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Two-stage Sparse Representation Clustering for
Dynamic Data Streams

Jie Chen, Member, IEEE, Zhu Wang, Shengxiang Yang, Senior Member, IEEE, Hua Mao

Abstract—Data streams are a potentially unbounded se-
quence of data objects, and the clustering of such data is
an effective way of identifying their underlying patterns.
Existing data stream clustering algorithms face two critical
issues: evaluating the relationship among data objects with
individual landmark windows of fixed size, and passing useful
knowledge from previous landmark windows to the current
landmark window. Based on sparse representation techniques,
this paper proposes a two-stage sparse representation cluster-
ing (TSSRC) method. The novelty of the proposed TSSRC
algorithm comes from evaluating the effective relationship
among data objects in the landmark windows with an accurate
number of clusters. First, the proposed algorithm evaluates the
relationship among data objects using sparse representation
techniques. The dictionary and sparse representations are
iteratively updated by solving a convex optimization problem.
Second, the proposed TSSRC algorithm presents a dictionary
initialization strategy that seeks representative data objects
by making full use of the sparse representation results. This
efficiently passes previously learned knowledge to the current
landmark window over time. Moreover, the convergence and
sparse stability of TSSRC can be theoretically guaranteed
in continuous landmark windows under certain conditions.
Experimental results on benchmark datasets demonstrate the
effectiveness and robustness of TSSRC.

Index Terms—Data stream, clustering, sparse representa-
tion, dictionary learning.

I. Introduction

ITH the rapid development of software and hard-

ware technologies, large amounts of data are being
collected in dynamic environments [1]-[4]. Such online
data are usually referred to as data streams. A data
stream is a potentially unbounded, continuous, massive
sequence of data objects in a dynamic environment. The
goal of data stream clustering is to place data objects into
their respective groups according to particular similarity
measures.
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The unique characteristics of data streams typically
lead to specific challenges in data stream clustering [3].
For instance, the probability distribution of data streams
may continuously evolve over time, which implies that
the underlying clustering models should be adaptively
updated to characterize the intrinsic structure of the
current data stream at any time, and also eliminate the
effects of outdated data and noise. As data objects often
arrive continuously, the clustering of data streams should
satisfy certain memory requirements and time restrictions,
with rapid detection of the presence of potential outliers.
A number of clustering algorithms often perform well on a
finite amount of data generated by an unknown, stationary
probability distribution [5]-[9]. However, the additional
considerations outlined above mean that these algorithms
may be insufficient for the clustering of data streams.

Several traditional clustering approaches have been
proposed for data streams [10]-[16]. Balanced iterative
reducing and clustering using hierarchies (BIRCH) is
a typical hierarchical clustering algorithm that uses a
clustering feature (CF) vector to construct a height-
balanced tree, with new clusters generated by pruning
the leaves of this tree [16]. Moreover, the CF vector or
its variants were adopted to incrementally summarize the
data streams. For example, Fahy et al. presented an ant
colony stream clustering (ACSC) algorithm that employs
local density and local similarity produced by artificial ants
to probabilistically pick and drop microclusters created by
the CF vectors [12]. Huang et al. presented a multiview
support vector domain description model for multiview
data stream clustering [13]. These algorithms typically
employ a local similarity strategy using the Euclidean dis-
tance between data objects to preserve local neighborhood
information. However, estimating an appropriate size for
the neighborhood remains an open question.

The nature of clustering implies that highly correlated
data objects from the same cluster contain similar struc-
tural characteristics. Traditional clustering approaches
take advantage of the spatial proximity of data objects,
i.e., the computation of the Euclidean distance, to retain
information in the cluster components [16]-[21]. How-
ever, it is insufficient to characterize the intrinsic struc-
tures of high-dimensional data objects in data streams.
This motivates the development of alternative techniques
for exploiting the intrinsic characteristics of the high-
dimensional data objects [10], [22], [23], [23], [24]. For
example, Krlezal et al. proposed a statistical hierarchical
clustering (SHC) algorithm that uses statistical inference
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based on statistical distances to estimate statistical dis-
tributions on data streams [10]. Sui et al. presented an
evolutionary dynamic sparse subspace clustering (EDSSC)
algorithm based on sparse representation to address the
problem of concept drift [22]. Li et al. proposed an efficient
self-adaptive online data stream (ESA-Stream) clustering
algorithm that self-adaptively learns parameters to cluster
data streams in a dynamic online environment [25]. Data
streams dynamically change as new clusters appear or
others disappear. This would enable the number of clus-
ters to change dynamically in each individual landmark
window. Determining the exact number of clusters is
essential in improving the quality of clustering, and is
one of the difficulties encountered in previous algorithms
[26]. Moreover, this also requires the clustering algorithm
to be capable of incremental learning from large-scale
dynamic data streams. Therefore, there is a need for a
new learning strategy that adaptively passes previously
learned knowledge to the current data stream over time.

Sparse representation has been widely studied and
has achieved encouraging results in fields such as image
processing, computer vision, and pattern recognition [8],
[27]-[29]. Wang et al. proposed a robust rank constrained
sparse learning (RRCSL) algorithm that combines sparse
representation with an ly;-norm to learn a similarity
graph for single view or multiview clustering [27]. Ding et
al. presented a sparse representation-based intuitionistic
fuzzy clustering (SRIFC) algorithm that clusters decision
makers into several groups according to relation sparsity
[28]. Gu et al. presented a fuzzy double c-means based on
sparse self-representation (FDCM__SSR) algorithm that
can simultaneously cluster two datasets with different
dimensions [29]. Sparse representation essentially takes
advantage of the self-expressiveness property of the data,
enabling each data point to be effectively represented as
a sparse linear combination of other points from the same
class. Ideally, the sparse representation of a data object
identifies highly correlated data objects from the same
class, where the values of the nonzero elements correspond
to a weight for each pair of data objects. This avoids
the need to specify the proper neighborhood size when
evaluating the similarity among data points.

Dictionary learning techniques have been widely com-
bined with sparse representation models [30], [31]. For
example, a number of online or batch dictionary learning
methods have been developed for dealing with large-scale
data objects [30]-[32]. These dictionary learning methods
learn a compact dictionary from the large-scale data
objects by incrementally updating the learned dictionary
in the online process. However, data stream clustering
must adapt rapidly to the changing dynamics of the data.
This means that algorithms should store some of the
data objects for a given period of time and later discard
them, such as by employing a forgetting mechanism. As
a result, incrementally updating the learned dictionary
is currently unable to deal with the clustering of data
streams. As the above discussion shows, there are few
sparse representation techniques with online dictionary

learning that can be used for the clustering of data
streams.

In this paper, we present a two-stage sparse represen-
tation clustering (TSSRC) method for clustering high-
dimensional data streams. TSSRC finds a discriminative
sparse representation of the high-dimensional data that
unravels the intrinsic relationship among data objects. In
the first stage, TSSRC integrates the sparse constraint
into a data object representation in order to learn a sparse
matrix, which preserves the relationship among the data
objects. We propose an iterative optimization method to
efficiently improve the convergence speed of the TSSRC
model. The learned sparse matrix is then employed as
an affinity matrix for spectral clustering. In the second
stage, a dictionary initialization strategy is employed
to efficiently pass previously learned knowledge to the
current landmark window over time. The convergence
and sparse stability of TSSRC are theoretically analyzed,
as these aspects are crucial in practical applications.
Finally, we report the results of extensive experiments
that demonstrate the performance of our proposed method
through comparisons with several state-of-the-art data
stream clustering methods.

The contributions of this study can be summarized as
follows:

1) A sparse representation approach is incorporated
into data stream clustering, enriching the measure-
ments among data objects for robust data stream
clustering.

2) A dictionary initialization strategy is proposed that
effectively retains previously learned knowledge and
provides an exact number of clusters for the current
landmark window over time.

3) The convergence and sparse stability of TSSRC are
theoretically guaranteed under certain conditions in
continuous landmark windows.

4) Our extensive experimental results using benchmark
databases demonstrate the effectiveness, stable con-
vergence, and sparse stability of TSSRC for data
stream clustering.

The remainder of this paper is organized as follows. In
Section II, we present a brief review of sparse representa-
tion and data stream clustering. Section III introduces the
TSSRC method and analyzes the proposed approach. In
Section IV, we evaluate the TSSRC method through ex-
tensive experiments using real and synthetic data streams.
Finally, we draw together the conclusions from this study
in Section V.

II. Related work
A. Sparse Representation Theory

Sparse representation is an extremely successful tech-
nique for representing high-dimensional data [33], [34]. Let
the dictionary D = [dy,ds,...,d,] € R¥"™ be a set of
n vectors, where each column of the set is of length d.
Given a vector x € R?, its sparsest representation over
the dictionary D can be approximately represented by a
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sparse linear combination of only a few columns of D.
Specifically, a sparse representation vector z € R™ of x
can be calculated via the following lg-norm minimization
optimization problem:

min x — Dzll, + Al W

where A\ > 0 is used as a trade-off parameter, and |||,
counts the number of nonzero entries in a vector.
Dictionary learning is particularly useful for sparse
representation. Considering a vector x;, several existing
online or batch dictionary learning methods are usually
based on minimizing the following objective function [30]—-
[32]:
(1 >

gind" (51 - Dall 4 Alal,) @

D,z; = 2
where z; € R™ (1 <1 <n) represents a sparse coefficient
vector. Iteratively updating each column of the dictionary
for each data object incurs a heavy computational cost.
Moreover, these dictionary learning methods make use
of each data object to incrementally update the learned
dictionary without any forgetting mechanisms. Therefore,
these disadvantages make them unsuitable for the real-
time clustering of data streams.

B. Data Stream Clustering Techniques

The conventional data stream clustering algorithms
often fall into four categories: hierarchy-based clustering
[10], [16], [35], density-based clustering [12], [14], [18],
[20], [25], [36], [37], partitioning-based clustering [21], [38],
[39], and model-based clustering [11], [15], [19]. BIRCH
constructs a height-balanced tree using the CF vector [16],
where CF = (N, LS, SS) is composed of N (the number
of data objects), LS (the linear sum of the data objects),
and SS (the sum of squared data objects). The Euclidean
distances between new objects and each centroid of the
CF entries in BIRCH are calculated and compared with a
threshold to determine whether the new object belongs
to a new class. The fully online clustering algorithm
consists of two separate phases for clustering evolving
data streams into arbitrary shaped clusters [20]. The first
stage uses a graph structure to represent microclusters,
and the second stage merges these microclusters into
macroclusters. ACSC identifies clusters as groups of micro-
clusters by introducing artificial ants, which sort clusters
by probabilistically picking and dropping microclusters
[12]. The fuzzy incremental density-based clustering algo-
rithm clusters evolving data streams using a two-phase
scheme [18]. This scheme first produces microclusters
using fuzzy local clustering, and then determines the
final clusters by estimating the valley threshold from
each density peak. These algorithms first consider the CF
vector or its variants as data structures in order to create
microclusters. Then, they perform the merge operation
of microclusters to obtain macroclusters using respective
criteria. Essentially, these algorithms share the principle

of the local similarity measure based on the Euclidean
distance for clusters.

The collection of high-dimensional data from multiple
classes often lies in a union of low-dimensional subspaces
[40]. Bahri et al. provided a survey on dimensionality
reduction approaches for evolving data streams [41]. This
survey claimed that stream data mining algorithms usually
provide good accuracy for evolving data streams when
combined with data-dependent dimensionality reduction
techniques. Moreover, these techniques are naturally
adapted to the evolving environment of data streams.
In addition, EDSSC introduces a subspace structure
evolution detection model to detect the appearing, dis-
appearing, and recurring subspaces [22]. In particular, it
uses a singular-based Laplacian matrix decomposition to
automatically estimate the number of subspaces. However,
the accurate estimation of the number of clusters for data
objects in the landmark window remains an open problem.
Therefore, there is a need for further research to develop
data stream clustering algorithms that take into account
the subspace structures of high-dimensional data.

III. Two-stage sparse representation clustering

In this section, we describe the proposed TSSRC
method. Sparse representation learning and a discrimina-
tive dictionary initialization are achieved through a two-
stage data stream clustering structure.

A. Problem Formulation

A data stream S is a massive sequence of data
objects that arrive continuously over time, ie., X =
{x1,X2,.,xn} (N — 00), where each data object z; € R?
(1 <i < N) is associated with a particular time stamp
i. Because data streams are potentially infinite, we con-
sider a landmark window model, in which data objects
are separated by landmarks. When a new landmark is
reached, all data objects previously kept in the window
are discarded, and new data objects starting from the
current landmark are then kept in the window until the
next landmark is reached. Without loss of generality, let
X = [X1,X2,...,X,] € R™X™ be a representative example
of the data objects in a landmark window. Data stream
clustering aims to divide these data objects into their
corresponding groups to discover the intrinsic structure
of each landmark window, where the number of clusters
in the landmark window is unknown.

B. Sparse Representation-Based Dictionary Learning for
Relationship Discovery

TSSRC makes full use of sparse representation to
measure their relationship. For example, given a set of
data objects X = [x1,Xa2, ..., Xp] in a landmark window, we
represent each data object as a linear combination of the
others, where the matrix coefficients should be sparse. The
coeflicients of the sparse representation of individual data
objects are adopted to measure the relationship among
the data objects. Hence, designing an affinity matrix is
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the key step towards evaluating the relationship among
data objects.

Considering a data object x; (1 < ¢ < n), TSSRC
uses the following [y-norm minimization for the sparse
representation:

argmin ||z;|, s.t.
z;

[xi = Xzl <& (3)

where ||-||, characterizes the noise term e. The columns
of matrix Z € R™*™ consist of the sparse coefficients, i.e.,
Z = (21,2, ..., Z,). Further, Z* is used to define an affinity
matrix, i.e., Z* = |Z|+|ZT |, where the value of element z;;
in the affinity matrix represents the similarity between the
data objects x; and x;. The corresponding value of the
sparse representation between each pair of data objects
indicates their similarity, and the number of nonzero
sparse representation coefficients indicates the potential
relationship among the corresponding data objects. If any
two data objects x; and x; are close in the intrinsic
geometry of the data distribution, then the representations
of these two data objects, namely, z; and z; with respect
to the same basis X, are close to each other [42]. For
a larger degree of similarity between x; and x;, the
distance between z; and z; should be smaller. Hence,
it is reasonable that sparse representation is adopted to
measure the relationship among data objects in the data
stream.

Clustering data streams requires a process that can
continuously cluster objects within some time restrictions.
However, determining the sparsest representation of each
data object individually in (3) leads to a high compu-
tational cost. To accelerate the optimization, we apply
a batch mode to obtain sparse solutions by solving a
sparse representation optimization problem. Each element
z;j of the matrix Z represents the similarity between data
objects i and j. To maintain the interpretability of the
sparse representation results, the diagonal elements of Z
must be zero. This indicates that there is no relationship
between any data object and itself. In addition, this avoids
the trivial solution of Z being the identity matrix from
the optimization perspective. Given an initial dictionary
D, we consider the following convex optimization problem
to seek a sparse representation Z:

mzin||Z||0+%||x_DZ||; sit. diag(Z)=0  (4)

where « is a scalar constant and diag (Z) represents
the vector containing the n diagonal elements of Z. In
particular, X can be represented as the linear combination:

X =DZ+E. (5)

This indicates that D is a specific dictionary that linearly
spans the data space. The regularization ||D||?, is incor-
porated to prevent D from being arbitrarily large when D
is iteratively updated during optimization. Assuming that
Z is sparse, the preliminary objective function is defined
as:
e

pinZl,+ 51X - Dz + DD

s.t. diag(Z) =0

where § > 0 is a regularization parameter and D is the
dictionary to be learnt.

C. Optimization

The coefficients of sparse representation and the dic-
tionary are iteratively updated by solving (6). We first
convert this problem to the following equivalent problem
by introducing an auxiliary variable J:

. « 2 ﬁ 2
Juin |1 Z]lo + 5 IX — DI + 5 DIl %
st. J=17—d(Z)

where d (Z) € R"*" represents a diagonal matrix whose
diagonal entries correspond to that of Z. The augmented
Lagrangian function of (7) is:

. « 2 B 2
L |12l + 51X = DJI|5 + 5 D+
(YT - Z+d(2) + 51T -2+ d@)7

where Y € R"*" is a Lagrange multiplier and p > 0 is a
penalty parameter. The above optimization problem can
be formulated as follows:

. e 2 B 2
Jmin 7], + & X - DI+ DI
2 9)

s (o)

Algorithm 1 Solving (6) using an inexact ALM framework

Input: data matrices X € R4*™ and D € R¥*", parame-
ters >0, >0, u>0and p> 1.
Initialize: k = ]., Z1 = Jl = Y1 = 0, D1 = D, H1 = M,
tmax = 108 and e = 1072,
1: while not converged do
2:  update Jyq1 using (10);
update Zjy1 using (11);
update Dy 41 using (17);
update the multiplier Y41 using (18);
update the parameter p: pip+1 = min(ppg, thmax);
check the convergence condition:
||Z1€+1 - Jk+1Hmax <&
8: k+—k+1;
9: end while
Output: Zg, Dy

IR

Equation (9) can be effectively solved using the inexact
augmented Lagrange multipliers (ALM) framework [43].
The variables J, Z and D can be updated alternately
while the other two variables are fixed. The variable J
has a closed-form solution, and the update scheme for
Jk+1 is:

1
Jip1= (o DiDp+p-I) (o DEX + - Zi — Yy),
Jry1 < normalizeo,1) (Jr41)

(10)



IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH 2022 5

where normalize(o ) (-) represents a matrix with columns
normalized to a length of one. Given the fixed Jgt1, Z41
is updated by the following scheme:

2

)

F

(11)

The closed-form solution of the first part of (11) is
obtained using the hard thresholding operator H:

Y
Ziyr =M — (Jk+1 + ’“)
Pk

M

1 1 Yy
Zi+1 = min —||Z = |2k — —
k1= fin " 1Zrs1llo + 5 H k+1 <Jk+1 + m >

Ziy1 Zpyr —d(Zpsr).

(12)

where the operator H () is defined as follows [44]:

0, if [z[<VA
x, if Jr|>VA

When Z is fixed, Problem (6) is equivalent to the following
problem:

e ={ (13)

e 2 B 2
ot _ = ) 14
min X — D2} + = DI} (14
For a fixed Zg4q in the (k4 1)-th iteration, Dy is
updated by minimizing the following surrogate function:

¢ (Dy) =tr (D{DyZy+1Z}, — 2D{ X, Z] )

+ gtr (D D).

(15)
We employ a classical block coordinate descent algorithm
that is made up of the gradient computation and the
Euclidean projection on the lo-norm to minimize ¢ (Dy)
on the columns of D [32], [45]. The gradient of ¢ (Dy) can
be computed as:

d¢ (Dy,)

0Dy,

B

=D, (zkz,{ += 1) - X.ZT.  (16)

The updating scheme for Dy is:
(17)

where % is the gradient step and P represents the Eu-

clidean projection on the ls-norm. In practice, we usually
set 6 = A [4, j] while calculating the j-th column of Dy,
where A = Z;<H_1Zg+1 —|—§~I [32]. For fixed Ji41 and Zy1,
the Lagrange multiplier Y41 is updated using the step
size p as:

Yirr = Yi + ok (Ziyr — Jis) - (18)
The  convergence condition is  satisfied  when
|Zy — Ikl pax < € holds, where ||, .. Tepresents

the maximum absolute value among all elements in a
matrix. In practice, we usually set ¢ = 10~2. The complete
procedure for solving (6) is outlined in Algorithm 1.

D. Proposed Dictionary Initialization Strategy

Choosing an appropriate dictionary in (6) leads to
effective algorithms for the evaluation of the sparse
representation. An intuitive approach is to consider the
data objects X as a dictionary; this is often adopted in
traditional clustering algorithms based on sparse represen-
tation. However, various levels of noise are ubiquitous in
data streams, and this may result in unsatisfactory results.
Moreover, data streams have particular characteristics,
e.g., possibly infinite volume and dynamical changes,
that differentiate them from traditional static datasets.
Data objects in the current window must be processed
before the next landmark window of stream data arrives.
There is a need for a dictionary initialization strategy for
sparse representations that adaptively passes previously
learned knowledge to the current data stream over time.
Consequently, we pursue a more appropriate dictionary
rather than using the data objects themselves as the
dictionary. This reveals the true relationship among the
data objects in the current landmark window.

To design a discriminative dictionary, the key step is to
preserve valuable data objects for a given period of time,
and replace them with a number of new valuable data
objects later. Assume that we have representative data
objects X, € R¥™ that were previously learned from
data streams before time ¢, where ¢ represents the number
of clusters, n. = |n/c|, and m = ¢ x n.. When ¢t = 1, the
problem of data stream clustering is considered to be a
traditional clustering problem, i.e., D = X;. Then, X;
is considered to be X, for the current landmark window.
When X, arrives at time ¢ > 1, D = [X,, X;] € R (m+n)
and X = [X;, X;] are employed to represent a set of data
objects and its dictionary, respectively, for (6). The sparse
representation result Z and the corresponding dictionary
D can be obtained by Algorithm 1.

We further elaborate the implications of the above
sparse representation Z and the corresponding dictionary
D for two critical issues in data stream clustering. First,
the learned affinity matrix is constructed using Z, i.e.,
Z* = |Z| + |ZT|, which represents the final similarity of
data objects in the current landmark window. TSSRC
considers Z* as an affinity for spectral clustering algo-
rithms, e.g., NCuts [46]. Consequently, we obtain the final
clustering results for X, which contain the clusters of X; in
the current window. Moreover, Z and D are crucial for the
exact construction of a new X, for the current landmark
window. The ¢ submatrices are extracted from the sparse
representation Z, i.e., Zi,Zs,...,Z.. Considering a data
object x; from cluster j, we can easily choose its sparse
representation Z; from Z. Each coefficient matrix Z; €
R™ ™ (j=1,2,...,¢) is a block matrix associated with

(&

the j-th cluster, where > n; = m + n. The dictionary D
j=1

for all ¢ clusters can be considered as D = [Dq, Do, ..., D],
where each D; is a sub-dictionary containing n; elements.
Ideally, the nonzero entries in Z; will all be associated
with the columns of D;. In other words, x; should be
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Algorithm 2 TSSRC algorithm

Input: data matrices X; = [x1,X2,...,X,] € R™*" and
X, € R¥>™ parameters o > 0, 8 > 0, number of
clusters c.

1: if t==1 then

2: D:X1,X=X1 andstxl;

3: else

4 D=[X,,X,] and X = [X,, Xy];

5: end if

6: Solve Problem (6) using Algorithm 1, and obtain the
optimal solution (Z, D).

7: Compute the affinity matrix Z* = |Z| + |ZT|;

8: Apply Z* in the NCuts algorithm, and obtain ¢
clusters containing the clusters of Xy;
9: if ¢ >1 then
10:  ne = |n/cl;
11:  /* Add at most n. data objects chosen from each
cluster into X, as the representative data objects
*

12:  for each cluster C; do

13: /* n; represents the number of data objects in
Cj */

14: if n; >n. then

15: for each element dy in D; do

16: Compute AR (dy) using (19);

17: end for

18: Add n. data objects into X, corresponding to

the largest n. approximate residuals;
19: else
20: Add all n; data objects into X
21: end if
22:  end for
23: end if

Output: clusters of X; and the new X;.

represented as a linear combination of the elements from
D;, where Z; denotes the vector of sparse representation
coefficients associated with the j-th cluster. However,
corruptions and insufficient modeling accuracy may lead
to small nonzero entries associated with a few data objects
from other clusters. Using only the coefficients associated
with the corresponding cluster j, we can approximate the
data objects X; as X; = D;Z;. The definition of the
approximate residual (AR) of each element of D, i.e., dy,
is given as follows:

AR (dg) = ||normalize g,y (5{?) — Z d; - (Zé)T 7
i=1,i#k h
k=1,2,..,n;, i=12.,¢
(19)

where Z! represents the i-th column of Z;. AR (dj)
denotes the error of all dictionary elements of the j-
th cluster when dj is removed. We employ AR (dy) to
measure the degree of importance of di in the sparse
representation. A higher value of AR (dj) indicates that

d; is more important. The representative data objects
of each cluster C; are then determined as those with the
largest m; residuals. Algorithm 2 summarizes the complete
data stream clustering procedure.

In practice, there are often several data objects that
belong to more than one cluster. These may be considered
as outliers in traditional clustering problems, and are
usually removed before clustering to prevent poor clus-
tering performance because of insufficient representative
data objects of the dictionary in the sparse representation.
However, most such objects may be valid in a data stream.
TSSRC overcomes a fundamental limitation of insufficient
representative data objects in traditional sparse repre-
sentation algorithms, because X contains representative
data objects from all clusters over time.

E. Theoretical Analysis

1) Convergence Analysis: In this section, we estimate
the convergence condition in Algorithm 1. Algorithm 1 has
a single convergence condition, i.e., || Zrt1 — Jpt1 ] pax <
€. Theorem 1 shows that the convergence condition of
Algorithm 1 is satisfied under certain conditions. The
proof of Theorem 1 can be found in the supplementary
material.

Theorem 1 The convergence condition
1Zr+1 — Tetillyee < € will eventually be satisfied
as k increases if p and p satisfy the following conditions:

p>2 and p>0

where k represents the number of iterations and € is a
small positive number, e.g., € = 1074,

2) Sparse Stability Analysis: Sparse representation
with respect to a learned dictionary of base elements
is of great importance in identifying and modeling the
intrinsic structures of data streams. With the appropriate
regularization parameters « and /3 in (6), we usually strike
a balance between the sparse approximation error of X and
the sparsity of Z in a single landmark window. However,
large amounts of data objects are being continuously gen-
erated by an unknown, stationary probability distribution.
Maintaining the sparse stability of Z with fixed o and
in TSSRC is crucial for data stream clustering as data
objects arrive in successive landmark windows.

To keep the sparsity of Z stable, we investigate the
sparse stability condition in a single landmark window.
Theorem 2 shows that the sparsity ratio of Z always
remains stable after several iterative computations satis-
fying a certain condition in Algorithm 1. This provides a
theoretical guarantee for the stability of the sparsity ratio
in successive landmark windows. The proof of Theorem 2
is given in the supplementary material.

Theorem 2 Suppose that convergence is achieved after the
k-th iteration in Algorithm 1. The sparsity ratio (SR)
of a matrix Z is defined as SR(Zy) = 125l

Tum(Ze) where
num(Zy) is the number of elements in Zg. The SR of Z
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will always remain stable, i.e., |SR(Zg4+1) — SR(Z)| < &,
after k iterative computations, if

te—1>1 and p>1

where || Zj||, counts the number of nonzero entries in the
matrix Zy, € = le7% and k > 1.

The sparsity condition in Theorem 2 is slightly stricter
than the convergence condition in Theorem 1. Note that
in Theorem 1 represents the initial value at the beginning
of the iterative computations while pup_; in Theorem 2
is the result of (k — 1) iterative computations using py =
pk—1. Consequently, the SR of Z must reach a stable state
before convergence is achieved with appropriate values of
p and p. This demonstrates that the proposed method
offers a theoretical guarantee of the feasibility of the sparse
representation.

3) Parameter Analysis: The convergence and sparsity
of Algorithm 1 are theoretically guaranteed by Theorems
1 and 2. In particular, the combination of px and p
effectively controls the convergence speed and sparsity
ratio in Algorithm 1. In theory, a larger value of p implies
faster convergence. The desired sparsity can be obtained
if the initial value of u is relatively small (e.g., u < 1).
In addition, estimating the number of clusters c is one
of the main challenges in data clustering tasks. The the
normalized Laplacian matrix L can be constructed by
Z. While Z is a strictly block-diagonal affinity matrix,
the number of clusters ¢ can be obtained by counting
the number of zero singular values of L [47]. However,
the various noise and corruption in the data stream
means that Z is only nearly a block-diagonal matrix.
Assume that the maximum number of clusters in a data
stream is C,,4.. There are probably C,,.. clusters in X
over time. We introduce two schemes to automatically
determine the number of clusters c. In the first scheme,
we can prepare X for data stream clustering tasks if
some prior knowledge of the data stream is available,
where X, consists of fully representative data objects
for all clusters. This is an intuitive and effective scheme,
and c¢ is always the maximum number of clusters, i.e.,
¢ = Chaz- The second scheme is based on a theoretical
analysis of the spectral properties of block-diagonal affinity
matrices. The value of ¢ is determined such that the gap
between each two consecutive eigenvalues of L from \;
to Ap is very small, but the gap between A, and Apy1 is
relatively large, where p is a positive integer [48]. This
heuristic scheme does not take advantage of any prior
knowledge of the data stream. We will set ¢ = Cpqp if
p > Chae. Simultaneously, this means that there are
fully representative data objects for all clusters in X;. The
scheme will be abandoned once ¢ = C,,,z In successive
landmark windows. It is obvious that TSSRC will benefit
from knowing an accurate number of clusters.

F. Computational Complexity

We assume that a landmark window X has n data
objects belonging to c¢ clusters, where the size of X

is d x n. Algorithm 2 summarizes the complete data
stream clustering algorithm of TSSRC. We use an inexact
ALM framework in Algorithm 1 [43]. The computational
complexity of the first step in Algorithm 1 is O(n?3)
because it requires the inverse of an n X n matrix to
be computed. The second and third steps in Algorithm 1
have a computational complexity of O(n?) and O(d x n?),
respectively, as they involve matrix multiplication. The
overall computational complexity of Algorithm 1 is O(tn?3)
if d < n, where t is the number of iterations. The spectral
clustering and online dictionary learning steps in Algo-
rithm 2 have a computational complexity of O(n?®) and
O(n?), respectively. Therefore, the final overall complexity
of TSSRC is O(tn?) if d < n.

G. Comparison with Online Dictionary Learning Schemes

A number of online dictionary learning methods have
been developed and combined with sparse representation
models for signal reconstruction and classification [30]—
[32]. For an online data object, these methods typically
perform dictionary learning in two stages: first, the sparse
coefficients are calculated with an updated dictionary
by solving an [;-regularized linear least-squares problem;
second, each column of the dictionary is sequentially
updated with the sparse coefficients while the other
columns are held fixed under the particular constraint
[31], [32]. The two stages of online dictionary learning
methods involve iterative computations, which may not
satisfy the real-time requirements of clustering tasks for
data streams. Moreover, these methods often use random
variables to initialize the dictionary, where the number
of columns in the impact dictionary is different from
that of the data objects. As a result, the sparse coef-
ficients do not contain any meanings that can measure
the relationship among data objects. Additionally, online
dictionary learning methods take advantage of complete
history information to incrementally update the dictionary
by processing one element at a time. However, there is
no need to preserve the whole meaning of all original
data objects in data stream clustering, as the distribution
of data objects in data streams may vary over time.
Conversely, plausible forgetting mechanisms should ideally
be employed to consider cluster evolution.

TSSRC learns a dictionary in a different way. The
tasks of finding the sparse coefficients and learning the
dictionary of a group of data object are integrated into
a single stage in Algorithm 1. In particular, a forgetting
mechanism is implemented using the dictionary initializa-
tion strategy. Specifically, all data objects are adopted as
an initialized dictionary in the first window. Then, the ini-
tialized dictionary is changed across dynamic data streams
by updating the set of representative data objects. This
satisfies the requirement of obsolescence for previous data
objects in data stream clustering. Hence, TSSRC provides
sparse representation model-based dictionary learning for
relationship discovery, which works radically differently
from previous online dictionary learning schemes.
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TABLE 1
Description of streaming datasets.

Dataset Classes Data objects Features Type
UG2C5D 2 200,000 5 Synthetic

Network Intrusion 2 494,000 42 Real

Keystroke 4 1,600 10 Real

Forest Cover 7 580,000 54 Real

USPS 10 7,291 256 Real

COIL-100 100 7,200 1,024 Real

IV. Experimental Study

In this section, we evaluate the performance of the
proposed TSSRC! on publicly available datasets by com-
paring it against existing popular data stream cluster-
ing algorithms, namely, CluStream [21], ClusTree [49],
CluStreamKM [50], StreamKM++ [39], multiview stream
(MVStream) clustering [13], ESA-Stream [25], RRCSL
[27], and FDCM_SSR [29]. TSSRC is implemented in
MATLAB and all experiments are conducted on a Win-
dows platform with an Intel i5-2300 CPU and 16 GB
RAM. The implementation of the first four algorithms is
provided by Massive Online Analysis (MOA), which is a
popular open source tool for data stream mining [50]. The
source codes of the latter four algorithms are provided by
their authors or implemented according to their respective
theories.

A. Experimental Settings

1) Assessment Criteria: The TSSRC algorithm is eval-
uated in terms of its clustering quality and time efficiency.
The quality of clustering is measured by five metrics,
namely, the clustering purity (Purity), normalized mu-
tual information (NMI), F-measure, within-cluster sum
of square error (SSE), and silhouette coefficient (SC).
The first three metrics and the latter two metrics are
commonly used as external and internal measures for
clustering evaluation, respectively. The five metrics follow
their standard definitions [2], [25], [51]. A higher value
indicates better clustering performance for the metrics
except SSE.

2) Datasets: We consider one synthetic and five real
streaming datasets, all of which are publicly available
[52], [53]. Table I summarizes the details of the six
datasets. The UG2C5D and Keystroke datasets have drift
intervals of 2,000 and 200, respectively. The drift intervals
of the Network Intrusion, United States Postal Service
(USPS), and COIL-100 datasets are unknown. For the
sake of simplicity, their drift intervals are set to 1,000
in the experiments. We selected the first 50 landmark
windows of the UG2C5D, Network Intrusion, Forest Cover
datasets and all landmark windows of the other datasets
for clustering evaluation.

3) Parameter Settings: All parameters of the bench-
mark algorithms were manually tuned using MOA to
ensure good results. Algorithm 2 has three main param-
eters: «, B and c. Empirically speaking, A should be
relatively large if the data are slightly contaminated by

Thttps://codeocean.com/capsule/5525574 /tree/v2

noise, and vice versa. The parameters «, § were cho-
sen from {16*3, 5e73,1e72,5¢72,0.1,0.5, 1} with the grid
search strategy. For parameter ¢, we employed the second
scheme mentioned in Section ITI-E3. In addition, there
are two additional parameters involved in the optimization
procedure of TSSRC, i.e., y and p. According to Theorems
1 and 2, we set 1 and p to 0.05 and 8, respectively. Further
details of the parameters are given in each experiment.

B. Clustering Quality Evaluation

We evaluate the performance of the proposed algorithm
with streaming datasets. The results are presented in Ta-
ble II. For the UG2C5D and Network Intrusion datasets,
a large number of landmark windows only contain one
cluster. Therefore, the NMIs and SCs of these two datasets
are omitted from Table II. For this experiment, the six
groups of TSSRC parameters were (1) a = 0.5, 8 = 0.01,
2)a=1,=1e2, 3) a=1e2 3=0.1, (4) a = 5e 2,
B =01, (5) a =5e 3 B =52 and (6) a = le 3,
B = b5e 2.

Table IT shows that TSSRC consistently obtained the
best results in terms of the five metrics. This confirms
that our proposed method is very effective against a
varying number of clusters regarding dynamic data stream
clustering. For example, TSSRC achieved a high ACC of
92.57% on the UG2C5D dataset, an improvement of at
least 2.57% over the other algorithms. We observed the
same advantage when more features were contained in the
data objects. For example, TSSRC obtained a high ACC of
98.59%, 80.94%, 76.88%, 78.5%, and 54.4% on the other
five datasets. Moreover, Table II indicates that TSSRC
consistently outperformed the other eight algorithms in
terms of the other metrics. For example, using TSSRC, the
F-measure for each dataset is increased by at least 2.75%,
5.01%, 6.15%, 3.59%, 17.89%, and 5.08% respectively,
compared with the competing methods. The NMI values
achieved by TSSRC are 2.13%, 2.4%, 10.4%, and 6.8%
higher than the second-best results on the Keystroke,
Forest Cover, USPS, and COIL-100 datasets, respectively.
Moreover, TSSRC produces excellent results that are much
better than the other methods in terms of both SSE and
SC. These results confirm that the relationship calculated
from the sparse representation significantly improves the
clustering performance, especially when the data objects
contain more features.

The time efficiency of the proposed algorithm was also
evaluated and the results are presented in Table III. From
Table III, it can be observed that CluStreamKM was
faster than the other algorithms on all datasets except
Keystroke. TSSRC obtained an encouraging result with
the UG2C5D dataset, where there are 2,000 data objects in
a single landmark window. However, the proposed method
achieved the best result with the Keystroke dataset, where
a single landmark window contains 200 data objects.
This means that the size of a single landmark window
has a large impact on the computational cost of data
stream clustering by the proposed TSSRC. In addition,
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TABLE 1II
Average clustering results over a fixed size of landmark windows on the streaming datasets. Best and second-best results are shown in
bold and underlined, respectively.

Datasets Metrics TSSRC CluStream ClusTree CluStreamKM StreamKM++4+ MVStream ESA-Stream RRCSL FDCM_SSR

Purity (%) 92.57 86 84 89 90 85.5 88.81 82.15 89.82

UG2C5D F-measure (%) 92.56 78 75 81 84 83.67 86.31 81.76 89.81
SSE 166.83 231 276 235 217 292.1 196.31 356.07 281.54

Purity (%) 98.59 93 91 94 92 92.56 93.67 93.1 94.33

Network Intrusion F-measure (%) 95.73 72 70 78 75 82.68 72.78 63.42 90.72
SSE 33.51 130 133 106 127 113.51 92.7 179.89 113.92

Purity (%) 80.94 64 73 71 69 64.75 68.98 68.81 74.75

F-measure (%) 81.42 74 75 72 70 68.76 65.83 68.57 75.27

Keystroke NMI (%) 57.3 37 49 53 47 38.31 42.13 47.55 55.17
SSE 21.37 41 36 39 43 37.92 38.29 27.4 25.72

SC 1.00 0.72 0.84 0.76 0.68 0.63 0.81 0.97 0.95

Purity (%) 76.88 61 66 53 56 68.5 70.05 69.25 71.6

F-measure (%)  48.2 37 33 36 38 40.32 42.85 41.7 44.61

Forest Cover NMI (%) 23.11 20 16 14 18 16.6 17.47 17.39 20.71
SSE 163.38 267 208 243 227 212.6 190.63 186.95 197.07

SC 1.00 0.53 0.68 0.56 0.62 0.67 0.72 0.88 0.99

Purity (%) 78.5 53 58 60 62 63.37 64.04 63.1 68.5

F-measure (%) 77.69 51 56 58 59 58.86 59.65 58.81 59.8

USPS NMI (%) 75.6 48 54 53 56 55.620 60.31 51.93 65.2
SSE 159.77 312 324 293 283 374.19 366.41 239.93 175.31

SC 1.00 0.67 0.63 0.69 0.73 0.78 0.59 0.56 0.98

Purity (%) 54.4 41 39 44 43 45.4 46.86 42.4 51.1

F-measure (%) 53.01 40 42 38 39 39.3 47.86 40.5 47.93

COIL-100 NMI (%) 77.31 51 58 62 57 47.23 44.34 69.1 70.51
SSE 310.83 797 689 636 563 529.05 614.52 390.41 340.44

SC 0.99 0.58 0.64 0.5 0.73 0.86 0.66 0.96 0.95

TABLE III

Average computational cost of a landmark window (S) for each dataset.

Datasets TSSRC CluStream ClusTree CluStreamKM StreamKM+-+ MVStream ESA-Stream RRCSL FDCM_ SSR
UG2C5D 6.16 0.14 1.22 0.13 0.33 9.16 9.11 13.18 28.32
Network Intrusion| 2.05 0.47 2.7 0.24 0.44 3.68 2.77 15.36 5.24
Keystroke 0.06 0.15 0.9 0.09 0.1 0.11 0.12 0.43 0.26
Forest Cover 1.98 0.29 0.72 0.27 0.48 1.44 2.69 13.11 3.75
USPS 2.22 0.69 1.23 0.53 0.91 3.72 3.65 14.63 5.51
COIL-100 2.85 .71 2.21 1.55 2.45 3.82 1.02 16.4 6.97
TSSRC runs faster than several competing methods such
as MVStream, ESA-Stream, RRCSL and FDCM__SSR on
“ © VA all datasets. Overall, the computational cost of TSSRC
® ® ‘ I is medium among all the competing methods. With the
g o enhancement of computing capabilities, the computational
£ 50 £ 50
B Fo cost may become of secondary importance to the improved
30 30| . .
zoL performance achievable by sparse representation methods.
10 10
Al A ann
15 10 15 20 25 30 35 40 45 50 15 10 15 20 25 30 35 40 45 50 . . .
me Time The online performance of TSSRC with all six datasets
(a) The UG2C5D dataset g;)tasq;?e Network  Intrusion is displayed in Fig. 1. Each figure represents the changes
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Online performance with the six datasets over continuous

in three or five evaluation metrics over time. In order to
fit the scale size of the figures, the values of SSE are
narrowed 10 times and the values of SC are amplified
100 times. We can see that the fluctuating range of
performance is smaller in most windows for the UG2C5D
and Network Intrusion datasets. In addition, ACC, F-
measure, and NMI eventually become relatively stable
after a small number of windows with the Forest Cover,
Keystroke, USPS, and COIL-100 datasets. Similarly, the
same phenomena can be observed from Fig. 1 in terms of
SSE. This comparison demonstrates that the dictionary
initialization strategy plays a critical role in ensuring
the performance stability of TSSRC. Moreover, Fig. 1
shows that the values of SC are always close to 1 for the
Keystroke, Forest Cover, USPS, and COIL-100 datasets.
This indicates that the cluster results of the proposed
method are reasonable.
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(a) The UG2C5D dataset (b) The Network Intrusion

dataset

Fig. 2. ACC with different o and 8 combinations for the four datasets.

(a) The UG2C5D dataset

(b) The Network Intrusion
dataset

(c) The Keystroke dataset

Fig. 3. F-measure with different o and  combinations for the four datasets.

From the experimental results, we can see TSSRC and
FDCM_SSR often achieve much better results than all
other methods on all datasets. However, the traditional
data stream clustering methods, such as CluStream, Clus-
Tree, CluStreamKM and StreamKM++, often obtain sim-
ilar clustering performance to TSSRC and FDCM__SSR on
the UG2C5D, Network Intrusion and Keystroke datasets.
This is because the dimensionality of the data objects
or the number of the clusters is relatively small. In
addition, the gap performance of clustering widens as the
dimensionality of the data objects dramatically increases.
The major disadvantage of these traditional methods is
a lack of the ability of characterizing intrinsic struc-
ture for high-dimensional data. Simultaneously, this also
verifies the effectiveness of sparse representation in ex-
ploring the subspace structures of high-dimensional data.
Moreover, TSSRC performs better than the other sparse
representation-based clustering methods in all datasets. In
particular, the clustering metrics of TSSRC become much
more stable after the implementation of several landmark
windows on the Forest Cover, Keystroke, USPS, and
COIL-100 datasets. This is attributed to dictionary learn-
ing that efficiently passes previously learned knowledge
to the current landmark window over time. Consequently,
the improvements from the proposed method show the im-
portance of sparse representation and dictionary learning
in data stream clustering.

C. Parameter Sensitivity Analysis

TSSRC has two main parameters: o and 3. We ex-
amined the sensitivity of TSSRC to a and g with fixed
values of = 0.05 and p = 8. Specifically, we selected
a and S from the set {16_3,56_3, le~2,5¢72,0.1,0.5, 1}.
We select four representative datasets with different «
and [ combinations for parameter sensitivity analysis.

(a) The UG2C5D dataset (b)
dataset

The Network Intrusion

Fig. 4. NMI with different o and 8 combinations for the two datasets.

Figs. 2 and 3 show the influence of a and S on ACC
and F-measure for the four datasets. In addition, Fig. 4
shows the influence of a and 8 on NMI for the Keystroke
and Forest Cover datasets. We can observe that TSSRC
performs well for a large range of o and S on all datasets
except Keystroke. As 3 increases from le™3 to 1, ACC,
F-measure, and NMI remain relatively stable for each
different value of a with the Keystroke dataset. This
indicates that the proposed TSSRC method is only slightly
sensitive to a. The drift interval of the Keystroke dataset is
200, whereas the other three datasets have drift intervals
of not less than 1,000. The comparison results indicate
that the size of a single landmark window is an important
factor in obtaining the desired clustering results.

D. Convergence Study and Sparsity Stability Analysis

First, we evaluated the number of iterations required
for TSSRC to converge in the experiments. Fig. 5 shows
the results for continuous landmark windows with the
four datasets. The number of iterations is typically less
than 20 in the experiments. Moreover, the iteration curves
remain relatively stable over time. The experimental
results indicate that TSSRC offers rapid convergence in
data stream clustering.
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We then validated the convergence of Algorithm 1.
There are a large number of landmark windows to be
evaluated in the experiments. Because of space limitations,
we chose a subset of the tested landmark windows to
demonstrate the convergence of Algorithm 1. Fig. 6 shows
the changes in the objective value of the convergence
condition generated by Algorithm 1 on each iteration.
The experimental results illustrate that TSSRC quickly
converges to a relatively small error. Generally, for a fixed
1, using a larger value of p produces better convergence
than a relatively small value. This is because the sparsity
becomes stable more quickly. However, this may result in
worse clustering performance.

According to Theorem 2, the sparsity stability of
TSSRC can be guaranteed in a single landmark window
if certain conditions are satisfied. The sparsity stability
of TSSRC is considered to be a critical factor reflecting
the performance stability of TSSRC over entire landmark
windows. Therefore, we investigated the sparsity stability
of TSSRC over time. Fig. 7 shows the changes in SR with
continuous landmark windows for the four datasets. The
SR results remain at a stable low rate in all datasets
except Network Intrusion. Moreover, the SR results given
by TSSRC are often low in the landmark windows of the
Network Intrusion dataset. This verifies that the sparse
representation is an effective method of characterizing the
relationship among data objects in data stream clustering.
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E. Discussion

Compared with k-means-based methods such as CluS-
treamKM and StreamKM++, TSSRC seeks clusters using
spectral clustering techniques involving k-means. The crit-
ical difference is that TSSRC adopts sparse representation
techniques to capture the intrinsic characteristics of data
objects, whereas CluStreamKM and StreamKM++ calcu-
late the centroid of each CF vector using the original data
objects. The affinity matrix that encodes the membership
of data objects in the data stream can be constructed
using sparse representation techniques. The experimental
SR results show the importance of sparse representation
in data stream clustering.

The number of clusters plays an important role in
evaluating the clustering performance for TSSRC. The
representative data objects are chosen according to the
sparse representation results, where columns of the dictio-
nary consist of representative data objects from previous
landmark windows. This means that an exact number of
clusters for the current landmark window may be equal
to the maximum number of clusters over time. This is
why the performance curve initially fluctuates before the
performance improves and remains stable.

V. Conclusion
This paper has described the TSSRC algorithm for
clustering dynamic data streams, which provides insights
into their underlying structure. This work overcomes the
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two fundamental problems of data stream clustering by
sparse representation learning, namely, evaluating the
relationship among data objects and learning useful knowl-
edge from previous landmark windows. In contrast with
existing clustering techniques involving the computation
of the Euclidean distance, TSSRC makes full use of sparse
representation techniques to exploit the intrinsic charac-
teristics of the data objects. TSSRC automatically selects
the number of neighboring data objects, which guaran-
tees that highly correlated data objects are represented
together. Moreover, the dictionary initialization strategy
has been introduced to pass previously learned knowledge
to the current landmark window. In particular, the exact
number of clusters for the current landmark window
can be determined over time, which significantly enriches
the relationship among data objects and improves the
clustering performance for data streams. Although TSSRC
involves iterative computations, relatively few iterations
are required. Moreover, the average computational cost
of TSSRC is approximately proportional to the size of
a single landmark window. Appropriate dictionary and
landmark window sizes can be used to control the overall
computational cost of TSSRC. Different from [;-norm
based techniques, a hard thresholding operator is adopted
to ensure a sparse representation. This dramatically re-
duces the computational cost of the iterative process.
As our extensive experiments on stationary and dynamic
datasets have shown, TSSRC has better clustering ability
than several existing data stream clustering algorithms.
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