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Optimal Output Consensus of Heterogeneous Linear Multi-Agent
Systems Over Weight-Unbalanced Directed Networks

Jin Zhang, Lu Liu, Senior Member, IEEE, Haibo Ji, and Xinghu Wang

Abstract—This paper investigates the distributed optimal out-
put consensus problem of heterogeneous linear multi-agent
systems over weight-unbalanced directed networks. A novel
distributed continuous-time state feedback controller is proposed
to steer the outputs of all the agents to converge to the optimal
solution of the global cost function. Under the standard condition
that the unbalanced digraph is strongly connected and the local
cost functions are strongly convex with global Lipschitz gradients,
the exponential convergence of the closed-loop multi-agent system
is established. Then, the proposed state feedback control law
is extended to an observer-based output feedback setting. Two
examples are finally provided to illustrate the effectiveness of the
proposed control schemes.

Index Terms—Optimal output consensus, linear systems,
weight-unbalancend, directed networks.

I. INTRODUCTION

OVER the past decade, the distributed optimization prob-
lem (DOP) has attracted increasing attention due to its

broad applications in sensor networks, distributed parameter
estimation, power systems and machine learning; see, for
example, [1], [2]. In the DOP, each agent is assigned with
an individual local cost function. The objective is to minimize
the sum of all local cost functions in a distributed manner
by using only neighboring information and local computation.
Seminal works on this topic can be traced back to [3], [4],
and for recent progress, one may refer to the relevant reviews
[5], [6] and references therein.

Most of the existing works focus on discrete-time dynamics,
to name a few, see [7]–[12]. However, since many practical
systems operate in the continuous-time setting, such as un-
manned vehicles and robots, a few efforts have been made
recently for the case of continuous-time dynamics [13]–[15].
Based on the first-order gradients, the authors in [13] propose a
distributed proportional-integral (PI) control scheme for multi-
agent systems over undirected graphs. Then the approach is
extended to deal with weighted-balanced directed networks in
[14]. To eliminate the requirement for additional information
communication by PI feedback, the modified Lagrangian based
(MLB) algorithm is then developed in [15] at the expense of
special initialization.
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To handle the DOP on weight-unbalanced directed graphs,
some consensus based protocols are commonly used, such as
the push-pull based protocols [9], [10] and the push-sum based
protocols [8], [16]. However, the above-mentioned protocols
usually involve certain global information, including in-degree
[16] and out-degree [8], [10], which might not be available
in general directed networks. A distributed continuous-time
control strategy is designed in [17] to deal with the weight-
unbalanced directed graphs, but it cannot achieve the optimal
solution when the left eigenvector is not available in advance.
To handle the imbalance, a distributed discrete-time algorithm
is proposed in [11] with the gradient being divided by an addi-
tional variable, which is designed to exponentially converges
to the left eigenvector corresponding to the eigenvalue one
of the row-stochastic matrix. More recently, the discrete-time
algorithm in [11] is extended to a continuous-time version in
[18], and the explicit dependency on the left eigenvector is
removed in comparison with the algorithm in [17].

It is worth mentioning that the conventional DOP in the
aforementioned works can be regarded as a distributed opti-
mal output consensus (OOC) problem with single integrator
dynamics. However, there are quite a few engineering tasks in
practice that could be reformulated as the OOC problem for
more general agent dynamics, such as the economic dispatch
in power systems [19], rigid body attitude formation control
[20] and source seeking in multi-robot systems [21]. Recently,
many efforts are dedicated to solving the OOC for double
integrators [22], high-order linear systems [23], [24] and
nonlinear systems [25], [26], over undirected graphs. It can
be noted that the control design in such scenarios is much
more challenging. Typically, the control design for the OOC
problem can be classified into two types. The first type is a
control scheme based on the two-layer structure consisting of
an optimal signal generator and a reference-tracking controller
[24], [26]. However, this type of control design requires the
agent dynamics to be minimum-phase and have well-defined
vector relative degrees [24], and may fail in the scenario
when some of the optimal signal generators result in an
augmented system for which the reference-tracking problem
cannot be solved. Different from the first type, the second
one concentrates on developing integrated control laws, which
avoids the requirement on the optimal signal as a reference
[27], [28]. The authors in [27] propose two adaptive control
laws to address the OOC problem for homogeneous linear
multi-agent systems. However, the controllers can only be
applied when the gradients satisfy a specific structure, and,
certain global information is needed to verify their applicabil-
ity. In a recent work [28], the OOC problem of heterogeneous
linear multi-agent systems is reformulated as a special output
regulation problem, which is then solved by designing a new

ar
X

iv
:2

11
1.

08
47

1v
1 

 [
m

at
h.

O
C

] 
 1

6 
N

ov
 2

02
1



2

controller based on the solutions of well-designed linear matrix
equations. Unfortunately, the aforementioned controllers can
only be applied to undirected graphs.

In our preliminary work [29], the OOC problem for homo-
geneous linear multi-agent systems over weight-unbalanced
directed graphs is solved by designing a distributed state
feedback controller. The design of the state feedback con-
troller requires a prior knowledge of the left eigenvector
corresponding to the eigenvalue zero of the Laplacian matrix
L. In this paper, we consider the OOC problem over weight-
unbalanced directed graphs for heterogeneous linear multi-
agent systems. A novel distributed state feedback controller
is firstly proposed by introducing an additional variable to
avoid the explicit dependence on the left eigenvector. To tackle
heterogeneous linear agent dynamics, we take advantage of the
well-designed matrix equations from [28], which serves as a
modification of regulator equations in [30]. Then the proposed
state feedback controller is further extended to an observer-
based output feedback one. The main contributions of this
paper are summarized as follows:

1) This work investigates the OOC problem for general
linear multi-agent systems on weight-unbalanced digraphs.
Compared with most existing works, the scenarios considered
in this paper are much more general and thus more applicable
in practice. On one hand, in contrary to integrator-type agent
dynamics discussed in [14], [18], we consider more general
heterogeneous linear systems. On the other hand, unlike the
works of solving the OOC problem for linear multi-agent
systems on undirected networks [24], [27], [28], we focus on
more general and thus more challenging weight-unbalanced
directed networks. To address the challenges arising from the
asymmetry of the Laplacian matrices corresponding to directed
graphs, we utilize some useful results from Kronecker matrix
algebra and the direct sum operation of vectors instead of the
commonly used orthogonal transformation.

2) When the state information is not measurable, which is
often the case in practice, we extend the newly developed
state feedback controller to an observer-based output feedback
one so that the considered OOC problem can still be solved.
Therefore, compared with the existing results in [23], [27], our
work further expands the scope of distributed optimization in
practical applications.

The rest of this paper is organized as follows. Preliminaries
and problem formulation are presented in Section II and
III, respectively. Design of control laws and analysis of the
resulting closed-loop systems are provided in Section IV
followed by illustrative examples in Section V. Finally, the
conclusion is stated in Section VI.

Notations: Let Rn and Rn×m denote the sets of real vectors
of dimension n and real matrices of dimension n×m, respec-
tively. Let 1n and 0n denote the column vector of dimension n
with all entries equal to one and zero, respectively. Let In de-
note the identity matrix of dimension n. Let ⊗ denote the Kro-
necker product of matrices. For a matrix A ∈ Rn×n, AT and
tr(A) represent its transpose and trace, respectively. ‖ · ‖ rep-
resents the Euclidean norm of vectors or the induced 2-norm
of matrices. col (x1, x2, . . . , xn) represents a column vector
with x1, x2, . . . , xn being its elements. diag (x1, x2, . . . , xn)

represents a diagonal matrix with x1, x2, . . . , xn being its
diagonal elements; diag (B1, B2, . . . , BN ) represents a block
diagonal matrix with matrices Bi ∈ Rni×pi , i ∈ 1, 2, . . . N
being its diagonal block elements. For a differentiable function
f : Rn → R, ∇f is its gradient.

II. PRELIMINARIES

In this section, we present some preliminaries on graph the-
ory, convex analysis, Kronecker matrix algebra, and perturbed
system theory.

A. Graph Theory

A directed graph (in short, a digraph) is adopted to depict
the agent information flow. A weighted directed graph of order
N is a triplet G = (V, E ,A), where V = {1, 2, . . . , N} is a
set with N vertices called nodes, E ⊆ V × V is a set of
ordered pairs of nodes called edges, and A = [aij ] ∈ RN×N
is an associated weighted adjacency matrix. For i, j ∈ V , the
ordered pair (j, i) ∈ E denotes an edge from j to i, that is,
the ith agent can receive information from the jth agent, but
not vice versa. In this case, j is called an in-neighbor of i,
and i is called an out-neighbor of j. A directed path is an
ordered sequence of nodes such that any pair of consecutive
nodes in the sequence is a directed edge. A digraph is strongly
connected if there exists a directed path in each direction
between each pair of nodes. The associated adjacency matrix
A is defined as aij > 0 if (j, i) ∈ E , otherwise aij = 0,
and aii = 0 for all i ∈ V since it is assumed that there are
no self-loops in a digraph. Furthermore, the Laplacian matrix
L = [lij ] ∈ RN×N associated with the digraph G is defined
as lii =

∑N
j=1 aij and lij = −aij for i 6= j. A digraph G is

called weight balanced iff 1T
NL = 0T

N . For a more detailed
introduction of graph theory, please refer to [31].

Lemma 1. [32], [33] Assume that the unbalanced directed
graph G is strongly connected. Let L be the associated
Laplacian matrix. Then

• there exists a positive left eigenvector r =
(r1, r2, . . . , rN )

T associated with the eigenvalue
zero such that rTL = 0T

N and
∑N
i=1 ri = 1;

• L̄ =
(
RL+ LTR

)
/2 is positive semidefinite, where R =

diag (r1, r2, . . . , rN ), and the eigenvalues of L̄ can be
ordered as 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN ; and

• exp (−Lt) is a nonnegative matrix with positive diagonal
entries for all t > 0, and limt→∞ exp (−Lt) = 1Nr

T.

B. Convex Analysis

In this subsection, the definitions of strong convexity and
Lipschitz continuity are given, see [34] for more details.

A continuously differentiable function f : Rn → R is
strongly convex on Rn if there exists a positive constant
m such that (x − y)T (∇f(x) − ∇f(y)) ≥ m‖x − y‖2
for all x, y ∈ Rn. A function g : Rn → Rn is globally
Lipschitz on Rn if there exists a positive constant M such
that ‖g(x)− g(y)‖ ≤M‖x− y‖ for all x, y ∈ Rn.
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C. Kronecker Matrix Algebra

For E ∈ Rn×m, Let coli(E) ∈ Rn be the ith column of
matrix E, and denote

vec(E) ,

 col1(E)
...

colm(E)

 ∈ Rnm

as the column vector of dimension nm obtained by stacking
coli(E). The following two crucial lemmas are given in [35].

Lemma 2. Let E ∈ Rn×m and F ∈ Rm×n. Then, tr(EF ) =

tr(FE) =
(
vec
(
ET
))T

vec(F ). Additionally, for real column
vectors a ∈ Rn and b ∈ Rn, tr

(
baT

)
= aT b.

Lemma 3. Let E ∈ Rn×m, F ∈ Rm×l, and G ∈ Rl×k. Then,
vec(EFG) =

(
GT ⊗ E

)
vec(F ).

D. Perturbed System Theory

Last but not least, the theory of perturbed systems which
facilitates subsequent analysis is addressed.

Lemma 4. Consider the perturbed system

ẋ = g(t, x) + κ(t, x). (1)

Let x = 0 be an exponentially stable equilibrium point of
the nominal system ẋ = g(t, x), where g is continuously
differentiable and the Jacobian matrix [∂g/∂x] is bounded on
Rn. Suppose the perturbation term κ(t, x) satisfies κ(t, 0) = 0
and ‖κ(t, x)‖ ≤ γ(t)‖x‖, where limt→∞ γ(t) = 0. Then,
the origin is an exponentially stable equilibrium point of the
perturbed system (1).

Proof. It can be proved by a simple combination of Corollary
9.1 and Lemma 9.5 in [36].

III. PROBLEM FORMULATION

Consider a multi-agent system of N heterogeneous agents
described by the following dynamics,

ẋi = Aixi +Biui,

yi = Cixi, i = 1, 2, . . . , N,
(2)

where xi ∈ Rni , ui ∈ Rpi and yi ∈ Rq are the state, control
input and output of the ith agent, respectively. Ai ∈ Rni×ni ,
Bi ∈ Rni×pi , and Ci ∈ Rq×ni are constant matrices.

A local cost function fi(y) : Rq → R is assigned to each
agent i for i = 1, 2, . . . , N , which is only available to agent
i. Define the global cost function as f(y) =

∑N
i=1 fi(y). The

objective of this work is to design distributed controllers such
that the outputs of all the agents are steered to the optimal
solution y∗ of the following optimization problem,

min
y∈Rq

f(y). (3)

Remark 1. Unlike the output consensus problem of heteroge-
neous linear multi-agent systems [37], [38], we consider the
more general and difficult optimal output consensus problem in
this paper. The differences and also challenges in this scenario
are to steer the outputs of all the agents not only to achieve
consensus but also to reach the optimal solution of the global

cost function. In this case, the design of distributed controllers
is more challenging.

To achieve the objective, we need some standard assump-
tions.

Assumption 1. For i = 1, 2, . . . , N , the local cost function
fi is continuously differentiable and strongly convex with
constant mi, and∇fi is globally Lipschitz on Rq with constant
Mi.

Remark 2. The strong convexities of the local cost functions
in Assumption 1 guarantee that the optimal solution y∗ ∈ Rq
is existing and unique. Assumption 1 is standard and thus
commonly used in many existing works, see [15], [18].

Assumption 2. The communication directed graph G is
strongly connected.

Define f̃(Y ) =
∑N
i=1 fi(yi) with Y =

col(y1, y2, . . . , yN ) ∈ RqN . Then similar to the previous
works [17], [28], under Assumption 2, we can reformulate
problem (3) as

min
Y ∈RqN

f̃(Y ), f̃(Y ) =

N∑
i=1

fi (yi) ,

subject to (L ⊗ Iq)Y = 0.

(4)

To handle linear agent dynamics, we need an additional
assumption.

Assumption 3. For i = 1, 2, . . . , N , (Ai, Bi) is stabilizable
and

rank

[
CiBi 0q×pi
−AiBi Bi

]
= ni + q.

Lemma 5. [28] Suppose that Assumption 3 holds. Then for
i = 1, 2, . . . , N , the linear matrix equations

CiΨi − Iq = 0q×q, (5a)
BiΦi −AiΨi = 0ni×q, (5b)
BiΥi −Ψi = 0ni×q (5c)

have solution triplets (Υi,Φi,Ψi).

Remark 3. Although it is proposed in [24] to handle the OOC
problem for linear systems having well-defined vector relative
degrees, the two-layer control scheme would fail to achieve
the objective if the agent dynamics are non-minimum phase.
This would thus limit the scope of the algorithm’s application
as many practical systems are non-minimum phase. On the
contrary, our approach in this work does not suffer such a
restriction.

IV. MAIN RESULTS

In this section, a distributed state feedback controller is
firstly developed to deal with the OOC problem over weight-
unbalanced digraphs. Then the proposed distributed state feed-
back controller is extended to a distributed observer-based
output feedback controller when the state information is not
measurable.
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A. Distributed state feedback controller

In this subsection, we design the distributed state feedback
controller. Based on the relative outputs and individual agent
state, the controller for each agent is designed as follows,

ui = −Kixi + Υiωi − (Φi −KiΨi) ρi, (6a)

ρ̇i = ωi := −∇fi(yi)
zii

− γ1

N∑
j=1

aij (yi − yj)− γ2vi, (6b)

v̇i = γ1

N∑
j=1

aij (yi − yj) , (6c)

żi = −
N∑
j=1

aij (zi − zj) , (6d)

where zi ∈ RN , i = 1, 2, . . . , N , with zii being its ith
component and with its initial value zi(0) satisfying zii(0) = 1,
zji (0) = 0 for all j 6= i. ρi ∈ Rq and vi ∈ Rq are
auxiliary variables with initial value vi(0) = 0, ωi ∈ Rq
is an intermediate state. γ1 and γ2 are positive constants,
Ki ∈ Rpi×ni is a feedback gain matrix such that Ai − BiKi

is Hurwitz, and (Υi,Φi,Ψi) are the solution triplets of linear
matrix equations (5). It is worth noting that control law (6a)
is composed of the relative outputs and their first-order and
second-order integrals. Equations (6b) and (6c) can be seen
as a modification to the well-known MLB algorithm in [15]
if setting ρi = yi and zii = 1.

Let x = col(x1, x2, . . . , xN ), ρ = col(ρ1, ρ2, . . . , ρN ),
v = col(v1, v2, . . . , vN ), z = col(z1, z2, . . . , zN ), ZN =
diag(z1

1 , z
2
2 , . . . , z

N
N ), A = diag(A1, A2, . . . , AN ), B =

diag(B1, B2, . . . , BN ), C = diag(C1, C2, . . . , CN ), K =
diag(K1,K2, . . . ,KN ), Υ = diag(Υ1,Υ2, . . . ,ΥN ), Φ =
diag(Φ1,Φ2, . . . ,ΦN ), Ψ = diag(Ψ1,Ψ2, . . . ,ΨN ), and
∇f̃(Y ) = col

(
∇f1(y1),∇f2(y2), . . . ,∇fN (yN )

)
. Then, by

substituting the control law (6) into the dynamics (2), the
closed-loop system can be written in the following compact
form,

ẋ = (A−BK)x+BΥρ̇− (BΦ−BKΨ) ρ, (7a)

ρ̇ = −
(
Z−1
N ⊗ Iq

)
∇f̃(Y )− γ1 (L ⊗ Iq)Y − γ2v, (7b)

v̇ = γ1 (L ⊗ Iq)Y, (7c)
ż = − (L ⊗ IN ) z. (7d)

Remark 4. Under Asumption 2, one can obtain from Lemma
1 that zii(t) > 0 for all t ≥ 0, which indicates that Z−1

N is
well defined [18]. The term

(
Z−1
N ⊗ Iq

)
∇f̃(Y ) in (7b) is used

to tackle the imbalance caused by employing only asymmetric
Laplacian matrix L, where Z−1

N serves as the role of R−1

in the algorithm in [17]. Thus, the purpose of introducing
(7d) is to estimate the left eigenvector r associated with the
eigenvalue zero of L to reduce the restrictive requirement on
global information.

To proceed, we first show that the matrix Z−1
N will

exponentially tend to R−1. By using Lemma 1, one can
obtain that limt→∞ z(t) = limt→∞ exp (−(L ⊗ IN )t) z(0) =(
1Nr

T ⊗ IN
)
z(0) = 1N ⊗ r. This implies that

limt→∞ Z−1
N = R−1 exponentially.

Hereinafter, to cope with the difficulties generated by asym-
metric information transmission, we utilize the theories of
perturbed systems and input-to-state stability. Define a new
variable ξ = col (x, ρ, v). Then, (7a)-(7c) can be rewritten as
follows, ẋ

ρ̇
v̇


︸ ︷︷ ︸

ξ̇

=

 (A−BK)x+BΥρ̇− (BΦ−BKΨ) ρ

−
(
R−1 ⊗ Iq

)
∇f̃(Y )− γ1 (L ⊗ Iq)Y − γ2v
γ1 (L ⊗ Iq)Y


︸ ︷︷ ︸

g(ξ)

+

 0Nq((
R−1 − Z−1

N

)
⊗ Iq

) (
∇f̃(Y )−∇f̃(Ȳ )

)
0Nq


︸ ︷︷ ︸

κ(t,ξ)

+

 0Nq((
R−1 − Z−1

N

)
⊗ Iq

)
∇f̃(Ȳ )

0Nq


︸ ︷︷ ︸

ω(t)

, (8)

where Ȳ = Cx̄, with x̄ being the component of the equilib-
rium point ξ̄ = col(x̄, ρ̄, v̄) of the following system,

ξ̇ = g(ξ). (9)

In what follows, our primary goal is to show that Ȳ =
col (ȳ1, ȳ2, . . . , ȳN ) is the optimal solution of problem (4)
and the equilibrium point of the closed-loop system (7) is
exponentially stable.

Lemma 6. Consider system (9) and suppose that Assumptions
1-3 hold. Then Ȳ is the optimal solution of problem (4).

Proof. In light of (5b) and (9), the point ξ̄ = col(x̄, ρ̄, v̄)
satisfies

0 = (A−BK) (x̄−Ψρ̄) , (10a)

0 = −
(
R−1 ⊗ Iq

)
∇f̃(Ȳ )− γ2v̄, (10b)

0 = γ1 (L ⊗ Iq) Ȳ . (10c)

It follows from (10c) that the vector Ȳ belongs to the null-
space of L⊗Iq . Thus, we have Ȳ = 1N⊗τ for some constant
vector τ ∈ Rq . Left multiplying v̇ = γ1 (L ⊗ Iq)Y by rT⊗Iq
leads to

(
rT ⊗ Iq

)
v̇ = 0. Then, with the assumption that

v(0) = 0, one obtains
(
rT ⊗ Iq

)
v̄ = 0 . Next, left multiplying

(10b) by rT ⊗ Iq results in
(
1T
N ⊗ Iq

)
∇f̃(Ȳ ) = 0, which is

equivalent to
N∑
i=1

∇fi(ȳi) = 0. (11)

Replacing ȳi by τ in (11) results in
∑N
i=1∇fi(τ) = 0. Note

that the optimality condition is
∑N
i=1∇fi(y∗) = 0. One thus

has τ = y∗. Therefore, it can be concluded that Ȳ = 1N ⊗ y∗
is the optimal solution of problem (4).

Remark 5. In essence, we only need to meet the requirement
of
(
rT ⊗ Iq

)
v(0) = 0 for the initial value of v(0). However,

since v is an internal variable, we can directly set v(0) = 0
for simplicity.
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The first main result of this paper is presented below.

Theorem 1. Consider system (2) and suppose Assumptions 1-
3 hold. Then there exist positive constants γ1 and γ2 such that
the output Y exponentially converges to the optimal value Ȳ =
1N ⊗ y∗ of problem (4) under the state feedback controller
(6), with y∗ being the optimal solution to problem (3).

Remark 6. The main feature of this paper is that both general
high-order dynamics and weight-unbalanced directed graphs
can be handled via our proposed controllers. On one hand,
different from existing works that require the agent dynamics
to be integrator-type [14], [18] or high-order but minimum
phase systems [22]–[24], the general dynamics considered in
this work are allowed to be non-minimum phase. On the other
hand, in contrary to most existing works where undirected
graphs [7], [13] or balanced directed graphs [14], [15]
are considered, the proposed controller (6) is able to tackle
weight-unbalanced directed graphs without a prior knowledge
of the left eigenvector corresponding to the eigenvalue zero
of the Laplacian matrix L. It is worth noting that the left
eigenvector is a kind of global information, which is required
in [17], but may be unavailable in practical applications.

Remark 7. Compared with asymptotic convergence, exponen-
tial convergence has many advantages from the perspective
of stability analysis and control synthesis. Different from
existing works [14], [18], [24], [28] where only asymptotic
convergence is obtained, the much more desirable exponential
convergence can be established in this paper.

Proof. The proof can be accomplished by the following three
steps.

Step 1: The exponential stability of system (9) is established.
Introduce the variables substitution x̃ = x− x̄, ρ̃ = ρ− ρ̄ and
ṽ = v − v̄ such that the new equilibrium point is transferred
to the origin. Note that (5c) and Y = Cx hold. Thus, the
dynamics of x̃, ρ̃ and ṽ satisfy

˙̃x = Ac (x̃−Ψρ̃) + Ψ ˙̃ρ, (12a)
˙̃ρ = −

(
R−1 ⊗ Iq

)
h− γ1 (L ⊗ Iq)Cx̃− γ2ṽ, (12b)

˙̃v = γ1 (L ⊗ Iq)Cx̃, (12c)

where h = ∇f̃ (C(x̄+ x̃))−∇f̃ (Cx̄), and Ac = A−BK is
Hurwitz.

Consider the following positive definite function,

V1 =
1

2
(Cx̃)

T
(R⊗ Iq) (Cx̃)

+
1

2
(Cx̃+ ṽ)

T
(R⊗ Iq) (Cx̃+ ṽ) .

By using (5a), the derivative of V1 along (12) is given by

V̇1 =− 2 (Cx̃)
T
h− γ1 (Cx̃)

T
(RL ⊗ Iq) (Cx̃)

+ 2 (Cx̃)
T

(R⊗ Iq)CAc (x̃−Ψρ̃)− ṽ
T

h

− 2γ2 (Cx̃)
T

(R⊗ Iq) ṽ − γ2ṽ
T (R⊗ Iq) ṽ

+ ṽT (R⊗ Iq)CAc (x̃−Ψρ̃) . (13)

Using Lemma 1, we have (Cx̃)
T

(RL ⊗ Iq) (Cx̃) =

(Cx̃)
T (L̄ ⊗ Iq) (Cx̃). By referring to the definition of R in

Lemma 1, one has ṽT (R⊗ Iq) ṽ ≥ rmin‖ṽ‖2, where rmin =
min {r1, r2, . . . , rN}. Let M = max {M1,M2, . . . ,MN} and
m = min {m1,m2, . . . ,mN} respectively. One then has
‖h‖ ≤ M‖Cx̃‖ and (Cx̃)

T
h ≥ m‖Cx̃‖2 by Assumption

1. Note that the inequality aTb ≤ 1
δ ‖a‖

2 + δ
4‖b‖

2 is always
tenable for any δ > 0. Thus, the following inequality is
satisfied,

−ṽ
T

h ≤ 1

δ
‖h‖2 +

δ

4
‖ṽ‖2 ≤ M2

δ
‖Cx̃‖2 +

δ

4
‖ṽ‖2. (14)

With the obtained facts, (13) can be rewritten as follows,

V̇1 ≤−
(

2m− M2

δ

)
‖Cx̃‖2 −

(
γ2rmin −

δ

4

)
‖ṽ‖2

− γ1 (Cx̃)
T (L̄ ⊗ Iq) (Cx̃)− 2γ2 (Cx̃)

T
(R⊗ Iq) ṽ

+ 2 (Cx̃)
T

(R⊗ Iq)CAc (x̃−Ψρ̃)

+ ṽT (R⊗ Iq)CAc (x̃−Ψρ̃) . (15)

Let 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN denote the ordered
eigenvalues of the Laplacian matrix L̄. There exist orthonormal
vectors 1N and ηi, i = 2, 3, . . . , N , such that L̄1N = 0 and
L̄ηi = λiηi. Define Λ = (C1x̃1, . . . , CN x̃N ) ∈ Rq×N and
construct D = (d1, d2, . . . , dN ) ∈ Rq×N with vectors d1 =
Λ1N ∈ Rq , di = Ληi ∈ Rq , i = 2, 3, . . . , N . Then, it can
be verified that D = ΛQ, where Q = (1N , η2, . . . , ηN ) ∈
RN×N . Noticing that Q is an orthogonal matrix, we have Λ =
DQT. By using Lemma 3, one then has Cx̃ = vec(Λ) =
vec
(
DQT

)
= (IN ⊗D) vec(QT). Thus, by applying Lemma

2 and Lemma 3, it follows that

(Cx̃)T
(
L̄ ⊗ Iq

)
(Cx̃)

=
(

vec
(
QT
))T(L̄ ⊗DTD

)
vec
(
QT
)

=
(

vec
(
QT
))T

vec
(
DTDQTL̄

)
= tr

(
QDTDQTL̄

)
= tr

(
DQTL̄QDT

)
=

N∑
i=2

ηT
i L̄ηidT

i di =

N∑
i=2

λiη
T
i ηid

T
i di

≥
N∑
i=2

λ2η
T
i ηid

T
i di = λ2

N∑
i=2

dT
i di = λ2‖s‖2, (16)

where s = ‖ col(d2, d3, . . . , dN )‖. Similarly, define Π =
(ṽ1, ṽ2, . . . , ṽN ) ∈ Rq×N . One then has

(Cx̃)
T

(R⊗ Iq) ṽ

=
(

vec
(
QT
))T

(R⊗DT) vec (Π)

=
(

vec
(
QT
))T

vec
(
DTΠR

)
= tr

(
QDTΠR

)
= tr

(
ΠRQDT

)
= tr

(
ΠR1Nd

T
1

)
+ tr

(
ΠRH

)
, (17)

where H =
∑N
i=2 ηid

T
i . Observing that

(
rT ⊗ Iq

)
v = 0,

one thus concludes that ΠR1N =
∑N
i=1 riṽi = 0 by simple

computation. Therefore, (17) can be rewritten as follows,

(Cx̃)
T

(R⊗ Iq) ṽ = tr (HΠR) =
(

vec
(
HT
))T

vec(ΠR)

=
(

vec
(
HT
))T

(R⊗ Iq) ṽ. (18)
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Note that ‖ vec
(
HT
)
‖2 =

(
vec
(
HT
))T

vec
(
HT
)

=
tr
(
HHT

)
= ‖s‖2 holds. Then, by using equation (18)

together with ri < 1, i = 1, 2, . . . , N , we have the following
inequality,

−2γ2 (Cx̃)
T

(R⊗ Iq) ṽ ≤
γ2

2

δ
‖ vec

(
HT
)
‖2 + δ‖ṽ‖2

=
γ2

2

δ
‖s‖2 + δ‖ṽ‖2. (19)

Meanwhile, we have

2 (Cx̃)
T

(R⊗ Iq)CAc(x̃−Ψρ̃)

≤ ‖C‖
2

δ
‖Cx̃‖2 + δ‖Ac‖2‖x̃−Ψρ̃‖2, (20)

ṽT
(
R⊗Iq

)
CAc(x̃−Ψρ̃)

≤ ‖C‖
2

4δ
‖ṽ‖2 + δ‖Ac‖2‖x̃−Ψρ̃‖2. (21)

Substituting (16), (19)–(21) into (15) leads to

V̇1 ≤−
(

2m− M2 + ‖C‖2

δ

)
‖Cx̃‖2

−
(
γ2rmin −

5δ

4
− ‖C‖

2

4δ

)
‖ṽ‖2

−
(
γ1λ2 −

γ2
2

δ

)
‖s‖2 + 2δ‖Ac‖2‖x̃−Ψρ̃‖2. (22)

Since Ac is Hurwitz, there exists a positive definite matrix
Pc such that PcAc + AT

c Pc ≤ −I . Choose another positive
definite function V2 = (x̃−Ψρ̃)

T
Pc (x̃−Ψρ̃). It follows

from (12a) that the dynamics of x̃−Ψρ̃ satisfies

˙̃x−Ψ ˙̃ρ = Ac (x̃−Ψρ̃) . (23)

Thus, the derivative of V2 along the trajectory of (12) is
inferred as

V̇2 = (x̃−Ψρ̃)
T (
PcAc +AT

c Pc
)

(x̃−Ψρ̃)

≤ −‖x̃−Ψρ̃‖2. (24)

Consider the Lyapunov function candidate V (x̃, ρ̃, ṽ) =
V1 + δcV2 where δc = 2δ‖Ac‖2 + 1. Then by combining
(22) and (24), the derivative of V along the trojectory of (12)
satisfies,

V̇ ≤−
(

2m− M2 + ‖C‖2

δ

)
‖Cx̃‖2

−
(
γ2rmin −

5δ

4
− ‖C‖

2

4δ

)
‖ṽ‖2

−
(
γ1λ2 −

γ2
2

δ

)
‖s‖2 − ‖x̃−Ψρ̃‖2. (25)

Choose the coupling gains γ1 and γ2 such that the following
inequalities are satisfied,

2m− M2 + ‖C‖2

δ
> 0,

γ2rmin −
5δ

4
− ‖C‖

2

4δ
> 0,

γ1λ2 −
γ2

2

δ
> 0.

(26)

One then has

V̇ ≤ −ε
(
‖Cx̃‖2 + ‖ṽ‖2 + ‖x̃−Ψρ̃‖2

)
, (27)

where ε = min
{

2m− M2+‖C‖2
δ , γ2rmin − 5δ

4 −
‖C‖2

4δ , 1
}

. In

fact, by selecting appropriate parameters δ > M2+‖C‖2
2m , we

then can successively choose sufficiently large γ2 >
5δ2+‖C‖2

4δrmin

and γ1 >
γ2
2

λ2δ
to ensure the inequalities in (26). In other

words, (26) can always be satisfied by choosing large enough
constants γ1 and γ2.

Note that V (x̃, ρ̃, ṽ) can be rewritten as

V =

 Cx̃
ṽ

x̃−Ψρ̃

T

F

 Cx̃
ṽ

x̃−Ψρ̃


by defining the following positive definite matrix

F =

 (R⊗ Iq) 1
2 (R⊗ Iq) 0

1
2 (R⊗ Iq) 1

2 (R⊗ Iq) 0
0 0 δcPc

 .

Let µ denote the maximum eigenvalue of F . One then has
V ≤ µ

(
‖Cx̃‖2 + ‖ṽ‖2 + ‖x̃−Ψρ̃‖2

)
from the definition of

V (x̃, ρ̃, ṽ). Thus, (27) can be rewritten as V̇ ≤ − ε
µV . With

this fact, one can claim that limt→∞ Cx̃ = 0, limt→∞ ṽ = 0
and limt→∞ (x̃−Ψρ̃) = 0 exponentially, with a convergence
rate no less than ε/µ.

Note that ρ̃ = Cx̃ − C (x̃−Ψρ̃). By referring to
limt→∞ Cx̃ = 0 and limt→∞ (x̃−Ψρ̃) = 0 exponentially,
one then obtains that limt→∞ ρ̃ = 0 exponentially. Thus, using
limt→∞ (x̃−Ψρ̃) = 0, one can obtain that limt→∞ x̃ = 0
exponentially. Therefore, the exponential stability of system
(9) is established.

Step 2: The exponential stability of the following system
(28) is presented,

ξ̇ = g(ξ) + κ(t, ξ). (28)

Note that (28) can be interpreted as the perturbed sys-
tem of (9), where the perturbation term κ(t, ξ) satis-
fies κ(t, ξ̄) = 0. Moreover, κ(t, ξ) ≤ σ(t)‖ξ − ξ̄‖
with σ(t) = M‖C‖maxi |r−1

i − (zii(t))
−1|. Since it is

proved that limt→∞ Z−1
N (t) = R−1 exponentially, we have

limt→∞ σ(t) = 0 exponentially. Then it follows from Lemma
4 that the equilibrium point ξ̄ of the perturbed system (28) is
exponentially stable.

Step 3: The exponential stability of system (8) at the
equilibrium point ξ̄ = col(x̄, ρ̄, v̄) is established. Since ∇f̃ is
globally Lipschitz by Assumption 1, we learn that G(ξ, ω) =
g(ξ) + κ(t, ξ) + ω(t) is globally Lipschitz in (ξ, ω). The
boundness of ∇f̃(Ȳ ) suggests that ω(t) is bounded. Then
it follows from Lemma 4.6 in [36] that the system (8) is
input-to-state stable (ISS), i.e., for any initial state ξ(t0) and
any bounded input ω(t), there exist a class KL function ϕ
and a class K function ψ such that the solution ξ(t) satisfies
‖ξ− ξ̄‖ ≤ ϕ(‖ξ(t0)− ξ̄‖, t− t0) +ψ(supt0≤τ≤t ω(τ)) for all
t ≥ t0. Recalling the fact that limt→∞

(
Z−1
N (t) − R−1

)
= 0

exponentially, we have limt→∞ ω(t) = 0 exponentially. Thus
it can be shown that ξ exponentially converges to ξ̄ by the
property of ISS given in [36]. Therefore, we further claim
that Y exponentially converges to Ȳ = 1N ⊗ y∗, with y∗

being the solution of the global cost function. The proof is
thus completed.
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Remark 8. Inspired by work [18], we deal with the difficulties
generated by the asymmetric information transmission caused
by the weight-unbalanced directed graphs in virtue of the
useful results from Kronecker matrix algebra and direct sum
operation of vectors instead of the commonly used orthogonal
transformation.

Remark 9. It can be seen from the inequalities in (26) that
the choice of control gains γ1 and γ2 only depends on the
minimum value of the elements in the left eigenvector, instead
of the exact value of the left eigenvector as in [17]. Therefore,
once we can obtain the lower bound of the minimum value
without any global information, it can be directly applied to
the controller design in this work. Furthermore, the inequal-
ities in (26) can always be guaranteed as long as control
parameters γ1 and γ2 are chosen to be large enough.

B. Distributed observer-based output feedback controller

It should be noted that state measurements may be unavail-
able in practical scenarios. In this subsection, the previous
distributed state feedback controller is extended to a distributed
observer-based output feedback controller. More specifically,
the newly proposed output feedback control law is given as
follows,

ui = −Kix̂i + Υiωi − (Φi −KiΨi) ρi,

˙̂xi = Aix̂i +Biui +Hi(yi − Cix̂i),

ρ̇i = ωi := −∇fi(yi)
zii

− γ1

N∑
j=1

aij (yi − yj)− γ2vi,

v̇i = γ1

N∑
j=1

aij (yi − yj) ,

żi = −
N∑
j=1

aij (zi − zj) ,

(29)

where x̂i is the estimation of state xi, Hi ∈ Rni×q is an
observer feedback matrix such that Ai−HiCi is Hurwitz, and
the remaining variables are defined to be the same as those in
control law (6).

Substituting the above control law into system dynamics (2)
yields the following compact form of the closed-loop system,

ẋ= Ax−BKx̂+BΥρ̇−B (Φ−KΨ) ρ,

˙̂x=(A−BK) x̂+BΥρ̇−B (Φ−KΨ) ρ+H (Y −Cx̂) ,

ρ̇= −
(
Z−1
N ⊗ Iq

)
∇f̃(Y )− γ1 (L ⊗ Iq)Y − γ2v,

v̇= γ1 (L ⊗ Iq)Y,
ż= − (L ⊗ IN ) z,

(30)

where x̂ = col(x̂1, x̂2, . . . , x̂N ), H = diag(H1, H2, . . . ,HN ),
and the remaining terms are defined as those in the closed-loop

Fig. 1. RLC network.

system (7). Define the estimation error variable x̆ = x − x̂.
Then (30) can be rewritten as follows,

ẋ = Ax−BK (x− x̆) +BΥρ̇−B (Φ−KΨ) ρ,

˙̆x = (A−HC) x̆,

ρ̇ = −
(
Z−1
N ⊗ Iq

)
∇f̃(Y )− γ1 (L ⊗ Iq)Y − γ2v,

v̇ = γ1 (L ⊗ Iq)Y,
ż = − (L ⊗ IN ) z.

The second main result of this paper is presented below.

Theorem 2. Consider system (2). Suppose Assumptions 1-3
hold and (Ai, Ci) is detectable. Then there exist two positive
constants γ1 and γ2 such that the output Y exponentially
reaches the optimal value Ȳ = 1N ⊗ y∗ of problem (4) under
the output feedback controller (29), with y∗ be the optimal
solution to problem (3).

Proof. The proof is given in the Appendix.

V. ILLUSTRATIVE EXAMPLES

In this section, the effectiveness of the proposed control
laws is illustrated by two illustrative examples. We will start
with a simplified but practical example in RLC networks.

Example 1. Consider the RLC network depicted in Fig. 1,
which is a modification of Figure 2.16 in [39]. It consists of
the voltage source ui1, current source ui2, two resistors Ri1
and Ri2, inductor Li, and two capacitors Ci1 and Ci2. The
capacitor voltages and the inductor current will be assigned
as state variables xi1, xi2 and xi3, respectively. Then we can
apply Kirchhoff’s current and voltage laws to establish the
following equations,

xi3 =
ui1 − xi1
Ri1

− Ci1ẋi1 + ui2,

xi3 = Ci2ẋi2 + ui2,

xi1 = xi2 + Liẋi3 +Ri2(xi3 − ui2),

yi = xi1.

By defining xi = col(xi1, xi2, xi3) and ui = col(ui1, ui2), the
state-space description of the RLC network takes the linear
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1 2 3 4

Fig. 2. Communication between RLC networks.

dynamics form (2) with

Ai =


− 1

Ci1Ri1
0 − 1

Ci1

0 0
1

Ci2
1

Li
− 1

Li
−Ri2
Li

 ,

Bi =


1

Ci1Ri1

1

Ci1

0 − 1

Ci2

0
1

Li

 , Ci =
[

1 0 0
]
.

(31)

Consider a multi-agent system of 4 agents described by
the RLC network as shown in Fig. 1, the communication
topology among agents is given in Fig. 2. Assume that local
cost functions of RLC circuits are described by the following
quadratic form functions,

f1 = 0.2y2 − 2y + 1, f2 = 0.4y2 + y + 2,

f3 = 0.6y2 − 3y − 1, f4 = 0.8y2 + y + 1.

TABLE I
PARAMETERS OF RLC NETWORKS

i Ri1 Ri2 Li Ci1 Ci2

1 2 1 3 1 2
2 1 2 2 3 1
3 0.5 2 1 0.5 3
4 3 0.5 2 1 0.5

Then, it is calculated that the optimal value of the global
cost function is y∗ = 1.5. Moreover, it can be verified that
Assumptions 1 and 2 are satisfied. Furthermore, to ensure
the solvability of linear matrix equations (5) corresponding
to dynamics matrices (31), for each agent i, i = 1, 2, 3, 4, the
parameters of (31) are given in TABLE I so that Assump-
tion 3 is satisfied. Then by Lemma 5, the solution triplets
(Υi,Φi,Ψi) , i = 1, 2, 3, 4 of linear matrix equations (5) can
be chosen as follows,

Υ1 =
[

8
−1

]
, Υ2 =

[
0.5
1.5

]
, Υ3 =

[
0.8
−0.6

]
,

Υ4 =
[

7.5
−0.5

]
, Φ1 =

[ −1
0.5

]
, Φ2 =

[ −1
−1.5

]
,

Φ3 =
[ −1

0.2

]
, Φ4 =

[ −1
1

]
, Ψ1 =

[
1
1
−0.5

]
,

Ψ2 =

[ 1
−0.5
1.5

]
, Ψ3 =

[ 1
1.2
−0.2

]
, Ψ4 =

[ 1
0.5
−1

]
.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

Fig. 3. Convergence performance of RLC networks.

2

4 3

5 6

1

Fig. 4. Weight-unbalanced directed network.

Finally, the matrices Ki are chosen as follows such that Ai−
BiKi, i = 1, 2, 3, 4 are Hurwitz,

K1 =
[ 1 2 −2
−1 0 1

]
, K2 =

[ 0.5 2 −1
−2 0 2

]
,

K3 =
[

2 −1 −2
0 −3 3

]
, K4 =

[ −2 1 2
0 −1 2

]
.

The initial value v(0) is chosen as v(0) = 0. The other
initial conditions of the closed-loop system are randomly
chosen in the closed interval [−4, 6]. The simulation result is
shown in Fig. 3. It can be observed that the trajectories of all
outputs yi’s converge to the global minimizer y∗ = 1.5. Thus
the closed-loop system composed of (2) and (6) achieves
optimal output consensus eventually.

Next, we will provide another example to compare the
convergence performance under state feedback control law (6)
for different control gains and illustrate the effectiveness of
observer-based output feedback control law (29).

Example 2. Consider a group of 6 agents with the un-
balanced directed network G depicted in Fig. 4. For agents
i = 1, 2, . . . , 6, the local cost functions are respectively given
as follows,

f1 = sin(0.2y − (π/2)), f2 = 0.2 cos(ln(y2 + 4)− 0.2),

f3 = 0.1(y + 0.3)2 + 0.2(y − 2)2, f4 = 0.4y2 ln(5 + y2),

f5 = 0.2y2(ln(y2 + 1) + 1), f6 = 0.3y2/
√
y2 + 5.

It can be verified that Assumptions 1 and 2 are satisfied.
Therefore, the strong convexity of the global cost function
guarantees that the global minimizer y∗ = 0.286 is unique.

The dynamics of agents are described by (2) with

A1 = A2 =
[

0 1
0 0

]
, B1 = B2 =

[
0 1
1 −2

]
,

C1 = C2 =
[

1 1
]
, A3 = A4 =

[
0 −1
1 −2

]
,
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Fig. 5. Convergence performance comparisons under state feedback control
law (6).

B3 = B4 =
[

1 0
3 −1

]
, C3 = C4 =

[
−1 1

]
,

A5 = A6 =

[
0 1 0
0 0 1

0.5 1 −2

]
, B5 = B6 =

[
1 0
0 1
1 0

]
,

C5 = C6 =
[

1 −1 1
]
.

Note that Assumption 3 is also satisfied. Then by Lemma
5, the solution triplets (Υi,Φi,Ψi) , i = 1, 2, . . . , 6 of linear
matrix equations (5) can be chosen as follows,

Υ1 = Υ2 =
[

1.5 0.5
]T
, Υ3 = Υ4 =

[
−0.5 −2

]T
,

Υ5 = Υ6 =
[

0 −1
]T
, Φ1 = Φ2 =

[
1 0.5

]T
,

Φ3 = Φ4 =
[
−0.5 0

]T
, Φ5 = Φ6 =

[
−1 0

]T
,

Ψ1 = Ψ2 =
[

0.5 0.5
]T
, Ψ3 = Ψ4 =

[
−0.5 0.5

]T
,

Ψ5 = Ψ6 =
[

0 −1 0
]T
.

Furthermore, the matrices Ki and Hi are respectively cho-
sen as follows such that Ai − BiKi and Ai − HiCi, i =
1, 2, . . . , 6 are Hurwitz,

K1 = K2 =
[

3 5
1.5 1

]
, K3 = K4 =

[
0.75 −1
1.25 −4

]
,

K5 = K6 =
[ 2.167 1 0.333

0 3 1

]
, H1 = H2 =

[ 1
2

]
,

H3 = H4 =
[ −2
−1

]
, H5 = H6 =

[
4 3 2

]T
.

The initial values x(0), x̂(0) and ρ(0) can be arbitrarily
chosen, while v(0) needs to satisfy v(0) = 0. For convergence
performance comparisons, three sets of control gains in (6) are
given as (γ1, γ2) = (8, 1), (γ1, γ2) = (8, 8), and (γ1, γ2) =

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

(a)

0 1 2 3 4 5 6 7 8 9 10

0

2

4

(b)

Fig. 6. Convergence performance under output feedback control law (29).

(20, 8), respectively. The simulation results of the closed-loop
control system via state feedback control law (6) are shown
in Fig. 5. One can observe from the figure that the trajectories
of outputs yi converge to the global minimizer y∗ = 0.286.
Moreover, by comparing the convergence performances in Fig.
5(a)-(c), it can be observered that the larger values of γ1 and
γ2 will bring about faster convergence.

To verify the effectiveness of the observer-based output
feedback control law (29), set (γ1, γ2) = (8, 1) and the
simulation results of the resulting closed-loop system are
shown in Fig. 6. Fig. 6(a) shows that the outputs of all
the agents would reach the optimal solution, while Fig. 6(b)
indicates that the observer states x̂i will eventually tend to
xi, i = 1, 2, . . . , 6, which is consistent with the theoretical
result.

VI. CONCLUSION

In this paper, we have studied the distributed optimal
output consensus problem of heterogeneous linear multi-agent
systems over weight-unbalanced directed networks. We have
developed two novel distributed control laws. It is shown that
the proposed control laws are able to ensure the agent outputs
converge exponentially to the optimal solution under standard
assumptions. Our results generalize the optimal output consen-
sus problem of heterogeneous linear multi-agent systems from
undirected networks to weight-unbalanced directed networks.
Two illustrative examples have also been given to show the
effectiveness of the proposed controllers. One of the possible
future research topics is to further eliminate the dependence on
global information of our current controller design. Another
interesting topic is to extend the optimal output consensus
problem over weight-unbalanced directed networks to the case
that the agent dynamics are uncertain nonlinear systems.
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APPENDIX
PROOF OF THEOREM 2

Define ζ = col(x, x̆, ρ, v), then the dynamics of ζ is given
as follows,

ẋ
˙̆x
ρ̇
v̇


︸ ︷︷ ︸

ζ̇

=


Ax−BK (x− x̆) +BΥρ̇−B (Φ−KΨ) ρ

(A−HC) x̆

−
(
R−1 ⊗ Iq

)
∇f̃(Y )− γ1 (L ⊗ Iq)Y − γ2v
γ1 (L ⊗ Iq)Y


︸ ︷︷ ︸

ḡ(ζ)

+


0Nq
0Nq((

R−1 − Z−1
N

)
⊗ Iq

) (
∇f̃(Y )−∇f̃(Ȳ )

)
0Nq


︸ ︷︷ ︸

κ̄(t,ζ)

+


0Nq
0Nq((

R−1 − Z−1
N

)
⊗ Iq

)
∇f̃(Ȳ )

0Nq


︸ ︷︷ ︸

ω̄(t)

. (32)

At first, we show that the output Ȳ at the equilibrium point
ζ̄ =

(
x̄, ¯̆x, ρ̄, v̄

)
of system ζ̇ = ḡ(ζ) is the solution of problem

(4). Note that the point ζ̄ =
(
x̄, ¯̆x, ρ̄, v̄

)
satisfies

0 = (A−BK) (x̄−Ψρ̄) +BK ¯̆x, (33a)
0 = (A−HC) ¯̆x, (33b)

0 = −
(
R−1 ⊗ Iq

)
∇f̃(Ȳ )− γ2v̄, (33c)

0 = γ1 (L ⊗ Iq) Ȳ . (33d)

Since A − HC is Hurwitz, we can obtain from (33b) that
¯̆x = 0. Thus it can be inferred that the component (x̄, ρ̄, v̄) at
the equilibrium point ζ̄ = (x̄, 0, ρ̄, v̄) of system ζ̇ = ḡ(ζ) coin-
cides with that of system (8), i.e., (x̄, ρ̄, v̄) satisfies equations
(10). Then it can be shown that the output Ȳ at the equilibrium
point of ζ̇ = ḡ(ζ) is the solution of problem (4) via a similar
analysis as in Lemma 6.

In what follows, the exponential stability of the following
system is presented,

ζ̇ = ḡ(ζ). (34)

To this end, transforming the equilibrium point of (34) to the
origin by defining x̃ = x− x̄, ρ̃ = ρ− ρ̄ and ṽ = v − v̄ leads
to

˙̃x = Ac (x̃−Ψρ̃) + Ψ ˙̃ρ+BKx̆,

˙̆x = Aox̆,

˙̃ρ = −
(
R−1 ⊗ Iq

)
h− γ1 (L ⊗ Iq)Cx̃− γ2ṽ,

˙̃v = γ1 (L ⊗ Iq)Cx̃,

(35)

where Ac = A − BK, Ao = A − HC and h =
∇f̃ (C(x̄+ x̃))−∇f̃ (Cx̄).

Reconsider the Lyapunov function candidate V (x̃, ρ̃, ṽ) =
V1 + δcV2, where V1, V2 and δc are the same as those defined

in the proof of Theorem 1. The derivative of V along the
trajectory of (35) is given as follows,

V̇ =− 2 (Cx̃)
T
h− γ1 (Cx̃)

T
(RL ⊗ Iq) (Cx̃)

+ 2 (Cx̃)
T

(R⊗ Iq)CAc (x̃−Ψρ̃)− ṽ
T

h

− 2γ2 (Cx̃)
T

(R⊗ Iq) ṽ − γ2ṽ
T (R⊗ Iq) ṽ

+ ṽT (R⊗ Iq)CAc (x̃−Ψρ̃)

+ δc (x̃−Ψρ̃)
T (
PcAc +AT

c Pc
)

(x̃−Ψρ̃)

+ 2 (Cx̃)
T

(R⊗ Iq)CBKx̆+ ṽT (R⊗ Iq)CBKx̆.

Then according to similar arguments in the proof of Theorem
1, one obtains

V̇ ≤−
(
2m− M2 + ‖C‖2

δ

)
‖Cx̃‖2

−
(
γ2rmin −

5δ

4
− ‖C‖

2

4δ

)
‖ṽ‖2

−
(
γ1λ2 −

γ2
2

δ

)
‖s‖2 − ‖x̃−Ψρ̃‖2

+2 (Cx̃)
T

(R⊗ Iq)CBKx̆+ṽT(R⊗ Iq)CBKx̆. (36)

Note that the following inequalities are satisfied,

2 (Cx̃)
T

(R⊗ Iq)CBKx̆

≤ ‖C‖
2

δ
‖Cx̃‖2 + δ‖BK‖2‖x̆‖2, (37)

ṽT
(
R⊗Iq

)
CBKx̆

≤ ‖C‖
2

4δ
‖ṽ‖2 + δ‖BK‖2‖x̆‖2. (38)

Then substituting (37) and (38) into (36) leads to

V̇ ≤−
(

2m− M2 + 2‖C‖2

δ

)
‖Cx̃‖2

−
(
γ2rmin −

5δ

4
− ‖C‖

2

2δ

)
‖ṽ‖2

−
(
γ1λ2 −

γ2
2

δ

)
‖s‖2 − ‖x̃−Ψρ̃‖2

+ 2δ‖BK‖2‖x̆‖2. (39)

Since Ao is Hurwitz, there exists a positive definite matrix
Po such that PoAo + AT

o Po ≤ −I . Consider another positive
definite function V3 = x̆TPox̆. The derivative of V3 along the
trajectory of (35) satisfies

V̇3 = x̆T(PoAo +AT
o Po)x̆ ≤ −‖x̆‖2.

Consider the Lyapunov function candidate V̄ (x̃, x̆, ρ̃, ṽ) =
V1 +δcV2 +δoV3 with δo = 2δ‖BK‖2 +1, then the derivative
of V̄ along the trajectory of (35) satisfies

˙̄V ≤−
(

2m− M2 + 2‖C‖2

δ

)
‖Cx̃‖2

−
(
γ2rmin −

5δ

4
− ‖C‖

2

2δ

)
‖ṽ‖2

−
(
γ1λ2 −

γ2
2

δ

)
‖s‖2 − ‖x̃−Ψρ̃‖2 − ‖x̆‖2.

The rest of the proof follows arguments similar to those in
the proof of Theorem 1, and is thus omitted.
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