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Towards Interpretable-AI Policies Induction using
Evolutionary Nonlinear Decision Trees for Discrete

Action Systems
Yashesh Dhebar, Kalyanmoy Deb, Subramanya Nageshrao, Ling Zhu, and Dimitar Filev

Abstract—Black-box artificial intelligence (AI) induction meth-
ods such as deep reinforcement learning (DRL) are increasingly
being used to find optimal policies for a given control task.
Although policies represented using a black-box AI are capable
of efficiently executing the underlying control task and achieving
optimal closed-loop performance – controlling the agent from
initial time step until the successful termination of an episode,
the developed control rules are often complex and neither
interpretable nor explainable. In this paper, we use a recently
proposed nonlinear decision-tree (NLDT) approach to find a
hierarchical set of control rules in an attempt to maximize
the open-loop performance for approximating and explaining
the pre-trained black-box DRL (oracle) agent using the labelled
state-action dataset. Recent advances in nonlinear optimization
approaches using evolutionary computation facilitates finding
a hierarchical set of nonlinear control rules as a function of
state variables using a computationally fast bilevel optimization
procedure at each node of the proposed NLDT. Additionally,
we propose a re-optimization procedure for enhancing closed-
loop performance of an already derived NLDT. We evaluate
our proposed methodologies (open and closed-loop NLDTs) on
different control problems having multiple discrete actions. In all
these problems our proposed approach is able to find relatively
simple and interpretable rules involving one to four non-linear
terms per rule, while simultaneously achieving on par closed-
loop performance when compared to a trained black-box DRL
agent. A post-processing approach for simplifying the NLDT is
also suggested. The obtained results are inspiring as they suggest
the replacement of complicated black-box DRL policies involving
thousands of parameters (making them non-interpretable) with
relatively simple interpretable policies. Results are encouraging
and motivating to pursue further applications of proposed
approach in solving more complex control tasks.

Index Terms—Reinforcement Learning, Interpretable, Bilevel,
Nonlinear Decision Tree.

I. INTRODUCTION

Control system problems are increasingly being solved by
using modern reinforcement learning (RL) and other machine
learning (ML) methods to find an autonomous agent (or
controller) to provide an optimal action At for every state
variable combination St in a given environment at every time
step t. Execution of the output action At takes the object to the
next state St+1 in the environment and the process is repeated
until a termination criteria is met. The mapping between input
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state St and output action At is usually captured through an
artificial intelligence (AI) method. In the RL literature, this
mapping is referred to as policy (π(S) : S → A), where S is
the state space and A is the action space. Sufficient literature
exists in efficient training of these RL policies [1], [2], [3], [4],
[5], [6], [7]. While these methods are efficient at training the
AI policies for a given control system task, the developed AI
policies, captured through complicated networks, are complex
and non-interpretable.

Interpretability of AI policies is important to a human mind
due to several reasons: (i) they help provide a better insight and
knowledge to the working principles of the derived policies,
(ii) they can be easily deployed with a low fidelity hardware,
(iii) they may also allow an easier way to extend the control
policies for more complex versions of the problem. While
defining interpretability is a subjective matter, a number of
past efforts have attempted to find interpretable AI policies
with limited success [8], [9]. In this work, we aim at gener-
ating policies which are relatively interpretable and simple as
compared to the black-box AI counterparts such as DNN.

In the remainder of this paper, we first present the main
motivation behind finding interpretable policies in Section II.
A few past studies in arriving at interpretable AI policies is
presented in Section III. In Section IV, we review a recently
proposed nonlinear decision tree (NLDT) approach in the
context of arriving at relatively interpretable AI policies. The
overall open-loop and closed-loop NLDT policy generation
methods are described in Section V. Results on four control
system problems are presented in Section VI. Next, a new
benchmark problem is proposed to conduct a scale-up study
of our algorithm in Section VII. Finally, conclusions and future
studies are presented in Section VIII. Supplementary document
provides further details.

II. MOTIVATION FOR THE STUDY

Various data analysis tasks, such as classification, controller
design, regression, image processing, etc., are increasingly
being solved using artificial intelligence (AI) methods. These
are done, not because they are new and interesting, but
because they have been demonstrated to solve complex data
analysis tasks without much change in their usual frameworks.
With more such studies over the past few decades [9], they
are faced with a huge challenge. Achieving a high-accuracy
solution does not necessarily satisfy a curious domain expert,
particularly if the solution is not interpretable or explainable. A
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technique (whether AI-based or otherwise) to handle data well
is no more enough, researchers now demand an explanation
of why and how they work [10], [11].

Consider the MountainCar control system problem (see
Supplementary document for details), which has been exten-
sively studied using various AI methods [12], [13], [14]. The
problem has two state variables (position xt along x-axis and
velocity vt along positive x-axis) at every time instant t which
would describe the state of the car at t. Based on the state
vector St = (xt, vt), a policy π(S) must decide on one of
the three actions At: decelerate (At = 0) along positive x-
axis with a pre-defined value −a, do nothing (At = 1), or
accelerate (At = 2) with +a in positive x-axis direction.
The goal of the control policy π(S) is to take the under-
powered car (it does not have enough fuel to directly climb the
mountain and reach the destination) over the right hump in a
maximum of 200 time steps starting anywhere at the trough of
the landscape. Physical laws of motion are applied and a policy
π(S) has been trained to solve the problem. The RL produces a
black-box policy πoracle(S) for which an action At ∈ [0, 1, 2]
will be produced for a given input St = (xt, vt) ∈ R2.
Figure 1a shows the state-action combinations obtained from

(a) Using πoracle. (b) Using NLDT.

Fig. 1: State-action combinations for MountainCar prob.

92 independent successful trajectories (amounting to total of
10,000 time steps) leading to achieving the goal using a pre-
trained deterministic black-box policy πoracle. The x-location
of the car and its velocity can be obtained from a point on
the 2D plot. The color of the point St = (xt, vt) indicates
the action At suggested by the oracle policy πoracle (At = 0:
blue, At = 1: orange, and At = 2: green). If a user is now
interested in understanding how the policy πoracle chooses a
correct At for a given St, one way to achieve this would be
through an interpretable policy function πint(St) as follows:

πint(St) =

 0, if φ0(St) is true,
1, if φ1(St) is true,
2, if φ2(St) is true,

(1)

where φi(St) : R2 → {0, 1} is a Boolean function which
partitions the state space S into two sub-domains based on its
output value and for a given state St, exactly one of φi(St)
is true, thereby making the policy πint deterministic. If we
re-look at Figure 1a we notice that the three actions are quite
mixed at the bottom part of the x-v plot (state space). Thus, the
partitioning Boolean functions φi need to be quite complex in
order to have φ0(St) = true for all blue points, φ1(St) = true
for all orange points and φ2(St) = true for all green points.

What we address in this study is an attempt to find an
approximated policy function πint(St) which may not repli-
cate and explain all 100% time instance data corresponding
to the oracle black-box policy πoracle(St) (Figure 1a), but
it is fairly interpretable to explain close to 100% data. Con-
sider the state-action plot in Figure 1b, which is generated
with a relatively simple and relatively interpretable policy
πint(St) = {i|φi(St) is true, i = 1, 2, 3} obtained by our
proposed procedure as shown below:

φ0(St) = ¬ψ1(St),
φ1(St) = (ψ1(St) ∧ ¬ψ2(St)) ,
φ2(St) = (ψ1(St) ∧ ψ2(St)) ,

(2)

where ψ1(St) = |0.96−0.63/x̂t2+0.28/v̂t−0.22x̂tv̂t| ≤ 0.36,
and ψ2(St) = |1.39 − 0.28x̂t

2 − 0.30v̂t
2| ≤ 0.53 represent

black and orange boundaries, respectively. Here, x̂t and v̂t are
normalized state variables (see Supplementary document for
details). The action At predicted using the above policy does
not match the output of πoracle at some states (about 8.1%),
but from our experiments we observe that it is still able to
drive the mountain-car to the destination goal located on the
right hill in 99.8% episodes.

Importantly, the policies are relatively simpler than the
corresponding the black-box policy πoracle and amenable to
an easier understanding of the relationships between xt and vt
to make a near perfect control. Since the explanation process
used the data from πoracle as the universal truth, the derived
relationships will also provide an explanation of the working
of the black-box policy πoracle. A more gross approximation to
Figure 1a by more simplified relationships (φi) may reduce the
overall open-loop accuracy of matching the output of πoracle.
Hence, a balance between a good interpretability and a high
open-loop accuracy in searching for Boolean functions φi(St)
becomes an important matter for such an interpretable AI-
policy development study.

In this paper, we focus on developing a search procedure for
arriving at the ψ-functions (see Eq. 2) and their combinations
for different discrete action systems. The structure of the
policy πint(St) shown in Eq. 1 resembles a decision tree
(DT), but unlike a standard DT, it involves a nonlinear function
at every non-leaf node, requiring an efficient nonlinear opti-
mization method to arrive at reasonably succinct and accurate
functionals. The procedure we propose here is generic and is
independent of the AI method used to develop the black-box
policy πoracle.

III. RELATED PAST STUDIES

In [15], an interpretable orchestrator is developed to choose
from two RL-policies πC for maximizing reward and πR
for maximizing an ethical consideration. The orchestrator is
dependent on only one of the state-variables and despite it
being interpretable, the policies: πC and πR are still black-
box and convoluted. [16] constructs a set of interpretable index
based policies and uses multi-arm bandit procedure to select
a high performing index based policy. The search space of
interepretable policies is much smaller and the procedure sug-
gested for finding an interpretable policy is computationally
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heavy, taking about hours to several days of computational
time on simple control problems. In [17], genetic program-
ming (GP) is used to obtain interpretable policies on control
tasks involving continuous actions space through model-based
policy learning. However the interpretability was not captured
in the design of the fitness function and a large archive was
created passively to store every policy for each complexity
encountered during the evolutionary search. A linear decision
tree (DT) based model is used in [18] to approximate the Q-
values of trained neural network. In that work, the split in DT
occurs based on only one feature, and at each terminal node the
Q-function is fitted using a linear model on all features. [19]
uses a program sketch S to define the domain of interpretable
policies e. Interpretable policies are found using a trained
black-box oracle eN as a reference by first conducting a local
search in the sketch space S to mimic the behaviour of the
oracle eN and then fine-tuning the policy parameters through
online Bayesian optimization. The bias towards generating
interpretable programs is done through controlled initialization
and local search rather than explicitly capturing interpretability
as one of the fitness measure. Particle swarm optimization [20]
is used to generate interpretable fuzzy rule set in [21] and is
demonstrated on classic control problems involving continuous
actions. Works on DT [22] based policies through imitation
learning has been carried out in [23]. [24] extends this to
utilize Q-values and eventually render DT policies involving
< 1, 000 nodes on some toy games and CartPole environment
with an ultimate aim to have the induced policies verifiable.
[25] used axis-aligned DTs to develop interpretable models
for black-box classifiers and RL-policies. They first derive a
distribution function P by fitting the training data through
axis-aligned Gaussian distributions. P is then used to compute
the loss function for splitting the data in the DT. [26] attempts
to generate interpretable DTs from an ensemble using a genetic
algorithm. In [27], regression trees are derived using classical
methods such as CART [22] and Kd-tree [28] to model Q-
function through supervised training on batch of experiences
and comparative study is made with ensemble techniques. In
[29], a gradient based approach is developed to train the DT
of pre-fixed topology involving linear split rules. These rules
are later simplified to allow only one feature per split node
and resulting DTs are pruned to generate simplified rule-set.

While the above methods attempt to generate an inter-
pretable policy, the search process does not use complexity
of policy in the objective function, instead, they rely on the
initializing the search with certain interpretable policies. In
our approach described below, we build an efficient search
algorithm to directly find relatively interpretable policies as
compared to the black-box policies represented using DNN
(or tile encoding [12]) using recent advances in nonlinear
optimization.

IV. NONLINEAR DECISION TREE (NLDT) APPROACH

In this study, we use a direct mathematical rule generation
approach (presented in Eq. 2) using a nonlinear decision tree
(NLDT) approach [30], which we briefly describe here. The
intention is to model a relatively simple policy πint to ap-
proximate and explain the pre-trained black-box policy πoracle

using the labelled state-action data generated using πoracle.
Decision trees are considered a popular choice due to their
interpretability aspects. They are intuitive and each decision
can be easily interpreted. However, in a general scenario,
regular decision trees often have complicated topology since
the rules at each conditional node can assume only axis parallel
structure xi ≤ τ to make a split. On the other end, single
rule based classifiers like support vector machines (SVMs)
have just one rule which is complicated and highly nonlinear.
Keeping these two extremes in mind, we develop a nonlinear
decision tree framework where each conditional node can
assume a nonlinear functional form while the tree is allowed
to grow by recursively splitting the data in conditional nodes,
similar to the procedure used to induce regular decision trees.
In our case of replicating a policy πoracle, the conditional node
captures a nonlinear control logic and the terminal leaf nodes
indicate the action. This is schematically shown in Figure 2.

In the binary-split NLDT, used in this study, a conditional
node is allowed to have exactly two splits as shown in Figure 2.
The non-linear split rule f(x) at each conditional node is

Fig. 2: Schematic of a binary-split NLDT.

expressed as a weighted sum of power laws:

f(x) =

{∑p
i=1 wiBi + θ1, if m = 0,

|
∑p
i=1 wiBi + θ1| − |θ2|, if m = 1,

(3)

where power-laws Bi are given as Bi =
∏d
j=1 x

bij
j and m

indicates if an absolute operator should be present in the rule
or not. In Section V-A, we discuss procedures to derive values
of exponents bij , weights wi, and biases θi.

V. OVERALL APPROACH

The overall approach is illustrated in Figure 3. First, a
dedicated black-box policy πoracle is trained from the actual
environment/physics of the problem. This aspect is not the
focus of this paper. Next, the trained policy πoracle (Block
1 in the figure) is used to generate labelled training and
testing datasets of state-action pairs from different time steps.
We generate two types of training datasets: Regular – as
they are recorded from multiple episodes1, and Balanced –
selected from multiple episodes to have almost equal number
of states for each action, where an episode is a complete
simulation of controlling an object with a policy over multiple
time steps. Third, the labelled training dataset (Block 2) is
used to find the NLDT (Block 3) using the recursive bilevel
evolutionary algorithm described in Section V-A. We call
this an open-loop NLDT (or, NLDTOL), since it is derived

1an episode is one simulation run.
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Fig. 3: A schematic of the proposed overall approach.

from a labelled state-action dataset generated from πoracle,
without using any overall reward or any final goal objective
in its search process, which is typically a case while doing
reinforcement learning. Use of labelled state-action data in
supervised manner allows a faster search of NLDT even with
a large dataset as compared to constructing the NLDT from
scratch through reinforcement learning by interacting with the
environment to maximize the cumulative rewards [19]. Next,
in an effort to make the overall NLDT interpretable while
simultaneously ensuring better closed-loop performance, we
prune the NLDT by taking only the top part of NLDTOL
(we call NLDT(P )

OL in Block 4) and re-optimize all non-linear
rules within it for the weights and biases using an efficient
evolutionary optimization procedure to obtain final NLDT*
(Block 5). The re-optimization is done here with closed-loop
objectives, such as the cumulative reward function or closed-
loop completion rate. We briefly discuss the open-loop training
procedure of inducing NLDTOL and the closed-loop training
procedure to generate NLDT* in next sections.

A. Open-loop Training

A labelled state-action dataset is first created using a pre-
trained black-box policy πoracle. Since we are dealing with
discrete-action control problems, the underlying imitation task
of replicating the behavior of πoracle using the labelled state-
action data translates to a classification problem. We train
NLDT discussed in Section IV to fit the state-action data
through supervised learning. Nonlinear split-rule f(x) at each
conditional node (Figure 2 and Eq. 3) is derived using a
dedicated bilevel optimization algorithm [31], where the upper
level searches the template of the non-linear rule and the
corresponding lower level focuses at estimating optimal values
of weights/coefficients for optimal split of data present in the
conditional node. The optimization formulation for deriving a
non-linear split rule f(x) (Eq. 3) at a given conditional node

is given below:

Minimize FU (B,m,w
∗,θ∗),

subject to (w∗,θ∗) ∈ argmin
{
FL(w,θ)|(B,m)

∣∣
FL(w,θ)|(B,m) ≤ τI ,
−1 ≤ wi ≤ 1, ∀i, θ ∈ [−1, 1]m+1

}
,

m ∈ {0, 1}, bij ∈ Z,

(4)

where Z is a set of exponents allowed to limit the com-
plexity of the derived rule structure. In thus study, we use
Z = {−3,−2,−1, 0, 1, 2, 3}. The objective FU quantifies the
complexity of the non-linear rule by enumerating the number
of terms present in the equation of the rule f(x) as shown
below:

FU (B,m,w
∗,θ∗) =

p∑
i=1

d∑
j=1

g(bij), (5)

where g(α) = 1, if α 6= 0, zero otherwise. m indicates
the presence or absence of a modulus operator and w and
θ encodes rule weights wi and biases θi respectively. The
lower level objective function FL quantifies the net impurity of
child nodes resulting from the split. Impurity I of a node P is
computed using a Gini-score: Gini(P ) = 1−

∑c
i

(
Ni
N

)2
, where

N is the total number of points present in the node and Ni
represents number of points belonging to class i. Datapoints
present in node P gets distributed into two non-overlapping
subsets based on their split function value. Datapoints with
f(x) ≤ 0 go to the left child node L and rest go to the right
child node R. The lower level objective function FL which
quantifies the quality of this split is then given by

FL(w,θ)|(B,m) =

(
NL

NP
Gini(L) +

NR

NP
Gini(R)

)
(w,θ,B,m)

. (6)

The τI parameter in Eq. 4 represents maximum allowable
net-impurity (Eq. 6) of child nodes. The resulting child nodes
obtained after the split undergo another split and the process
continues until one of the termination criteria is met.

More details regarding the bilevel-optimization algorithm
[31] to derive split-rule fi(x) at i-th conditional node in NLDT
can be found in [30].

After the entire NLDT is found, in this study, a pruning and
tree simplification strategy (see Supplementary Document for
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more details) is applied to reduce the size of NLDT in an effort
to improve on the interpretability of the overall rule-sets. This
entire process of inducing NLDT from the labelled state-action
data results into the open-loop NLDT – NLDTOL. NLDTOL
can then be used to explain the behavior of the oracle policy
πoracle. We will see in Section VI that despite being not 100%
accurate in imitating πoracle, NLDTOL manages to achieve
respectable closed-loop performance with 100% completion
rate and a high cumulative reward value. Next, we discuss the
closed-loop training procedure to obtain NLDT*.

B. Closed-loop Training

The intention behind the closed-loop training is to enhance
the closed-loop performance of NLDT. It will be discussed in
Section VI that while closed-loop performance of NLDTOL
is at par with πoracle on control tasks involving two to
three discrete actions, like CartPole and MountainCar, the
NLDTOL struggles to autonomously control the agent for
control problems such as LunarLander having more states and
actions. In closed-loop training, we fine-tune and re-optimize
the weights W and biases Θ of an entire NLDTOL (or pruned
NLDTOL, i.e. NLDT(P )

OL – block 4 in Figure 3) to maximize its
closed-loop fitness (FCL), which is expressed as the average
of the cumulative reward collected across M episodes:

Maximize FCL(W,Θ) =
1

M

M∑
i=1

Re(W,Θ),

Subject to W ∈ [−1, 1]nw ,Θ ∈ [−1, 1]nθ ,
(7)

where nw and nθ are total number of weights and biases
appearing in entire NLDT and M = 20 in our case.

VI. RESULTS

In this section, we present results obtained by using our
approach for control tasks on four problems: (i) CartPole, (ii)
CarFollowing, (iii) MountainCar, and (iv) LunarLander. The
first two problems have two discrete actions, third problem
has three discrete actions, and the fourth problem has four
discrete actions. The open-loop statistics are reported using
scores of training and testing accuracy on labelled state-
action data generated from πoracle. For quantifying the closed-
loop performance, we use two metrics: (i) Completion Rate
which gives a measure on the number of episodes which are
successfully completed, and (ii) Cumulative Reward which
quantifies how well an episode is executed. Fore each problem,
10 runs of open-loop training are executed using 10,000
training datapoints. Open-loop statistics obtained from these
10 independent runs of 10,000 training and 10,000 test data
each are reported. We choose the median performing NLDTOL
for closed-loop analysis. We run 50 batches with 100 episodes
each and report statistics of completion-rate and cumulative
reward for NLDT* obtained after closed-loop training of
median performing NLDTOL.

A. CartPole Problem

This problem comprises of four state variables and two
discrete actions. Details regarding this problem are provided

in the Supplementary document. The oracle DNN controller
is trained using the PPO algorithm [2]. Table I shows the
performance of NLDT on training datasets of different sizes.
It is observed that NLDT trained with 5,000 and 10,000
data-points shows a robust open-loop performance and also
produces 100% closed-loop performance. Keeping this in
mind, we keep the training data size of 10,000 fixed across
all control problems discussed in this paper. The obtained
NLDTOLs has about two rules with on an average three terms
in the derived policy function. Interestingly, the same NLDT
(without closed-loop training) also produces 100% closed-loop
performance by achieving the maximum cumulative reward
value of 200.

1) NLDT for CartPole Problem: One of the NLDTOL
obtained for the CartPole environment is shown in Figure 4
in terms of normalized state variable vector x̂.

Fig. 4: CartPole NLDTOL induced using 10,000 training
samples. It is 91.45% accurate on the testing dataset but has
100% closed loop performance. Normalization constants are:
xmin = [-0.91, -0.43, -0.05, -0.40], xmax = [1.37, 0.88, 0.10,
0.45].

The respective policy can be alternatively stated using the
programmable if-then-else rule-structure as shown in
Algorithm 1:

Algorithm 1: CartPole Rules. Normalization constants
are: xmin = [-0.91, -0.43, -0.05, -0.40], xmax = [1.37,
0.88, 0.10, 0.45].

if
∣∣∣−0.18x̂0x̂2−2 − 0.63x̂3

−2
+ 0.67

∣∣∣− 0.24 ≤ 0 then
Action = 0

else
Action = 1

A little manipulation will reveal that for a correct control
startegy, Action 0 must be invoked if following condition is
true:

2.39 ≤
(
x̂0

x̂2
2 +

3.50

x̂3
2

)
≤ 5.06,

otherwise, Action 1 must be invoked. First, notice that the
above policy does not require the current velocity (x̂1) to
determine the left or right action movement. Second, for small
values of angular position (x̂2 ≈ 1) and angular velocity
(x̂3 ≈ 1), i.e. the pole is falling towards left, the above
condition is always true. That is, the cart should be pushed
towards left, thereby trying to stabilize the pole to vertical
position. On the other hand, if the pole is falling towards right
(large values of x̂2 ≈ 2 and x̂3 ≈ 2), the term in bracket
will be smaller than 2.39 for all x̂0 ∈ [1, 2], and the above
policy suggests that Action 1 (push the cart towards right)
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TABLE I: Effect of training data size to approximate performance of NLDTOL on CartPole problem.

Training
Data Size

Training
Accuracy

Test. Accuracy
(Open-loop)

#
Rules

Rule
Length

Cumulative
Reward, Max=200

Compl. Rate
(Closed-loop)

100 97.00± 1.55 82.79± 2.40 1.50± 0.50 3.30± 0.93 199.73± 0.32 95.00± 5.10
500 95.54± 1.53 79.66± 3.10 1.90± 0.54 3.88± 0.60 175.38± 2.61 51.00± 5.10

1,000 91.90± 0.87 90.59± 1.87 1.80± 0.40 4.05± 1.04 200.00± 0.00 100± 0.00
5,000 92.07± 1.28 92.02± 1.27 1.70± 0.46 4.25± 0.90 200.00± 0.00 100± 0.00

10,000 91.86± 1.25 92.05± 1.10 1.30± 0.46 4.45± 1.56 200.00± 0.00 100± 0.00

must be invoked. When the pole is falling right, a push of
the cart towards right helps to stabilize the pole towards its
vertical position. These extreme case analyses are intuitive and
our policy can be explained for its proper working, but what
our NLDT approach is able to find is a precise rule for all
situations of the state variables to control the Cart-Pole to a
stable configuration, mainly using the blackbox-AI data.

B. CarFollowing Problem

We have developed a discretized version of the car following
problem discussed in [32]. The objective here is to control the
rear car and follow a randomly moving car using acceleration
or braking actions. This problem involves three state variables
and two discrete actions. More details regarding this problem
are provided in the Supplementary document. The oracle
policy was obtained using a double Q-learning algorithm [33].
The reward function for the CarFollowing problem is shown
in the Supplementary document, indicating that a relative
distance close to 30m produces the highest reward.

Results for the CarFollowing problem are shown in Table II.
An average open-loop accuracy of 96.53% is achieved with
at most three rules, each having 3.28 terms on an average.
For this problem, we apply the closed-loop re-optimization

TABLE II: Results on CarFollowing problem.

Train.
Acc.

Test.
Acc.

Depth # Rules Rule
Length

Compl.
Rate

96.41 ±
1.97

96.53 ±
1.90

1.90 ±
0.30

2.40 ±
0.66

3.28 ±
0.65

100 ±
0.00

(Blocks 4 and 5 to produce Block 6 in Figure 3) on the entire
NLDTOL. As shown Table III, NLDT* is able to achieve
better closed-loop performances (100% completion rate and
slightly better average cumulative reward). Figure 5 shows that
NLDT* adheres the 30m gap between the cars more closely
than original DNN or NLDTOL.

TABLE III: Closed-loop performance analysis after re-
optimizing NLDT for CarFollowing problem (k = 103).

AI Cumulative Reward Compl. RateBest Avg ± Std
DNN 174.16k 173.75k ±20.95 100± 0.00

NLDTOL 174.15k 173.87k ±16.48 100± 0.00
NLDT* 179.76k 179.71k ±0.95 100± 0.00

The NLDT corresponding to the CarFollowing problem and
its physical interpretation are provided in the Supplementary
document.

Results of NLDT’s performance on problems with two
discrete actions (Tables I, II and III) indicate that despite
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Fig. 5: Relative distance plot for CarFollowing.

having a noticeable mismatch with the open-loop output of the
oracle black-box policy πoracle, the closed-loop performance
of NLDT is at par or at times better than πoracle. This
observation suggests that certain state-action pairs are not of
crucial importance when it comes to executing the closed-
loop control and, therefore, errors made in predicting these
state-action events do not affect and deteriorate the closed-
loop performance.

C. MountainCar Problem

This problem comprises of two state-variables to capture
x position and velocity of the car. The task is to use three
actions and drive an under-powered car to the destination (see
Supplementary Document for more details).

Compilation of results of the NLDTOL induced using
training datasets comprising of different data distributions
(regular and balanced) is presented in Table IV. A state-
action plot obtained using πoracle and one of the NLDT policy
corresponding to the first row of Table IV is provided in
Figures 1a and 1b, respectively. It is observed that about 8%
mismatch in the open-loop performance (i.e. testing accuracy
in Table IV) comes from the lower-left region of state-action
plot (Figures 1a and 1b) due to highly non-linear nature of
πoracle. Despite having this mismatch, the NDLT policy is
able to achieve close to 100% closed-loop control performance
with an average of 2.4 rules having 2.97 terms. Also, NLDT
trained on balanced dataset (2nd row of Table IV) is able
to achieve 100% closed-loop performance and involves about
three control rules with an average 1.67 terms in each rule.
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TABLE IV: Results on MountainCar problem.

Data Train.
Acc.

Test.
Acc.

Depth # Rules Rule
Length

Compl.
Rate

Reg. 91.28±
0.57

91.18±
0.35

2.00 ±
0.00

2.40 ±
0.49

2.97 ±
0.41

99.00 ±
1.71

Bal. 81.45 ±
7.36

87.23 ±
1.10

1.90 ±
0.30

2.80 ±
0.60

3.07 ±
0.42

100 ±
0.00

D. LunarLander Problem

The task in this problem is to control the lunar-lander
using four discrete actions and successfully land it on the
lunar terrain. The state of the lunar-lander is expressed with
eight state variables, of which six are continuous, and two are
categorical. More details for this problem are provided in the
Supplementary document.

TABLE V: NDLTOL with depths 3 and 6 for LunarLander.

Data Depth Train.
Acc.

Test.
Acc.

# Rules Rule
Length

Compl.
Rate

Reg. 3 79.17 ±
1.78

76.36 ±
3.36

5.60 ±
0.49

5.59 ±
0.75

14.00 ±
5.93

Bal. 3 69.83 ±
2.82

66.58 ±
2.03

4.40 ±
0.66

5.79 ±
1.31

42.00 ±
4.40

Reg. 6 87.43±
0.65

81.74±
0.91

34.70 ±
2.83

4.94 ±
0.34

48.00 ±
2.77

Bal. 6 81.74 ±
1.78

71.52 ±
1.24

25.70 ±
5.83

5.17 ±
0.37

93.00±
3.30

Table V provides the compilation of results obtained us-
ing NLDTOL. In this problem, while a better open-loop
performance occurs for regular dataset, a better closed-loop
performance is observed when the NLDT open-loop training is
done on the balanced dataset. Also, NLDTOL with depth three
are not adequate to achieve high closed-loop performance. The
best performance is observed using balanced dataset where
NLDTOL achieves 93% episode completion rate. A specific
NLDTOL with 26 rules each having about 4.15 terms is shown
in the Supplementary Document.

It is understandable that a complex control task involving
many state variables cannot be simplified or made interpretable
with just one or two control rules. Next, we use a part of the
NLDTOL from the root node to obtain the pruned NLDT(P )

OL

(step ‘B’ in Figure 3) and re-optimize all weights (W) and
biases (Θ) using the procedure discussed in Section V-B
(shown by orange box in Figure 3) to find closed-loop NLDT*.
Table VI shows that for the pruned NLDT-3 which comprises
of the top three layers and involves only four rules of original
26-rule NLDTOL (i.e. NLDT-6), the closed-loop performance
increases from 51% to 96% (NLDT*-3 results in Table VI)
after re-optimizing its weights and biases with closed-loop
training. The resulting NLDT with its associated four rules
are shown in Figure 6.

As shown in Table VI, the NLDT* with just two rules
(NLDT-2) is too simplistic and does not recover well after
re-optimization. However, the NLDT*s with four and seven
rules achieve a near 100% closed-loop performance. Clearly,
an NLDT* with more rules (NLDT-5 and NLDT-6) are not
worth considering since both closed-loop performances and
the size of rule-sets are worse than NLDT*-4. Note that DNN

Fig. 6: Final NLDT*-3 for LunarLander prob. x̂i is a normal-
ized state variable (see Supplementary Document).

produces a better reward, but not enough completion rate, and
the policy is more complex with 4,996 parameters.

Figure 7 shows the closed-loop training curve for generating
NLDT* from Depth-3 NLDT(P )

OL . The objective is to max-
imize the closed-loop fitness (reward) FCL (Eq. 7) which is
expressed as the average of the cumulative reward Re collected
over M episodes. It is evident that the cumulative reward for

0 5 10 15 20 25 30
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100

0

100
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Re
wa

rd
Closed-Loop Training

Best Reward
Avg. Reward

Fig. 7: Closed-loop training plot for finetuning the rule-set
corresponding to depth-3 NLDT(P )

OL to obtain NLDT* for
LunarLander problem.

the best-population member climbs to the target reward of 200
at around 25-th generation and the average cumulative reward
of the population also catches up the best cumulative reward
value with generations.

To check the repeatability of our approach, another run
for generating NLDTOL and NLDT* is executed. The re-
sulting NLDT and corresponding equations are provided in
the Supplementary document. A visualization of the real-time
closed-loop performance obtained using this new NLDT for
two different rule-sets (i.e. before applying re-optimization
and after applying the re-optimization through closed-loop
training) is shown in https://youtu.be/DByYWTQ6X3E. It
can be observed in the video that the closed-loop control
executed using the Depth-3 NLDT(P )

OL comprising of rules
obtained directly from the open-loop training (i.e. without
any re-optimization) is able to bring the LunarLander close
to the target. However the LunarLander hovers above the
landing pad and the Depth-3 NLDT(P )

OL is unable to land it

https://youtu.be/DByYWTQ6X3E
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TABLE VI: Closed-loop performance on LunarLander problem with and without re-optimization on 26-rule NLDTOL. Number
of rules are specified in brackets for each NLDT and total parameters for the DNN is marked.

Re-Opt. NLDT-2 (2) NLDT-3 (4) NLDT-4 (7) NLDT-5 (13) NLDT-6 (26) DNN (4,996)
Cumulative Reward

Before −1675.77± 164.29 42.96± 13.83 54.24± 27.44 56.16± 23.50 169.43± 23.96
247.27± 3.90After −133.95± 2.51 231.42± 17.95 234.98± 22.25 182.87± 21.92 214.94± 17.31

Completion Rate
Before 0.00± 0.00 51.00± 3.26 82.00± 9.80 79.00± 7.66 93.00± 3.30

94.00± 1.96After 48.00± 7.38 96.00± 2.77 99.00± 1.71 93.00± 7.59 94.00± 4.45

in most occasions. Episodes in these cases are terminated
after the flight-time runs out. On the other hand, the Depth-3
NLDT* comprising of rule-sets obtained after re-optimization
through closed-loop training is able to successfully land the
LunarLander.

VII. SCALE-UP STUDY AND IMPROVIZATION ON ACROBOT
CONTROL PROBLEM

In this section, we investigate how the overall algorithm
can be made more efficient in terms of – training time
and scalability. To this purpose, we introduce a benchmark
problem of planar serial manipulator (PSM). This problem is
inspired from the classical Acrobot control problem [12]. A
schematic of the PSM problem is provided in Figure 8.

Fig. 8: Planar Serial Manipulator (PSM) benchmark problem.

The state space for the PSM problem (Figure 8) comprises
of angular position θi and angular velocity ωi of each joint.
Thus, for a n-link manipulator involving n revolute joints, the
state space would be 2n dimensional. The motor is located at
the last joint of the manipulator and is actuated using three
torque values: −τ , 0 and τ . Each link is of 1 unit length and
has its center-of-mass at its geometric center. The motor is
assumed to be massless for the sake of simplicity. The base
of the manipulator is located at (0, 0, 0) and the motion of
the PSM is limited to the XZ plane. There is a downward
gravitational pull (g) of 10 units (i.e. -10 along vertical Z axis).
Torque is applied along the Y-axis. The task in this problem is
to take the end-effector (i.e. tip of the last link, Z-coordinate
zE) of the PSM to a desired height of H units by supplying
torque to the motor located at the last joint (joint between
(n − 1)-th and n-th link). The difficulty of this benchmark
problem can be adjusted by

1) changing the number of links,

2) changing the value of desired height level H ,
3) changing the value of torque τ , and
4) placing extra motors at other joints.

We simulate the mechanics of the planar serial manipulator
using PyBullet [34]: a Python based physics engine.

In our work, we provide two case-scenarios by focusing at
the first three points of the above list. As mentioned before,
by changing the number of links, the dimension of the state-
space changes. The dimension of the action-space depends on
the number of motors used. In the present work, we keep the
number of motors fixed to one, having three discrete actions.

The details regarding two environments which are created
and studied in this section are summarized in Table VII.

TABLE VII: Details regarding custom designed Planar Serial
Manipulator (PSM) environments.

Env. Name Motor
Torque (τ )

Desired
Height (H)

# State
Vars.

5-Link PSM 1,000 +2 10
10-Link PSM 2,000 +2 20

The reward function r(x, A) is given by the following
equation:

r(x) =

−1−
(
H+1−zE
n+H+1

)2
, if zE < H ,

100, if zE ≥ H.
(8)

The minimum value for zE is −n when the entire manipulator
is stretched to its full length and all joint angles (i.e. θi) are
at 0 deg.

At the beginning of an episode, joint angles θi of the
manipulator are randomly initialized between −5 deg and
+5 deg, and the angular velocities ωi are initialized to a value
between −0.5 rad/sec and +0.5 rad/sec.

In next sections, we discuss results obtained on the above
two custom designed environments by using different pro-
cedures of inducing NLDEOL. The black-box AI (DNN) is
trained using the PPO algorithm [2]. The resulting DNN
has two hidden layers of 64 nodes each and has total 5699
parameters thereby making it massively un-interpretable.

A. Ablation Study for Open-loop Training

In this section, we launch two separate studies related to
open-loop training procedure (see Figure 3). It is seen in
Section V-A that the open-loop training is conducted using a
hierarchical bilevel-optimization algorithm, which is discussed
at length in [30]. A dedicated bilevel-optimization algorithm
is invoked to derive the split-rule f(x) at a given conditional
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node. The upper-level search is executed using a discrete
version of a genetic algorithm and the lower-level search
is realized through an efficient real-coded genetic algorithm
(RGA). Evolutionary algorithms are in general considered
robust and have a potential to conduct more global search.
However, being population driven, their search-speed is often
less than that of classical optimization algorithms. In this
section, we study the effect of replacing the real-coded al-
gorithm with a classical sequential quadratic programming
(SQP) optimization algorithm in the lower-level of the overall
bilevel algorithm for obtaining NLDTOL. Later, closed-loop
training based on real-coded genetic algorithm is applied to
NLDTOL to obtain NLDT* by re-optimizing the real valued
coefficients of NLDTOL (Section V-B). We use the SciPy [35]
implementation of SQP. The initial point required for this
algorithm is obtained using the mixed dipole concept [36],
[37], [38], [30].

For analysis, we induce the NLDTOL of depth-3 on the
balanced training dataset of 10,000 datapoints. The testing
dataset also comprises of 10,000 datapoints. Comparison of ac-
curacy scores and average training time of inducing NLDTOL
by using SQP and RGA algorithm at lower-level is provided
in Table VIII. For a given procedure (SQP or RGA) the
best NLDTOL from 10 independent runs is chosen and is re-
optimized using closed-loop training (Section V-B). Statistics
regarding closed-loop performance of NLDT* is shown in
the last two columns of Table VIII. It is to note here that
the closed-loop training is done using the real-coded genetic
algorithm (RGA) discussed in Section V-B.

It can be observed from the results that open-loop training
done with SQP in lower-level is about 70 times faster than
the training done using RGA at the lower level. However,
the training done with RGA has a better overall open-loop
performance. Thus, if the task is to closely mimic the behavior
of black-box AI or if only a high classification accuracy is
desired (in case of classification problems), then RGA is the
recommended algorithm for lower-level optimization to ob-
tain NLDTOL. However, NLDT* obtained after re-optimizing
NLDTOL corresponding to SQP and RGA have similar closed-
loop completion rate (last column of Table VIII). This implies
that despite low open-loop accuracy scores, the open-loop
training done using SQP in lower-level is able to successfully
determine the template of split-rules f(x) and the topology
of NLDT, which upon re-optimization via closed-loop training
algorithm can fetch a decent performing NLDT*. During open-
loop training, the search on weights and coefficients using SQP
is possibly not as perfect as compared to the one obtained
through RGA, however, the re-optimization done through
closed-loop training can compensate this shortcoming of SQP
algorithm and produce NLDT* with a respectable closed-
loop performance. Additionally, in either cases, the NLDT*
obtained always has a better closed-loop performance than the
original black-box DNN policy. This observation suggests that
it is preferable to use SQP in lower-level during open-loop
training to quickly arrive at a rough structure of NLDTOL
and then use closed-loop training to derive a high performing
NLDT*.

B. Closed-loop Visualization
In this section, we provide a visual insight into the closed-

loop performance of DNN and NLDT* which we derived
in the previous section. In our case, the frequency of the
simulation is set to 240Hz, meaning that the transition to the
next state is calculated using the time-step of 1/240 seconds.
Geometrically speaking, this implies that the Euclidean dis-
tance between states from neighboring time-steps would be
small. The AI (DNN or NLDT*) outputs the action value of
0 (−τ torque), 1 (0 torque) or 2 (+τ torque) for a given input
state. Action Vs Time plots corresponding to different closed-
loop simulation runs obtained by using DNN, NLDT* (SQP)2

and NLDT* (RGA)3 as controllers is shown in Figure 9 for 5-
link manipulator problem (plots for 10-link PSM are provided
in the Supplementary document).

Certain key observations can be made by looking at the
plots in Figure 9. The control output for DNN is more
erratic, with sudden jerks as compared to the control output
of NLDT* (SQP) and NLDT* (RGA). The performance of
NLDT* in Figures 9b and 9c is smooth and regular. This
behaviour can be due to the involvement of a relatively simpler
non-linear rule set (as compared to the complicated non-
linear rule represented by DNN) which are captured inside
NLDT*. This is equivalent to the observation we made for
the mountain car problem in Figures 1a and 1b, wherein the
black-box AI had a very erratic behavior for the region of
state-space in the lower-half of the state-action plot, while the
output of NLDT was more smooth. Additionally, it was seen in
Table VIII that the NLDT* (irrespective of how its predecessor
NLDTOL was obtained, i.e. either through SQP or RGA in
lower-level) showed better closed-loop performance than the
parent DNN policy. This observation implies that simpler rules
expressed in the form of a nonlinear decision tree have better
generalizability, thereby giving more robust performance for
randomly initialized control problems. A careful investigation
to the plots in Figure 9b and 9c reveals that only two out
of three allowable actions are required to efficiently execute
the given control task of lifting the end-effector of a 5-link
serial manipulator. This concept will be used to re-engineer
the NLDT*, a discussion regarding which is provided in the
next section.

C. Reengineering NLDT*
It is seen in action-time plots in Figure 9b and Figure 9c that

not all actions are required to perform a given control task.
Also, it may be possible that while performing a closed-loop
control using NLDT, not all branches and nodes of NLDT
are visited. Thus, the portion of the NLDT which is not being
utilized or is getting utilized very rarely can be pruned and the
overall NLDT architecture can be made simpler. To illustrate
this idea, we consider the NLDT which is derived for the 5-
link manipulator problem. The topology of the best performing
NLDTOL (SQP) for the 5-link manipulator problem is shown
in Figure 10a.

2NLDT* (SQP) indicates that the corresponding NLDTOL was derived
using the SQP algorithm in the lower-level

3NLDT* (RGA) indicates that the corresponding NLDTOL was derived
using the RGA algorithm in the lower-level
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TABLE VIII: Comparing performance of different lower-level optimization algorithms. For comparison, closed-loop perfor-
mance of the original DNN policy is also reported.

Open-Loop NLDTOL Closed-Loop NLDT*
Algo.
Name

Training
Accuracy

Testing
Accuracy

Training
Time (s)

Cumulative
Reward

Completion
Rate

5-Link Manipulator
SQP 62.46± 2.01 69.34± 5.39 15.29± 4.95 −146.81± 8.53 96.00± 2.77
RGA 71.14± 1.77 69.17± 4.39 1091.56± 319.18 −152.64± 6.62 99.00± 1.71
DNN NA NA NA −183.35± 12.22 89.00± 5.19

10-Link Manipulator
SQP 56.57± 1.00 55.64± 3.58 39.27± 11.63 −318.82± 15.52 96.00± 3.92
RGA 65.84± 0.85 62.60± 3.09 2860.96± 789.49 −281.88± 9.38 95.00± 4.31
DNN NA NA NA −325.86± 4.63 85.88± 1.94
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Fig. 9: Action Vs. Time plot for 5-Link manipulator problem. Figure 9b provides the plot for NLDT* which is obtained from
the NLDTOL trained using SQP algorithm in lower-level. Similarly, Figure 9c provides the plot for NLDT* which is obtained
from the NLDTOL trained using RGA algorithm in lower-level.

(a) NLDTOL

(b) NLDT*

Fig. 10: NLDTs for 5-Link Manipulator problem.

As mentioned before, this NLDTOL is trained on a balanced
training dataset which is generated by collecting state-action
pairs using the oracle DNN controller. In the figure, for each
node, the information regarding its node-id, class distribution
(given in square parenthesis) and the most dominating class
is provided. Other than the root-node (Node 0), all nodes are

colored to indicate the dominating class, however, it is to note
that only the class associated to leaf-nodes carry the actual
meaning while predicting the action for a given input state.
This NLDTOL comprises of four split-rules in total. The class-
distribution for each node is obtained by counting how many
datapoints from the balanced training dataset visited a given
node. Thus, the root node comprises of all datapoints (total
10,000), which are then scattered according to the split-rules
present at each conditional node.

Figure 10b provides topology of NLDT* which is obtained
after re-optimizing NLDTOL of Figure 10a using closed-loop
training. As discussed in Sections V-A and V-B, the topology
of the tree and the structure of non-linear rules is identical
for both: NLDTOL and NDLT*. However, the weights and
biases of NLDT* are updated to enhance the closed-loop
control performance. Similar to NLDTOL of Figure 10a,
the information regarding node id and class-distribution is
provided for all the nodes of NLDT* in Figure 10b. However,
the data distribution in NLDT* is obtained by using the
actual state-action data from closed-loop simulations, wherein
NLDT* is used as a controller. Total 10,000 datapoints are
collected in form of sequential states-action pairs from closed-
loop simulation runs which are executed using NLDT*. As can
be seen in the root node of NLDT* (Figure 10b), out of 10,000
states visited during closed-loop control, action 0 (−τ torque)
was chosen by NLDT* for total 7,736 states and action 2
(+τ torque) was chosen for 2,264 states. In none of the states
visited during closed-loop control was action 1 (no torque)
chosen. This is consistent with what we have observed in the
Action Vs Time plot in Figure 9b, wherein most of the time
action 0 was executed, while there was no event where action
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1 was executed. The flow of these 10,000 state-action pairs
through NLDT* and their corresponding distribution in each
node of NLDT* is provided in Figure 10b. It can be observed
that Node 5, Node 4 and Node 8 of NLDT* are never visited
during closed-loop control. This implies that splits at Node 2,
Node 1 and Node 6 are redundant. Thus, the part of NLDT*
shown in red-box in Figure 10b can be pruned and the overall
topology of the tree can be simplified. The pruned NLDT*
will involve only one split (occurring at Node 0) and two leaf
nodes: Node 1 and Node 6. However, it is to note here that
we need to re-assign class-labels to the newly formed leaf
nodes (i.e. Node 1 and Node 6) based on the data-distribution
from closed-loop simulations. The old class-labelling for the
Node 1 and Node 6 was done based on the open-loop data
(Figure 10a). Using the new class distribution corresponding
to NLDT* (Figure 10b), Node 1 is re-labelled with Class-
2 and Node 6 with Class-0. The pruned version of NLDT*
of Figure 10b is provided in Figure 11 (here nodes are re-
numbered, with Node 6 of NLDT* in Figure 10b re-numbered
to Node 2 in the pruned NLDT* as shown in Figure 11).
The split-rule corresponding to the root-node is also shown.

Fig. 11: Pruned version of NLDT* (Figure 10b) for 5-link
manipulator problem.

Interestingly, out of 10 total state-variables, only 2 are used
to decide which action to execute for closed-loop control: x1
corresponds to the angular position of the second link and x9
variable corresponds to the angular velocity of the last joint.
The above rule indicates a single and interpretable relationship:
action 2 must be invoked when x̂9 ≤ 3

√
(1.885− 0.115/x̂31),

otherwise action 0 must be invoked. This NLDT* corresponds
to a cumulative reward of −139.78 ± 7.65 and performs at
99.00± 1.71% completion rate, which provides a remarkably
simple interpretation of the control strategy for this apparently
complex problem.

VIII. CONCLUSIONS

In this paper, we have proposed a two-step strategy to
arrive at hierarchical and relatively interpretable rulesets using
a nonlinear decision tree (NLDT) concept to facilitate an
explanation of the working principles of AI-based policies.
The NLDT training phases use recent advances in nonlinear
optimization to focus its search on rule structure and details
describing weights and biases of the rules by using a bilevel
optimization algorithm. Starting with an open-loop training,
which is relatively fast but uses only time-instant state-action
data, we have proposed a final closed-loop training phase in
which the complete or a part of the open-loop NLDT is re-
optimized for weights and biases using complete episode data.

Results on four popular discrete action problems have amply
demonstrated the usefulness of the proposed overall approach.

This proof-of-principle study encourages us to pursue
a number of further studies. First, the scalability of the
NLDT approach for challenging large-dimensional state-action
space problems must now be explored. A previous study on
NLDT [30] on binary classification of dominated versus non-
dominated data in multi-objective problems was successfully
extended to 500-variable problems. While it is encouraging,
the use of customization methods for initialization and genetic
operators using problem heuristics and/or recently proposed
innovization methods [39] in the upper level problem can
be tried. Second, this study has used a computationally fast
open-loop accuracy measure as the fitness for evolution of
the NLDTOL. This is because, in general, an NLDTOL with
a high open-loop accuracy is likely to achieve a high closed-
loop performance. However, we have observed here that a high
closed-loop performance is achievable with a NLDTOL having
somewhat degraded open-loop performance, but re-optimized
using closed-loop performance metrics. Thus, a method to
identify the crucial (open-loop) states from the AI-based
controller dataset that improves the closed-loop performance
would be another interesting step for deriving NLDTOL. This
may eliminate the need for re-optimization through closed-
loop training. Third, a more comprehensive study using closed-
loop performance and respective complexity as two conflicting
objectives for a bi-objective NLDT search would produce
multiple trade-off control rule-sets. Such a study can, not only
make the whole search process faster due to the expected
similarities among multiple policies, they will also enable
users to choose a single policy solution from a set of accuracy-
complexity trade-off solutions.
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Supplementary Document

S-I. DATA NORMALIZATION

First, we provide the exact normalization of state variables
performed before the open-loop learning task is executed.
Before training and inducing the non-linear decision tree
(NLDT), features in the dataset are normalized using the
following equation:

x̂i = 1 + (xi − xmin
i )/(xmax

i − xmin
i ), (9)

where xi is the original value of the i-th feature, x̂i is the
normalized value of the i-th feature, xmin

i and xmax
i are

minimum and maximum value of i-th feature as observed
in the training dataset. This normalization will make every
feature xi to lie within [1, 2]. This is done to ensure that xi = 0
is avoided to not cause a division by zero error.

S-II. OPEN LOOP NLDT PRUNING AND TREE
SIMPLIFICATION

The NLDT representing our interpretable AI is induced
using successive heirarchical spliting algorithm. A dedicated
bilevel approach is used to derive the split rule for each
conditional node, i.e., if a child node created after the split
is still impure (with its impurity I > τI ), it is subjected to
further split. Initially, we allow the tree to grow to a pre-
specified maximum depth of dmax. The resulting tree is fairly
complicated with about hundreds of split nodes. Thus, we
simplify this tree further to lower depths and remove redundant
splits by pruning them. Lower depth trees are relatively simpler
than the full grown depth dmax tree and also have better
generalizability.

S-III. PROBLEMS USED IN THE STUDY

In this section, we provide a detail description of the four
environments used in this study.

A. CartPole Environment

The CartPole problem comprises of four state variables: 1)
x-position (x → x0), velocity in +ve x direction (v → x1),
angular position from vertical (θ → x2) and angular velocity
(ω → x3) and is controlled by applying force towards left
(Action 0) or right (Action 1) to the cart (Figure S-1a). The
objective is to balance the inverted pendulum (i.e. −24 deg ≤
θ ≤ 24 deg) while also ensuring that the cart doesn’t fall off
from the platform (i.e. −4.8 ≤ x ≤ 4.8). For every time step,
a reward value of 1 is received while θ is within ±24 deg.
The maximum episode length is set to 200 time steps. A deep
neural network (DNN) controller is trained on the CartPole
environment using the PPO algorithm [2].

(a) CartPole environment.

(b) CarFollowing environment.

(c) LunarLander environment.

Fig. S-1: Other three control problems.

B. CarFollowing Environment

As mentioned in the main paper, we have developed a
discretized version of the car following problem discussed in
[32] (illustrated in Figure S-1b), wherein the task is to follow
the car in the front which moves with a random acceleration
profile (between −1m/s2 and +1m/s2) and maintain a safe
distance of dsafe = 30m from it. The rear car is controlled
using two discrete acceleration values of +1m/s2 (Action 0)
and −1m/s2 (Action 1). The car-chase episode terminates
when the relative distance drel = xfront − xrel is either zero
(i.e. collision case) or is greater than 150 m. At the start of the
simulation, both the cars start with the initial velocity of zero.
A DNN policy for CarFollowing problem was obtained using
a double Q-learning algorithm [33]. The reward function for
the CarFollowing problem is shown in Figure S-2, indicating
that a relative distance close to 30 m produces the highest
reward.

Fig. S-2: Reward function for CarFollowing environment.

It is to note here that unlike the CartPole control problem,
where the dynamics of the system was deterministic, the
dynamics of the CarFollowing problem is not deterministic
due to the random acceleration profile with which the car in
the front moves. This randomness introduced by the unpre-
dictable behaviour of the front car makes this problem more
challenging.
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C. MountainCar Environment

A car starts somewhere near the bottom of the valley and
the goal of the task is to reach the flag post located on the right
up-hill with non-negative velocity (Figure S-3). The fuel is not
enough to directly climb the hill and hence a control strategy
needs to be devised to move car back (left up-hill), leverage
the potential energy and then accelerate it to eventually reach
the flag-post within 200 time steps. The car receives the reward
value of −1 for each time step, until it reaches the flag-post
where the reward value is zero. The car is controlled using
three actions: accelerate left (Action 0), do nothing (Action 1)
and accelerate right (Action 2) by observing its state which
is given by two state-variables: x position → x0 and velocity
v → x1. We use the SARSA algorithm [40] with tile encoding
to derive the black-box AI controller, which is represented in
form of a tensor, which has a total of 151, 941 elements.

Fig. S-3: MountainCar Environment.

D. LunarLander Environment

This problem is motivated form a classic problem of design
of a rocket-controller. Here, the state of the lunar-lander is
expressed with eight state variables, of which six can assume
continuous real values, while the rest two are categorical, and
can assume a Boolean value (Figure S-1c). The first six state
variables indicate the (x, y) position, and velocity and angular
orientation and angular velocity of the lunar-lander. The two
Boolean state variables provides the indication regarding the
left-leg and right-leg contact of lunar-lander with the ground
terrain. The lunar-lander is controlled using four actions:
Action 0 → do nothing, Action 1 → fire left engine, Action 2
→ fire main engine and Action 3 → fire right engine. The
black-box DNN based controller for this problem is trained
using the PPO algorithm [2] and involves two hidden layers
of 64 nodes each.

S-IV. DIFFERENCES BETWEEN OPEN-LOOP AND
CLOSED-LOOP SEARCHES

The overall search procedure described in Figure 3 in the
main paper clearly indicated that it is a two-step optimization
procedure. In the first optimization procedure, an open-loop
NLDT (NLDTOL) is evolved using a bilevel optimization
approach applied recursively to derive split-rule f(x) at each
conditional node. Here, each training datapoint consists of
a time-instant state-action pair obtained using oracle policy
πoracle. One of the objective function of the overall bilevel
algorithm is the minimization of the weighted Gini-score (FL,

Eq. 6 in main paper), which quantifies the purity of nodes
created after the split. This measure can also serve as a proxy to
indicate the error between predicted action and the AI-model
action. For a node P , the Gini-score is computed as

Gini(P ) = 1−
c∑
i=1

(
Ni

N

)2

, (10)

where N is the total number of datapoints in node P and Ni
is the number of datapoints present in node P which belongs
to action-i. As can be seen from Eq. 10, the computation of
Gini-score is computationally cheap and fast. This eventually
makes the computation of FL (Eq. 6 in main paper) to be
cheap and fast, a feature which is desired for any bilevel-
algorithm since for each solution member in the upper-level
of the search, a dedicated full run of lower-level optimization
is performed and if the lower-level objective function is
computationally taxing then it will make the overall bilevel
algorithm extremely slow. Additionally, it is to note here
that every rule structure (fj(x)) starting from the root node
(j = 0) is optimized independently by using a subset of
the training data dictated by the completed NLDT thus far.
Nowhere in the development of the NLDTOL, any closed-loop
evaluation function (such as, a cumulative reward function of
completing the task, or success rate of completion) is used in
the optimization process. The structure of the NLDTOL and
structure of every rule (with its mathematical structure and
coefficients/biases associated with each rule) are evolved. Due
to the vastness of the search space of this optimization task,
we developed a computationally efficient bilevel optimization
procedure composing of a computationally cheap and fast
lower-level objective. The two levels allow the structure of
each rule and the associated coefficients and biases to be learnt
in a hierarchical manner. This is also possible due to recent
advances in nonlinear optimization using hybrid evolutionary
and point-based local search algorithms [30].

On the contrary, the closed-loop optimization restricts its
search to a fixed NLDT structure (which is either identical to
NLDTOL or a part of it from the root node, as illustrated
in Figure S-5), but modifies the coefficients and biases of
all rules simultaneously in order to come up with a better
closed-loop performance. Here, an entire episode (a series of
time-instance state-action pairs from start (t = 0) to finish
(t = T )) can be viewed as a single datapoint. As an objective
function, the average of cumulative-reward collected across 20
episodes, each with a random starting state S0 is used to make
a better evaluation of the resulting NLDT. Due to this aspect,
the computational burden is more, but the search process stays
in a single level. We employ an efficient real-parameter genetic
algorithm with standard parameter settings [41], [42]. To make
the search more efficient, we include the NLDTOL (or its part,
as the case may be) in the initial population of solutions for
the closed-loop search.

The differences between the two optimization tasks are
summarized in Table A.1. As discussed, both optimization
tasks have their role in the overall process. While evaluation
of a solution in the open-loop optimization is computationally
quicker, it does not use a whole episode in its evaluation
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process to provide how the resulting rule or NLDT perform on
the overall task. The goal here is to maximize the state-action
match with the true action as prescribed by πoracle. This task
builds a complete NLDT structure from nothing by finding an
optimized rule for every conditional node. The use of a bilevel
optimization, therefore, is needed. On the other hand, keeping
a part (or whole) of the NLDTOL structure fixed, the closed-
loop optimization fine-tunes all associated rules to maximize
the cumulative reward Rtotal. A closed-loop optimization
alone on episodic time-instance data to estimate Rtotal will
not be computationally tractable in complex problems.

S-V. ADDITIONAL RESULTS

1) NLDT for CarFollowing Problem: The NLDTOL ob-
tained for the CarFollowing problem is shown in Figure S-
4. The rule-set is provided in its natural if-then-else form in

Fig. S-4: NLDTOL for the CarFollowing problem. Normaliza-
tion constants are: xmin = [0.25, -7.93, -1.00], xmax = [30.30,
0.70, 1.00].

Algorithm 2.

Algorithm 2: Ruleset corresponding to NLDTOL (Fig-
ure S-4) of the CarFollowing problem.

if 0.63x̂0 − 0.87x̂1
−2
x̂2 − 1.00 ≤ 0 then

if 0.96x̂1
−3 − 0.58x̂0 + 1.00 ≤ 0 then

Action = 1
else

Action = 0
else

Action = 1

Recall that the physical meaning of state variables is:
x0 → drel (relative distance between front car and rear car),
x1 → vrel (relative velocity between front car and rear car)
and x2 → a (acceleration value (−1 or +1 m/s2) at the
previous time step). Action = 1 stands for acceleration and
Action = 0 denotes deceleration of the rear car in the next
time step.

From the first rule (Node 0), it is clear that if the rear car
is close to the front car (x̂0 ≈ 1), the root function f0(x) is
never going to be positive for any value of relative velocity or
previous acceleration of the rear car (both x̂1 and x̂2 lying in
[1,2]). Thus, Node 4 (Action = 1, indicating acceleration of
the rear car in the next time step) will never be invoked when
the rear car is too close to the front car. Thus for x̂0 ≈ 1, the
control always passes to Node 1. A little analysis will also

reveal that for x̂0 ≈ 1, the rule f1(x) > 0 for any relative
velocity x̂1 ∈ [1, 2]. This means that when the two cars are
relatively close, only Node 3 gets fired to decelerate (Action
= 0) the rear car. This policy is intuitively correct, as the only
way to increase the gap between the cars is for the controlled
rear car to be decelerating.

However, when the rear car is far away for which x̂0 ≈ 2,
Action 1 (Node 4) gets fired if x̂1 > 1.829

√
x̂2. If the rear car

was decelerating in the previous time step (meaning x̂2 = 1),
the obtained NLDT recommends that the rear car should
accelerate if x̂1 ∈ [1.829, 2], or when the magnitude of the
relative velocity is small, or when x1 ∈ [−0.776, 0.700]m/s.
This will help maintain the requisite distance between the cars.
On the other hand, if the rear car was already accelerating in
the previous time step (x̂2 = 2), Node 4 does not fire, as
x̂1 can never be more than 1.829

√
2 and the control goes to

Node 1 for another check. Thus, the rule in Node 0 makes
a fine balance of the rear car’s movement to keep it a safe
distance away from the front car, based on the relative velocity,
position, and previous acceleration status. When the control
comes to Node 1, Action 1 (acceleration) is invoked if x̂1 ≥
0.96/(0.58x̂0−1). For x̂0 ≈ 2, this happens when x̂1 > 1.817
(meaning that when the magnitude of the relative velocity
is small, or x1 ∈ [−0.879, 0.700]m/s), the rear car should
accelerate in the next time step. For all other negative but large
relative velocities x1 ∈ [−7.930, 0.879]m/s), meaning the rear
car is rushing to catch up the front car, the rear car should
decelerate in the next time step. From the black-box AI data,
our proposed methodology is able to obtain a simple decision
tree with two nonlinear rules to make a precise balance of
movement of the rear car and also allowing us to understand
the behavior of a balanced control strategy.

A. LunarLander Problem

One of the NLDTOLs induced using the open-loop super-
vised training is shown in Figure S-5. The performance of this
NLDTOL was presented in the main paper. It has a depth of 6
and it involves a total of 26 rules. The figure also shows how
this 26-rule NLDTOL can be pruned to smaller sized NLDTs
(such as, NLDT-5, NLDT-4, NLDT-3, NLDT-2) starting from
the root node. A compilation of results corresponding to these
trees regarding their closed-loop performance before and after
re-optimizing them using the closed-loop training is shown in
Table 6 of the main paper. The main paper has also presented
a four-rule NLDT*-3 obtained by a closed-loop training of the
above NLDT-3.

To demonstrate the efficacy and repeatability of our pro-
posed approach, we perform another run of the open-loop and
closed-loop training and obtain a slightly different NLDT*-
3, which is shown in Figure S-6. This NLDT also has four
rules, which are shown in Table A.2. Four rules rules at the
pruned NLDT(P )

OL (Depth 3) are also shown in the table for a
comparison.

It can be noticed that the re-optimization of NLDT through
closed-loop training (Section 5.2 in main paper)) modifies the
values of coefficients and biases, however the basic structure
of all four rules remains intact.
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TABLE A.1: Differences between open-loop and closed-loop optimization problems.

Entity Open-loop Optimization Closed-loop Optimization

Goal Find each rule-structure fj(x) one at a time from root
node j = 0

Find overall NLDT simultaneously

Variables Nonlinear structure Bij for i-th term for every j-th rule,
coefficients wij , and biases θj

Coefficients wij and biases θj for all rules (j) in the
NLDT

Each training data State-action pair (xt-at) for each time-instance t
Randomly initialized M Episodes comprising of state-
action-reward triplets (xt-at-rt, for t = 1, . . . , T ) for
each simulation

Objective function Weighted Gini-score (mismatch in actions) Average cumulative reward value

Optimization method Bilevel optimization: Upper-level by customized evolu-
tionary algorithm and lower-level by regression Single-level genetic algorithm

Termination condition

Upper level (Change in fitness < 0.01% for consecutive
5 generations in Upper level GA, with maximum 100
generations).
Lower level (Change in fitness< 0.01% for consecutive
5 generations, with maximum 50 generations).

30 generations

Outcome NLDTOL NLDT*

Fig. S-5: NLDT-6 (with 26 rules) and other lower depth NLDTs for the LunarLander problem. Lower depth NLDTs are
extracted from the depth-6 NLDT. Each node has an associated node-id (on top) and a node-class (mentioned in bottom within
parenthesis). Table 6 in main paper provides results on closed-loop performance obtained using these trees before and after
applying re-optimization on rule-sets using the closed-loop training procedure.

Fig. S-6: Topology of Depth-3 NLDT(P )
OL obtained from a

different run on the LunarLander problem. The equations
corresponding the conditional-nodes before and after re-
optimization are provided in Table A.2.

B. 10-link ManAction Vs Time Plots

Action Vs. time plot obtained using NLDT* (SQP), NLDT*
(RGA) and DNN for a 10-link serial manipulator problem is
shown in Figure S-7

This is a slightly difficult problem to solve than the 5-link
version since it involves twice the number of state variables.
Interestingly, the search for NLDT* provides us with the
simplest solution to this problem to lift the end-effector to
the desired height of 2 units above the base. The simplest
solution here is to give a constant torque in one direction as
shown in Figure S-7b. However, for this problem the best
closed-loop performance in terms of cumulative reward (see
Table 8 in main paper) is obtained using the control strategy
corresponding to NLDT* (RGA) (Figure S-7c). Here too, for
most of the states, only one action is required, and occasionally
other actions are invoked.
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TABLE A.2: NLDT rules before and after the closed-loop training for LunarLander problem, for which NLDT* is shown
in Figure S-6. Video at https://youtu.be/DByYWTQ6X3E shows the simulation output of the performance of NLDTs with
rule-sets mentioned in this table. Respective minimum and maximum state variables are xmin = [-0.38, -0.08, -0.80, -0.88,
-0.42, -0.85, 0.00, 0.00], xmax = [0.46, 1.52, 0.80, 0.50, 0.43, 0.95, 1.00, 1.00], respectively.

Node Rules before Re-optimization (Depth-3 NLDT(P )
OL )

0
∣∣∣−0.23x̂0x̂2

−1x̂6
−1x̂7

−1 − 1.00x̂1
−1x̂6 − 0.79x̂0

−1x̂1
−1x̂6

2 + 0.83
∣∣∣− 0.85

1 0.17x̂2
−1 − 0.64x̂3x̂7

−1 + 0.90x̂1
−2x̂6

−2x̂7
−3 + 0.29

2 0.82x̂7
−1 + 0.52x̂0

−1x̂4x̂6
−1 − 0.59x̂4

−1 − 0.95

6
∣∣∣−0.16x̂4

−3x̂6
−3x̂7 − 0.86x̂0x̂5

−1x̂6
−3 + 1.00x̂4x̂6

−1 − 0.70
∣∣∣− 0.26

Node Rules after Re-optimization (Depth-3 NLDT*)

0
∣∣∣−0.39x̂0x̂2

−1x̂6
−1x̂7

−1 − 0.96x̂1
−1x̂6 − 0.12x̂0

−1x̂1
−1x̂6

2 + 0.89
∣∣∣− 0.80

1 0.17x̂2
−1 − 0.78x̂3x̂7

−1 + 0.90x̂1
−2x̂6

−2x̂7
−3 + 0.35

2 0.82x̂7
−1 + 0.52x̂0

−1x̂4x̂6
−1 − 0.59x̂4

−1 − 0.96

6
∣∣∣− (1.3× 10−3

)
x̂4

−3x̂6
−3x̂7 − 0.86x̂0x̂5

−1x̂6
−3 + 0.65x̂4x̂6

−1 − 0.42
∣∣∣− 0.26
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Fig. S-7: Action Vs. Time plot for 10-Link manipulator problem. Figure S-7b provides the plot for NLDT* which is obtained
from the NLDTOL trained using SQP algorithm in lower-level. Similarly, Figure S-7c provides the plot for NLDT* which is
obtained from the NLDTOL trained using RGA algorithm in lower-level.

https://youtu.be/DByYWTQ6X3E
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