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Abstract—Developing a computer-aided diagnostic system for
detecting various skin malignancies from images has attracted
many researchers. Unlike many machine-learning approaches,
such as artificial neural networks, genetic programming (GP)
automatically evolves models with flexible representation. GP
successfully provides effective solutions using its intrinsic abil-
ity to select prominent features (i.e., feature selection) and build
new features (i.e., feature construction). Existing approaches have
utilized GP to construct new features from the complete set of
original features and the set of operators. However, the com-
plete set of features may contain redundant or irrelevant features
that do not provide useful information for classification. This
study aims to develop a two-stage GP method, where the first
stage selects prominent features, and the second stage constructs
new features from these selected features and operators, such
as multiplication in a wrapper approach to improve the clas-
sification performance. To include local, global, texture, color,
and multiscale image properties of skin images, GP selects and
constructs features extracted from local binary patterns and
pyramid-structured wavelet decomposition. The accuracy of this
GP method is assessed using two real-world skin image datasets
captured from the standard camera and specialized instruments,
and compared with commonly used classification algorithms,
three state of the art, and an existing embedded GP method.
The results reveal that this new approach of feature selection and
feature construction effectively helps improve the performance
of the machine-learning classification algorithms. Unlike other
black-box models, the evolved models by GP are interpretable;
therefore, the proposed method can assist dermatologists to iden-
tify prominent features, which has been shown by further analysis
on the evolved models.
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I. INTRODUCTION

IN THE United States, more than 5 million new skin cancer
cases are diagnosed every year, which makes it a challeng-

ing public health problem [1]. Among skin cancers, Melanoma
is the most dangerous form, which can be fatal if not detected
early [2]. The incidence of skin cancer has been increasing
globally with over 104 350 estimated cases including almost
11 650 deaths according to the Cancer Statistics Report in
2019 [1]. While the mortality is quite high, the survival rate of
melanoma exceeds 95% when diagnosed in earlier stages [2].
The drastic spike in the prevalence of skin cancer, invasive
biopsy tests, and immense treatment expenses has rendered
its early diagnosis a key public health concern.

For examining a skin lesion, dermatologists commonly
follow the asymmetry, border irregularity, color variation,
and dermoscopic structure (ABCD) rule of dermoscopy [3].
This rule calculates a score by measuring these four lesion
properties to effectively divide various types of skin can-
cers [4]. Another regularly utilized clinical methodology
is the 7-point checklist strategy (pigment network, streaks,
asymmetry, regression areas, dots, blue-whitish veil, and pres-
ence/absence of six colors: 1) black; 2) white; 3) dark-brown;
4) light-brown; 5) blue-gray; and 6) red) [5]. Identifying the
properties of the ABCD rule and 7-point checklist strategy in
a skin lesion image requires domain expert knowledge, which
can be expensive to employ. These significant visual proper-
ties and access to an enormous number of skin images have
interested numerous researchers to present computer-aided
diagnostic (CAD) frameworks that can help the dermatologist
in early identification.

Skin lesion images come with various artifacts, for exam-
ple, gel, reflection, and hair, which make the feature extraction
process very difficult. Moreover, automatic skin cancer image
classification is a very difficult task due to a number of fac-
tors, such as the different location of lesion in an image,
the immense intraclass variations of melanomas, and the
large interclass similarity between different kinds of skin can-
cers [6]. Along these lines, it is necessary to define strategies
that can capture and/or construct informative features, which,
by one way or another, fit to imitate these clinical properties
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and, henceforth, utilize different local, global, texture, and
color features.

Feature extraction can be applied to subimages to extract
local features while its application to the entire image extracts
global features [7]. Such diagnostic systems or classification
methods are potentially useful, which can accurately clas-
sify a particular skin cancer in actual circumstances [8]. In
addition to classifying correctly, identifying significant fea-
tures concurrently which can show critical visual patterns to a
dermatologist is another key contribution. Moreover, features
directly extracted from images may not have discriminating
information about images of different classes for accurate clas-
sification. In other words, the presence of various artifacts
often leads to redundant or irrelevant extracted features which
may lead to poor classification performance. Two feature
manipulation techniques: 1) feature selection and 2) feature
construction can be employed in such cases which help to
pick important features and construct new informative fea-
tures provided the original set of features, respectively, to
improve classification accuracy [9], [10]. Feature extraction,
on the other hand, transforms the original set of features into
a reduced representation set [11]. Most recently, convolutional
neural networks (CNNs) have gained immense popularity in
dermoscopy image analysis. Codella et al. [12] performed fea-
ture extraction from skin cancer images by utilizing the Caffe
architecture. Esteva et al. [13] tried to produce a performance
as good as a human expert by training an Inception network
on a huge private dataset with both dermoscopy and clinical
images. However, with the limited size of the available medi-
cal datasets, it is usually infeasible to train a CNN effectively
from scratch [14].

Genetic programming (GP) is an evolutionary computation
method which solves a particular problem at hand by automati-
cally evolving computer programs/solutions (often represented
as trees) [15]. GP utilizes genetic operations, such as crossover,
mutation, and reproduction, on a current population of solu-
tions to produce a new population of solutions. The success
of GP relies on its algorithmic characteristics: 1) no explicit
assumption about the problem; 2) flexible to combine with the
existing approaches to obtain benefit from the best features
of different methods; 3) robust by using a population-based
search mechanism and randomized options; 4) makes GP less
likely to get trapped in suboptimal solutions; and 5) capable of
providing unpredictable solutions which humans cannot pre-
sume useful for design domains [16]. Moreover, in GP, there
is less demand for sample data compared to some other deep
neural-network-based approach. As not all features are nec-
essary for classification, GP uses its built-in filtering ability
to select the important features at its leaf nodes (terminals),
which makes GP an effective method for feature selection.
These selected features usually have better ability to distin-
guish images of different classes, which greatly help achieve
performance gains. A program evolved by GP can be con-
sidered as a newly constructed feature (CF) that can help
improve the classification accuracy; hence, GP is an effec-
tive feature construction method. In addition to classification,
GP has been explored extensively for feature selection and
construction [9], [10]. In image analysis, a wide range of
applications have utilized GP, including object detection [17];

feature extraction [11]; feature construction [10]; and clas-
sification [18], [19]. Recently, a GP method [10] has been
developed using texture features for skin cancer detection from
dermoscopy images. This method can only solve binary clas-
sification problem and its goodness has been evaluated on a
single dataset. Though the method was fast being an embedded
approach, it cannot achieve good classification performance.

Given the evaluation criteria, feature selection algorithms
can be classified into three categories: 1) wrapper; 2) filter; and
3) embedded approaches. While a wrapper approach incor-
porates a learning (classification) method in evaluating the
feature subset, a filter approach does not utilize any classifica-
tion method [20]. An embedded approach integrates classifier
learning and feature selection into a solitary procedure [20].

Unlike the existing classification methods that produced
viable outcomes for a single image modality, the proposed
method aims to work well for skin images captured from
both the standard camera and specialized instruments. Existing
approaches automatically construct new informative features
from the complete set of original features. However, new
features built from selected features have not been investi-
gated. Performing feature selection first to identify prominent
features and constructing new features from these selected fea-
tures has the potential to improve the classification accuracy.

A. Contributions

This study develops a new two-stage GP system for skin
image classification in a wrapper approach (2SGP-W). The
aim of the first stage of GP is to filter out the redundant or
irrelevant features and pick only prominent features with high
discriminating ability between classes. The aim of the second
stage of GP is to perform classification in a wrapper approach
using only the features selected in stage-1.

The main contributions of this study are as follows.
1) We design a new two-stage GP method for feature

selection and construction in skin cancer detection from
images, which provides better classification performance
compared to the existing methods.

2) Unlike existing approaches which either include color
or texture features, the proposed method includes tex-
ture, color, and frequency-based features to increase
the classification performance. The proposed method
achieves much better performance than four state-of-
the-art skin cancer classification methods and six widely
used machine-learning classification algorithms on two
real-world skin image datasets taken from different
optical devices.

3) The proposed method utilizes very little training time
and can predict a class label to a test image in fractions
of a second, which is efficient for real-world problems
such as skin cancer detection.

II. LITERATURE REVIEW

A. Feature Extraction

1) Local Binary Pattern: Ojala et al. [21] developed an
image descriptor for feature extraction in computer vision
applications that has been extensively researched. Local binary
pattern (LBP) uses a sliding window having a fixed radius
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Fig. 1. Process of extracting LBP features from a skin image by creating
an LBP histogram.

to scan an image from top to bottom and left to right in a
pixel-by-pixel fashion. It assigns the value to the central pixel
according to the intensity values of the adjacent pixels situated
on the radius as shown in Fig. 1. With the computed values,
an LBP histogram (feature vector) is generated.

LBP are classified into two patterns: 1) uniform and
2) nonuniform. A nonuniform pattern consists of two or more
bitwise transitions circularly from 0 to 1 or 1 to 0. For exam-
ple, the code (01011100) shown in Fig. 1 is nonuniform. On
the other hand, a uniform pattern consists of at most one
such bitwise transition. For example, the codes 00011110,
01111000, and 10000000 are uniform. The size of the feature
vector is 2b where b is the number of adjacent pixels. This
size can be further reduced to b(b − 1) + 3 bins if only the
uniform patterns are considered. All the nonuniform patterns
are combined into one bin.

In skin lesions, uniform patterns help detect corners (lesion
boundary), dots (flat regions), and line ends (streaks), which
can help in distinguishing different types of skin cancers. In
this work, two sets of LBP features are extracted.

1) Fifty nine uniform LBP features extracted from
grayscale skin images, called LG features.

2) Uniform LBP features extracted from red (R), green (G),
and blue (B) color channels of an image, called LR fea-
tures. From each channel, 59 uniform LBP features are
extracted. Hence, concatenating the three feature vectors
forms a single feature vector with 177 features.

2) Wavelet Features: Texture analysis can reflect the visual
characteristics of a skin lesion, which forms the basis of
clinical diagnosis (e.g., ABCD rule of dermoscopy) [22].
The pyramid-structured wavelet analysis [23] provides internal
structure and detailed texture characteristics (local features), as
well as overall properties (global features) of the skin lesion.
Three-level pyramid-structured wavelet decomposition is used
to extract the frequency-based features from four color chan-
nels; luminance, red, green, and blue. The luminance color
channel is calculated as

luminance = (0.3 × R) + (0.59 × G) + (0.11 × B). (1)

Eight statistical measures and ratios are extracted from the
wavelet coefficients. These measures are mathematically repre-
sented in Table I, where i is an index of wavelet tree nodes (n),
Xi is a Ji ×Ki matrix of the ith node, X′

i is its transpose, xjk is

TABLE I
STATISTICAL MEASURES APPLIED TO THE WAVELET COEFFICIENTS [22]

Fig. 2. Three-level pyramid-structured wavelet decomposition [shown in (b)]
on a skin image [shown in (a)] with a schematic three-level wavelet tree with
in oval [shown in (c)].

the jkth element, and eig(Xi) are the eigenvalues. J and K
are dimensions (resolution) of the matrices (images) over
which wavelet decomposition is applied. These statistical mea-
sures are extracted first from the original image and are
further divided by a factor of two at each decomposition
level.

Fig. 2(a) shows a skin lesion image and Fig. 2(b) shows
its pyramid-structured wavelet decomposition. Fig. 2(c) dis-
plays the three levels in a wavelet tree structure where ovals
represent nodes. The wavelet tree consists of a total of 13
nodes where the top parent node is the original image, and
four nodes in each of the three subsequent decomposition lev-
els (3 × 4 = 12) are the wavelet coefficients. On each tree
node, the eight statistical measures as given in Table I, are
applied to give 8×13 = 104 features. Since we computed these
features on four color channels, the total number of wavelet
features becomes 416 (= 8 measures × 13 nodes × 4 color
channels).
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B. Related Work

Recently, the ensembles of CNNs have been utilized
for classifying skin images, providing promising results.
Harangi et al. [24] developed an ensemble of VGGNet,
GoogLeNet, and AlexNet to classify skin cancer images, and
proved that the ensemble-based approach has provided better
results than all the three of its member CNNs. Valle et al. [25]
combined the concepts of transfer learning and ensembles of
CNNs. Their results show that their method with an ensemble
of CNNs model outperformed the existing methods with unsta-
ble sequential designs. Xie et al. [26] developed a melanoma
detection methods using the artificial neural-network (ANN)-
based ensemble model. The method achieved high classifica-
tion accuracy mainly due to the new border features employed
and the proposed ANN architecture. However, training a
model effectively with these deep learning approaches gen-
erally requires a huge number of images. Moreover, deep
learning approaches have a “black-box” model, which hinders
the insights of prominent features.

To solve the multiclass classification problem of skin
images, a hierarchical classification approach has been adopted
by many researchers. Ballerini et al. [27] designed a hier-
archical k-nearest neighbors (k-NN)-based model for non-
melanoma classification from standard camera images (non-
dermoscopy). This system relied on expert knowledge as
it required handcrafted texture and color features which is
usually difficult to extract when dealing with large image
datasets. Shimizu et al. [28] also used a hierarchical system
and extracted several color, texture, and subregion features
to classify four skin cancer classes. The hierarchical struc-
tures in [27] and [28] produced a better performance com-
pared to the standard nonhierarchical classification algorithms.
Barata and Marques [29] performed a hierarchical diagno-
sis for skin cancer multiclass classification using a pretrained
DenseNet-161 architecture. They also investigated the sig-
nificance of color normalization and lesion segmentation.
Recently, Mahajan et al. [30] developed a skin disease clas-
sification method using few-shot learning strategies based on
metalearning. Their results demonstrated the effectiveness of
using group equivariant convolutions to improve disease clas-
sification. However, the experimental setup requires the images
to be resized to a fixed resolution irrespective of their origi-
nal sizes, which may lead to loss of texture information, and
biased results in datasets with varied image sizes. In general,
the use of a pretrained CNN requires preprocessing of a dataset
to the same input settings for which CNN was originally
developed, such as fixed-size images and RGB or grayscale
images, which increases the computational time and reduces
the versatility of using any image size. In addition, decreasing
the size of a skin image will eventually distort the aspect ratio,
resulting in the loss of informative features.

Garnavi et al. [22] developed a melanoma detection method
by employing various border, geometrical, and texture fea-
tures. This method utilized a filter approach (gain-ratio-
based feature selection) to generate an optimal feature set.
Successfully applying feature selection, this diagnostic system
produced an overall accuracy of 91.26%. However, the method

lacks an appropriate way of using various types of features
concurrently. Recently, Alfed and Khelifi [31] proposed a
bag-of-features approach with new texture and color features
for melanoma detection. The authors successfully demon-
strated the effectiveness of histogram of gradients (HoG) and
histogram of lines features in skin cancer detection using
dermoscopy and standard skin image datasets.

Kawahara et al. [32] performed 10-class classification using
the Dermofit dataset by employing filters from a pretrained
CNN. Using a standard overall classification accuracy for a
highly imbalanced dataset may produce biased results toward
the majority class, which is a limitation of their work. From
the confusion matrix shown in [32], the overall accuracy is
81.80%, whereas the balanced accuracy is 60.12% for the
10-class classification problem. Most researchers have used
the overall accuracy until the International Skin Imaging
Collaboration (ISIC) 20181 challenge started collecting bal-
anced accuracy along with other evaluation measures.

Li and Shen [33] developed a deep learning-based lesion
indexing network (LIN) to detect and classify skin cancer from
images. Their method extracted informative features which
resulted in good overall performance. The authors concluded
that with better segmentation, their method could achieve bet-
ter results. Hasan et al. [34] developed a CNN-based method
for skin cancer detection utilizing various feature extract-
ing techniques to extract features from dermoscopic images.
They achieved 89.5% accuracy on test data, which needed
improvement. Moreover, the classification model experienced
overfitting which is a limitation of their method.

Tschandl et al. [35] developed a CNN-based skin cancer
detection method and checked its performance on pigmented
melanocytic lesions from dermoscopic images. However, their
method could not achieve sufficient accuracy. They found
that distinguishing between nonmelanocytic and nonpigmented
skin cancers is a difficult task. Saba et al. [8] developed a
three-step deep CNN-based skin cancer detection method. The
first step performs color transformation to enhance contrast.
The second step uses CNN to extract lesion boundaries. The
last step uses transfer learning to extract deep features. Their
method provided good results on only a small dataset, but
could not achieve good performance on other datasets.

Jafari et al. [36] developed a CNN-based model to detect
melanoma from skin cancer images. Their method incorpo-
rated preprocessing and postprocessing images before and
after segmentation, respectively. Their method used both local
and global contextual information concurrently to segment the
lesion regions. Their method achieved very good performance
but did not mention computational time, which is important in
real-world cancer detection problems. Le et al. [37] developed
a transfer learning model, called ResNet50, for skin cancer
image classification. Their method did not use any prepro-
cessing steps or handcrafted feature selection. The authors
concluded that results can be improved by using prepro-
cessing steps and appropriate feature extraction and selection
methods before classification. Bozorgtabar et al. [38] utilized

1https://challenge2018.isic-archive.com/
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deep convolution networks to develop a skin lesion segmen-
tation method using an unsupervised learning approach. Their
method produced a global map for skin lesions with effec-
tive segmentation results. Ali et al. [39] compared two deep
learning approaches: 1) a supervised and 2) an unsupervised,
for the task of skin lesion segmentation. Their results showed
that the supervised approach performed better than the unsu-
pervised approach in terms of the dice coefficient and Jaccard
index. However, the segmentation results shown by supervised
approach missed the lesion area where the skin images include
many artifacts.

In the literature, GP has been extensively utilized for image
analysis [7], [17], [40]–[42]. In addition to image analysis,
GP has successfully achieved promising results in schedul-
ing, classification [43], and symbolic regression [44]. Earlier,
Zhang et al. [17] proposed an object detection method using
GP. Their method is capable of locating multiple objects
in large images and predicting class label of each detected
object. The results evaluated on three datasets of varying dif-
ficulty demonstrated the ability of the evolved GP program to
object detection and multiclass classification. Ryan et al. [41]
proposed a Stage-1 breast cancer detection procedure using
GP. The procedure identifies suspicious malignant regions by
employing multiple stages, including preprocessing, segmen-
tation of breast region, and feature extraction. Results showed
that the solutions provided by GP for this difficult cancer
detection task are human readable.

Al-Sahaf et al. [7] developed a new GP-based image
descriptor for texture image classification. The method auto-
matically generates a feature vector without any human inter-
vention. Experiments on nine image descriptors and seven
image datasets depicted the effectiveness of their multiclass
classification method. Later, the algorithm in [7] was utilized
to perform transfer learning by Iqbal et al. [42], to deal with
even more difficult texture image classification tasks. This
transfer learning approach has the ability to solve complex
tasks that most other algorithms remain unable to tackle, as
shown by the results. Most recently, Bi et al. [11] proposed a
GP method to learn novel features automatically, and simul-
taneously evolve an ensemble for image classification. This
method uses commonly used classification algorithms and
image-related operators, such as the Gabor filter, Laplacian
filter, LBP, and HoG, to evolve ensembles of classifiers for
classification. This method has provided promising results on
several image datasets. However, the generated models formed
by various classifiers are complex and challenging to interpret.

For the problem of skin image classification, a GP-based
binary classification method was designed, which combined
biomedical (domain-specific) and LBP (domain-independent)
features to achieve good results [45]. Later, they utilized fea-
ture selection and construction abilities of GP using local
and global features for melanoma detection in a binary
classification problem [10]. They developed a binary clas-
sification method in [46] by employing a multitree GP in
an embedded approach for melanoma detection. They further
developed a multiclass classification method in [14] using a
wrapper approach to discriminate even ten classes of skin
cancer images. With human-readable GP evolved models,

they identified prominent skin image features that are poten-
tially helpful to a dermatologist to identify particular visual
patterns and effectively diagnose skin cancers in real-world
circumstances.

Most of the existing approaches have tested the goodness of
their method(s) by using single-source images which are cap-
tured from one optical device. In real-world settings, however,
images are captured from several instruments and, thus, these
techniques can not be extended to other images captured from
different instruments or may work poorly. Accordingly, there is
a need for classification methods for skin cancer images with:
1) the ability to provide good classification results without
using expert knowledge; 2) sufficient information regarding
local, global, color and texture properties required to achieve
good classification performance; 3) the ability to be applied to
multisource images; 4) the ability to be automatically gener-
ated without the need of setting a huge number of parameters;
5) the ability to take images of different sizes as input; and
6) the ability to easily interpret and to identify prominent
features necessary to guide the dermatologist well enough to
classify different skin cancers.

III. PROPOSED METHOD

The proposed 2SGP-W is described in this section.
Figs. 3 and 4 present the overall structure of the training and
testing/evaluation processes, respectively. The method starts by
converting the image datasets to feature vectors by applying a
feature extraction method as described in Section II-A. During
stage-1, GP takes these features as input. In this work, GP uti-
lizes its traditional tree-like representation where an individual
consists of one tree. GP has the intrinsic ability to select fea-
tures during the evolutionary process. GP usually picks the
most prominent features at its leaf nodes, as not all features
can provide good between images of different cancer types.
GP creates a tree with prominent features using genetic oper-
ators, such as crossover, mutation, and elitism. We expect that
the selected features have high discriminating ability between
classes. A classification algorithm, such as a decision tree
(J48), takes these prominent features as input for classifica-
tion. GP is run for multiple (10) times to get the best evolved
tree. To this end, we obtain a GP tree whose selected features,
when provided to the classification algorithm, have achieved
the highest classification performance among all the GP runs.
Stage-1 ends here, and the features showing up in the best
individual (evolved tree) with the best classification results on
training data are selected.

The selected features which are obtained from stage-1 are
used as the input to stage-2 for feature construction and clas-
sification. Here, again GP is run for multiple (30) times in a
wrapper approach using the selected features (i.e., the output
from stage-1) only. It is expected that evolving a tree from the
selected features has more potential as compared to evolving a
tree from the original set of features. This is because the origi-
nal set of features consists of both relevant features with good
discriminating ability, and irrelevant or redundant features with
least distinguishing ability, so stage-1 tries to get rid of those
irrelevant features and pick the prominent relevant features.
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Fig. 3. Training process of the proposed 2SGP-W method.

Fig. 4. Test process of the proposed 2SGP-W method.

Though stage-1 can still select some irrelevant features, but
most of them are not selected. Hence, in stage-2, we have
more relevant features in the feature set which results in good
CF. The highest performing tree evolved on the training data is
selected which is considered as a single CF. The selected fea-
tures (computed in stage-1) and the CF (computed in stage-2)
are concatenated together to form a final feature vector. This
feature vector is given to a classification algorithm such as
J48 (the same algorithm as in stage-1) for classification. The
main aim of 2SGP-W is to improve the feature subset selec-
tion (stage-1) and the CF (stage-2) during the evolutionary
process while providing good classification performance by a
machine-learning classification algorithm such as a J48.

For illustration, let us take the example of the 59 LBP
(LG) features. We provide a complete set of 59 features to
the proposed method. In stage-1, GP uses these 59 features
to evolve a tree. In its evolved tree, GP selects important fea-
tures, let us assume GP selects 15 features in one run. These 15
selected features are provided to a machine-learning classifica-
tion algorithm such as J48 to perform classification. This is the
process in stage-1 and is repeated ten times to obtain ten differ-
ent classification accuracies. Since in each GP run, GP starts
evolving its population with a different seed; thus, we obtain
different evolved populations in each run. From each run, we
select the highest performing tree as the best GP tree. Since the
proposed method uses ten GP runs, we obtain ten best trees
at the end of stage 1. Among these ten trees, the tree with
the highest performance is picked. For example, this best tree
consists of 13 LBP features at its leaf nodes. These selected
features are used to make the feature subset for stage-2. In

stage-2, GP evolves a tree based on these 13 selected features
only, and not the entire set of 59 features. The number of GP
runs in stage-2 is 30. In one GP run, for example, GP selects
only eight features at its leaf nodes from the given set of 13
features. Also, the GP tree with itself is a CF. The value of this
CF is computed using the values of the selected features at the
leaf nodes and the mathematical operators selected in the GP
tree. At this point, a feature vector is formed using these eight
selected features and the one CF. This newly formed feature
vector is provided to the same classification algorithm such
as J48 to obtain classification accuracy. GP runs for 30 times
(each time using 13 features) and obtains 30 accuracies, which
are averaged to obtain the final classification accuracy.

To classify a test image, the methodology is shown in Fig. 4.
A test image is transformed to a feature vector using a feature
extraction method described in Section II-A. We utilize the
best trees from stage-1 and stage-2 to create a feature vector
of GP-selected and GP-CFs. This feature vector is given to a
classification algorithm to predict the class label.

A. Fitness Function

The overall standard classification accuracy is defined as
the number of correctly classified images divided by the total
number of images in a dataset. Using this accuracy as a fitness
is not suitable when there is a class imbalance problem. Class
imbalance refers to different number of images in different
classes in a dataset. This accuracy may lead to results biased
toward the majority class. In such a class imbalance scenario,
using balanced accuracy as a fitness function is appropriate
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which is defined as

fitness = 1

z

z∑

i=1

TPi

TPi + FNi
(2)

where z represents the total number of classes, TP represents
the true positives, and FN represents the false negatives. The
ratio (TPi/TPi + FNi) shows the true positive rate (TPR) of
class i. From (2), balanced accuracy takes into account the
accuracies of all classes in a dataset.

B. Terminal Set

The terminal set consists of three types of features derived
from the feature extraction methods mentioned in Section II-A.
The details of these features are as follows.

1) LG: Gray-level skin images are used to extract 59 LBP
features as described in Section II-A1, following the
procedure shown in Fig. 1.

2) LR: From each of the red, green, and blue (RGB)
color channels, 59 LBP features are extracted which are
concatenated in a single feature vector with 177 (=3
channels 59 × LBP features) LR features.

3) Wavelet: The local and global properties are included
by using three-level pyramid-structured wavelet decom-
position as described in Section II-A2. Eight statistical
measures defined in Table I are extracted from each node
of the wavelet decomposition to obtain a total of 416
wavelet features.

The value of the ith feature for the above three types of
features is indicated by Fi, as shown by the GP individuals
in Figs. 10 and 11. For LG and LR features, a window size
of 3 × 3 pixels and a radius of 1 pixel (LBP8,1) is adopted,
which are the fundamental and widely used settings for LBP.

C. Function Set

The function set consists of three kinds of operators as
follows.

1) Arithmetic: {+,−,×, /}, where addition, subtraction,
and multiplication have the original arithmetic mean-
ing, whereas division is protected which means when a
number is divided by zero it returns zero.

2) Trigonometric: {sin, cos}.
3) Conditional: {if } operator takes four input values. If the

first value is greater than the second value, it returns the
third value; else, it returns the fourth value.

IV. EXPERIMENT DESIGN

This section discusses the design of the experiments. It cov-
ers the details of the datasets, the benchmark techniques for
comparison, the experiments, and the parameter settings.

A. Datasets

The proposed 2SGP-W method is evaluated on two skin
image datasets of varying difficulty. Details of these datasets
are given in Table II. The PH2 dataset is publicly available,2

2https://www.fc.up.pt/addi/ph2%20database.html

TABLE II
REAL-WORLD SKIN CANCER DATASETS

whereas the Dermofit dataset is not.3 The datasets vary in
terms of the number of classes, the number of images, the
size of images, and the image capturing optical device.

1) PH2: A dataset of specialized dermoscopic images,
namely, PH2 [47] is acquired from Pedro Hispano Hospital
Portugal. Dermoscopy involves using an efficient illumination
system and an optical tool to view skin lesions at a higher
magnification. A liquid gel/solution is placed on the lesion
before capturing the image, which allows the dermatoscope
(device) to obtain morphological patterns in the inner layers
of human skin. These images are thus informative enough to
examine them for skin cancer detection.

The dataset includes 8-bit RGB images of skin lesions,
their binary masks, and clinical diagnosis. The dataset con-
sists of three types of skin lesion images: 1) common nevi;
2) atypical nevi; and 3) melanoma. For multiclass classifi-
cation experiments, PH2 has these three classes. Samples of
the three categories of skin lesions are presented in Fig. 5(a).
In dermatology, there are some nonmalignant (benign) moles
which may have chances to develop malignancy over time.
Such moles are grouped in atypical nevi class. For a binary
classification task, the atypical nevi and benign classes are
combined together to make a single benign class against the
melanoma class.

2) Dermofit Image Library: The University of Edinburgh
provides a standard camera image library of 1300 high-quality
skin lesions [27]. The images are captured under standardized
conditions. The dataset is divided into ten classes based on
opinions from expert dermatologists and dermatopathologists.
An image sample from each of the ten skin cancer types in
this dataset is shown in Fig. 5(b). The details of the dataset
including class names, number of images, and range of image
sizes in each class have been detailed in Table II.

For evaluating the binary classification experiments, two
classes are used: 1) Melanocytic Nevus (mole) as benign
and 2) Malignant Melanoma as malignant. For multiclass
classification experiments, Dermofit has ten classes.

B. Experiments

For performing the experiments, 10-fold cross validation is
used using random stratified sampling. This is because the

3https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-
image-library.html
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Fig. 5. Image samples from the two datasets. (a) PH2: two image samples
from the three classes. (b) Dermofit: each image belongs to one class.

TABLE III
PARAMETER SETTINGS OF THE PROPOSED 2SGP-W METHOD

PH2 dataset is very small (200 images) and some classes
in Dermofit have very small number of images (Pyogenic
Granuloma with 24 images). The dataset is divided into ten
folds where training uses nine folds and the remaining one fold
is used for the testing process. For all the different combina-
tions of folds, this cycle is repeated ten times and the results
are recorded as the mean of the fitness values.

During stage-1 and stage-2, GP is executed for 10 and 30
times, respectively. After stage-1, among the ten runs, the best
tree with highest performance on the training data is used to
create a feature vector of GP-selected features. Using these
GP-selected features, GP is executed 30 times during stage-2.
It is worth mentioning here that at both stages the test folds
remain unseen to prevent feature selection and feature con-
struction biases. In each set of experiments, the random seeds
for the 30 runs are all different. The Evolutionary Computing
Java-based package is used to implement GP [48].

C. Parameter Settings

The parameter settings of our proposed 2SGP-W method
are listed in Table III. In both stages, the evolutionary process
stops when the classification algorithm such as a J48 achieves
100% accuracy or a maximum of 50 generations is reached.

D. Benchmark Techniques

The proposed 2SGP-W method is compared to six com-
monly used classification methods to check its effectiveness:
Naïve Bayes (NB), SVM with a radial basis function (RBF)
kernel, k-NN where k = 5, J48, random forest (RF), and
multilayer perceptron (MLP). The widely applied Waikato
Environment for Knowledge Analysis package version 3.8 [49]

is utilized to implement these methods. In k-NN, k is set to 5
to avoid noisy instances while still being efficient. For RF, the
maximum depth of a tree and the number of trees are set to 5
and 10, respectively. In MLP, the momentum, training epochs,
learning rate, and number of units in one hidden layer are set to
0.2, 60, 0.1, and 20, respectively. These parameters are taken
from an earlier work [14] where they are empirically defined,
since they produce the best results amongst other settings.

Moreover, we also compare 2SGP-W with recently
developed state-of-the-arts for the PH2 and Dermofit datasets,
which are compared in Section V-E, and discussed as follows.

1) Patiño et al. [50] developed a multiclass classifica-
tion method using the PH2 dataset where different
morphological operations are designed to encompass
asymmetry, color, and border features. Three classifica-
tion methods are used: a) SVM; b) logistic regression;
and c) a fully connected neural network. The neural
network outperformed the other two methods with an
average accuracy of 86.5%.

2) Ain et al. [10] developed a 2Stage-GP method in an
embedded approach using LBP features. They have eval-
uated performance of their method on the PH2 dataset
only. Their method can only solve binary classification
problem and provided 78.17% balanced classification
accuracy.

3) Alkarakatly et al. [51] designed a 5-layer CNN to
classify the 3-class classification problem on the PH2

dataset. Their method produced an overall accuracy
of 90%. Using overall accuracy for imbalanced classi-
fication problems leads to a bias toward the majority
class. Moreover, they reported a TPR of 83% which is
clearly lower than the TPR of expert dermatologists that
is, 90% [51].

4) Kawahara et al. [32] extracted features from a pre-
trained CNN which are provided to a logistic regression
classifier using the Dermofit dataset to classify its ten
classes. Their method achieved 81.80% overall accuracy,
which equals 60.12% balanced accuracy on the Dermofit
dataset.

5) Fisher et al. [52] developed a hierarchical decision tree,
where a different k-NN is trained for each decision
node. 2500+ features are extracted using generalized co-
occurrence texture matrices and lesion specific charac-
teristics. This method achieved 78.10% overall accuracy
and 70.50% balanced accuracy on the Dermofit dataset.

V. RESULTS AND DISCUSSION

A. Overall Results

The results of the proposed method are presented in
Tables IV and V for binary and multiclass classification prob-
lems, respectively. Vertically, these tables comprise of three
blocks, which correspond to the results of using LG, LR, and
wavelet features, respectively. Horizontally, the table consists
of five columns where first lists the classification algorithm,
second and third show, respectively, the test performances on
the PH2 and the Dermofit datasets using all features, repre-
sented by “All.” Similarly, the rest of the columns show test
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TABLE IV
RESULTS OF Binary Classification: THE ACCURACY (%) ON THE TEST SET

USING ALL FEATURES, AND 2SGP-W [RESULTS ARE REPRESENTED IN

TERMS OF MEAN ACCURACY AND STANDARD DEVIATION (x̄ ± s)]

performances using the proposed 2SGP-W method on the two
datasets. The values of the results using all features is the
mean of applying 10-fold cross validation to the dataset. Since
2SGP-W is repeated 30 times, hence, we obtain 30 accuracies
for each classifier which are represented as mean and standard
deviation (x̄ ± s) in Tables IV and V.

To obtain a clear comparison between using different meth-
ods, the results are also tested using the one-sample t-test.
It is applied to compare 2SGP-W to the other determinis-
tic methods. This statistical test has been applied to the test
results to check which method has better ability to discriminate
between different classes of skin cancers. The symbols “↑,”
“↓,” and “=” are used to represent significantly better, sig-
nificantly worse and not significantly different performance,
respectively, of the 2SGP-W compared to all features. For
example, on the PH2 dataset, in Table IV, the test performance
of SVM with 2SGP-W using LR features is represented as
“89.84 ± 1.41 ↑” where the ↑ sign represents that 2SGP-W
significantly outperformed using all features.

B. Dimensionality Reduction

Analyzing the effect of dimensionality reduction achieved
by the 2SGP-W method, it has been seen that in case of the
PH2 dataset, GP selects (on average, 24) even less than the half
of the total 59 LG features in its tree with a tree depth of 6 as
shown in Table IV. Here, the number of features is 24.43 com-
puted as the average number of features appeared in the 30 GP
runs during stage-1. The number of features have significantly
reduced in case of LR features (from 177 to around 35.57) and
wavelet features (from 416 to around 38.16). A similar trend
in dimensionality reduction has been observed in the 2SGP-
W evolved programs for multiclass classification. Using LG,
LR, and wavelet features, the average number of selected fea-
tures are 30.36, 39.66, and 40.70, reduced from a total of 59,
177, and 416 features, respectively. In the proposed 2SGP-W

TABLE V
RESULTS OF Multiclass Classification: THE ACCURACY (%) ON THE TEST

SET USING ALL FEATURES, AND 2SGP-W [RESULTS ARE REPRESENTED

IN TERMS OF MEAN ACCURACY AND STANDARD DEVIATION (x̄ ± s)]

results, all the classification algorithms have achieved better
performance compared to using “All” features in non-GP clas-
sification algorithms. This has clearly demonstrated that GP
has pushed most of the classification algorithms to achieve
good performance with its feature selection and construction
ability even with a reduced number of features.

C. Binary Classification

Table IV shows the results of binary classification, or in
other words, identifying melanoma from benign images. The
results show that 2SGP-W has provided much better results
than the non-GP classification algorithms which use the entire
set of features. The proposed method provides the highest
results on PH2 using wavelet features with SVM reach-
ing 97.50% average accuracy. On Dermofit, wavelet features
remain prominent by providing 99.34% with RF. This shows
that wavelet features which capture both local and global prop-
erties of skin images have the most potential in distinguishing
melanoma from benign images. Since, these wavelet features
are extracted from multiple color channels, they provide color
information as well. These characteristics of wavelet features
make them more informative compared to the LBP features
which encompass only local texture information. The result
of the statistical tests show that 2SGP-W (with an ↑ sign in
Table IV) has significantly outperformed all the commonly
used classification algorithms on both datasets.

D. Multiclass Classification

Table V shows the results of multiclass classification. The
non-GP methods using all features have achieved 71.50% and
64.46% highest accuracy with MLP on PH2 and Dermofit,
respectively. It is evident that 2SGP-W has effectively
provided much better results compared to the non-GP classifi-
cation algorithms using all features. Among the two datasets,
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Fig. 6. Convergence plots for the PH2 dataset in the binary classification task where the blue line represents stage-1 and the red line represents stage-2.
(a) NB. (b) SVM. (c) k-NN. (d) J48. (e) RF. (f) MLP.

Fig. 7. Convergence plots for the Dermofit dataset in binary classification task where the green line represents stage-1 and the pink line represents stage-2.
(a) NB. (b) SVM. (c) k-NN. (d) J48. (e) RF. (f) MLP.

TABLE VI
COMPARISON WITH THE STATE OF THE ARTS ON THE TWO DATASETS

2SGP-W provides good results on the PH2 dataset with three
classes (relatively easy task) achieving 97.24% average accu-
racy with SVM. Similarly, for the difficult task of classifying
ten types of skin cancers in Dermofit, the performance is also
very good. Here, RF achieved the highest test performance
using wavelet features producing 85.67% average accuracy.
The result of the statistical tests show that 2SGP-W (with
an ↑ sign in Table V) has significantly outperformed all the
commonly used classification algorithms on both datasets.

E. Comparison With the State-of-the-Arts

Table VI compares 2SGP-W and existing methods regard-
ing datasets used, strategies applied, and results achieved. For
PH2, the most recent state of the art has been developed by
Patiño et al. [50] which has achieved 86.5% balanced accuracy
in the multiclass classification problem using 10-fold cross
validation. Ain et al. [10] developed a two-stage GP method
for melanoma detection in a binary classification task. This
method [10] is tested on only PH2 using 10-fold cross val-
idation and produced a balanced accuracy of 78.17%. Since
the experimental setups in both methods [10], [50] are the
same as our proposed 2SGP-W method, we can make a direct
comparison. In binary classification, 2SGP-W with 97.50%
performance outperformed the first method [50] by providing
an increase of nearly 10% accuracy. In multiclass classifica-
tion, 2SGP-W with 97.24% accuracy outperformed the second
method [10] with an improvement of nearly 19% accuracy. In
comparison to [51], 2SGP-W outperformed this CNN method
achieving nearly 7% increased performance.

Kawahara et al. [32] provided an overall accuracy of
81.80% on Dermofit using pretrained CNN with an exper-
iment set of 5-fold cross validation. However, according to
the confusion matrix given in the study, this overall accuracy
equals 60.12% balanced accuracy. Recently, Fisher et al. [52]
provided state-of-the-art results on the Dermofit dataset.
Kawahara et al. [32] and Fisher et al. [52] reported 70.50%
balanced accuracy using leave-one out cross validation. Since
comparison cannot be done directly with these two methods
(5-folds versus 10-folds, and leave-one out versus 10-folds),
here we try to give a general estimate of accuracy achieved
by the current state-of-the-arts on the Dermofit dataset.

VI. FURTHER ANALYSIS

A. Overall Analysis

To explore the effectiveness of employing two stages instead
of following the traditional approach of employing one stage,
we have further analyzed the evolutionary process of stage-
1 and stage-2 as depicted in Figs. 6 and 7. These plots are
generated for both the binary and multiclass classification
experiments using LR features. The plots for multiclass classi-
fication are given in the supplementary material. Though there
are 50 generations in both stages but for comparison purposes,
here we have shown stage-1 executed till 100 generations (51st
generation to 100th generation is, therefore, shown with dot-
ted line). This is to examine the effect of having the second
stage, that is, whether running stage 1 for 100 generations can
achieve better performance of the proposed 2-stage method
with 50 generations in each stage (and stage-2 uses the fea-
tures selected in stage-1 as the input). In other words, is stage-2
really necessary or needed? By doing so, we would like to
see the difference in training performance among the 51st to
100th generations in stage-1 and the 1st to 50th generations
in stage-2. To make this obvious from the graphs, we have
plotted stage-2 from 51 generation onward on the x-axis.

From the plots in Figs. 6 and 7, a general trend can be
observed; in the start of the evolutionary process, GP tries
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Fig. 8. Average computational time for binary classification using 2SGP-W
method on the datasets. (a) Training time. (b) Test time.

to explore the search space and makes larger jumps, regard-
less of whether it works with all the original features or only
the selected features. To obtain a clear understanding of how
stage-2 is effective, we observe the stage-2 starts from a higher
average accuracy most of the time compared to the aver-
age accuracy of 51st generation in stage-1. For example, in
Fig. 6(a) on the PH2 dataset with NB as a wrapper classi-
fication algorithm, stage-2 starts at 86.84% average accuracy
(shown in red color), whereas stage-1 at its 51st generation
reaches 84.52% average accuracy. This trend is not always
true. In a few cases, stage-2 with the selected features starts
with a lower average accuracy compared to the stage-1. Such
an example is given in Fig. 6(b) with SVM as a wrapper
classification algorithm. However, whether stage-2 starts with
a lower or a higher average accuracy compared to stage-1,
it always provides better average accuracy at the end of the
evolutionary cycle. This is shown in Fig. 6(b), where stage-
2 starts with 82.16% average accuracy, cuts the stage-1 line
at 85.78%, and keeps improving afterward by making larger
jumps to end at a better average accuracy of 93.46% com-
pared to stage-1 ending at 87.95%. Hence, we conclude that
selected features have potential to push GP make bigger jumps
and help classification algorithm learn better to achieve good
training performance.

B. Computational Time

The average training time required for 2SGP-W to execute
the two stages and to test their performances on the test data
in the binary and multiclass classification tasks using wavelet
features is depicted in Figs. 8, and 9, respectively. Various
factors affect the amount of time it takes to train a classifi-
cation algorithm, such as: 1) how big is a dataset? 2) which
feature selection approach (filter or wrapper) is adopted? and
3) how many features are used to evolve an individual? While
the proposed method seems expensive to implement with two
GP stages and a wrapper method, creating a solution will not
take longer than 18 min on average.

In Fig. 8, NB takes the minimum time to train a model
among the six wrapper binary classification algorithms for
binary classification on both datasets. Overall, RF remains
prominent being the fastest and highest-performing wrapper
classification algorithm on the PH2 and Dermofit datasets. RF
spends 2.78 and 4.17 h, respectively, to evolve good individ-
uals during stage-1 and stage-2. With these trained evolved
individuals, testing an unseen skin image after converting it to

Fig. 9. Average computational time for multiclass classification using
2SGP-W method on the datasets. (a) Training time. (b) Test time.

an original set of feature vector takes only on average 0.60 and
8.00 ms. Therefore, we may conclude here that the proposed
2SGP-W method for binary classification is very efficient for
identifying melanoma in real-time clinical circumstances. It
can allow dermatologists to determine whether or not a biopsy
is needed during diagnosis.

For multiclass classification, Fig. 9(a) and (b) shows that the
computational time increases many folds while training a large
(such as Dermofit) dataset with 1300 images as compared to
training a small (such as PH2) dataset with 200 images. A
comparison of Figs. 8 and 9 illustrates that binary classifica-
tion tasks take less training time as compared to multiclass
classification tasks. Similar to the test time in binary classifi-
cation, using these trained evolved individuals during stage-1
and stage-2, an unseen skin image can be tested in fractions
of a second as shown in Fig. 9(b).

C. Evolved GP Individuals

In addition to feature selection and feature construction,
the intuition behind using GP is its ability to evolve inter-
pretable solutions. This section describes the two good GP
individuals evolved during stage-1 and stage-2 as shown in
Figs. 10 and 11. They have been taken from Dermofit exper-
iments using RF in a multiclass classification task. From the
evolved GP individual shown in Fig. 10, GP has selected
only 11 features among a total of 416 wavelet features dur-
ing stage-1, effectively reducing dimensionality many folds.
Using these eleven features as input to stage-2, GP further
selects most prominent features to build an informative GP
CF as shown in Fig. 11. These selected (eleven features from
stage-1) and constructed (one feature in stage-2) features are
provided to RF, where RF keeps improving the classification
performance during the evolutionary cycle.

The wavelet features selected by the GP individual shown
in Fig. 10 are listed in Table VII. We conclude the following
from this table.

1) Three out of the 11 features belong to the third-level
nodes, reflecting our use of up till three levels of wavelet
decomposition. This illustrates that further decomposi-
tion does not have informative features for classification
purposes.

2) Texture features obtained from red, green, and blue
color channels are more informative and are chosen to
construct this individual.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on July 10,2022 at 22:43:26 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 10. Good GP individual evolved in stage-1 on the Dermofit dataset in the multiclass classification problem. This GP tree selects only eleven features
from a total of 416 wavelet features constructively applying dimensionality reduction. These eleven features are selected in stage-1 and given as input to
stage-2 which evolves another GP tree as shown in Fig. 11.

Fig. 11. Good GP individual evolved in stage-2 on the Dermofit dataset
in the multiclass classification problem. This GP tree selects eight wavelet
features from eleven input wavelet features (selected during stage-1). This
GP is a CF and provided along with the eleven selected features to RF for
classification.

TABLE VII
DETAILS OF THE WAVELET FEATURES SELECTED IN THE GP INDIVIDUAL

SHOWN IN FIG. 10 IN TERMS OF STATISTICAL MEASURE, COLOR

CHANNEL, AND LEVEL OF DECOMPOSITION AND NODE

3) The node column in Table VII shows that the selected
features are extracted from the low and middle-
frequency channels.

4) Norm, entropy, energy, and standard deviation are
prominent selected features among the statistical
measures.

Moreover, the subtrees “(F46–F142)” and “if (F95, F64, F309,
F234)” appear four and nine times, respectively, which show
the potential of these subtrees to generate this GP tree.

D. Constructed Feature

To see why the selected and CFs can achieve good
performance, we take an example of a CF shown in Fig. 11
evolved in a GP run during stage-2 on the Dermofit dataset in
the multiclass classification task. This tree is constructed from
eight features. The values of this CF are plotted in Fig. 12
where the ten boxes represent the ten classes in the Dermofit
dataset. It can be seen that the range of values for one class
differs from the range of values for the other classes. For exam-
ple, the values of the SCC class range between 0.11 and 0.52,
whereas the values of the PG class range between 0.67 and 1.0.

Fig. 12. Values of the CF shown in Fig. 11 on the Dermofit dataset with
ten classes.

Similarly, more than 50% values of the SCC class differ from
the Melanoma, Mole, BCC, IC, SK, and DF classes. On the
other hand, the values of the SCC class overlap completely on
the AK and Hg classes. This shows that this CF alone cannot
distinguish SCC instances from all the other classes; both the
selected and CFs are needed. The results show that GP not
only selects important features but also constructs informative
features with high discriminating ability.

VII. CONCLUSION

In this article, a novel two-stage GP method in a wrapper
approach has been developed for skin cancer image classifi-
cation. The proposed method includes both color and texture
information to effectively discriminate between images of dif-
ferent classes. The features were extracted using LBP and
pyramid structured wavelet decomposition from various color
channels of skin lesion images. These domain-independent
features have sufficient local pixel-based RGB and global color
variation information and help achieve good results without
expert intervention. The proposed two-stage GP method per-
forms feature selection during stage-1 and feature construction
from the selected features only during stage-2. The selected
and CFs are provided to a classification algorithm such as J48,
which has produced effective results for skin cancer binary and
multiclass image classification.

The proposed method has produced significantly better
results as compared to the commonly used classification
algorithms (NB, k-NN, SVM, J48, RF, and MLP), the four
state-of-the-art methods, and an existing embedded GP method
on two real-world skin image datasets. The method success-
fully provided effective results without using any domain
knowledge. This showed the evidence of effective feature

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on July 10,2022 at 22:43:26 UTC from IEEE Xplore.  Restrictions apply. 



UL AIN et al.: AUTOMATICALLY DIAGNOSING SKIN CANCERS 13

selection and feature construction by GP. With very less num-
ber of selected and CFs as compared to the number of original
features, the proposed method has significantly increased the
classification performance. The selected features by GP have
high discriminating ability compared to the original set of fea-
tures, which is evident from the convergence plots for stage-1
and stage-2. In other words, selected and CFs always perform
better compared to the original set of features. We have also
found that wavelet features with detailed internal structure and
color information remain prominent in providing the highest
classification accuracy for binary and multiclass classification
on both datasets.

Although the proposed method has provided effective and
efficient solutions to the complex problem of skin cancer
image classification, there are some limitations which can be
addressed in the future. The proposed method has not used
any domain knowledge, but GP has the ability to include
domain knowledge as well. This will be explored in the
future to possibly improve performance with using both the
domain independent and domain-specific knowledge. The cur-
rent method is specifically designed for skin cancer image
classification. Future work can be done to significantly extend
the method for domain generalization in medical image clas-
sification tasks. Real-world images often come with a lot of
noise, which hinders accurate image classification. We will
improve the proposed method to handle these issues.
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