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A Learning Convolutional Neural Network
Approach for Network Robustness Prediction

Yang Lou, Ruizi Wu, Junli Li, Lin Wang, Xiang Li, and Guanrong Chen

Abstract—Network robustness is critical for various societal
and industrial networks again malicious attacks. In particular,
connectivity robustness and controllability robustness reflect how
well a networked system can maintain its connectedness and con-
trollability against destructive attacks, which can be quantified
by a sequence of values that record the remaining connectivity
and controllability of the network after a sequence of node-
or edge-removal attacks. Traditionally, robustness is determined
by attack simulations, which are computationally very time-
consuming or even practically infeasible. In this paper, an
improved method for network robustness prediction is developed
based on learning feature representation using convolutional
neural network (LFR-CNN). In this scheme, higher-dimensional
network data are compressed to lower-dimensional representa-
tions, and then passed to a CNN to perform robustness prediction.
Extensive experimental studies on both synthetic and real-world
networks, both directed and undirected, demonstrate that 1) the
proposed LFR-CNN performs better than other two state-of-the-
art prediction methods, with significantly lower prediction errors;
2) LFR-CNN is insensitive to the variation of the network size,
which significantly extends its applicability; 3) although LFR-
CNN needs more time to perform feature learning, it can achieve
accurate prediction faster than attack simulations; 4) LFR-CNN
not only can accurately predict network robustness, but also
provides a good indicator for connectivity robustness, better than
the classical spectral measures.

Index Terms—Complex network, robustness, convolutional
neural network, graph representation learning, prediction.

I. INTRODUCTION

ACOMPLEX network is a graph consisting of large num-
bers of nodes and edges with complicated connections.

Many natural and engineering systems can be modeled as
complex networks, and then studied using graph theory and
network analysis tools. The study of complex networks attracts

Yang Lou is with the Department of Computing and Decision Sciences,
Lingnan University, Hong Kong, China, and also with the Key Laboratory of
System Control and Information Processing, Ministry of Education of China,
Shanghai 200240, China (e-mail: felix.lou@ieee.org).

Ruizi Wu and Junli Li are with the College of Computer Science, Sichuan
Normal University, Chengdu 610066, China (e-mail: vridge@foxmail.com;
lijunli@sicnu.edu.cn).

Lin Wang is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200240, China, and also with the Key Laboratory of
System Control and Information Processing, Ministry of Education, Shanghai
200240, China (e-mail: wanglin@sjtu.edu.cn).

Xiang Li is with the Institute of Complex Networks and Intelligent
Systems, Shanghai Research Institute for Intelligent Autonomous Systems,
Tongji University, Shanghai 201210, and also with the Department of Control
Science and Engineering, Tongji University, Shanghai 200240, China (e-mail:
lix2021@tongji.edu.cn).

Guanrong Chen is with the Department of Electrical Engineering, City
University of Hong Kong, Hong Kong, China (e-mail:eegchen@cityu.edu.hk).

(Yang Lou and Ruizi Wu contributed equally to this work)
(Corresponding author: Yang Lou and Lin Wang)

increasing interest from research communities in various sci-
entific and technological fields, including computer science,
systems engineering, applied mathematics, statistical physics,
biological sciences, and social sciences [1]–[4].

In the pursuit of networked systems control for beneficial
applications, the network controllability [5]–[20] is a fun-
damental issue, which refers to the ability of a network of
interconnected dynamic systems in changing from any initial
state to any desired state under feasible control input within
finite time [18]. The network connectivity is fundamentally
important for a network to function, affecting particularly the
network controllability [18] and synchronizability [21]. It is
easy to see that good controllability requires good connectivity,
but good connectivity does not necessarily guarantee good
controllability [22]. In fact, network connectivity and control-
lability have very different characteristics and measures: the
former is guaranteed by a sufficient number of edges, while
the later further requires a proper organization of the sufficient
number of edges.

Today, malicious attacks and random failures widely exist in
many engineering and technological facilities and processes,
which degrade or even destroy certain network functions typi-
cally through destructing the network connectivity. Therefore,
it is essential to strengthen the network connectivity against
such attacks and failures [22]–[29]. In general, destructive
attacks and failures take place in the forms of node- and
edge-removals, which may cause significant degeneration of
network connectivity and controllability. In such situations,
the abilities of a network to maintain its connectivity and
controllability against attacks or failures are of great concerns,
which are referred to as the connectivity robustness and
controllability robustness, respectively.

Connectivity robustness is commonly measured by using
the change of the portion of nodes in the largest connected
component (LCC) [25] that survives from a sequence of
attacks. A network is deemed more robust against attacks
if it can always maintain higher values of the fractions of
LCC nodes throughout an attack process. The investigation
and optimization of connectivity robustness using this measure
emphasize on protecting the LCC. Given certain practical
constraints, e.g., node degree preservation, connectivity ro-
bustness can be enhanced by edge rewiring, which actually
imposes disturbances onto the network structure [28], [30]–
[37]. After some edge rewiring operations, whether such
disturbance enhances the robustness or not has to be evaluated,
typically by using very time-consuming attack simulations. As
a remedy, several easy-to-access indicators, e.g. assortativity
[38] and spectral measures [39], are adopted for estimating the
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network connectivity robustness. For example, it is found that
onion-like structured heterogeneous networks with positive
assortativity coefficients are robust against attacks [25], [30],
[40], [41]. However, these measures have limited scopes of ap-
plications, and therefore the time-consuming attack simulation
remains as the main approach today.

Controllability robustness is generally measured using the
change of density of driver nodes, at which external control
signals can be imposed as input. A network is deemed more
robust against attacks, if it can maintain a lower density of
driver nodes throughout an attack process. The studies and
optimization of controllability robustness using this measure
emphasize on maintaining a low demand of additional driver
nodes. Although controllability robustness can be enhanced by
edge rewiring as in connectivity robustness enhancement, their
objective functions in optimization are very different. In fact,
on top of the connectedness, the way the nodes are connected
makes a huge impact on the controllability. For example, it
is observed that a power-law degree distribution does not
necessarily imply weak controllability robustness; while multi-
chain [42] and multi-loop [43], [44] structures significantly
strengthen the controllability robustness. It is empirically
found that extreme homogeneity is necessary for the optimal
topology that has the best controllability robustness against
random node attacks [45]. Likewise, attack simulation is a
main approach to measuring network controllability robustness
today, which however is even more time-consuming than
measuring the network connectivity discussed above.

For both connectivity and controllability robustness en-
hancements, deep neural networks [46]–[48] provide a useful
tool for computation, optimization and analysis. Successful
deep learning applications on complex networks include net-
work robustness prediction using convolutional neural net-
works (CNNs) [22], [49]–[52], and critical node identification
using deep reinforcement learning [27] and graph attention
networks [29]. Main advantages of CNN-based approaches
for robustness prediction include: 1) the method is straight-
forward, where the adjacency matrix of a complex network is
treated as a gray-scale image, and then the classification (if
any) and regression tasks are same as in image processing.
2) The performance of CNN-based approach is stable and
reliable: all types of network adjacency matrices are acceptable
as input, which is also shift-invariant [53], namely shuffling
and transposing pixels of an image (while keeping the network
topology unchanged) does not degrade the performance of the
prediction [22], [52]. In addition, it has been experimentally
demonstrated that CNN is tolerable to slightly changes of the
network size.

However, the above CNN-based approaches cannot guaran-
tee the prediction performance when the input size has signifi-
cant changes (e.g., ±20% or more) from the training samples.
In addition, since many complex networks are sparse, the
gray-scale images converted from network adjacency matrices
typically contain a large amount of useless information, where
quite a lot of pixels can be removed or compressed.

To overcome the aforementioned issues, a learning feature
representation-based CNN (LFR-CNN) approach is proposed
in this paper for precise network robustness prediction. LFR-

CNN consists of an LFR module and a CNN. The LFR module
performs feature extraction and dimensionality reduction, so
that the size of input to the CNN for prediction can be sig-
nificantly reduced, and simultaneously redundant information
can be filtered out.

The following text is organized as follows. Section II re-
views the measures of network connectivity and controllability
robustness against destructive node-removal attacks. Section
III introduces the details of the proposed LRF-CNN. Section
IV presents experimental results with analysis and comparison.
Section V concludes the investigation.

II. ROBUSTNESS OF COMPLEX NETWORKS

The concepts and calculations of connectivity robustness
and controllability robustness are introduced in this section,
where connectivity robustness reflects how well a networked
system can maintain its connectedness under a sequence of
node-removal attacks, while controllability robustness reflects
how well it can maintain its controllable state. In this pa-
per, only node-removal attacks are investigated, while edge-
removal attacks can be studied in a similar manner.

A. Connectivity Robustness

An undirected network is connected if and only if for
each pair of nodes there is a path between them. A directed
network is weakly connected if it remains to be connected
after all the directions are removed. Both connectedness and
weak connectedness are employed as measures of the network
connectivity in this paper, for undirected and directed networks
respectively.

Under a sequence of node-removal attacks, connectivity
robustness is evaluated using the fraction of nodes in LCC
after each node-removal [25], as follows:

p(i) =
NLCC(i)

N − i
, i = 0, 1, . . . , N − 1 , (1)

where p(i) is the fractions of nodes in LCC after a total
number of i nodes removed; NLCC(i) is the number of nodes
in LCC after a total number of i nodes have been removed
from the network; N is the number of nodes in the network
before being attacked. When these values are plotted versus
the fraction of removed nodes, a curve is obtained, called the
connectivity curve.

B. Controllability Robustness

For a linear time-invariant networked system ẋ = Ax+Bu,
where A and B are constant matrices of compatible dimen-
sions, and x and u are the state vector and control input,
respectively. The system is state controllable if and only if the
controllability matrix [B AB A2B · · ·AN−1B] has a full row-
rank, where N is the dimension of A, which is also the size of
the network in the present study. It is shown [5] that, for a di-
rected network, identifying the set of the minimum number of
driver nodes ND can be converted to searching for a maximum
matching of the network: ND = max{1, N − |E∗|}, where
|E∗| is the number of edges in the maximum matching E∗.
For an undirected network, the minimum number of needed
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driver nodes can be calculated using the exact controllability
formula [6]: ND = max{1, N − rank(A)}. Then, the network
controllability robustness is calculated as follows:

q(i) =
ND(i)

N − i
, i = 0, 1, . . . , N − 1, (2)

where ND(i) is the number of driver nodes needed to retain
the network controllability after a total of i nodes have been
removed, and N is the network size. When these values
are plotted versus the fraction of removed nodes, a curve is
obtained, called the controllability curve.

C. Error Measures

For either connectivity or controllability, consider three
curves: st = [st(0), · · · , st(N −1)] denotes the true curve ob-
tained by attack simulations, and s1 = [s1(0), · · · , s1(N − 1)]
and s2 = [s2(0), · · · , s2(N −1)] denote two predicted curves,
respectively. The difference between the true curve and a
predicted curve is calculated by ξα = |st − sα|, where
ξα = [ξα(0), · · · , ξα(N−1)] is the sequence of errors between
the two curves, where ξα(i) = |st(i)− sα(i)|, for α = 1 or 2,
and i = 0, 1, · · · , N − 1.

The prediction error ξ̄α is then calculated by

ξ̄α =
1

N

N−1∑
i=0

ξ(i)α . (3)

The vector ξα can be used to visualize the prediction errors
throughout the attack process. The scalar ξ̄α measures the
overall prediction error, i.e., ξ̄1 < ξ̄2 means that the predicted
curve s1 obtains lower prediction error than s2.

For notational convenience, the integer index sequence
i = 0, 1, . . . , N − 1, will be replaced by the fractional index
sequence δ = 0, 1

N , . . . ,
N−1
N , thereby equivalently replacing

nD(i), with nD(δ).

III. PERFORMANCE PREDICTOR

This section briefly reviews the predictor for controllability
robustness (PCR) [50], which employs a VGG-structured CNN
[54] and PATCHY-SAN [55] consisting of an LFR-based 1D-
CNN. Pros and cons of these two approaches are discussed.
Then, a structural LFR-CNN is designed by incorporating the
LFR module and a simplified VGG-structured CNN. LFR-
CNN has a parameter magnitude significantly greater than
PATCHY-SAN, but less than PCR.

A. Convolutional Neural Network

PCR is a CNN-based framework for predicting the con-
trollability robustness [50], which has also been applied to
predict connectivity robustness [22]. The CNN structure of
the PCR is shown in Fig. 1. Network adjacency matrices
are converted to gray-scale images and then used directly as
input to CNN. Both classification and regression tasks can be
performed using such an image-processing mechanism. Due to
a sufficiently large source of training data that can be generated
using various synthetic network models, tens of millions of
internal parameters in a CNN can be properly trained.
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FM 2
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FM 3
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N5×N5×256
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N7×N7×512 1×L1

FC2FC1

1×L2

FM 6
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Fig. 1. CNN structure of PCR. The input is adjacency matrix; the output is an
N -vector. For N = 1000, seven feature map (FM) groups are installed with
Ni = dN/2(i+1)e, for i = 1, 2, . . . , 7. The concatenation layer reshapes
the matrix to a vector, from FM 7 to FC 1, i.e., FC1=N7 × N7 × 512 and
FC2=4096 [50].

The mean-squared error between the predicted connectivity
or controllability curve v̂ and true curve v is used as the loss
function:

L =
1

N + 1

N∑
i=0

||v̂(i)− v(i)|| , (4)

where v̂(i) represents the predicted connectivity or controlla-
bility value when a total proportion of i/N nodes have been
removed from the network; v(i) represents the corresponding
true value obtained by attack simulation; || · || is the Euclidean
norm. The training process aims at adjusting the internal
parameters [46], with the objective of minimizing L.

B. PATCHY-SAN

Complex network data have distinguished continuous and
discrete attributes that are different from general image data.
A group of recurrent neural networks, namely the graph neural
networks (GNNs) [56]–[58], are specifically designed for pro-
cessing graph data. Specifically, lower-dimensional represen-
tations are generated from compacting higher-dimensional raw
graph data, and then classification or/and regression tasks are
performed by processing the lower-dimensional representation
data. PATCHY-SAN [55], as a successful GNN technique, pro-
cesses graph data with selecting, assembling, and normalizing
(SAN) operations, detailed below.

1) Node Sequence Selection: A fixed-length sequence of W
nodes are selected from the N nodes in the network. Nodes are
arranged in descending order according to certain importance
measure. Thus, for different networks, similar important nodes
are arranged in similar ranks in the node sequence.

Node sequence selection is the process of sorting and
identifying critical nodes. Each node is assigned a score via
a labeling procedure, where node centrality measures such as
degree and betweenness are used to describe the importance
of a node. Then, all the nodes are sorted in descending order
of the labeling scores; the first W nodes are selected as the
node sequence. A receptive fields of size g will be created
for each node in the selected sequence. Each receptive field is
constructed by assembling and normalizing as introduced in
the following. Note that if N < W , all-zero receptive fields
are added for padding.

2) Neighborhood Assembly: A set of neighboring nodes is
collected for each node in the selected sequence. A breadth-
first search is used to collect the neighborhood field, namely if
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there is not enough neighboring nodes collected in the current
depth, then search in the one-step further neighborhoods, and
so on, until at lease g neighboring nodes are collected, or no
more neighboring node to explore.

3) Normalization: The extracted neighborhood data are
ranked to create the normalized receptive fields. The normal-
ization process also imposes an order on the neighboring field
for each selected node such that the unordered neighboring
field is mapped into an embedding vector space in a linear
order. The orders of nodes are determined by a labeling
procedure using node centrality measures. In the resultant
normalized vector, the root node is assigned as the first
element, followed by the second to the g-th neighboring nodes.
This normalization procedure leverages graph labeling on the
neighboring nodes of the root node.

To this end, an N -node network is represented by a W -
unit receptive field, where each receptive field is a g × h
matrix, with h representing the number of attributes used for
the neighboring nodes. Since generally W ≤ N , g � N , and
h� N , an N2 adjacency matrix is mapped to a compressed
representation of size Wgh, which will be reshaped and then
passed to a 1D-CNN for further processing in PATCHY-SAN.

Since this procedure generates learned feature representa-
tions for graph data, it is named an LFR module.

C. LFR-CNN

PCR is straightforward and fast, while PATCHY-SAN ex-
tracts topological features first. The input of PCR is the raw
adjacency matrix. Since many real-world networks are sparse,
which have much fewer edges than the possible maximum
number of edges, the input adjacency matrix contains a lot of
meaningless information that can be removed or compressed.
In contrast, PATCHY-SAN employs a shallow 1D-CNN struc-
ture. Empirically, if properly trained and used, deeper neural
networks with more layers and parameters are prone to having
better performances than those with fewer layers and param-
eters, especially for large-scale complex network data.

TABLE I
COMPARISON OF PCR, PATCHY-SAN, LFR-CNN IN TERMS OF

REPRESENTATION, REPRESENTATION SIZE, NUMBER OF LAYERS, AND
MAGNITUDE OF NUMBER OF PARAMETERS.

Converted
Representation Size Feature

Maps Parameters

PCR Gray-Scale
Image N2 7(6) 2.4× 107

PATCHY-SAN LFR Wgh 2 5.1× 105

LFR-CNN LFR Wgh 3 6.0× 106

Table I shows that PCR converts an N2 adjacency matrix to
an gray-scale image without compression, while for PATCHY-
SAN an adjacency matrix is compressed to an LFR of size
Wgh. The core components of PCR and PATCHY-SAN are
a 2D-CNN and a 1D-CNN, respectively. A CNN with 7
feature map (FM) groups (or 6-FM for small-sized networks)
in PCR requires training a total number of 2.4× 107 internal
parameters, while the 1D-CNN in PATCHY-SAN requires
training 5.1× 105 parameters.

In this paper, an LFR-CNN is proposed by installing a 2D-
CNN (similar to PCR, but with shallower structure) following
the LFR module of PATCHY-SAN. Compared to PCR and
PATCHY-SAN, LFR-CNN has the following advantages: 1) a
2D-CNN can be more powerful than the 1D-CNN in PATCHY-
SAN. 2) With LFR, the required number of FMs in 2D-
CNN can be significantly reduced, and more importantly the
required number of FMs does not need to change for different
network sizes. 3) LFR-CNN requires an intermediate number
of training parameters, i.e., 6.0 × 106. LFR-CNN achieves
a balance in CNN structure and magnitude of number of
parameters between PCR and PATCHY-SAN.

1D-CNN

2D-CNN

(3 FMs)

Selection

Assembly

Normalization

LFR: SAN

2D-CNN

(7 FMs)

Complex 

Network Data

Performance 

Prediction

Performance 

Prediction

Performance 

Prediction

PATCHY-SAN

LFR-CNN

PCR

Fig. 2. General framework of PATCHY-SAN, LFR-CNN, and PCR: PATCHY-
SAN and LFR-CNN share the common module of LFR performing the
selection, assembly, and normalization (SAN) tasks. LFR-CNN and PCR share
a similar VGG-structured 2D-CNN module.

The different structures of PCR, PATCHY-SAN, and LFR-
CNN are shown in Fig. 2, where the LFR module consists of
selection, assembly, and normalization operations. Given the
same LFR as the input, a 2D-CNN can capture more feature
details than a 1D-CNN, therefore is more suitable to be applied
to large-scale complex network data. The proposed LFR-CNN
naturally combines PATCHY-SAN and PRC by incorporating
their advantages.

Similarly to PCR, a VGG-structured [54] CNN is installed
in LFR-CNN. For network sizes around N = 1000, PCR
needs seven FM groups to perform prediction. When the
network size is reduced (e.g., N = 500), the number of FMs
can be reduced (e.g., 6 FMs). In contrast, since raw graph
data are compressed by the LFR module, the CNN in LFR-
CNN is not necessary to be adjusted if the network sizes
are not significantly changed. Specifically, as shown in the
experimental studies, LFR-CNN is able to process different
network sizes N ∈ [350, 1300] using the same 3-FM CNN.

output: 
robustness

input:

reshaped

representation
𝑁𝑟 × 𝑁𝑟

FM 1

𝑁1
𝑟 × 𝑁1

𝑟 × 64
FM 2

𝑁2
𝑟 × 𝑁2

𝑟 × 64
FM 3

𝑁3
𝑟 × 𝑁3

𝑟 × 128

N-vector1×1024 

FC1 FC2 FC3

1×512 

convolution

and ReLU

max pooling concatenation fully connected

and ReLU

Fig. 3. The simplified 2D-CNN structure with three feature map groups
installed with Nr

i = dNr/2(i+1)e, for i = 1, 2, 3, where Nr ×Nr is the
size of the input reshaped representation. The concatenation layer reshapes
the matrix to a vector from FM 3 to FC 1.
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TABLE II
PARAMETER SETTING OF THE 3-FM 2D-CNN INSTALLED IN LFR-CNN.

Group Layer Kernel Size Stride Output
Channel

Group 1 Conv7-64 7× 7 1 64
Max2 2× 2 2 64

Group 2 Conv5-64 5× 5 1 64
Max2 2× 2 2 64

Group 3 Conv3-128 3× 3 1 128
Max2 2× 2 2 128

The detailed structure is illustrated in Fig. 3, and the
parameters are summarized in Table II. Each group of FM1–
FM3 contains a convolution layer, a ReLU performing the
activation function f(x) = max(0, x) [59], and a max pooling
layer. The output of each hidden layer is summed up, rectified
by a ReLU, and then transmitted to the next layer. To that end,
max pooling layers will reduce the data dimension as input to
the next layer. Then, two fully-connected layers are installed to
map feature representations and reshape the regression output.
The same loss function as in PCR is employed, as shown in
Eq. (4).

IV. EXPERIMENTAL STUDIES

A total of 9 synthetic network models are simulated, includ-
ing the Erdös-Rényi (ER) random-graph [60], Barabási–Albert
(BA) scale-free [61], [62], generic scale-free (SF) [63], onion-
like generic scale-free (OS) [25], Newman–Watts small-world
(SW-NW) [64], Watts–Strogatz small-world (SW-WS) [65],
q-snapback (QS) [43], random triangle (RT) [44] and random
hexagon (RH) [44] networks.

Specifically, a BA network is generated according to the
preferential attachment scheme [61], while an SF network
is generated according to a set of predefined weights wi =
(i + θ)−σ , where i = 1, 2, . . . , N , σ ∈ [0, 1) and θ � N .
Two nodes i and j are randomly picked with a probability
proportional to their weights wi and wj , respectively. An
OS network is generated based on an SF, with 2N rewiring
operations towards assortativity maximization. The degree
distributions of BA, SF, and OS all follow the power law.

Both SW-NW and SW-WS start from an N -node loop
having K (= 2) connected nearest-neighbors. The difference
is that additional edges are added without removing any
existing edges in SW-NW [64]; while rewiring operations are
performed in SW-WS [65].

QS consists of a backbone chain and multiple snapback
edges [43]. RT and RH consist of random triangles and
hexagons, respectively [44].

To exactly control the number of generated edges to be
M , uniformly-randomly adding or removing edges can be
performed. A directed network can be converted to an undi-
rected network by removing the direction. However, when
converting an undirected network to be directed, it should
follow some specific patterns, e.g., a directed backbone chain
in QS and a directed loop in SW-NW and SW-WS should
be ensured; while for some other edges, directions can be
assigned randomly.

For each synthetic network, 1000 instances are randomly
generated for training, thus there are 1000 × 9 = 9000

training samples in total. In addition, two different sets of
100 × 9 = 900 samples are used for cross validation and
testing, respectively.

The size of each synthetic network is randomly determined
in three different settings, namely, 1) set N ∈ [350, 650] (with
an average N̄ = 500.5) for the experiments of predicting con-
nectivity and controllability robustness in Subsections IV-A,
IV-B, IV-C, IV-D, IV-G, and IV-H; 2) set N ∈ [700, 1300]
(with an average N̄ = 999.8) for the scalability investigation
in Subsection IV-E; 3) set N ∈ [700, 900] (with an average
N̄ = 800.0) for the study of the influence of information loss
on the three comparative approaches in Subsection IV-F.

The average degrees are also assigned randomly. The ranges
are set differently for various network models. For SW 〈k〉 ∈
[2.5, 5], for RH, 〈k〉 ∈ [2, 4], for RT, 〈k〉 ∈ [1.5, 3], while for
other models, 〈k〉 ∈ [3, 6]. The overall average degree of the
training network is 4.33, while that of the testing network is
4.36, with data obtained by performing posterior statistics.

The proposed LFR-CNN is compared with PATCHY-SAN
[55] and PCR [22], [50] in predicting the connectivity and
controllability robustness for both synthetic and real-world
networks under various node-removal attacks, including ran-
dom attack (RA), targeted betweenness-based (TB) attack, and
targeted degree-based (TD) attack. For PCR, a 6-FM CNN is
used for N < 700 and a 7-FM structure is used for N ≥ 700.
For PATCHY-SAN and LFR-CNN, the structures remain the
same for all networks with N ∈ [350, 1300]. For LFR, set
the length of the selected node sequence to be W = 500 for
N < 700, and W = 1000 for N ≥ 700; the receptive field
size g = 10; the number of attributes h = 2 (the two default
attributes are node degree and clustering coefficient).

All experiments are performed on a PC Intel (R) Core i7-
8750H CPU @ 2.20GHz, which has memory (RAM) 16 GB
with running Windows 10 Home 64-bit Operating System.

A. Predicting Controllability Robustness for Directed Net-
works

Controllability robustness of directed networks under RA
and TB is predicted using LFR-CNN, PCR, and PATCHY-
SAN. The simulation results in terms of controllability curves
are shown in Figs. 4 and 5, respectively. A network con-
trollability curve is denoted by q(δ), where δ represents the
proportion of removed nodes. For each predictor, its predicted
controllability curve and prediction error curve are plotted
in the same color; ‘SIM’ denotes the controllability curve
obtained by attack simulations. Each curve is averaged from
100 testing samples.

As shown in Figs. 4 and 5, PCR performs badly in pre-
diction. This is due to the following two reasons: 1) both the
training and testing data have a wide network size variation
with N ∈ [350, 650] and 〈k〉 ∈ [1.5, 6]; and 2) there 9 synthetic
network types trained and tested. As a result, PCR predicts
the controllability curves almost in the same pattern for all
different networks with different sizes and average degrees. In
contrast, LFR-CNN and PATCHY-SAN, both contain an LFR
module, are able to predict different controllability curves for
different scenarios. In Figs. 4 (c), (d), (i), and Fig. 5 (i), it is
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Fig. 4. [color online] Comparison of prediction results using LFR-CNN,
PCR, and PATCHY-SAN, for controllability robustness of directed networks
(N ∈ [350, 650]) under RA.
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Fig. 5. [color online] Comparison of prediction results using LFR-CNN,
PCR, and PATCHY-SAN, for controllability robustness of directed networks
(N ∈ [350, 650]) under TB.

visible that the green curves (LFR-CNN predictions) are closer
to the black dotted curves (true simulation results) than the red
curves (PATCHY-SAN predictions), meaning that LFR-CNN
performs clearly better than PATCHY-SAN in prediction.

Table III summarizes the overall prediction errors of the
three predictors in different experiments, with Kruskal-Wallis
H-test [66] results. The overall errors of the results in Fig.
4 are shown in Table III (I), which shows that 1) LFR-CNN
performs significantly better than PCR for all networks; 2)
LFR-CNN performs significantly better than PATCHY-SAN
for ER, SF, OS, and RT, but significantly worse than PATCHY-
SAN for SW-WS, QS, and RH. The overall errors of the results
in Fig. 5 are shown in Table III (II), which shows that 1) LFR-
CNN performs significantly better than PCR for all networks;
2) LFR-CNN performs significantly better than PATCHY-SAN
for ER, SW-NW, SW-WS, RH, and RT, but significantly worse
than PATCHY-SAN for BA. All in all, LFR-CNN outperforms
PCR for all networks; LFR-CNN outperforms PATCHY-SAN
in 9 comparisons, but is worse in 4 comparisons, while in
the other 5 comparisons, two predictors have no significant
differences.

B. Predicting Controllability Robustness for Real-world Net-
works
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Fig. 6. [color online] Comparison of prediction results using LFR-CNN,
PCR, and PATCHY-SAN, for controllability robustness of REDDIT-MULTI
[67] real-world networks (N ∈ [419, 570]) under RA.

A total of 9 real-world network instances are randomly
selected from the Reddit multiset data [67]. Three predictors
are used to predict the controllability robustness of there real-
world networks under RA. The basic information of these
networks and the prediction errors obtained by the three
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TABLE III
COMPARISON OF AVERAGE PREDICTION ERRORS AMONG LFR-CNN, PCR AND PATCHY-SAN, WHERE N ∈ [350, 650]. THE SIGNS IN PARENTHESES

DENOTE THE KRUSKAL-WALLIS H-TEST [66] RESULTS OF LFR-CNN VS PCR AND LFR-CNN VS PATCHY-SAN, RESPECTIVELY. A ‘+’ SIGN
DENOTES THAT LFR-CNN SIGNIFICANTLY OUTPERFORMS THE OTHER METHOD BY OBTAINING LOWER ERRORS; A ‘≈’ SIGN DENOTES NO SIGNIFICANT

DIFFERENCE BETWEEN TWO METHODS; AND A ‘−’ SIGN DENOTES THAT LFR-CNN PERFORMS SIGNIFICANTLY WORSE THAN THE OTHER METHODS
WITH GREATER ERRORS.

Average Prediction Error ξ̄ ER BA SF OS SW-NW SW-WS QS RH RT

(I) Controllability
Robustness of Directed
Networks under RA

LFR-CNN 0.0450
(+,+)

0.0395
(+,≈)

0.0601
(+,+)

0.0567
(+,+)

0.0480
(+,≈)

0.0361
(+,−)

0.0375
(+,−)

0.0440
(+,−)

0.0474
(+,+)

PCR 0.1280 0.1509 0.2689 0.2541 0.1139 0.1358 0.1301 0.1331 0.1360
PATCHY-SAN 0.0313 0.0458 0.0732 0.0601 0.0450 0.0253 0.0272 0.0304 0.0541

(II) Controllability
Robustness of Directed
Networks under TB

LFR-CNN 0.02544
(+,+)

0.05219
(+,−)

0.04376
(+,≈)

0.04650
(+,≈)

0.02355
(+,+)

0.02445
(+,+)

0.02210
(+,≈)

0.02134
(+,+)

0.03641
(+,+)

PCR 0.1369 0.1625 0.2704 0.2570 0.1374 0.1548 0.1384 0.1302 0.1300
PATCHY-SAN 0.0354 0.0351 0.0391 0.0388 0.0273 0.0333 0.0238 0.0258 0.0614

(III) Connectivity
Robustness of Undirected
Networks under RA

LFR-CNN 0.0362
(+,+)

0.0665
(≈,≈)

0.0868
(+,≈)

0.0908
(+,≈)

0.0338
(+,+)

0.0365
(+,+)

0.0350
(+,+)

0.0406
(+,+)

0.0767
(≈,≈)

PCR 0.0695 0.0767 0.1167 0.1219 0.0663 0.0863 0.0825 0.0728 0.0779
PATCHY-SAN 0.0639 0.0692 0.0835 0.0803 0.0703 0.0670 0.0663 0.0590 0.0635

(IV) Connectivity
Robustness of Undirected
Networks under TD

LFR-CNN 0.0302
(+,+)

0.0334
(+,≈)

0.0215
(+,≈)

0.0262
(+,≈)

0.0279
(+,+)

0.0265
(+,+)

0.0254
(+,+)

0.0345
(+,+)

0.0563
(+,≈)

PCR 0.1423 0.1680 0.2724 0.2792 0.1644 0.1520 0.1402 0.1351 0.1386
PATCHY-SAN 0.0404 0.0420 0.0230 0.0282 0.0501 0.0446 0.0439 0.0408 0.0460

TABLE IV
BASIC INFORMATION OF REDDIT-MULTI REAL-WORLD NETWORKS. COMPARISON OF AVERAGE PREDICTION ERRORS AMONG LFR-CNN, PCR AND

PATCHY-SAN, WHERE N ∈ [419, 570]. NUMBERS IN PARENTHESES DENOTE THE RANKS OF PREDICTORS IN ASCENDING ORDER OF PREDICTION
ERRORS.

RW1 RW2 RW3 RW4 RW5 RW6 RW7 RW8 RW9
REDDIT-MULTI [67] 12K-16 12K-40 12K-41 12K-49 12K-81 12K-124 12K-129 5K-1 5K-2

N 499 510 538 551 499 522 570 419 428
〈k〉 6.31 8.93 6.84 7.15 4.95 7.56 5.75 47.07 35.01

LFR-CNN 0.1082 (2) 0.0667 (1) 0.1035 (1) 0.1014 (2) 0.0856 (1) 0.1041 (1) 0.0824 (1) 0.1168 (1) 0.0875 (1)
PCR 0.0969 (1) 0.0938 (2) 0.1104 (2) 0.0949 (1) 0.1532 (2) 0.1224 (2) 0.1378 (2) 0.1866 (2) 0.1718 (2)

PATCHY-SAN 0.1503 (3) 0.1211 (3) 0.1497 (3) 0.1531 (3) 0.1733 (3) 0.1563 (3) 0.1679 (3) 0.3611 (3) 0.2636 (3)

predictors are summarized in Table IV. Ranks of predictors
in ascending order are attached in parentheses following the
prediction errors, where the average ranks of LFR-CNN, PCR
and PATCHY-SAN are 1.22, 1.78, and 3, respectively. This
suggests that LFR-CNN and PCR have better generalizability
than PATCHY-SAN for unknown real-world networks, al-
though the overall prediction errors for all three predictors
are relatively greater than that for synthetic networks. The
predicted controllability curves are shown in Fig. 6, which
demonstrate that LFR-CNN predicts the controllability curves
closer to the simulation results than the other two predictors.

C. Predicting Connectivity Robustness for Undirected Net-
works

CNN-based approaches are capable of dealing with all types
of complex networks, including weighted and unweighted,
directed and undirected, real-world and synthetic networks
[52]. Here, for brevity, a comparison of connectivity robustness
predictions is performed only on undirected networks. The
predicted connectivity curves under RA are shown in Fig.
7, for which the overall prediction errors are summarized in
Table III (III). Figure 7 shows that all the three predictors
perform well (or fairly good) on predicting the connectivity
curves, which are denoted by p(δ). Table III (III) shows that
the prediction errors are mostly in a magnitude of 10−2. The
predicted curves under TD are shown in Fig. 8, for which the
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Fig. 7. [color online] Comparison of prediction results using LFR-CNN,
PCR, and PATCHY-SAN, for connectivity robustness of undirected networks
(N ∈ [350, 650]) under RA.
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TABLE V
COMPARISON OF AVERAGE PREDICTION ERRORS OBTAINED USING DIFFERENT ATTRIBUTE COMBINATIONS IN LFR-CNN. THREE NODE ATTRIBUTES,

INCLUDING DEGREE (deg), CLUSTERING COEFFICIENT (cc), AND BETWEENNESS (bet), COMPOSE THREE PAIRWISE COMBINATIONS.

ER BA SF OS SW-NW SW-WS QS RH RT

(I) Controllability
Robustness of Directed
Networks under RA

deg & cc 0.0432
(≈,+)

0.0357
(+,+)

0.0436
(≈,+)

0.0372
(+,+)

0.0581
(+,+)

0.0322
(≈,+)

0.0351
(≈,+)

0.0399
(≈,+)

0.0421
(+,+)

deg & bet 0.0384 0.0562 0.0472 0.0556 0.0439 0.0321 0.0337 0.0394 0.0515
bet & cc 0.0589 0.0865 0.1203 0.1179 0.0640 0.0543 0.0566 0.0571 0.0681

(II) Connectivity
Robustness of Undirected
Networks under RA

deg & cc 0.0293
(+,+)

0.0490
(≈,+)

0.0791
(≈,+)

0.0769
(+,+)

0.0287
(+,+)

0.0288
(+,+)

0.0287
(+,+)

0.0340
(+,+)

0.0461
(≈,+)

deg & bet 0.0503 0.0494 0.0921 0.0937 0.0635 0.0562 0.0527 0.0508 0.0568
bet & cc 0.1291 0.1434 0.1628 0.1632 0.1331 0.1339 0.1298 0.1325 0.1454
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Fig. 8. [color online] Comparison of prediction results using LFR-CNN,
PCR, and PATCHY-SAN, for connectivity robustness of undirected networks
(N ∈ [350, 650]) under TD.

overall errors are summarized in Table III (IV). It is clear that
PCR performs imprecisely well.

The data summarized in Tables III (III) and (IV) suggest that
LFR-CNN outperforms PCR and PATCHY-SAN in predicting
16 out of 18 and 10 out of 18 comparisons, respectively,
while for the rest networks, LFR-CNN performs statistically
equivalently well as PCR and PATCHY-SAN.

In a nutshell, LFR-CNN outperforms PCR in 34/36 cases,
and outperforms PACTHY-SAN in 19/36 cases; PACTHY-
SAN outperforms LFR-CNN in 4/36 cases, while PCR does
not outperform LFR-CNN in any case; for the rest cases, no
significant differences are detected.

D. Node Attributes as Receptive Fields

In the normalization step of LFR, the attributes of the
selected neighborhood nodes are embedded in a receptive
field. Here, different combinations of node attributes including
degree, clustering coefficient, and betweenness are compared.

Table V shows the prediction errors for (I) controllability
robustness and (II) connectivity robustness, among the three
combinations. It is clear that the default setting using degree
and clustering coefficient (deg & cc) outperforms the other
two combinations.

E. Scalability of Network Size
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Fig. 9. [color online] Comparison of prediction results using LFR-CNN,
PCR, and PATCHY-SAN, for controllability robustness of directed networks
(N ∈ [700, 1300]) under RA.

To further verify the scalability, the proposed LFR-CNN is
compared with PCR and PATCHY-SAN on predicting a set
of networks of sizes N ∈ [700, 1300]. Here, a 7-FM PCR is
employed and W = 1000 is set for LFR-CNN and PATCHY-
SAN.

The predicted controllability and connectivity curves under
RA are shown in Figs. 9 and 10, respectively. It is visible
that LFR-CNN and PATCHY-SAN perform better than PCR
in controllability robustness prediction. As for connectivity
robustness, LFR-CNN performs visibly better than PATCHY-
SAN and PCR in Figs. 10 (c) and (d).
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TABLE VI
COMPARISON OF AVERAGE PREDICTION ERRORS AMONG LFR-CNN, PCR AND PATCHY-SAN, WHERE N ∈ [700, 1300]. THE SIGNS IN PARENTHESES

DENOTE THE KRUSKAL-WALLIS H-TEST [66] RESULTS OF LFR-CNN VS PCR AND LFR-CNN VS PATCHY-SAN, RESPECTIVELY. A ‘+’ SIGN
DENOTES THAT LFR-CNN SIGNIFICANTLY OUTPERFORMS THE OTHER METHOD BY OBTAINING LOWER ERRORS; A ‘≈’ SIGN DENOTES NO SIGNIFICANT

DIFFERENCE BETWEEN TWO METHODS; AND A ‘−’ SIGN DENOTES THAT LFR-CNN PERFORMS SIGNIFICANTLY WORSE THAN THE OTHER METHODS
WITH GREATER ERRORS.

Average Prediction Error ξ̄ ER BA SF OS SW-NW SW-WS QS RH RT

(I) Controllability
Robustness of Directed
Networks under RA

LFR-CNN 0.0191
(+,+)

0.0406
(+,≈)

0.0356
(+,≈)

0.0341
(+,≈)

0.0151
(+,+)

0.0171
(+,+)

0.0162
(+,+)

0.0177
(+,+)

0.0316
(+,+)

PCR 0.1433 0.1408 0.2820 0.2706 0.1349 0.1282 0.1242 0.1395 0.1284
PATCHY-SAN 0.0374 0.0387 0.0420 0.0448 0.0259 0.0240 0.0375 0.0268 0.0499

(II) Connectivity
Robustness of Undirected
Networks under RA

LFR-CNN 0.0266
(+,+)

0.0594
(≈,+)

0.0705
(+,+)

0.0790
(+,+)

0.0239
(+,+)

0.0297
(+,≈)

0.0271
(+,+)

0.0293
(+,+)

0.0424
(+,≈)

PCR 0.0654 0.0744 0.1321 0.1348 0.0784 0.0861 0.0833 0.0741 0.0809
PATCHY-SAN 0.0440 0.0757 0.0971 0.1070 0.0479 0.0444 0.0427 0.0357 0.0398
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Fig. 10. [color online] Comparison of prediction results using LFR-CNN,
PCR, and PATCHY-SAN, for connectivity robustness of undirected networks
(N ∈ [700, 1300]) under RA.

The overall prediction errors are shown in Table VI. LFR-
CNN outperforms PCR for 17 out of 18 cases, and outperforms
PATCHY-SAN for 13 out of 18 cases; while for the rest
comparisons, LFR-CNN performs statistically equivalently to
PCR or PATCHY-SAN in prediction.

F. Network Size Variation

The core prediction component in LFR-CNN, PCR, and
PATCHY-SAN is a 3-FM CNN, a 7-FM CNN, and a 1D-CNN,
respectively. These CNN-based core components perform the
regression task and predict the robustness performance for an
input network. In PCR, the input data to CNN are adjacency
matrices, while for LFR-CNN and PATCHY-SAN, the LFR
module will convert the raw adjacency matrices to lower-
dimensional representations before inputting them to the re-
spective CNNs. Specifically, suppose that H is the input size

TABLE VII
COMPARISON OF AVERAGE PREDICTION ERRORS AMONG LFR-CNN, PCR

AND PATCHY-SAN, WHERE N = 800.

Average Prediction
Error ξ̄ ER SF QS SW-NW

LFR-CNN 0.0189
(≈,+)

0.0750
(−,+)

0.0162
(≈,+)

0.0157
(≈,+)

PCR 0.0166 0.0194 0.0145 0.0141
PATCHY-SAN 0.0253 0.1074 0.0208 0.0263

of the prediction component of LFR-CNN, PCR, or PATCHY-
SAN, and given an input adjacency matrix of size J × J
(J 6= H). Upsampling or downsampling is necessary to resize
the input for PCR, where the original adjacency information
may be significantly modified. In contrast, for LFR-CNN and
PATCHY-SAN, the J×J matrix is represented by a sequence
of W receptive field, namely the information of W most
important nodes is input, while if J > W , some less important
information will be discarded. Therefore, if a network size
disagrees with the input size of a predictor, information loss
is more severe in PCR than in LFR-CNN and PATCHY-SAN.

Table VII shows the prediction errors when all the network
sizes are equal to the input size of CNNs, for both training and
testing data, namely H = J = W = 800, with 〈k〉 ∈ [1.5, 6].
Neither upsampling nor downsampling is required for PRC.
In this case, all three predictors perform quite well, with very
low prediction errors. LFR-CNN outperforms PATCHY-SAN
for all 4 networks, and PCR outperforms LFR-CNN for SF
network. This suggests that PCR is fragile to the variation
of network size. This verifies that LFR makes the prediction
performance more robust against network size variation.

G. Run Time Comparison

Table VIII shows the run time comparison of PCR,
PATCHY-SAN, LFR-CNN, and attack simulation, for both
controllability and connectivity robustness predictions. The
network size is N ∈ [350, 650]; the data are averaged from
100 independent runs. As shown in Table VIII, the simu-
lation time for controllability robustness is longer than that
for connectivity robustness, while for the three predictors,
there is no significant difference. It is also notable that PCR
is significantly faster than attack simulation, PATCHY-SAN,
and LFR-CNN. Running the LFR module is time-consuming,



10

TABLE VIII
RUN TIME COMPARISON OF PCR, PATCHY-SAN, LFR-CNN, AND

ATTACK SIMULATION (SIM).

Unit:
Second

Controllability
Robustness

Connectivity
Robustness

SIM 4.7902 1.3704
PCR 0.0463 0.0477

PATCHY-SAN
LFR

1.1312
1D-CNN
0.0034

LFR
1.1302

1D-CNN
0.0035

1.1346 1.1337

LFR-CNN
LFR

1.1320
CNN

0.0051
LFR

1.1300
CNN

0.0049
1.1371 1.1349

while running the CNN in either PATCHY-SAN or LFR-CNN
is faster than PCR due to a simpler structure used.

Overall, compared to attack simulation, LFR-CNN is able
to predict relatively precise controllability and connectivity
curves, by saving about 76% and 17% computational time, re-
spectively. In addition, run time for attack simulation increases
faster than CNN-based schemes, e.g., with N ∈ [700, 1300],
the run time for controllability robustness attack simulation is
41.62 seconds, while it is only 3.67 seconds for LFR-CNN.

H. Compared to Spectral Measures

Spectral measures are widely used for estimating network
connectivity robustness of undirected networks [35]. Table
IX shows the estimated connectivity robustness ranks of
different networks, using three CNN-based predictors and
six spectral measures, including algebraic connectivity (AC),
effective resistance (EF), natural connectivity (NC), spectral
gap (SG), spectral radius (SR), and spanning tree count (ST).
Undirected networks with N ∈ [350, 650] and 〈k〉 ∈ [1.5, 6]
are used for comparison. Prediction results are unified by
the predicted rank errors of network robustness, calculated
by ξr = |r̂l − rl|, where r̂l represents a predicted rank-list
and rl is the true rank-list by simulation. For example, given
r̂l = [5, 3, 1, 4, 2] and rl = [2, 3, 1, 5, 4], the rank error is
ξr = |r̂l − rl| = [3, 0, 0, 1, 2] and the average rank error is
ξ̄r = 1.2. As shown in Table IX, PATCHY-SAN and LFR-
CNN obtain the best two average rank errors, while PCR does
not perform well due to a larger variation of network size and
average degree.

V. CONCLUSION

In this paper, a learning feature representation-based con-
volutional neural network, namely LFR-CNN, is developed
for network robustness performance prediction, including
both connectivity robustness and controllability robustness.
Conventionally, network robustness is evaluated by time-
consuming attack simulations, from which a sequence of
network connectivity or controllability values are collected
and used to measure the remaining network after a sequence
of destructive attacks (here, node-removal attacks). LFR-CNN
is designed to gain a balance between PCR and PATCHY-
SAN, in terms of both input size and internal parameters. The
LFR module not only compresses the raw higher-dimensional
adjacency matrix to a lower-dimensional representation, but

also extends the capability of LFR-CNN to process complex
network data with a wide-ranged variation of network size and
average degree.

Extensive numerical experiments are performed using both
synthetic and real-world networks, including directed and
undirected networks, and then analyzed and compared, reveal-
ing clearly the pros and cons of several typical and comparable
schemes and measures. Specifically, the good performance
of LFR-CNN in predicting both connectivity robustness and
controllability robustness is verified by comparing with other
two state-of-the-art network robustness predictors, namely
PCR and PATCHY-SAN. LFR-CNN is much less sensitive
than PCR to the network size variation. Although LFR-CNN
requires a relatively long run time for feature learning, it can
still achieve accurate prediction faster than the conventional
attack simulations. Meanwhile, LFR-CNN not only can accu-
rately predict the connectivity and controllability robustness
curves of various complex networks under different types
of attacks, but also serves as an excellent indicator for the
connectivity robustness, better than spectral measures.

The present study, after all, makes the current investigation
of network controllability and connectivity robustness more
subtle and complete. Yet, it should be noted that the correlation
between controllability robustness and spectral measures has
not been investigated, leaving a good but challenging topic for
future research.
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