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Fixed-Time Cooperative Tracking Control for

Double-Integrator Multi-Agent Systems: A

Time-Based Generator Approach
Qiang Chen, Yu Zhao, Guanghui Wen, Guoqing Shi and Xinghuo Yu

Abstract—In this paper, both the fixed-time distributed con-
sensus tracking and the fixed-time distributed average tracking
problems for double-integrator-type multi-agent systems with
bounded input disturbances are studied, respectively. Firstly, a
new practical robust fixed-time sliding mode control method
based on the time-based generator is proposed. Secondly, a
fixed-time distributed consensus tracking observer for double-
integrator-type multi-agent systems is designed to estimate the
state disagreements between the leader and the followers under
undirected and directed communication, respectively. Thirdly,
a fixed-time distributed average tracking observer for double-
integrator-type multi-agent systems is designed to measure the
average value of reference signals under undirected communica-
tion. Note that both the observers for the distributed consensus
tracking and the distributed average tracking are devised based
on time-based generators and can be extended to that of high-
order multi-agent systems trivially. Furthermore, by combing the
fixed-time sliding mode control with the fixed-time observers, the
fixed-time controllers are designed to solve the distributed con-
sensus tracking and the distributed average tracking problems.
Finally, a few numerical simulations are shown to verify the
results.

Index Terms—Fixed-time, sliding mode control, time-based
generator, distributed observer, consensus tracking, distributed
average tracking.

I. INTRODUCTION

Distributed cooperation control has been a popular scientific

research issue over the past decades owing to its significant

value in reality such as distributed optimization [1], [2],

tracking control [3]–[5], flocking and containment control [6]–

[8].

In the distributed cooperation control of a flock of agents

with local interactions, a premier task is to design an algo-

rithm which makes each agent achieve consensus in position,

velocity and so on. The consensus algorithm for single-

integrator multi-agent systems was first developed in [9],

and then some sufficient and necessary conditions for the

consensus of double-integrator multi-agent systems were gen-

eralized in [10]. Distributed tracking control can be regarded
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as an extension of generalized consensus control, in which

the followers not only have to reach consensus, but also

to follow with the specified trajectory. For example, in the

distributed consensus tracking and distributed average track-

ing, the target trajectories are the states of the leader and

the average value of multiple reference signals, respectively.

However, in distributed algorithms, only a few or none of the

agents can acquire the target information directly. Therefore, a

frequently-used method to measure the target information is to

establish a distributed observer. An observer-based algorithm

for nonlinear agents was proposed in [11], [12] to achieve

distributed consensus tracking. In [13]–[15], the distributed

observers were designed to measure the average value of

reference signals. However, these protocols are asymptotically

stable, which implies that the upper-bounded convergence time

is not guaranteed. So as to estimate the precise upper-bounded

convergence time, the finite-time observers relying on initial

conditions were proposed in [16]–[18]. Unfortunately, in some

engineering practices, the initial states are not available or

the convergent rate has to be faster. Therefore developing the

fast converging algorithms without dependence on initial states

is quite necessary. The fixed-time stability strategy was first

investigated in [19], in which the prerequisite of initial con-

ditions was eliminated. Some novel fixed-time algorithms for

single-integrator multi-agent systems were developed in [20].

A fixed-time observer for double-integrator-type multi-agent

systems to estimate the states of the leader was designed in

[21] under undirected communication topology. Then A fixed-

time directed edition for high-order integrator-type multi-agent

systems was developed in [22]; Although, after the system

states converging into the unit circle in the last step it is

asymptotically stable, this method provides some inspirations

for the protocol in this paper.

After estimating the task trajectory in a fixed-time, the next

step is to devise the fixed-time controller for the agent to

track the target trajectory. For double-integrator-type systems,

sliding mode control is a type of classic nonlinear control

protocol [23], which has the advantages of fast response,

parameter change, insensitive to disturbance and simple phys-

ical implementation. Some finite-time sliding mode control

methods were proposed in [24], [25]. However, the process

of extending it to that of double-integrator-type systems is

nontrivial due to the singular problem. An attempt to design

the fixed-time sliding mode control protocol was made in [26]

by utilizing a sinusoid function to offset the singularity in the

neighborhood of zero, but it leads to a little uncertainty of the
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convergence time. The price of reducing the uncertainty is a

sharp rise of the control input.

Besides the conventional fixed-time protocol that usually

use two feedback terms, another popular technique in terminal

control is the time-based generator technique, which was

induced in [27] to induce the attraction of force fields. In [28],

an finite-time sliding mode surface is designed, but it can’t

accurately track the trajectory and has no robustness. In [29], a

predefined-time control method for single-input single-output

controllable linear systems was proposed. A novel fixed-time

consensus strategy for single-integrator multi-agent systems

was developed in [30]. Furthermore, it proved that the fixed-

time protocol based on the time-based generators had a less

magnitude of control inputs.

As for the time synchronization between different agents,

the clock synchronization device has been proposed in the

existing paper [31], [32] to ensure the time synchronization.

Therefore, it is not repeated here.

Motivated by the above results, by utilizing the time-based

generator technique, five main contributions are made in this

paper. Firstly, a new fixed-time nonsingular sliding mode

control method is developed, which can precisely predesign

the upper-bounded convergence time without dependence on

initial states and has a less magnitude of control inputs

compared with the conventional ones [21], [26]. Secondly, a

new fixed-time distributed observer under undirected topology

is proposed to evaluate the state disagreements between the

leader and the followers. Thirdly, inspired by [22], the observer

for undirected communication systems is extended to the

systems with directed communication, but what’s different is

that the observer in this paper is a fully fixed-time protocol

with the precise upper-bounded convergence time. Note that,

all the observers proposed in this paper can be extended to

that of high-order multi-agent systems trivially. Moreover,

by combining the sliding mode control protocol with the

distributed consensus tracking observers, two fixed-time con-

trollers are developed which successfully extended the fixed-

time distributed consensus tracking algorithms based on time-

based generators for single-integrator-type multi-agent systems

in [30] to the double ones. More importantly, the disturbance

is considered in this paper, which is of great significance in

practice. Finally, a controller is given to solve the fixed-time

distributed average tracking problems for double-integrator-

type multi-agent systems. As far as I am concerned, there is

no other fixed-time distributed average tracking algorithm for

double-integrator-type multi-agent systems.

The rest of this paper is given as below. In section II,

some mathematical preliminaries were given. In section III,

the fixed-time sliding mode control protocol is investigated.

Next, the observers for distributed consensus tracking under

both undirected and directed graph are designed. Then the

observer for distributed average tracking under undirected

graph is designed. Furthermore, the distributed consensus

tracking and the distributed average tracking algorithms are

given. In section IV, several simulations are given. In section

V, a few conclusions are made.

II. MATHEMATICAL PRELIMINARIES

A. Notations

The real number set and the N-dimensional real vector

space are denoted by R and R
n, respectively. The signum

function is represented by sgn(·) and its vector form can be

written as sgn(z) = [sgn(z1), sgn(z2), ..., sgn(zn)]
T , where

z = [z1, z2, ..., zn]
T . Let | · | stand for the absolute value

of a scalar. The vector q-norm can be written as ‖z‖q =

(|z1|
q + |z2|

q + ...+ |zn|
q)

1

q . Let λ1(Q) and λ2(Q) represent

the smallest and the second smallest eigenvalues of the matrix

Q, respectively.

B. Graph Theory

The communication topology of a group of n + 1 agents

can be represented by a graph G. If there is a leader in them,

the other n agents can be expressed as a subgraph Gs. The

weighted graph G = (V , E) is constructed with a set of nodes

V = {v1, v2, ..., vn+1} and a set of edges E = {e1, e2, ..., em}.

A directed edge from vj to vi can be denoted as (vi, vj),
which means vi can receive information from vj . An directed

path from vj to vi consists of a sequence of edges in the

form of Eij = {(vi, vi+1), ..., (vj−1, vj)}, which means the

information can flow from vj to vi. When replacing the

directed edges by the undirected, it becomes undirected path

and the information flow is bidirectional. It is said to contain a

spanning tree if at leat there exists a node which has directed

paths to all other nodes. The undirected graph is connected

if and only if there at least exists an undirected path between

any two notes. Let A = [aij ] ∈ R
n×n and D ∈ R

n×m denote

the adjacency matrix and the incidence matrix of the graph

respectively, and aij = 1 if there exists a directed edge from

vj to vi, else aij = 0. With regard to undirected graphs,

aij = aji. let O = [oij ] ∈ R
n×n denote the degree matrix

and oii =
∑n

j=1 aij , else pij = 0. Then the Laplacian matrix

is written as L ∈ R
n×n = O − A. Set a0i = 0 and ai0 = 1

if the agent i can acquire information from the leader, else

ai0 = 0 and then set B = diag{ai0, ai1, ..., ain}.

C. Time-Based Generator

The time-based generator ξ(t) is a kind of time dependent

function that can be seen as a termination function. Its general

properties can be generalized as follows.

1) ξ(t) is a non-decreasing and continuous function.

2) With time going by, ξ(t) increases from the initial state

ξ(0) = 0 to ξ(ts) = 1, and when t > ts, ξ(t) ≡ 1, where

ts can be predesigned arbitrarily.

3) ξ̇(0) = 0 and when t ≥ ts, ξ̇(t) ≡ 0.

Remark 1. A typical time-based generator function ξ(t) is

presented as follows [30].
{

ξ(t) = 10
t6s
t6 − 24

t5s
t5 + 15

t4s
t4, 0 ≤ t ≤ ts,

1, t > ts,

Think about the differential equation as below.

ż = −h(t)z, z(0) = z0, (1)
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where h(t) is constructed as

h(t) = k
ξ̇

1− ξ + δ
, (2)

where k ∈ R and δ ∈ R are two positive constants which

satisfy k > 1 and 0 < δ << 1.

Solving the differential equation (1) one has

z = (
1− ξ + δ

1 + δ
)kz0. (3)

With t growing from 0 to ts, ξ grows from 0 to 1 smoothly.

Therefore, when t ∈ [0, ts), z gradually approaches z0(
δ

1+δ
)k.

When t ≥ ts, the result will remain the same. If let δ = 0.001
and k = 3, at the terminal moment ts, the solution of (1) will

be z = 10−9z0. Thus we can nearly think that z reaches zero

at ts and the initial state z0 has no effect on the convergence

time.

D. Problem Description

1) Fixed-Time Distributed Consensus Tracking: Suppose

that there is a double-integrator-type multi-agent system with

a leader and n agents. The leader can be represented by

{

ẋ0 = v0,

v̇0 = u0,
(4)

where x0 ∈ R and v0 ∈ R represent the position and velocity

of the leader, respectively. u0 ∈ R represents the control input

bounded by a positive constant umax.

Then the followers can be modeled by

{

ẋi = vi,

v̇i = ui + di, i = 1, 2, ..., n,
(5)

where xi ∈ R and vi ∈ R denote the position and the velocity

of the agent i, respectively. ui ∈ R and di ∈ R denote the

control input and the uncertainty, where di takes the positive

constant dmax as the boundary.

The objective of fixed-time distributed consensus tracking

is to devise the control input only using local information for

each follower, which enable the followers to achieve consensus

with the leader in a fixed time independent of initial states.

Definition 1. (Fixed-time distributed consensus tracking) For

the system described by (4) and (5), with the given observer

and control input ui, it is said to achieve fixed-time distributed

consensus tracking if all the followers can achieve consensus

with the leader in a fixed-time Tmax independent of initial

conditions, i.e.,

{

limt→Tmax
|xi − x0|+ |vi − v0| ≤ c

limt→∞ |xi − x0|+ |vi − v0| = 0,
(6)

where Tmax can be predesignated arbitrarily independent of

initial conditions and c can be limited to the desired level.

2) Fixed-Time Distributed Average Tracking: Consider a

double-integrator-type multi-agent system with n agents repre-

sented by (5), and each agent i has a reference signal ri ∈ R

described as follows.
{

ṙi = fi,

ḟi = ari , i = 1, 2, ..., n,
(7)

where fi and ari are the velocity and acceleration of reference

signal ri, respectively. Note that ari is bounded by a positive

constant amax. Let r = 1
n

∑n

i=1 ri, f = 1
n

∑n

i=1 fi and a =
1
n

∑n

i=1 fi be the average value of the reference signals.

The objective of fixed-time distributed average tracking is

to devise control inputs only using local information for the

agents, which enable them to achieve consensus with the

average value of multiple reference signals in a fixed time

without dependence on initial states.

Definition 2. (Fixed-time distributed average tracking) For the

system described by (5) and (7), with the given observer and

control input ui, it is said to achieve fixed-time distributed

average tracking if all the agents can achieve consensus

with the average value of the multiple reference signals in

a fixed-time Tmax which can be predesigned arbitrarily and

independent of initial states, i.e.,
{

limt→Tmax
|xi − r|+ |vi − f | ≤ c

limt→∞ |xi − r|+ |vi − r| = 0,
(8)

III. MAIN RESULTS

A. Fixed-Time Sliding Mode Control

Lemma 1. [22] Suppose that z(0) = z0 and V (z) is

a positive definite Lyapunov candidate which satisfies the

inequality as below.

V̇ (z) + µV ν(z) ≤ 0, (9)

where µ ≥ 0 and ν ∈ (0, 1). Then z will converge to zero in

a finite time T (z0) such that

T (z0) ≤
1

µ(1− ν)
V 1−ν(z0). (10)

A typical double-integrator-type control system is given as

follows.
{

ż1 = z2,

ż2 = u+ ̺,
(11)

where z1 ∈ R and z2 ∈ R are the system states. δ ∈ R is a

disturbance bounded by a positive constant ̺max.

The objective of fixed-time sliding mode control is to

devise a control input u which drives the system (11) to the

equilibrium point in a fixed time, i.e., [z1, z2] = [0, 0]. The

process of fixed-time double-integrator sliding mode control

is generally divided into two sections. In the first section,

the control input forces the system to arrive at the prescribed

surface in a fixed time ta1; In the second section, the system

will slide along the surface to the equilibrium point in a

fixed time ta2. Therefore, The whole convergence time is

bounded by Ta = ta1 + ta2. In order to converge in the

fixed time in each stage, two time-based generators ξa1 and
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ξa2 are used sequentially. ξa1 ensures the system to arrive at

the prescribed surface in ta1 and then invalid. ξa2 guarantees

the fixed convergence time ta2. Let ha1(t) = k ξ̇a1

1−ξa1+δ
and

ha2(t) = k ξ̇a2

1−ξa2+δ
. Then we have

h1(t) =











ha1(t), t ∈ [0, ta1),

ha2(t), t ∈ [ta1, ta1 + ta2),

0, t ∈ [ta1 + ta2,+∞).

(12)

Remark 2. Since ξ̇a1(0) = ξ̇a1(ta1) = ξ̇a2(ta1) = ξ̇a2(ta1 +
ta2) = 0, one obtains ha1(0) = ha1(ta1) = ha2(ta1) =
ha2(ta1 + ta2) = 0, which shows the connectivity of h1(t).
Furthermore, owing to the nonnegativity of ξ̇a1 and ξ̇a2, h1(t)
is also nonnegative.

Remark 3. In order to clarify the idea, let ξa1, ha1(t) and

ξa2, ha2(t) have the same structure. But, in simulation, owing

to ξa1(ta1) = 1 and ξa2(ta1) = 0, which leads to a sharp

decrease of the derivative and causes problems. By resetting

ξ̂a2(t) = ξa2+1 and ĥa2(t) = k ξ̇a2

2−ξa2+δ
, the problem caused

by discontinuity is solved. Moreover, in the different steps, k

and δ can be selected as different constants respectively.

In this paper, the fixed-time sliding mode surface is selected

as

s = (
1

2
h1(t) + 1)z1 + z2. (13)

If s = 0, the system arrives at the sliding mode surface and

has the form as below.

z2 = ż1 = −(
1

2
h1(t) + 1)z1. (14)

The control input is devised as follows.

u =−
1

2
ḣ1(t)z1 − (

1

2
h1(t) + 1)z2

−
1

2
h1(t)s− ρsgn(s), (15)

where ρ is a positive constant satisfying ρ ≥ |̺max|+ 1.

Theorem 1. With the given control input (15), the system (11)

will arrive at the sliding mode surface (s = 0) in a fixed-time

ta1, and then slide along the surface (s = 0) to the equilibrium

point [z1, z2] = [0, 0] in a fixed-time ta2. Thus the final upper-

bounded convergence time is Ta = ta1 + ta2.

Proof. The Lyapunov candidate is constructed as V1 = 1
2s

2.

Differentiating (13) against time one has

ṡ =
1

2
ḣ1(t)z1 + (

1

2
h1(t) + 1)z2 + u+ ̺. (16)

Substituting the control input (15) in to (16) one has

ṡ = −
1

2
h1(t)s− ρsgn(s) + ̺. (17)

Differentiating the Lyapunov candidate V1 against time and

then substituting (17) into it one has

V̇1 = sṡ

= −
1

2
h1(t)s

2 − ρ|s|+ ̺s

≤ −
1

2
h1(t)s

2 − (ρ− ̺max)|s|

≤ −
1

2
h1(t)s

2

= −h1(t)V1. (18)

When t ∈ [0, ta1), h1(t) = ha1(t). According to (1) one

obtains

lim
t→ta1

V1 ≤ (
1− ξa1 + δ

1 + δ
)kV1(0) = (

δ

1 + δ
)kV1(0), (19)

where, according to (3), ( δ
1+δ

)kV1(0) is in the near region of

zero.

When t ≥ ta1, h1(t) = ha2(t) and one obtains

V̇1 =−
1

2
ha2(t)s

2 − ρ|s|+ δs

≤− (ρ− δmax)|s|

≤ − |s|

=−
√

2V1 (20)

According to Lemma 1 one has that V1 will converge to zero

after ta1 within a finite time t̂a1, i.e., t̂a1 ≤
√

2V1(ta1) ≤
√

2V1(0)(
δ

1+δ
)k. Although V1 doesn’t converge to zero per-

fectly at ta1, which means that the system states are in the

near region of the sliding mode surface (s = 0), the system

states will still converge to zero along the sliding surface in

the fixed-time. In order to clarify the idea clearly, at first, it is

assumed that V1 converges to zero at ta1, which means s = 0
as well. Then the case that there is a small error between the

sliding surface and the system states at ta1 is investigated.

A Lyapunov candidate is constructed as V2 = 1
2z

2
1 . Differ-

entiating V2 along (14) one has

V̇2 = z1ż1

= −
1

2
h1(t)z

2
1 − z21

≤ −
1

2
h1(t)z

2
1

= −h1(t)V2 (21)

From (1) one obtains that limt→ta1+ta2
V2 = ( δ

1+δ
)kV2(ta1).

When t ≥ ta1 + ta2, owing to h1(t) = 0 and V̇2 =
−z21 = −2V2 one concludes that V2 will converge to zero

exponentially. Since z2 = −(h1(t) + 1)z1 = −z1, z2 will

converge to zero with the same rate of z1 as well.

In the following proof, the influence of V1(ta1) 6= 0 is

analysed. According to the relationship between V1 and s,

suppose that the system states converge to the adjacent region

of the sliding surface at ta1 and there exists an error e, i.e.,

s = {e|t ≥ ta1}. When t ≥ ta1, V̇1 ≤ −|s|, which means

V1 as well as |e| are non-increasing functions and bounded by
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V̂1 = ( δ
1+δ

)kV1(0) and ˆ|e| =
√

2( δ
1+δ

)kV1(0), respectively.

Then (13) can be rewritten as

e = (
1

2
h1(t) + 1)z1 + z2. (22)

The derivative of z1 can be obtained as

ż1 = −(
1

2
h1(t) + 1)z1 + e. (23)

Substituting (23) into V̇2 one has

V̇2 = −
1

2
h1(t)z

2
1 − z21 + ez1

= −h1(t)V2 − z21 + ez1. (24)

Note that |e| is very small and non-increasing, and the conver-

gence time is bounded by t̂a1. If |z1| < |e|, which means that

|z1| has been in the near region of zero. Meanwhile, |z1| is

bounded by ˆ|e|. After ta1+t̂a1, due to |e| = 0, |z1| will at least

converge exponentially. If |z1| ≥ |e|, one has V̇2 ≤ −h1(t)V2.

From (1), V2 will nearly converge to zero within a fixed time

ta2 or converge to |ê| in t̂a1, Whatever the case may be, V2

will converge nearly to zero in a fixed time Ta = ta1 + ta2.

Then the proof has been completed.

B. Fixed-Time Distributed Consensus Tracking Observer Un-

der Undirected Communication

Assumption 1. The topology subgraph Gs for the followers

is undirected and connected; There at least exists a follower

which can acquire information from the leader.

Lemma 2. [21] If L ∈ R
n×n is the Laplacian matrix of

a undirected connected graph, and the nonnegative diagonal

matrix B = diag{a10, ..., an0} with at least one element

greater than zero, then Q = L+B is a positive definite matrix.

In the subsection, a fixed-time distributed observer based

on time-based generators is designed for each follower to

measure the relative position and velocity disagreements be-

tween the leader and itself under undirected communication.

set two time-based generators as ξb1 and ξb2, and then

hb1(t) = kξ̇b1
1−ξb1+δ

and hb2(t) = kξ̇b2
1−ξb2+δ

. Let h2(t) has the

same structure as h1(t). Denote the real tracking errors as

x̃i = xi − x0 and ṽi = vi − v0. Then fixed-time distributed

the observers αi and βi of estimating x̃i and ṽi are proposed

as below.

α̇i =βi − b1h2(t)

{ n
∑

j=0

aij [(αi − αj)− (xi − xj)]

}

− b2sgn

{ n
∑

j=0

aij [(αi − αj)− (xi − xj)]

}

,

β̇i =ui − c1h2(t)

{ n
∑

j=0

aij [(βi − βj)− (vi − vj)]

}

− c2sgn

{ n
∑

j=0

aij [(βi − βj)− (vi − vj)]

}

, (25)

where i = 1, ..., n, α0 = 0, β0 = 0. b1, b2, c1 and c2 are

positive constants satisfying b1 = c1 ≥ 1
2λ1(Q) , b2 ≥ 1 and

c2 > umax + dmax.

Let α̃i = αi− x̃i and β̃i = βi− ṽi be the errors between the

observing disagreements and the real disagreements. If all the

errors converge to zero in tb1 + tb2, the observer is designed

successfully.

Theorem 2. With the given dynamics (4), (5) and observer

(25), under Assumption 1, αi and βi converges to x̃i and ṽi
within a fixed-time Tb = tb1 + tb2 .

Proof. Following from (25), ˙̃αi and
˙̃
βi can be written as

˙̃αi =β̃i − b1h2(t)

n
∑

j=0

aij(α̃i − α̃j)

− b2sgn

[ n
∑

j=0

aij(α̃i − α̃j)

]

,

˙̃
βi =− c1h2(t)

n
∑

j=0

aij(β̃i − β̃j)

− c2sgn

[ n
∑

j=0

aij(β̃i − β̃j)

]

− di + u0. (26)

Let α̃ = [α̃1, ..., α̃n]
T , β̃ = [β̃1, ..., β̃n]

T , d = [d1, ..., dn]
T

and u ∈ R
n = [u0, ..., u0]

T . The vector form of (26) can be

written as

˙̃α = β̃ − b1h2(t)Qα̃− b2sgn(Qα̃),

˙̃
β = −c1h2(t)Qβ̃ − c2sgn(Qβ̃)− d+ u, (27)

where Q = L + B is a positive definite matrix according to

Lemma 2.

Construct a Lyapunov candidate as V3 = 1
2 β̃

TQβ̃. Because

Q is a positive definite matrix, V3 is well defined. Differentiate

V3 against time such that

V̇3 = β̃TQ[−c1h2(t)Qβ̃ − c2sgn(Qβ̃)− d+ u]

≤ −c1h2(t)(Q
1

2 β̃)TQ(Q
1

2 β̃)− (c2 − umax − dmax)||Qβ̃||1

≤ −c1λ1(Q)h2(t)β̃
TQβ̃

≤ −h2(t)V3. (28)

When t ∈ [0, tb1), h2(t) = hb1(t). According to (1) one

concludes that limt→tb1 V3 ≤ ( δ
1+δ

)kV3(0) << 1. Then due

to

V3 =
1

2
β̃T (L +B)β̃

=
1

4

n
∑

i=1

n
∑

j=1

aij(β̃i − β̃j)
2 +

1

2

n
∑

i=1

ai0β̃
2
i , (29)

one has that limt→tb1 |β̃i| ≤ 2
√

( δ
1+δ

)kV3(0) << 1.

When t ≥ tb1, one has

V̇3 = −(θ2 − umax − dmax)||Qβ̃||1. (30)

Owing to

||Qβ̃||1 ≥ ||Qβ̃||2 =

√

(Qβ̃)TQβ̃ ≥

√

λ1(Q)β̃TQβ̃, (31)

one obtains

V̇3 ≤ −(θ2 − umax − dmax)
√

2λ1(Q)V3 ≤ 0. (32)
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Therefore, V3 will keep decreasing and |β̃i| << 1 is ensured.

Following from Lemma 1, when t ≥ tb1, V3 will converge

to zero within a finite time t̂b1, i.e., t̂b1 ≤ (θ2 − umax −

dmax)
√

( δ
1+δ

)k 2V3(0)
λ1(Q) .

Construct a Lyapunov candidate as V4 = 1
2 α̃

TQα̃. Differ-

entiate it against time and then one has

V̇4 = α̃TQ ˙̃α

= α̃TQβ̃ − b1h2(t)α̃
TQQα̃− b2α̃

TQsgn(Qα̃)

= −b1h2(t)α̃
TQQα̃− b2||Qα̃||1 + (Qα̃)T β̃. (33)

Since when t ≥ tb1, |β̃i| << 1, one has

V̇4 ≤− b1λ1(Q)h2(t)α̃
TQα̃− (b2 − 1)||Qα̃||1

≤− h2(t)V4. (34)

When t ∈ [tb1, tb1+tb2), h2(t) = hb2(t). According to (1), one

concludes that limt→tb1+tb2 V4 ≤ ( δ
1+δ

)kV4(tb1) ≈ 0. When

t ≥ tb1 + tb2, due to h2(t) = 0 and β̃ = 0, from (33) one

has V̇4 = −b2||Qα̃||1. Compared with (32), one concludes

that V4 will converge to zero within finite time after tb1 + tb2.

That also means that the observer successfully complete the

observing task in a fixed time Tb = tb1 + tb2. Thus the whole

proof has been finished.

C. Fixed-Time Distributed Consensus Tracking Observer Un-

der Directed Communication

Assumption 2. There is a spanning tree in the directed graph

G, where the leader is set as the root node. Note that, the

subgraph Gs doesn’t need to be strongly connected or contain

a spanning tree.

Lemma 3. [33] Under Assumption 2, define H = L + B,

p = [p1, ..., pn]
T = H−T 1n, P = diag{pi}, Q = HTP+PH

2 .

Then we have that P and Q are both positive definite.

Let d = |max
i

{
∑n

j=0 aij(di − dj)}| and pmax = max
i

{pi},

where d0 = 0. Then the observer is given as below.

α̇i =βi − 2b1[h2(t) + 2]

{ n
∑

j=0

aij [(αi − αj)− (xi − xj)]

}

− b2[h2(t) + 2]sgn

{ n
∑

j=0

aij [(αi − αj)− (xi − xj)]

}

,

β̇i =ui − 2c1[h2(t) + 2]

{ n
∑

j=0

aij [(βi − βj)− (vi − vj)]

}

− c2[h2(t) + 2]sgn

{ n
∑

j=0

aij [(βi − βj)− (vi − vj)]

}

,

(35)

where α0 = β0 = 0, and b1, b2, c1, c2 are positive constants

satisfying b1 = c1 ≥ pmax

4λ1(Q) , b2 ≥ pmax

λ1(Q) , c2 ≥ pmax(d+umax)
λ1(Q)

Theorem 3. With the given dynamics (4), (5) and observer

(35), under Assumption 2, αi and βi converges to x̃i and ṽi
within a fixed-time Tb = tb1 + tb2 .

Proof. Let x̃i = xi − x0, ṽi = vi − v0 and α̃i = αi − x̃i,

β̃i = βi − ṽi. Then we have

˙̃αi =β̃i − 2b1[h2(t) + 2]

n
∑

j=0

aij(α̃i − α̃j)

− b2[h2(t) + 2]sgn

[ n
∑

j=0

aij(α̃i − α̃j)

]

,

˙̃
βi =− 2c1[h2(t) + 2]

n
∑

j=0

aij(β̃i − β̃j)

− c2[h2(t) + 2]sgn

[ n
∑

j=0

aij(β̃i − β̃j)

]

− di + u0.

(36)

Let zi =
∑n

j=0 aij(β̃i − β̃j) and then one obtains

˙̃
βi = −2c1[h2(t) + 2]zi − c2[h2(t) + 2]sgn(zi)− di + u0.

(37)

Differentiating zi against time one has

żi =− 2c1[h2(t) + 2]

n
∑

j=0

aij(zi − zj)

− c2[h2(t) + 2]

{ n
∑

j=0

aij [sgn(zi)− sgn(zj)]

}

−

n
∑

j=0

aij(di − dj) + ai0u0. (38)

According to z = Hβ̃, where H is a nonsingular matrix.

Thus if z converges to zero, β̃ converges as well. Construct a

Lyapunov candidate as

V5 =
n
∑

i=1

pi[c1z
2
i + c2|zi|]. (39)

Then, one has

V̇5 =

n
∑

i=1

pi[2c1zi + c2sgn(zi)]×

{

− 2c1[h2(t) + 2]

n
∑

j=0

aij(zi − zj)

− c2[h2(t) + 2]
n
∑

j=0

aij [sgn(zi)− sgn(zj)]

−

n
∑

j=0

aij(di − dj) + ai0u0

}

=− [h2(t) + 2]

n
∑

i=1

pi[2c1zi + c2sgn(zi)]×

{

2c1

n
∑

j=0

aij(zi − zj) + c2

n
∑

j=0

aij [sgn(zi)− sgn(zj)]

}

−
n
∑

i=1

pi[2c1zi + c2sgn(zi)]

[ n
∑

j=0

aij(di − dj)− ai0u0

]

=− [h2(t) + 2][2c1z + c2sgn(z)]
TPH [2c1z + c2sgn(z)]
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−
n
∑

i=1

pi[2c1zi + c2sgn(zi)]

[ n
∑

j=0

aij(di − dj)− ai0u0

]

=− [h2(t) + 2][2c1z + c2sgn(z)]
TQ[2c1z + c2sgn(z)]

−

n
∑

i=1

pi[2c1zi + c2sgn(zi)]

[ n
∑

j=0

aij(di − dj)− ai0u0

]

≤− λ1(Q)[h2(t) + 2][2c1z + c2sgn(z)]
T [2c1z + c2sgn(z)]

−

n
∑

i=1

pi[2c1zi + c2sgn(zi)]

[ n
∑

j=0

aij(di − dj)− ai0u0

]

=− λ1(Q)[h2(t) + 1]

{ n
∑

i=1

[4c21z
2
i + 4c1c2|zi|+ c22]

}

− λ1(Q)

{ n
∑

i=1

[4c21z
2
i + 4c1c2|zi|+ c22]

}

−

n
∑

i=1

pi[2c1zi + c2sgn(zi)]

[ n
∑

j=0

aij(di − dj)− ai0u0

]

≤− 4c1λ1(Q)[h2(t) + 1]

{ n
∑

i=1

[c1z
2
i + c2|zi|]

}

− c2λ1(Q)

{ n
∑

i=1

[4c1|zi|+ c2]

}

+ pmax(d+ umax)

{ n
∑

i=1

[2c1|zi|+ c2]

}

≤−
4c1λ1(Q)

pmax

[h2(t) + 1]

{ n
∑

i=1

pmax[c1z
2
i + c2|zi|]

}

≤− h2(t)V5 − V5

≤− h2(t)V5. (40)

When t ∈ [0, tb1), h2(t) = hb1(t). Using differential equation

(1) one has limt→tb1 V5 ≤ ( δ
1+δ

)kV5(0) ≈ 0. When t ≥ tb1,

V̇5 ≤ −V5. Then V5 will converge exponentially and |zi| << 1
is ensured. Therefore, the observer can successfully estimate

the velocity disagreements between the leader and the follow-

ers in tb1.

In the following proof, let wi =
∑n

j=0 aij(α̃i − α̃j). Then

substituting wi into (36) one obtains

˙̃αi = β̃i − 2b1[h2(t) + 2]wi − b2[h2(t) + 2]sgn(wi). (41)

Differentiating wi against time one has

ẇi =zi − 2b1[h2(t) + 2]

n
∑

j=0

aij(wi − wj)

− b2[h2(t) + 2]

{ n
∑

j=0

aij [sgn(wi)− sgn(wj)]

}

. (42)

When t ∈ [tb1, tb1 + tb2), due to |zi| << 1, zi in (42) can be

seen as a bounded disturbance in (38). The following proof is

the same as before and not restated. Until now, the proof of

Theorem 3 has been finished.

D. Fixed-Time Distributed Averaging Tracking Observer

Assumption 3. The topology graph for the n agents is

undirected and connected. Each agent can only receive the

information form one reference signal.

Lemma 4. [34] If L ∈ R
n×n is a Laplacian matrix of a

connected undirected graph and D ∈ R
n×m is its relative

incidence matrix. Then for any vector z ∈ R
n one has

zTLDsgn(DT z) ≥ λ2(L)z
TDsgn(DT z). (43)

The distributed observer is given as below.

α̇i =− b1h2(t)

n
∑

j=1

aij(αi − αj)

− b2

n
∑

j=1

aijsgn(αi − αj) + βi,

β̇i =− c1h2(t)

n
∑

j=1

aij(βi − βj)

− c2

n
∑

j=1

aijsgn(βi − βj) + ari , (44)

where b1, b2, c1, c2 are positive constants satisfying b1 = c1 ≥
1

2λ2(L) , b2 ≥ 1, c2 > 2amax; Moreover the initial states satisfy
∑n

i=1 αi(0) =
∑n

i=1 xi(0) and
∑n

i=1 βi(0) =
∑n

i=1 vi(0).

Note that
∑n

i=1 α̇i =
∑n

i=1 βi and
∑n

i=1 β̇i =
∑n

i=1 a
r
i .

Therefore under the given initial states, we have
∑n

i=1 βi =
∑n

i=1 vi and
∑n

i=1 αi =
∑n

i=1 xi all the time. Following from

this, if all the observers achieve consensus in a fixed time, the

average value of the multiple reference signals is obtained

successfully.

Theorem 4. With the given dynamics (5), (7) and observer

(44), under Assumption 3, αi and βi converges to r and f

within a fixed-time Tb = tb1 + tb2 .

Proof. Construct a Lyapunov candidate as V6 = 1
2β

TLβ and

(44) can be written in the vector form as

α̇ =− b1h2(t)Lα− b2Dsgn(DTα)

β̇ =− c1h2(t)Lβ − c2Dsgn(DTβ) + a. (45)

Then we have

V̇6 =βTLβ̇

=βTL[−c1h2(t)Lβ − c2Dsgn(DTβ) + a]

≤ − c1h2(t)β
TLLβ − c2β

TLDsgn(DTβ) + βTLa

≤ − c1h2(t)λ2(L)β
TLβ − c2β

TDsgn(DTβ) + βTLa

≤ − h2(t)V6 − c2||D
Tβ||1 + (DTβ)TDTa

≤ − h2(t)V6 − (c2 − 2amax)||D
Tβ||1

≤ − h2(t)V6. (46)

When t ∈ [0, tb1), h2(t) = hb1(t). Using differential equation

(1) one has limt→tb1 V6 ≤ ( δ
1+δ

)kV6(0) ≈ 0. When t ≥ tb1,

V̇6 ≤ −(c2 − 2amax)||D
Tβ||1. Then compared with (32) one
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has V6 will converge in finite time after tb1 and βi << 1 is

ensured. Construct the Lyapunov candidate as V6 = 1
2α

TLα

V̇7 =αTLα̇

=αTL[−b1h2(t)Lα− c2Dsgn(DTα) + β]

=− b1h2(t)α
TLLα− c2α

TLDsgn(DTα) + αLβ]

≤− b1λ2(L)h2(t)α
TLα− c2||D

Tα||1 + (DTα)TDTβ

≤− h2(t)V. (47)

Due to βi << 1, |βi − βj | << 1 is ensured. Then one has

c2||D
Tα||1 > (DTα)TDTβ. The following is the same as

before and hence omitted. Until now, the proof of Theorem 4

has been finished.

Remark 4. All the observers proposed in this paper can be

extended to that of high-order multi-agent systems by using

more time-based generators and more integrators.

E. Distributed Consensus Tracking and Distributed Average

Tracking Control

After designing the observers, the next step is to design the

controllers by using the information provided by the observers.

In this subsection, the control inputs for the distributed con-

sensus tracking and the distributed average tracking will be

given.

Theorem 5. Under dynamics (4), (5) and Assumption 1

(Assumption 2), with the observer (25) (observer (35)) and

the control input

ui =











= 0, t ∈ [0, Tc),

= − 1
2 ḣ1(t)αi − (12h1(t) + 1)βi

− 1
2h1(t)si − ρsgn(si), t ≥ Tb,

(48)

where Tc ≥ Tb, si = (12h1(t) + 1)αi + βi, ρ ≥ dmax +
umax + 1, the fixed-time distributed consensus tracking for

double-integrator-type multi-agent systems is solved. Further

more, the upper-bounded convergence time is Ta + Tc.

Proof. When t ≥ Tb, one has αi = xi − x0 and βi = vi − v0.

Then we have

ṡi =
1

2
ḣ1(t)αi + (

1

2
h1(t) + 1)α̇i + β̇i

=
1

2
ḣ1(t)αi + (

1

2
h1(t) + 1)βi + v̇i − v̇0

=
1

2
ḣ1(t)αi + (

1

2
h1(t) + 1)βi + ui + di − u0. (49)

Then substitute (48) into (49), one has

ṡi = −
1

2
h1(t)si − ρsgn(si) + di − u0. (50)

The other part of the proof is the same as Theorem 1 and

omitted. Thus the whole proof has been finished.

Theorem 6. Under dynamics (5), (7) and Assumption 3, with

the observer (44) and the control input

ui =











= 0,∈ [0, Tc),

= − 1
2 ḣ1(t)(xi − αi)− (12h1(t) + 1)(vi − βi)

− 1
2h1(t)si − ρsgn(si), t ≥ Tb,

(51)

where si = (12h1(t) + 1)(xi − αi) + (vi − βi), ρ ≥
dmax + amax + 1, the fixed-time distributed average tracking

problems for double-integrator-type multi-agent systems is

solved. Further more, the upper-bounded convergence time is

Ta + Tc.

Proof. When t ≥ Tb, one has αi = r and βi = f . Then we

have

ṡi =
1

2
ḣ1(t)(xi − αi) + (

1

2
h1(t) + 1)(vi − βi)

+ ui + di − β̇i. (52)

Then substitute (51) into (52), one has

ṡi = −
1

2
h1(t)si − ρsgn(si) + di − a. (53)

The other part of the proof is the same as Theorem 1 and

omitted. Thus the whole proof has been completed.

IV. NUMERICAL SIMULATIONS

Example 1. A simulation for Theorem 1 is given as follows.

Set k = 2, δ = 0.01, ̺ = sin(t), ρ = 2, ta1 = ta2 = 3,

z1(0) = 200 and z2(0) = 100. The results with upper-bounded

convergence time Ta = 6s are shown in Fig. 1.

0 1 2 3 4 5 6 7 8 9 10
time(s)

-200

-100

0

100

200

300

z 1,z
2.

convergence time = 6s

z
1

z
2

Fig. 1. The results of the sliding mode control in Example 1.

Example 2. A simulation for Theorem 5 under Assumption

1 is given as follows. Consider a multi-agent system described

by (4) and (5) with the undirected communication topology in

Fig. 2. Set k = 2, δ = 0.01, ρ = 8, b1 = c1 = 4, b2 = 1, c2 =
8, ta1 = ta2 = 3, tb1 = tb2 = 1.5, Tb = Tc, u0 = 1 + 5sin(t)
and xi(0), vi(0) with random states. The results with upper-

bounded convergence time Ta + Tc = 9s are shown in Fig. 3

and Fig. 4.

Fig. 2. The communication topology in Example 2.
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Fig. 3. The positions of the agents in Example 2.
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Fig. 4. The velocities of the agents in Example 2.

Example 3. A simulation for Theorem 5 under Assumption

2 is given as follows. Consider a multi-agent system described

by (4) and (5) with the directed communication topology in

Fig. 5. Set k = 2, δ = 0.01, ρ = 21, b1 = c1 = 2, b2 = 7,

c2 = 34, ta1 = ta2 = 2, tb1 = tb2 = 1, Tb = Tc, u0 =
2+ 18sin(t) and xi(0), vi(0) with random states. The results

with upper-bounded convergence time Ta+Tc = 6s are shown

in Fig. 6 and Fig. 7.

Fig. 5. The communication topology in Example 3.

Example 4. A simulation for Theorem 6 under Assumption

3 is given as follows. Consider a multi-agent system described

by (5) and (7) with the undirected communication topology in

Fig. 8. Set k = 2, δ = 0.01, ρ = 63, b1 = c1 = 0.25,

b2 = 1, c2 = 123, ta1 = ta2 = 4, tb1 = tb2 = 2, Tb = Tc,

ar1 = 41+20sin(5t), ar2 = 51+10sin(5t), ar3 = 30+30sin(5t),
ar4 = 40+20sin(5t) and xi(0), vi(0) with random states. The

results with upper-bounded convergence time Ta + Tc = 12s
are shown in Fig. 9 and Fig. 10.
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Fig. 6. The positions of the agents in Example 3.
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Fig. 7. The velocities of the agents in Example 3.

Fig. 8. The communication topology in Example 4.
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Fig. 9. The positions of the agents in Example 4.
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Fig. 10. The velocities of the agents in Example 4.

V. CONCLUSIONS

In this paper, both the fixed-time distributed consensus

tracking and the fixed-time distributed average tracking prob-

lems for double-integrator-type multi-agent systems are solved

by using time-based generators. Different from traditional

fixed-time methods, the time-based generator approach can

directly predesign the fixed time, which is of great significance

in reality. But the tradeoff is the introduce of time dependent

function. Moreover, it is trivial to extend the fixed-time sliding

mode control method in this article to Euler-Lagrange systems.

By combining the fixed-time sliding mode control method

of Euler-Lagrange systems and the observers in this article,

the fixed-time distributed consensus tracking and distributed

average tracking for multiple Euler-Lagrange systems can be

achieved. Also, the fixed-time distributed consensus tracking

problem for single-integrator multi-agent systems under di-

rected graph can be solved by devising a controller similar to

the velocity observer in (44).
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