarily inscribed polyhedrons of Ω. Denote

Ds1+N =
∏N

i=1 D
i
s1,i+1, where vertices in Di

s1,i+1 consist of

all nodes in Di
s1,i and one different vertex in Di

s2,i for i ∈ I.

Ds1+2N , Ds1+3N , · · · , Ds1+s2 are denoted in a similar way,

where Ds1+s2 =
∏N

i=1 D
i
s1,i+s2,i is the profile of polyhedrons

whose vertices consist of all the vertices in both Ds1 and Ds2 .

Without losing generality, consider s2,i ≤ s2,j . If s2,i < s2,j
and there is no additive point in Di

s2,i for Di
s1,i+s2,i , then we

keep Di
s1,i+s2,i unchanged and increase the vertices in Dj

s2,j
successively. Continue this process until Ds1+s2 is reached.

Ds2+N , Ds2+2N , · · · , Ds1+s2 can be defined similarly.

Note that the difference between ‖x∗ (Ds1) − x∗ (Ds2) ‖
can be decomposed into a series of similar structures such as

‖x∗(Ds1)−x∗(Ds1+N )‖, ‖x∗(Ds1+N )−x∗(Ds1+2N )‖, and

so on. Hence, we only need to investigate ‖x∗ (Ds1)
−x∗ (Ds1+N )‖.

Assume that H(Di
s1,i ,D

i
s2,i) ≤ η for i ∈ I and a positive

constant η. Due to the Hausdorff metric on convex and

compact sets, there holds

H(Di
s1,i ,D

i
s1,i+1) ≤ H(Di

s1,i ,D
i
s2,i) ≤ η.

By Lemma 4, when H(Di
s1,i ,D

i
s1,i+1) ≤ η, the lth row of

B1,i and B(1,i)+1 satisfy
∥

∥

∥
B1,i

l −B
(1,i)+1
j(l)

∥

∥

∥
→ 0, as η → 0.

Correspondingly,
∥

∥b1,i − b(1,i)+1
∥

∥ → 0 as η → 0. Then

Ds1 → Ds1+N as η → 0. Since SOL(Ds, F (x)) exists as an

isolated solution, by [18, Proposition 5.4.1],

SOL (Ds1 , F (x)) → SOL (Ds1+N , F (x)) , as η → 0.

Therefore, for any ǫ > 0, there exists η > 0 such that if

H(Di
s1,i ,D

i
s1,i+1) < η, then

‖x∗ (Ds1)− x∗ (Ds1+N )‖

= ‖SOL (Ds1 , F (x))− SOL (Ds1+N , F (x))‖

≤ǫ.

Similarly,

‖x∗ (Ds1)− x∗ (Ds2)‖

≤‖x∗ (Ds1)− x∗ (Ds1+N )‖

+ · · ·+ ‖x∗ (Ds1+s2−N)− x∗ (Ds1+s2)‖

+ ‖x∗ (Ds2)− x∗ (Ds2+N )‖

+ · · ·+ ‖x∗ (Ds1+s2−N)− x∗ (Ds1+s2)‖

≤sǫ,
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which means that x∗(Ds) is continuous in Ds under the

Hausdorff metric. Moreover, by lims→∞H (Ds1 ,Ω) = 0 in

Lemma 5, we have

lim
s→∞

x∗ (Ds) = x∗(Ω),

where x∗(Ω) is the Nash equilibrium of game (1).

Finally, we analyze the difference between Ji(x
∗(Ds)) and

Ji(x
′
i,x

∗
−i(Ds)), where the ith player’s equilibrium strategy

is x∗i (Ds) with respect to Ds and x′i is arbitrarily chosen from

Ωi, while other players’ strategies remain the same x∗
−i(Ds).

When H
(

Di
si ,Ωi

)

≤ η for i ∈ I,

Ji (x
∗ (Ds))− Ji

(

x′i,x
∗
−i (Ds)

)

≤
∥

∥Ji
(

x′i,x
∗
−i(Ω)

)

− Ji
(

x′i,x
∗
−i (Ds)

)
∥

∥

+ ‖Ji (x
∗ (Ds))− Ji (x

∗(Ω))‖

+ Ji (x
∗(Ω))− Ji

(

x′i,x
∗
−i(Ω)

)

.

≤ςi ‖x
∗ (Ds)− x∗(Ω)‖ + ςi

∥

∥x∗
−i(Ω)− x∗

−i (Ds)
∥

∥+ 0

≤2ςiǫ,

where ςi is the Lipschitz constant of Ji. This completes the

proof. �

Theorem 1, based on convex set geometry and metric

spaces, transforms the considered game into a variational prob-

lem. The accuracy of ǫ-NE is influenced by several factors,

specifically, the vertices number of the approximate inscribed

polyhedrons, the Lipschitz constants of payoff functions Ji(x)
for i ∈ I, and geometric structures of convex sets Ωi (referring

to the constant CΩ with Ω = Ωi in Lemma 5). Obviously,

when constructing polyhedrons with more vertices, we obtain

more hyperplanes enclosed the polyhedrons (more rows of

matrix Bi and vectors bi), which results in lower H
(

Di
si ,Ωi

)

(referring to Ds = Di
si and Ω = Ωi in Lemma 5) and higher

accuracy of ǫ. This conforms with the intuition.

Actually, there have been methods on how to construct a

proper inscribed polyhedron such that its vertices or faces are

approximate to the convex set in the best way. In other words,

the Hausdorff metric between the convex set and the inscribed

polyhedron can satisfy Lemma 5. Briefly, we introduce some

methods for constructing an approximation polyhedron.

When the vertices or faces are constructed successively, we

can design iterative algorithms to find the best inscribed poly-

hedron. The main idea of iterative algorithms is to construct

a polyhedron Dk+1 = conv
(

Dk ∪ {wk+1}
)

every iteration,

where wk+1 is a point from ∂Ω (i.e., the boundary of Ω).

One of the methods of constructing point wk+1 is described

as follows. For u ∈ R
n, denote gΩ(u) = max{〈u, x〉 : x ∈ Ω}

as the support function of Ω on the unit sphere of directions

Sn−1 = {u ∈ R
n : ‖u‖ = 1}. The additional point wk+1 ∈

∂Ω belongs to the support plane parallel to the hyperplane

in Dk , for which the quantity gΩ(u) − gDk(u) attains its

maximum on the set of external normals u ∈ Sn−1 to the

hyperplanes of Dk [32]. Meanwhile, the initial polyhedron

could be constructed by the method [33].

Additionally, the efficiency of the algorithm in the class

of ellipsoids was described in [34]. For sets with twice

differentiable boundaries and positive curvatures, the improved

approximation algorithms were proposed in [32], [34]. For

sets with nonsmooth boundaries, the convergence velocity of

algorithms was obtained in [35].

Since the set constraint of each player is private information

to itself, different players can approximate their feasible sets

through different construction methods separately, in advance

and offline. Therefore, the computational cost and complexity

of constructing vertices or faces of inscribed polyhedrons

do not affect the computational efficiency of the distributed

algorithm essentially.

IV. DISTRIBUTED ALGORITHM

In this section, we propose a distributed algorithm for

the approximate game (5) and investigate its convergence

performance.

In fact, each player has its own choices for approximation,

with local objective function Ji(xi,x−i), local approximate

set constraints Di
si , B

i, and bi is private knowledge of player

i. In multi-agent frameworks, it is considered that player i can

communicate with its neighbors through a network. Then we

propose Algorithm 1 for seeking the ǫ-NE.

Let β1, β2 > 0 be some constants satisfying

0 < β1 <
2κ

c2
, (9a)

β2 >
2c2 · c3(2 + β1 · κ+ 2β1 · c)

λ (2κ− β1 · c2)
, (9b)

where c , c1+c2 ·c3, and λ is the smallest positive eigenvalue

of 1
2 (L+LT) (L is the Laplacian matrix). Actually, the infor-

mation of the eigenvalue λ can be obtained by a distributed

method given in [36] in advance. Thus, under Assumption

1, the value of λ, the strongly monotone parameter κ, and

Lipschitz constants guarantee that the appropriate values of

β1 and β2 can always be obtained.

Since the ith player’s local feasible set Ωi is approximated

by inscribed polyhedron Di
si offline, the algorithm contains

a subproblem for solving a standard quadratic programming

problem QP(xi, ζi) at each step [37], defined as

min
y

‖(xi − β1Ui (xi, ζi))− y‖
2
, s.t. Biy ≤ bi, (10)

where Ui was defined in (3), Biy ≤ bi is equivalent to y ∈
Di

si in (4). Denote SOL-QP(xi, ζi) as the solution to the QP

problem (10). Thus, the distributed approximate algorithm to

solve game (5) is designed as follows.

Algorithm 1 for each i ∈ I

Initialization:

xi(0), yi(0) ∈ Di
si , φi(0) = 0M , ζi(0) = qi(xi(0)).

Dynamics renewal:

ẋi = yi − xi,

φ̇i = β2

N
∑

j=1

aij (ζj − ζi) ,

ζi = φi + qi (xi) ,

yi = SOL-QP(xi, ζi),

where aij is the (i, j)th element of the adjacency matrix.
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In Algorithm 1, the ith player calculates the local decision

variable xi ∈ Di
si based on projected gradient play dynamics

by solving a QP(xi, ζi) problem at each step. The local vari-

able ζi is to estimate the global aggregation Q(x). The design

idea is improved based on [1], [23], in which the projection

in our algorithm is obtained with quadratic programming, thus

improving the computational efficiency.

Remark 1 Quadratic programming in Algorithm 1 ensures

that the projection is solvable in polynomial time, even with

a large number of linear inequality constraints, while the

general nonlinear programming corresponding to the high-

dimensional nonlinear constraints cannot guarantee this [38].

For example, the computational cost of the projection on

ellipsoid constraints is O(n4) [39], whereas it is O(n2.5) on

linear constraints caused by approximation [40], especially

O(n) if linear constraints are generalized bounded constraints

[41]. More details about the computational cost saved by

approximation are explained by numerical experiments in

Section V.

A compact form of Algorithm 1 can be written as
{

ẋ = y − x, x(0) ∈ Ds,

ζ̇ = −β2L⊗ IMζ + d
dtq(x), ζ(0) = q(x(0)),

(11)

where ζ = col(ζ1,· · ·, ζN ), q(x) = col(q1(x1),· · ·, qN (xN )),
y = col(y1, · · · , yN ) with yi = SOL-QP(xi, ζi) basically.

Then we first verify the equivalency between the equilibrium

of dynamics (11) and the Nash equilibrium x∗ (Ds) of (5),

whose proof is straightforward by Lemma 1 and Lemma 2.

Lemma 6 Under Assumption 1, the equilibrium of (11) is
[

x

ζ

]

=

[

x∗ (Ds)
ζ∗ (Ds)

]

=

[

x∗ (Ds)
1N ⊗Q (x∗ (Ds))

]

, (12)

where x∗ (Ds) is the NE of approximate game (5).

From Lemma 2, the strong connectivity and weight balance

of graph G guarantee ζ1 = ζ2 = · · · = ζN , and 1
N

∑N
i=1 ζi =

Q(x). Together with Lemma 1, the point given in (12) is the

equilibrium of (11). Moreover, by Lemma 6, the convergence

of Algorithm 1 is discussed in the following lemma, by easily

extending [23, Theorem 2].

Lemma 7 Under Assumption 1, the algorithm (11) converges

at an exponential rate. Moreover, x in (11) exponentially

converges to the NE of (5).

Furthermore, from Lemma 6, take

σ , ζ − 1N ⊗Q(x).

The distributed algorithm (11) of the approximate game (5)

can be written via a general distributed projected gradient

dynamics, by L1N = 0N and (11), as follows:

ẋ = ΠDs
(x− β1U(x,1N ⊗Q(x) + σ))− x, (13a)

σ̇ = −β2L⊗ IMσ +
d

dt
(q(x)− 1N ⊗Q(x)) (13b)

= −β2L⊗ IMσ + (∇q(x)− 1N ⊗∇Q(x))T ·

(ΠDs
(x− β1U (x,1N ⊗Q(x) + σ))− x) ,

where x(0) ∈ Ds and σ(0) = q(x(0))− 1N ⊗Q(x(0)).

Analogously, the distributed algorithm for original game (1)

(without any approximation) can be written as

ẋ = ΠΩ(x− β1U(x,1N ⊗Q(x) + σ))− x,

σ̇ = −β2L⊗ IMσ + (∇q(x)− 1N ⊗∇Q(x))
T
·

(ΠΩ (x− β1U (x,1N ⊗Q(x) + σ))− x) ,

(14)

where x(0) ∈ Ω and σ(0) = q(x(0))− 1N ⊗Q(x(0)).

For clarification, let m , −β2L ⊗ IMσ, ρ , ∇q(x) −
1N ⊗ ∇Q(x) in (13) and (14). Denote z = col {x,σ} ∈
R

nN+MN . Then a compact form of (14) can be written as

ż = GΩ(z), (15)

where

GΩ(z)=

[

ΠΩ(x− β1U(x,1N ⊗Q(x) + σ))−x

m+ρT(ΠΩ(x−β1U(x,1N⊗Q(x)+σ))−x)

]

.

In essence, from Lemma 7, the conclusion of exponential

convergence is also applicable to (15). According to this prop-

erty, it follows from the converse theorem for exponentially

stable systems [42, Theorem 4.14] that there exists a Lyapunov

function VΩ(z) of (15) satisfying the following inequalities,

a1‖z − z∗(Ω)‖2 ≤ VΩ(z) ≤ a2‖z − z∗(Ω)‖2,

V̇Ω ≤ −a3‖z − z∗(Ω)‖2,
∥

∥

∂VΩ

∂z

∥

∥ ≤ a4‖z − z∗(Ω)‖,

(16)

where a1, a2, a3, and a4 are positive constants, and z∗(Ω) =
col {x∗(Ω),σ∗ (Ω)} is the exponentially stable equilibrium

point of system (15).

Moreover, (13) can be rewritten as

ż = GDs
(z), (17)

with

GDs
(z)=

[

ΠDs
(x− β1U(x,1N ⊗Q(x) + σ))−x

m+ρT(ΠDs
(x−β1U(x,1N⊗Q(x)+σ))−x)

]

,

which can be regarded as a perturbed system of (15). Denote

e(z) , GDs
(z)−GΩ(z).

Consequently, system (17) can be rewritten as

ż = GΩ(z) + e(z), (18)

with the perturbation term as

e(z)=

[

ΠDs
(x− β1U(x, ζ))−ΠΩ(x− β1U(x, ζ))

ρT(ΠDs
(x− β1U(x, ζ))−ΠΩ (x− β1U(x, ζ)))

]

.

Then we investigate the upper bound of ǫ. Note that e(z)
reflects the difference in projected dynamics on inscribed

polyhedrons Ds and original action sets Ω, respectively. It is

essentially caused by the approximation of game (1). Consider

an arbitrary approximate construction based on Hausdorff

distances H = col(h1, · · · , hN ), where hi = H(Ωi,D
i
si)

represents the Hausdorff distance between the original set Ωi

and its inscribed polyhedron Di
si for i ∈ I. Then the following

lemma shows an upper bound of ‖e(z)‖, whose proof is given

in Appendix B.

Lemma 8 Under Assumption 1, given the Hausdorff distances
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H , we have

‖e(z)‖ ≤ δ(H) (19)

= (1 + c3)

√

√

√

√

N
∑

i=1

(

2

νi
arccos(1− νihi) + hi

)2

,

where c3 is the Lipschitz constant of qi, and νi is a constructive

curvature related merely to the structure of Ωi for i ∈ I.

From Lemma 8, since νi is independent of any approx-

imation of Ωi, the bound of e(z) is explicitly affected by

Hausdorff distances H . Clearly, a lower metric yields a lower

bounds of e(z). Furthermore, the next lemma investigates the

influence of e(z) on perturbed system (18), whose proof is

shown in Appendix C.

Lemma 9 Let VΩ(z) be a Lyapunov function satisfying (16)

in Ξ = {z ∈ Ω×R
MN |‖z−z∗(Ω)‖ < r}, which is a compact

set. Suppose

‖e(z)‖ ≤ δ(H) <
a3
a4

√

a1
a2
µr, (20)

for all z ∈ Ξ and a positive constant µ < 1. Then, for

all ‖z(t0) − z∗(Ω)‖ ≤
√

a1/a2r, the solution z(t) of the

perturbed system (18) satisfies

‖z(t)− z∗(Ω)‖ ≤

√

a2
a1
e−ω(t−t0) ‖z(t0)− z∗(Ω)‖ , (21)

for t0 ≤ t < t0 + T , and

‖z(t)− z∗(Ω)‖ ≤ R, (22)

for t ≥ t0 + T , where T is a finite positive scalar,

ω =
(1− µ)a3

2a2
, R =

a4
µa3

√

a2
a1
δ(H).

Lemma 9 explains that if e(z) is small enough, then

‖z(t)− z∗(Ω)‖ of (18) is ultimately bounded by a small

bound, where z∗(Ω) = col {x∗(Ω),σ∗(Ω)} is the ex-

ponentially stable equilibrium of the nominal system (15).

Moreover, since a1, a2, a3, a4 and µ are constants, the

global exponential convergence of (15) guarantees that for

any δ(H) and ‖z(t0) − z∗(Ω)‖, we can choose r large

enough to satisfy (20) and the initial condition. Therefore,

by the exponential convergence of (15), we can analyze

the accuracy of ǫ based on continuous-time dynamics and

bounded stability of perturbed systems. Obviously, from (22),

‖z∗(Ds)− z∗(Ω)‖ and ‖x∗(Ds)− x∗(Ω)‖ are bounded,

where z∗ (Ds) = col {x∗(Ds),σ
∗(Ds)} is the equilibrium

of (18). Recalling the definition of ǫ-NE, this upper bound

of ‖x∗(Ds)− x∗(Ω)‖ can be regarded as a discrepancy

proportional to the upper bound of ǫ.

Together with Lemma 8 and Lemma 9, the conclusion about

the approximation accuracy is shown in the following theorem.

Theorem 2 Under Assumption 1,

ǫ ≤
2a4
a3

√

a2
a1

ςi
µ
δ(H), (23)

where the constant µ ∈ (0, 1), a1, a2, a3, and a4 are positive

constants in (16), ςi is the Lipschitz constant of Ji, and δ(H)
is defined in (19).

Proof. Similar to the last part in the proof of Theorem

1, recalling the definition of ǫ-NE, the difference between

Ji(x
∗(Ds)) and Ji(x

′
i,x

∗
−i(Ds)) satisfies

Ji (x
∗ (Ds))− Ji

(

x′i,x
∗
−i (Ds)

)

≤
∥

∥Ji
(

x′i,x
∗
−i(Ω)

)

− Ji
(

x′i,x
∗
−i (Ds)

)
∥

∥

+ ‖Ji (x
∗ (Ds))− Ji (x

∗(Ω))‖

+ Ji (x
∗(Ω))− Ji

(

x′i,x
∗
−i(Ω)

)

≤ςi ‖x
∗ (Ds)− x∗(Ω)‖+ ςi

∥

∥x∗
−i(Ω)− x∗

−i (Ds)
∥

∥ ,

where the ith player’s equilibrium strategy is x∗i (Ds) with

respect to Ds and x′i is arbitrarily chosen from Ωi. Meanwhile,

other players’ strategies remain the same x∗
−i(Ds).

Due to Lemma 9, with z∗ (Ds) = col {x∗(Ds),σ
∗(Ds)}

as the equilibrium of (18), it follows from (22) that

‖z∗ (Ds)− z∗(Ω)‖ ≤ R. Then

‖x∗ (Ds)− x∗(Ω)‖ ≤ R.

As a result,

ςi ‖x
∗ (Ds)− x∗(Ω)‖ + ςi

∥

∥x∗
−i(Ω)− x∗

−i (Ds)
∥

∥

≤
2a4
a3

√

a2
a1

ςi
µ
δ(H),

which completes the proof. �

Remark 2 From (23), the upper bound of ǫ is proportional

to the bound of e(z), which indicates that arbitrarily small

perturbations will not cause a significant deviation. Moreover,

it can be regarded as the robustness of the nominal system with

an exponentially stable equilibrium. Thus, with the help of the

analysis in Section III, we show the accuracy of ǫ based on

bounded stability of perturbed systems, and give an estimation

of the upper bound.

V. NUMERICAL EXPERIMENTS

We examine the computational efficiency and approxima-

tion accuracy of Algorithm 1 on Nash-Cournot games and

demand response management models in the following two

subsections.

A. For approximation accuracy

To illustrate the convergence and approximation, we con-

sider a classical Cournot game played by N = 4 competitive

players over a network as in [7] and [23]. For i ∈ I =
{1, · · · , N}, the action set Ωi is an elliptical region that

Ωi = E4,3(0, 0) =

{

xi ∈ R
2 :

x2i1
42

+
x2i2
32

≤ 1

}

.

The payoff function fi (xi,Q(x)) is

fi (xi,Q(x)) = xTi (di(xi)− p(Q(x))), (24)

where di(xi) = 0.5(xi+(13−i)12) and p = N12−0.01Q(x)
with Q(x) = 1

N

∑N
j=1 xj .
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Fig. 1. Trajectories of all players’ strategies.
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Fig. 2. Trajectories of approximation by different inscribed polyhedrons.

Clearly, the game model satisfies Assumption 1 with con-

stants κ = 1, c1 = 1.0025, c2 = 0.01, and c3 = 1. We adopt

the following ring graph as the network G,

1 → 2 → 3 → 4 → 1.

To render condition (9), assign β1 = 0.1 and β2 = 1. Also,

set tolerance ttol = 10−3 and the terminal criterions

‖ẋ(t)‖ ≤ ttol, ‖ζ̇(t)‖ ≤ ttol,

where ẋ(t) and ζ̇(t) were given in (11).

We present trajectories by approximating E4,3(0, 0) with

inscribed octagons. The trajectories of one dimension of each

strategy xi are shown in Fig. 1. The strategies of all players

converge to their corresponding equilibrium points with an

exponential rate, which verifies the correctness of our algo-

rithm. Fig. 2 shows different strategy trajectories of one fixed

player with inscribed triangles, rectangles, hexagons, octagons,

decagons, and dodecagons to approximate E4,3(0, 0), respec-

tively. The vertical axis represents the value of the convergent

ǫ-NE and the horizontal axis represents the iteration time of

Algorithm 1. As can be seen from Fig. 2, equilibria with

different polyhedrons get closer to the exact solution with more
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running time t
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Fig. 3. Strategy trajectories of player 1 with different algorithms.

accurate approximations.

Moreover, the numerical values of ǫ under different types

of approximation are listed in Table 1. Obviously, the value

of ǫ decreases with the increase of the edges of polyhedrons

and the decrease of Hausdorff distances, which is consistent

with the approximation results in the previous sections.

B. For computational efficiency

Here, we show the computational efficiency of Algorithm 1

on a class of demand response management problems under

various network scales and parameter settings.

Consider N electricity users with the demand of energy

consumption as in [1], [9]. For i ∈ I = {1, ..., N}, the

action set Ωi is the energy consumption of the ith user and

fi (xi,Q(x)) is the cost function in the following form,

fi (xi,Q(x)) = ιi(xi − πi)
T(xi − πi) + xTi P (Q(x)), (25)

where ιi is constant and πi is the nominal value of energy

consumption for i = {1, ..., N}, with P (Q(x)) = ωiNQ(x)+
p0 and

Q(x) =
1

N

N
∑

j=1

xj . (26)

Set N = 10, ιi = 0.05, ωi = 0.001, p0 = 13, and πi =
0.5(10− i)13 ∈ R

3. Then the action set Ωi of each player is

an elliptical region denoted by E7,6,5(0, 0, 0).
Take a ring graph as the communication network G,

1 → 2 → · · · → 10 → 1,

and assign β1 = 0.5 and β2 = 2 to meet the condition (9).

Besides, we set tolerance ttol = 10−3.

Here, we use numerical optimization to directly process

the projections on nonlinear constraints E7,6,5(0, 0, 0) for

comparison. Fig. 3 shows the different strategy trajectories of

one fixed player in dynamics (14) by Algorithm 1 (i.e., with

approximation), the algorithm based on sequential quadratic

program (Algorithm-SQP) and the algorithm based on the

interior point method (Algorithm-IPM) (i.e., without approx-

imation). Algorithm 1 makes projections on the inscribed
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TABLE I
PERFORMANCE OF DIFFERENT APPROXIMATIONS.

Polyhedrons Triangle Rectangle Hexagon Octagon Decagonal Dodecagonal

Values of ǫ 1.3470 0.8491 0.5187 0.2261 0.1069 0.0473

TABLE II
PERFORMANCE OF DIFFERENT ALGORITHMS ON ELLIPSOID CONSTRAINTS

Algorithm Iteration Time (sec)

Algorithm 1

s = 8 236 0.082

s = 12 248 0.085

s = 24 257 0.086

Algorithm-SQP 306 0.131

Algorithm-IPM 472 0.237

polyhedrons of E7,6,5(0, 0, 0) with the number of vertice

s = 12, while Algorithm-SQP and Algorithm-IPM make

projections on E7,6,5(0, 0, 0) directly. In Fig. 3, the vertical

axis represents the value of the convergent equilibria, and the

horizontal axis represents the real running time in seconds.

Clearly, Algorithm 1 converges faster, although it does not

converge to the exact equilibrium point. However, from the

error shown in Fig. 3, this sacrifice is tolerable.

Moreover, according to Remark 1, the complexity of Algo-

rithm 1 can be roughly characterized as O(Nn2.5), while is

O(Nn4) for Algorithm-SQP and Algorithm-IPM on ellipsoid

constraints. To further illustrate the computational cost saved

by approximation, we report the performance of the three

algorithms in Table II. Algorithm 1 is based on different poly-

hedrons for E7,6,5(0, 0, 0), where the number of vertices are

s = 8, 12, 24 separately. Table 1 lists the average running time

of solving the one-stage projection subproblem and the total

number of iterations for the computational complexity of these

algorithms. It shows that Algorithm 1 has fewer iterations and

faster velocity because obtaining a projection on the boundary

of linear constraints (to solve a standard quadratic program) is

faster than doing that for general constraint sets. Besides, the

increase of the number of vertices (i.e., linear constraints) has

no significant impact on the computational cost of Algorithm

1.

Note that the complexity is mainly affected by the dimen-

sion of decision variables and the number of players. For

further comparison, we consider Algorithm 1, Algorithm-SQP,

and Algorithm-IPM for ǫ-NE (NE) seeking under different net-

work configurations. The payoff functions and the aggregative

terms coincide with (25) and (26). Table III reflects the real

running time of these algorithms under different dimensions

of decision variables. Take n = 4, 10, 20, 50, 100. Here Ωi is

a high-dimensional ball Br(q) in the corresponding spaces.

On the other hand, Table IV reflects the real running time

of these algorithms under directed ring graphs, undirected

complete graphs, and Erdős-Rényi (ER) graphs with various

network sizes, respectively. Take I = 4, 20, 50, 100. Ωi is a

corresponding ellipsoid ball in the three-dimensional space.

Numerical results in both Table III and Table IV show that Al-

gorithm 1 achieves a faster convergence speed than Algorithm-

SQP and Algorithm-IPM. Moreover, with the expansion of the

network size and the range of set constraints, our algorithm

significantly reduces the computational cost.

VI. CONCLUSION

A distributed approximate algorithm has been proposed for

NE seeking of aggregative games, with the players’ actions

constrained by local constraint sets and a weight-balanced

network digraph. By employing inscribed polyhedrons to ap-

proximate players’ local feasible sets, the projection operation

has been transformed into a standard quadratic program. The

equilibrium point of the algorithm has been proved to be the

ǫ-NE of the original game, and the exponential convergence

of the algorithm has been guaranteed. Moreover, an upper

bound of the value of ǫ has been estimated by analyzing a

perturbed system. Finally, the computational efficiency and the

approximation accuracy of our algorithm have been illustrated

by numerical examples.

APPENDIX A

PROOF OF LEMMA 4

With D1
s1 and D2

s2 defined in (6) and (7) as two profiles of

inscribed polyhedrons of Ω, we assume that W0 consists of

the vertices constructing the hyperplanes together with w0 in

D2
s2 . Denote M0 as a hyperplane constructed by vertices in

W0 without loss of generality. Denote η = H(D1
s1 ,D

2
s2), and

v0 as the projection point of w0 on M0. Since D2
s2 is convex

and w0 is on the boundary of the convex set Ω,

η = dist(D1
s1 , w0) = inf

v∈M0

‖w0 − v‖ = ‖w0 − v0‖.

Denote k0 as the projection point of w0 on the relative

boundary of M0. Then

‖w0 − k0‖ = inf
k∈rbd(M0)

‖w0 − k‖ .

Because the normalized vectors B1
i (or B2

i ) represent the nor-

mal vectors of hyperplanes enclosing D1
s1 (or D2

s2 ), as defined

in (8), we only need to investigate the difference between B1
p1

and the last p2 − p1 + 1 rows of B2.

Note that the dimension of each hyperplane is n−1. By the

definition of the gap metric in [43] and [44], the angle between

two hyperplanes uniquely equals to that between their normal

vectors. Then there exists a derived angular metric ψ and a

corresponding scalar τi ∈ [0, π/2) for p1 ≤ i ≤ p2 such that

sin τi = ψ(B2
i , B

1
p1
) =

η

‖w0 − k0‖
.
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TABLE III
REAL RUNNING TIME (MIN) WITH DIFFERENT DIMENSIONS OF DECISION VARIABLES.

Dimensions n = 4 n = 10 n = 20 n = 50 n = 100

Algorithm 1 0.05 0.11 1.04 2.45 5.14

Algorithm-SQP 0.17 0.36 3.09 8.31 17.78

Algorithm-IPM 0.36 0.64 5.94 10.51 24.83

TABLE IV
REAL RUNNING TIME OF DIFFERENT ALGORITHMS OVER DIFFERENT TYPES OF GRAPHS AND VARIOUS NETWORK SIZES.

Players
Feasible set

constraints
Graph types

Real running time (min)

Algorithm 1 Algorithm-SQP Algorithm-IPM

N = 4 E5,4,3(0, 0, 0)

ER 0.03 0.10 0.18

ring 0.02 0.10 0.23

complete 0.03 0.09 0.14

N = 20 E9,8,7(0, 0, 0)

ER 0.17 0.51 1.06

ring 0.19 0.65 1.20

complete 0.17 0.51 0.92

N = 50 E14,13,12(0, 0, 0)

ER 0.86 1.47 2.35

ring 1.43 3.48 5.26

complete 1.35 3.45 6.07

N = 100 E23,22,21(0, 0, 0)

ER 3.26 8.20 15.58

ring 3.67 8.76 13.23

complete 3.76 14.69 24.30

On this basis, we investigate the plane containing the vectors
−−→v0w0 and

−−−→
k0w0. We can always construct a circular arc through

the point w0 on this plane, where it satisfies the following

conditions,

(a) its center falls on the vector containing the points w0 and

v0;

(b) all its ending points are on the hyperplane M0, and in the

interior of Ω;

(c) its diameter is larger than η.

Particularly, when such an arc is constructed, its curvature is

also determined and does not change with the decrease of

η in the sequel, since it is only dependent on the relative

location of point w0 on the boundary of Ωi. Denote this

curvature by γi, and one of the ending points of this arc

by r0. Similarly, by the gap metric in [43] and [44], denote

the angle between the vector −−→r0w0 and the hyperplane M0

by αi ∈ [0, π/2). Accordingly, with the angular metric ψ,

sinαi = ψ(−−→r0w0,M0), which eventually leads to

cosαi =
〈w0 − r0, v0 − r0〉

‖w0 − r0‖ · ‖v0 − r0‖
,

where v0, r0, and w0 are certain points in the high-dimensional

space. Furthermore,

tanαi =
η

√

(1/γi)
2 − (1/γi − η)2

=
1

√

2
ηγi

− 1
.

Since −−→v0r0 and
−−→
v0k0 are collinear vectors, with ‖v0 − r0‖ ≤

‖v0 − k0‖, there should be τi ≤ αi. Recalling αi ≤ tanαi,

we have

τi ≤ αi ≤
1

√

2
ηγi

− 1
. (27)

Additionally, for p1 ≤ i ≤ p2, there is Pi ∈ SO(n) such that

B2
i = B1

p1
Pi. From [45, Theorem 2.21],

Pi = I + τiVi + o(τi), Vi ∈ g(SO(n)),

where Vi is a constant matrix and g(·) represents its Lie

algebra. Since B1 and B2 are normalized rows,
∥

∥B2
i −B1

p1

∥

∥ =
∥

∥(Pi − I)B1
p1

∥

∥ = ‖τiVi + o(τi)‖ .

Note that lim
η→0

1
√

2

ηγi
−1

= 0. Together with (27), we have

∥

∥B2
i −B1

p1

∥

∥ = ‖τiVi + o(τi)‖ → 0, as η → 0.

Thus, the conclusion follows. �
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APPENDIX B

PROOF OF LEMMA 8

Note that e(z) is related to the difference caused by projec-

tion on the inscribed polyhedron Ds and the original action

set Ω. For i ∈ I, denote x1 and x2 as two projection points

on Ωi and Di
si , respectively, i.e.,

x1 = ΠΩi
(xi − β1Ui(xi, ζi)),

x2 = ΠDi
si
(xi − β1Ui(xi, ζi)).

Then

‖x1−x2‖=‖ΠΩi
(xi−β1Ui(xi, ζi))−ΠDi

si
(xi−β1Ui(xi, ζi))‖.

Recalling the definition of the inscribed polyhedron, x2 is

the point projected onto a hyperplane basically, where we can

construct a vector perpendicular to this hyperplane and passing

through x2. Denote the intersection point between this vector

and the boundary of Ωi by x3. Eventually, x1, x2, and x3 form

a triangle. Therefore,

‖x1 − x2‖ < ‖x1 − x3‖+ ‖x2 − x3‖.

Recall the definition of H , for the ith player,

hi = ‖x⋄ − y⋄‖

= max

{

sup
x∈Di

si

dist(x,Ωi), sup
y∈Ωi

dist(y,Di
si)

}

.

Accordingly, we investigate a plane containing the vector
−−→x⋄y⋄. We try to find a curvature related with Ωi and then

construct a piece of a circular arc with this curvature on this

plane. Similar to Lemma 4, the constructed arc needs to satisfy

(a) it passes through the point y⋄ and its center falls on the

vector containing the points of x⋄ and y⋄;

(b) its ending points are on the hyperplane perpendicular to

the vector −−→x⋄y⋄;

(c) its ending points are outside Ωi.

Since the found curvature is related with Ωi rather than any

approximation information, its value can be regarded as a

constant. It is obvious that there always exists such an arc.

Denote this curvature by νi, i.e., the circular radius by 1/νi,
the center point of the arc by c0, the angle corresponding to

the arc by θi, an ending point of the arc by d0, and the length

of the arc by li. Clearly, li = θi/νi. Then, recalling the gap

metric and the derived angular metric in [43] and [44], we

have

θi = 2 arccos
‖c0 − x⋄‖

‖d0 − c0‖
= 2 arccos(1− νihi).

Moreover, ‖x2−x3‖ can be bounded by the Hausdorff distance

hi and ‖x1 − x3‖ can be bounded by the length of arc li
intuitively. Consequently, the bound of the difference between

the projection dynamics on Di
si and Ωi of the ith player can

be expressed by

‖ΠΩi
(xi − β1Ui(xi, ζi))−ΠDi

si
(xi − β1Ui(xi, ζi))‖

≤ li + hi

=
2

νi
arccos(1− νihi) + hi.

The analysis of other players is similar to that of player i. To

sum up, ‖e(z)‖ can be bounded by δ(H), that is,

‖e(z)‖ ≤ (1 + ‖∇q(x)− 1N ⊗∇Q(x)‖)·

‖ΠDs
(x− β1U(x, ζ))−ΠΩ(x− β1U(x, ζ))‖

= (1 + c3)

√

√

√

√

N
∑

i=1

(

2

νi
arccos(1 − νihi) + hi

)2

, δ(H),

where c3 is a Lipschitz constant of qi for i ∈ I. This yields

the conclusion. �

APPENDIX C

PROOF OF LEMMA 9

Take VΩ(z) as a Lyapunov function of (15) that satisfies

(16). Then the derivative of VΩ(z) along the trajectories of

(18) satisfies

V̇Ω(z) ≤ −a3‖z − z∗‖2 +

∥

∥

∥

∥

∂VΩ
∂z

∥

∥

∥

∥

‖e(z)‖

≤ −a3‖z − z∗‖2 + a4δ‖z − z∗‖,

where δ = δ(H), z∗ = z∗(Ω). For a positive constant µ < 1
and ‖z − z∗‖ ≥ δa4/µa3, it satisfies

V̇Ω(z) ≤ −(1− µ)a3‖z − z∗‖2 − µa3‖z − z∗‖2

+ a4δ‖z − z∗‖

≤ −(1− µ)a3‖z − z∗‖2.

Denote K = δa4/µa3. Once VΩ ≥ a2K
2, ‖z − z∗‖≥K and

V̇Ω ≤ −(1− µ)a3/a2VΩ, which implies

VΩ(z) ≤ e−(1−µ)a3/a2(t−t0)VΩ(z(t0)).

Hence,

‖z(t)− z∗‖ ≤

(

VΩ(z)

a1

)1/2

≤

(

1

a1
e−(1−µ)a3/a2(t−t0)VΩ (z(t0))

)1/2

=

√

a2
a1
e−ω(t−t0) ‖z(t0)‖ ,

which holds over the interval [t0, t0 + T ) when VΩ ≥ a2K
2.

For t ≥ t0 + T , we have

‖z(t)− z∗‖ ≤

√

VΩ(z)

a1
≤

√

a2
a1
K = R.

This yields the conclusion. �
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