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Multi-Agent Deep Reinforcement Learning for
Request Dispatching in Distributed-Controller

Software-Defined Networking
Victoria Huang, Gang Chen, and Qiang Fu

Abstract—Recently, distributed controller architectures have
been quickly gaining popularity in Software-Defined Networking
(SDN). However, the use of distributed controllers introduces a
new and important Request Dispatching (RD) problem with the
goal for every SDN switch to properly dispatch their requests
among all controllers so as to optimize network performance.
This goal can be fulfilled by designing an RD policy to guide
distribution of requests at each switch. In this paper, we propose
a Multi-Agent Deep Reinforcement Learning (MA-DRL) approach
to automatically design RD policies with high adaptability and
performance. This is achieved through a new problem formu-
lation in the form of a Multi-Agent Markov Decision Process
(MA-MDP), a new adaptive RD policy design and a new MA-
DRL algorithm called MA-PPO. Extensive simulation studies
show that our MA-DRL technique can effectively train RD
policies to significantly outperform man-made policies, model-
based policies, as well as RD policies learned via single-agent
DRL algorithms.

Index Terms—Multi-agent deep reinforcement learning, policy
gradient, request dispatching, distributed controllers, Software-
Defined Networking.

I. INTRODUCTION

AS an emerging computer networking paradigm, Software-
Defined Networking (SDN) empowers network operators

with flexible network management and rapid network policy
deployment [1]. To provide sufficient processing capacity
for the increasing communication activities in a network,
distributed controller architectures featuring the joint use of
multiple controllers are quickly gaining popularity [2], [3],
driving innovations to handle large operator networks such as
Content Delivery Networks (CDNs) [4]. Aiming at properly
distributing its requests among all controllers so as to make
the best use of controller capacity and achieve high network
performance, every SDN switch often follows a request dis-
patching (RD) policy to select suitable controllers to process
each newly arriving request. Clearly, carefully designing such
a policy is of paramount importance to the overall functioning
of multi-controller SDNs [3], [5].

Particularly, the designed policy must satisfy three require-
ments: (𝑅1) Performance effectiveness: The policy should
guide switches to properly dispatch requests to suitable
controllers to minimize the average request response time.
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(𝑅2) Adaptiveness: Note that the number of controllers in
an SDN network can change to meet the varying traffic
demand. Thus, the policy should perform consistently well
over different numbers of controllers. (𝑅3) Time efficiency:
Since RD must be performed in real time with minimum
delay, the policy needs to be sufficiently efficient in practice.
Therefore, policies with long processing time or frequent
execution (e.g., in a per-request manner) should be avoided.

To achieve 𝑅1, existing studies [6]–[10] constructed math-
ematical models to capture the correlation between the policy
and the performance objective (e.g., average request response
time). Although these model-driven methods can generally
provide solutions with guaranteed performance, modeling
the highly complicated network requires substantial domain
knowledge. Moreover, in a highly complicated distributed
computing environment (e.g., a distributed controller archi-
tecture), the response time can be caused by many factors that
may not be fully captured using the proposed model [11].

Alternatively, the literature has considered either manu-
ally or automatically designing policies for resource alloca-
tion [3], [12]–[14]. Specifically, two widely-used manually
designed policies in operating systems and cloud computing
are weighted round-robin and first-come-first-serve [15]. Ob-
viously, they cannot achieve 𝑅1 due to the lack of considering
propagation latency and controller workload. On the other
hand, Evolutionary Computation methods have been proposed
to automatically design policies for standard job shop schedul-
ing problems [12], [13]. However, these methods have high
sampling costs since data collected from previous generations
cannot be reused in the next generation. Therefore, all can-
didate solutions in each generation need to be reevaluated in
either simulated or real-world environments.

Recently, machine learning has been successfully applied
to various resource management problems [16]–[20]. Among
all machine learning algorithms, we consider Deep Reinforce-
ment Learning (DRL) to be suitable for designing the RD
policy for several reasons. First, no explicit mathematical
model of the underlying complex environment is required.
DRL can automatically learn the policy while interacting with
the unknown dynamic environment through a trial-and-error
process. Second, DRL can improve current policies based on
experiences/data obtained from an old policy through a tech-
nique known as experience replay [21]. Thus, in comparison
to an EC approach, the sampling cost of training any new
policies can be greatly reduced. Third, the RD problem can
be naturally formulated as an Markov Decision Process (MDP)
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(see Section III for more details).
Despite the clear advantages offered by DRL, the direct

application of existing DRL value function search methods1,
e.g., DQN [23], may not be suitable. Since the learned policy
is implicitly represented, making an RD decision requires
extensively enumerating the entire action space to find the
action with the maximal reward, violating 𝑅3. Thus, policy
search [22] which directly learns the optimal policy by search-
ing the policy space is more appropriate. However, there are
still several major issues that must be addressed.

(1) Impractical problem formulation: It is typical to design a
policy by a single learning agent supported by global network
information (i.e., fully observable environment). For example,
in [16], a centrally trained agent must learn to dispatch jobs
among a large cluster of computers. Such a central approach
is prone to scalability issues [24]. Particularly, the use of
a single agent inevitably introduces extra communication
delay2. Meanwhile, obtaining timely global information over
the entire SDN network can cause substantial communication
overhead [25]. Even though these issues can be alleviated by
employing multiple co-learning agents as demonstrated in [5],
the single-agent DRL algorithm cannot cope with inter-agent
interference and localized network information, resulting in
poor and unpredictable network performance.

(2) Non-adaptive and inefficient policy design: Typically,
many existing approaches [11], [26], [27] on resource manage-
ment were DQN-based policy direct search. These approaches
were designed to handle problems with a discrete action space.
In the RD problem, an action can be defined as assigning
a set of 𝐾 requests to 𝑀 available controllers. In this case,
the size of the action space is 𝐾𝑀 . With such a large action
space, the policy complexity inevitably increases, resulting
in long computational time to output an action. To reduce
the action space, an action can also be defined as assigning
one request to a controller every time where the size of the
action space is 𝑀 . However, this action definition requires the
policy to be processed repeatedly with respect to every new
request, incurring non-negligible policy processing overhead.
Therefore, both discrete action definitions cannot satisfy 𝑅3.
Moreover, existing DRL approaches directly represent their
policy as a Deep Neural Network (DNN) with a fixed number
of output nodes. The number of output nodes is the size of
the action space. Such a representation apparently violates 𝑅2
since the policy fails to function well whenever the number of
controllers is changed to meet the varying traffic demand.

(3) Inapplicable adaptive policy training: To perform policy
training using policy search, it is critical to calculate the
gradient of a policy [22]. In existing DRL (e.g., PPO [28],
TRPO [29]), the gradient of a policy is essentially the gradient
of a DNN, which is straightforward. However, a policy that can
support a changing number of controllers obviously cannot be

1Value function search learns the optimal value function. The value function
is used to extract the optimal policy by greedily selecting the action that
maximizes the long-term rewards. More details about value function search
can be found in [22]

2This is mainly because all requests from a switch must go through the
central agent before they can be forwarded to controllers for processing.

directly represented as a DNN. In this case, how to compute
its gradient needs to be addressed.

As far as we know, none of the existing studies have
considered and solved the above issues. In this paper, we
develop a new Multi-Agent DRL (MA-DRL) approach for
learning adaptive policies for SDN switches. Our research
successfully addresses the three limitations above with the key
novelties as summarized below:

A. Practical formulation of the policy design problem as
a Multi-Agent Markov Decision Process (MA-MDP): Rather
than using a centralized agent, we equip each distributed
switch with a co-located agent. All agents share the same goal
of optimizing the network-wide communication performance
in terms of the average request response time. Without as-
suming fully observable agents supported by global network
knowledge, a partially observable network is considered where
each agent executes its policy based only on its local obser-
vation.

B. Adaptive policy design for efficient request dispatching
over an arbitrary number of controllers: We propose a new
DNN-based policy representation to allow any switch to
distribute its requests among a changing number of controllers.
To satisfy 𝑅3, our policy outputs the controller priorities
which are mapped to probabilities to guide the RD among
eligible controllers within a specific time period. The priority
output is hence treated as the continuous action in the context
of MA-DRL. Guided by such actions, each request can be
quickly dispatched in a probabilistic manner without repeated
processing of the policy network. Meanwhile, we embed a
controller filtering mechanism into our dispatching system to
prevent controller overloading as well as unnecessary use of
distant controllers.

C. Multi-agent training of an adaptive policy: To support
the training of adaptive policies, a new mathematical technique
is developed to calculate the policy gradient. Meanwhile,
we develop a policy training system to fulfill the general
principle of centralized training and decentralized execution
[30], which is essential for reliable MA-DRL. However, using
the Deep Deterministic Policy Gradient (DDPG) algorithm as
recommended in [30] is not suitable for our problem because
it needs to learn the centralized Q-function with large function
input that contains the multi-agent joint action space. Instead,
we implement a new multi-agent version of the Proximal
Policy Optimization (PPO) algorithm [28] that only requires to
learn the centralized value function with substantially reduced
input dimensions.

II. RELATED WORK

Generally speaking, the RD problem in SDN can be solved
at two granularity levels: switch level and request level. When
RD is performed at the switch level, solving the RD problem
means finding the switch-controller mapping. On the contrary,
when solving the RD problem at the request level, requests
from one switch are no longer restricted to be handled by only
one controller. Instead, they can be flexibly distributed and
processed among multiple controllers. However, this flexibility
comes at a cost of increasing the problem complexity which
will be discussed in Section II-B.
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A. Switch-level Request Dispatching

Different approaches were proposed to find the switch-
controller mapping, e.g., approximation algorithms [6], [31]–
[33] and heuristics [32], [34]–[37].

Gao et al. [6] formulated the RD problem as an integer
programming problem with the goal of balancing the workload
among controllers. The problem was transferred into linear
programming using relaxation and solved by an approximation
algorithm called deterministic rounding. Related approxima-
tion approaches can be found in [31]–[33].

Due to the NP-hardness of the switch-controller mapping
problem [7], [34], it is computationally expensive to find the
optimal solution in a large network. Thus, heuristic methods
have been widely used [32], [34]–[36], [38]. In [38], whenever
the load difference between the heaviest-loaded and lightest-
loaded controllers is greater than a predefined threshold, a
switch will be mapped from the heaviest-loaded controller
to the lightest-loaded one. Similar greedy approaches have
also been used in [34], [36], [39]. Although these heuristic
approaches can find an acceptable solution of the problem
within a reasonable time, they cannot guarantee the solution
quality.

Note that all algorithms in this category assume that re-
quests generated from one switch can only be handled by its
mapped controller. Whenever the switch is re-mapped from
one controller to another, the switch’s workload will be all
transferred to the new controller, rendering the new controller
susceptible to being overloaded. Moreover, the RD can only
be performed at a coarse level (i.e., switch level), restricting
the opportunity of properly distributing workload across all
controllers to achieve high network performance, which has
been demonstrated in [3], [8].

B. Request-level Request Dispatching

To address the issues of switch-level RD methods, ap-
proaches designed for request-level RD have been proposed. In
this category, the requests from one switch can be distributed
and processed among multiple controllers.

For example, BalanceFlow [40] employed a super con-
troller which ran a greedy heuristic to partition the overall
workload of the control plane among all controllers based
on the collected global traffic information. However, due to
its dependence on the super controller, BalanceFlow may not
scale well in large networks. To address this issue, BLAC [3]
introduced a scheduling layer where multiple schedulers were
deployed to distribute requests from switches to different con-
trollers. Similarly, to reduce the overhead caused by switch-
controller remapping [35] and balance the controller workload,
Al-Tam et al. [41] partially transferred the workload from an
overloaded controller to other underloaded controllers. Similar
work can also be found in [9], [10], [42], [43].

To capture the correlation between the RD policy and its
performance, a queuing model was adopted in [9] and an
improved round-robin heuristic was proposed to determine
the request distribution among switches and controllers. Simi-
larly, [10] formulated the RD problem as an optimization prob-
lem with the goal of minimizing the average response time.

A Gradient-Descent-based (GD) algorithm was developed to
calculate the suitable request distribution.

Compared to the switch-level RD, request-level RD enables
request dispatching to be performed at a fined-grained level.
The benefits of request-level RD have also been demonstrated
in [3], [9], [44]. Therefore, this paper will focus on request-
level RD. However, the flexibility of request-level RD comes
at a cost of increasing the problem complexity from O(𝑀𝑁 )
to O(𝑀𝐾 ) where 𝑀, 𝑁, 𝐾 are the number of controllers,
switches, and requests with 𝑁 � 𝐾 . The significantly
increased problem complexity rendering the efficiency and
effectiveness of the switch-level RD methods questionable.
Although different request-level RD approaches have been
proposed, existing works have certain limitations. For exam-
ple, the introduction of a centralized super controller limits
the scalability of the control plane [8], [43]. Apart from that,
existing works mostly used heuristics which cannot guarantee
the quality of the solution (see Section V-C3). Although
a GD-based algorithm was proposed in [10], the network
performance achieved by GD relies on the provided network
information accuracy. But network information such as request
arrival rates can only be estimated in practice. The inaccurate
information hinders GD achieving its optimal performance,
which will be demonstrated in Section V-C3.

C. DRL-based Resource Management

Recently, DRL has been successfully utilized in many
resource management problem [16], [17], [27], [45]–[51].

For example, Li et al. [27] applied DRL to address the
5G network slicing problem. Specifically, given a fixed num-
ber of existing slices with the shared aggregated bandwidth
and the demands of each slice, the agent trained by DQN
dynamically adjusts the bandwidth sharing to maximize the
resource utilization while maintaining high user experience
satisfaction. Similarly, Hua et al. [52] proposed a generative
adversarial network-powered deep distributional Q-network
to allocate network resources for diversified services in 5G
networks. Moreover, Tesauro et al. [17] proposed an RL-
based approach to automatically allocate the server resources
in data centers. DeepRM [16] was proposed to address the
multi-resource cluster scheduling problem using a DNN policy
to optimize various objectives, e.g., average job completion
time and resource utilization. Similarly, Decima [45] combined
DRL and graph neural networks to learn workload-specific
scheduling policies for data processing clusters. Chinchali et
al. [47] leveraged the delay-tolerant feature of IoT traffic and
developed an RL-based scheduler to handle traffic variation so
that the network utilization can be constantly optimized.

Different from heuristics, DRL fully automates the policy
design process and noticeably improves the performance of
designed policies [45]. However, many existing approaches
are designed under the assumption of a single agent and fully
observable environment which cannot be easily satisfied in our
RD problem as we mentioned in Section I.

To address the above issues, MA-DRL techniques have been
developed in [53], [54]. In particular, [55] proposed a multi-
agent Q-learning system to guide packet routing in wireless
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Fig. 1: Request Dispatching in SDN.

sensor networks. Similar studies can also be found in [56],
[56], [57]. Despite the promising progress, these studies rely
heavily on inter-agent communication, which may introduce
non-negligible communication overhead, unsuitable for RD in
SDNs. Furthermore, most of the policies trained via MA-DRL
cannot adaptively support a varying number of actions and thus
may not scale well to large networks [58], [59].

III. THE POLICY DESIGN PROBLEM IN SDN
Figure 1 shows an SDN network with 𝑁 switches and 𝑀

controllers. The processing capacities of these controllers are
determined as 𝜶 = [𝛼1, ..., 𝛼𝑀 ]. The one-way propagation
latency between switches and controllers is measured in ma-
trix 𝑫 where each element 𝐷𝑚,𝑛 refers to the propagation
latency between switch 𝑆𝑤𝑛 and controller 𝐶𝑚. Whenever a
new packet arrives at a switch, the switch will generate a
request and forward it to a controller chosen by the agent
for processing. The request generation rate at every switch
is denoted as 𝝀 = [_1, ..., _𝑁 ]. Each controller processes its
requests in a FIFO manner [3]. After processing a request, the
corresponding response will be sent back from the controller
to the switch. The time interval measured by the switch from
sending a request to receiving a response is denoted as the
request response time 𝜏.

In this paper, the policy design problem is modeled as
a fully cooperative and partially observable MA-MDP with
𝑁 agents that control the 𝑁 SDN switches respectively, as
shown in Figure 1. The overall network operating status is
captured by a set of global states S. At each time step 𝑡,
the network enters a state 𝑠𝑡 ∈ S. Every agent 𝐴𝑔𝑡𝑛 receives
a local observation 𝑧

𝑛,𝑚
𝑡 with respect to each controller 𝐶𝑚.

The relationship between 𝑧
𝑛,𝑚
𝑡 and 𝑠𝑡 is determined by the

agent’s observation function 𝑧
𝑛,𝑚
𝑡 = O𝑛 (𝑠𝑡 , 𝑚). Based on the

local observations, every agent 𝐴𝑔𝑡𝑛 issues an action 𝒂𝑛𝑡 ∈ A𝑛

chosen from its policy 𝜋𝜽𝑛 to jointly form the multi-agent
action {𝒂𝑛𝑡 }𝑁𝑛=1. Here 𝒂𝑛𝑡 = {𝑎𝑛,𝑚𝑡 }𝑀

𝑚=1 specifies the priority
𝑎
𝑛,𝑚
𝑡 for 𝐴𝑔𝑡𝑛 to dispatch its new requests to any controller
𝐶𝑚 during time 𝑡 and 𝑡 + 1. As a result of following the joint
action, each agent obtains a reward 𝑟𝑛𝑡 based on the responses
it received from all controllers during time 𝑡 and 𝑡 + 1, as
defined below:

𝑟𝑛𝑡 = 𝜍𝑋𝑛𝑡 −
𝑋𝑛
𝑡∑︁

𝑥=1
𝜏𝑛𝑥 , (1)

where 𝑋𝑛𝑡 is the total number of responses received between 𝑡
and 𝑡 + 1 by 𝐴𝑔𝑡𝑛 and 𝜏𝑛𝑥 is the response time of a particular

request. 𝜍 is a weight factor that controls the importance of the
throughput 𝜒𝑛𝑡 relative to the response time. In our simulation,
𝜍 is estimated as the average response time of weighted round
robin [10] which serves as a baseline for the policy. Clearly,
all agents prefer to receive more responses with lower request
response time according to (1). For this purpose, 𝐴𝑔𝑡𝑛 learns
a policy 𝜋𝜽𝑛 parameterized by 𝜽𝑛 that maps observation 𝒛𝑛𝑡 =
{𝑧𝑛,𝑚𝑡 }𝑀

𝑚=1 to its action 𝒂𝑛𝑡 . More details on the adaptive policy
design will be presented in Section IV-A. The goal of MA-
MDP is hence to identify the optimal policies {𝜋∗

𝜽𝑛
}𝑁
𝑛=1 so as

to maximize the expected joint cumulative rewards:

𝐽 ({𝜋𝜽𝑛 }𝑁𝑛=1) = E{𝒂𝑛
𝑡 ∼𝜋𝜽𝑛 }𝑁

𝑛=1

𝑇∑︁
𝑡=0

𝛾𝑡
∑︁
𝑣∈𝑉

𝑟𝑛𝑡 (𝒛𝑛𝑡 , 𝒂𝑛𝑡 ) (2)

where 𝛾 ∈ [0, 1) is a discount factor. Evaluation with different
𝛾 values will be reported in Section V-C2.

IV. MA-DRL FOR RD POLICY LEARNING

In line with the MA-MDP problem defined in Section III,
an adaptive DNN-based policy will be proposed in this section
to ensure efficient RD over an arbitrary number of controllers.
A training system will be subsequently developed to train
the adaptive RD policy with a newly developed mathematical
technique to estimate the policy gradient.

A. DNN-based Adaptive Policy Design

An RD policy is expected to adapt easily to a changing
number of controllers. However, this requirement is seldom
supported by existing policy representations which only allow
a fixed collection of actions as we mentioned in Section I.
One possible strategy to solve this issue is to train multiple
policies while each policy targeting at a particular number
of controllers. However, each policy needs to be individually
evaluated or trained in advance before being deployed, which
leads to high sampling costs. Thus, instead of training multiple
policies, we should design and train an adaptive policy that can
support different numbers of controllers.

To address this issue, we propose a new policy design, as
shown in Figure 2. In particular, the policy 𝜋𝜽𝑛 takes the local
observations 𝒛𝑛𝑡 from agent 𝐴𝑔𝑡𝑛 as inputs and outputs an
action 𝒂𝑛𝑡 . In our previous work [5], an action corresponds
to a chosen controller for request processing. This design
requires repeated processing of the policy with respect to
every new request, preventing efficient use of the policy in
traffic-intensive networks. This issue is addressed by defining
𝒂𝑛𝑡 = {𝑎𝑛,𝑚𝑡 }𝑀

𝑚=1 as the controller priorities to guide the request
dispatching, which is updated once in every given time interval
as discussed earlier.

Priority mapping: Instead of generating the action 𝒂𝑛𝑡 =

{𝑎𝑛,𝑚𝑡 }𝑀
𝑚=1 through one run of the policy network, an agent

𝐴𝑔𝑡𝑛 feeds its local observation 𝑧𝑛,𝑚𝑡 with respect to controller
𝐶𝑚 to the DNN in Figure 2 one-by-one for all controllers. For
each local observation 𝑧𝑛,𝑚𝑡 , the DNN assigns a priority value
𝑜
𝑛,𝑚
𝑡 to 𝐶𝑚. For simplicity, we denote the DNN as a priority

function 𝑓𝜽𝑛 with trainable parameters 𝜽𝑛, to distinguish it
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Fig. 2: The DNN-based Adaptive Policy Design.

from the policy 𝜋𝜽𝑛 with additional components for normal-
ization and exploration3, as explained below.

Normalization and exploration: The softmax function is
used to normalize all controllers’ priorities {𝑜𝑛,𝑚𝑡 }𝑀

𝑚=1 into a
probability distribution {𝑜𝑛,𝑚𝑡 }𝑀

𝑚=1, as indicated in Figure 2.
Rather than using {𝑜𝑛,𝑚𝑡 }𝑀

𝑚=1 in a deterministic manner, the
agent must continue to explore different request dispatching
distributions and determine their impact on network perfor-
mance during policy training. This is achieved by adding small
Gaussian noises

𝜖
𝑛,𝑚
𝑡 ∼ N(0, 𝜎2), 𝑚 = 1, .., 𝑀

to 𝑜𝑛,𝑚𝑡 , as defined below:

𝒂𝑛𝑡 = �̃�𝑛𝑡 + 𝝐𝑛𝑡 , (3)

where �̃�𝑛𝑡 = {𝑜𝑛,𝑚𝑡 }𝑀
𝑚=1 and 𝝐𝑛𝑡 = {𝜖𝑛,𝑚𝑡 }𝑀

𝑚=1.
In association with the discussion above, the whole action

generation process based on our new policy design can be
formulated as:

𝒂𝑛𝑡 =


𝑎
𝑛,1
𝑡
...

𝑎
𝑛,𝑀
𝑡

 = 𝜋𝜽𝑛
©«

𝑧
𝑛,1
𝑡
...

𝑧
𝑛,𝑀
𝑡


ª®®¬ =


Softmax( 𝑓𝜽𝑛 (𝑧𝑛,1𝑡 )) + 𝜖𝑛,1𝑡

...

Softmax( 𝑓𝜽𝑛 (𝑧𝑛,𝑀𝑡 )) + 𝜖𝑛,𝑀𝑡


(4)

Because of 𝝐𝑛𝑡 , (4) produces 𝒂𝑛𝑡 as the continuous action output
in a stochastic manner.

B. The Dispatching System Design

When performing request dispatching, the switch should
avoid sending requests to unsuitable controllers, e.g., over-
loaded or remotely located controllers. Driven by this moti-
vation, a controller filtering mechanism is designed and used
before mapping 𝒂𝑛𝑡 to RD probabilities. In particular, the agent
keeps track of the operating status of all controllers4 and main-
tains a candidate controller list 𝑳𝑛𝑡 = {𝐿𝑛,𝑚𝑡 }𝑀

𝑚=1. Preference is
given to controllers with relatively small propagation latency
from the agent as well as controllers under moderate or low

3The exploration component in a policy is only activated during policy
training for stochastic exploration of different request dispatching distribu-
tions. While testing the trained policy on a SDN network, this component is
deactivated.

4Controller status update is realized through regular beacon messages send
by every controller to the agent in the network. Due to the communication
overhead, beacon messages are not communicated at high frequencies. Hence,
the status information accessible to the agent can be slightly outdated. Despite
this, simulation studies in Section V-C show that the agent can achieve high
network performance via DRL.

workload5. Accordingly, up to 𝜒 controllers can be considered
as candidates by the agent.

Armed with the adaptive policy and the controller filtering
mechanism, a dispatching system is designed for each switch
as shown in Figure 3. The dispatching system takes the local
observations as inputs and outputs the request dispatching
probabilities for the switch. In particular, given the local obser-
vations {𝑧𝑛,𝑚𝑡 }𝑀

𝑚=1, the policy generates the action {𝑎𝑛,𝑚𝑡 }𝑀
𝑚=1

according to (4). After that, overloaded or remotely located
controllers are filtered by assigning 0 to the correspond-
ing 𝑎

𝑛,𝑚
𝑡 with the help of {𝐿𝑛,𝑚𝑡 }𝑀

𝑚=1. The filtered action
{�̃�𝑛,𝑚𝑡 }𝑀

𝑚=1 is then mapped to {𝑝𝑛,𝑚𝑡 }𝑀
𝑚=1 through function 𝑇 .

Mathematically, 𝑳𝑛𝑡 is presented as a binary vector that covers
all the 𝑁 controllers, with the corresponding elements of 𝑳𝑛𝑡
for candidate controllers taking the value 1.

C. MA-PPO for Adaptive Policy Training

Aiming at training an policy for each SDN switch in a
network, one straightforward approach is to directly adopt the
single-agent DRL algorithm. In particular, one DRL agent is
placed on every SDN switch to continuously and indepen-
dently learn its policy while the other agents are treated as
part of the environment. Despite its simplicity, the training
process is vulnerable to the non-stationary environment prob-
lem [30]. In particular, the reward received by each agent
and the global state transition do not depend solely on one
agent’s individual actions. Instead, they are affected by the
joint actions from all agents. Moreover, each agent’s policy
keeps being updated independently during the training process.
Therefore, the environment observed by each agent becomes
non-stationary (i.e., violating the Markov property), which
affects the algorithm convergence [30]. Evaluation of the
single-agent learning approach in a multi-agent environment
(denoted by SA-PPO-MA) will be reported in Section V-C.

Without pursuing a learning system using single-agent DRL
any further, a Multi-Agent Proximal Policy Optimization (MA-
PPO) algorithm, a multi-agent extension of PPO [28], is de-
veloped. MA-PPO fulfills the general principle of centralized
training and decentralized execution [30], which is essential
for reliable MA-DRL. In particular, when directly applying
a single-agent DRL algorithm in a multi-agent environment
(e.g., SA-PPO-MA), each agent simultaneously and indepen-
dently learns its own value function using local observation,

5The average queue length of a controller must fall below a predefined
threshold for the controller to be considered for request processing.
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Probabilities
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Fig. 3: The design of the dispatching system.

which brings about the non-stationary environment issue.
This issue is addressed in MA-PPO by learning a centrally
maintained parametric value function 𝑉𝝎 with the global state
input 𝑠𝑡 ∈ S. The value function 𝑉𝝎 is then shared among all
agents.

In MA-PPO, 𝑉𝝎 is approximated by a DNN. Follow-
ing PPO, 𝑉𝝎 will be learned in an on-policy fashion by
maintaining a collection of network state-transition samples
obtained from using the current policies {𝜋𝜽𝑛 }𝑁𝑛=1. Each state-
transition sample 𝑢 records both global states and agents’ local
observations:

𝑢 =
〈
𝑠𝑡 , 𝑠𝑡+1, {𝒛𝑛𝑡 }𝑁𝑛=1, {𝒛

𝑛
𝑡+1}

𝑁
𝑛=1, {𝒂

𝑛
𝑡 }𝑁𝑛=1, {𝑟

𝑛
𝑡 }𝑁𝑛=1

〉
(5)

where the global state 𝑠𝑡 is for training 𝑉𝝎 and the local
observations 𝒛𝑛𝑡 is for training 𝜋𝜽𝑛 .

Then several mini-batches of samples denoted by B can be
retrieved from the collection to repeatedly train 𝑉𝝎 to minimize
the Bellman loss in (6):

H(𝑉𝝎) =
1

‖B‖
∑︁
B

(
𝑉𝝎 (𝑠𝑡 ) −

𝑁∑︁
𝑛=1

𝑟𝑛𝑡 − 𝛾𝑉𝝎 (𝑠𝑡+1)
)2

(6)

Guided by the trained 𝑉𝝎 , each agent in MA-PPO continues
to use the sampled mini-batches to update its policy 𝜋𝜽𝑛 along
the direction of the estimated policy gradient ∇𝜽𝑛𝐽 (𝜋𝜽𝑛 ) in
Section IV-C1.

1) Policy Gradient Calculation: Following PPO, in order
to estimate ∇𝜽𝑛𝐽 (𝜋𝜽𝑛 ), MA-PPO must find a way to estimate
the following gradient:

∇𝜽𝑛L(𝜋𝜽𝑛 ) = ∇𝜽𝑛 E
𝑡

[
𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )
𝜋𝜽𝑛

𝑜𝑙𝑑
(𝒂𝑛𝑡 |𝒛𝑛𝑡 )

𝐴𝑡 (𝑠𝑡 , {𝒂𝑛𝑡 }𝑁𝑛=1)
]

≈ 1
‖B‖

∑︁
B

𝐴𝑡 (𝑠𝑡 , {𝒂𝑛𝑡 }𝑁𝑛=1)
𝜋𝜽𝑛

𝑜𝑙𝑑
(𝒂𝑛𝑡 |𝒛𝑛𝑡 )

∇𝜽𝑛𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )
(7)

where 𝜽𝑛 and 𝜽𝑛
𝑜𝑙𝑑

refer to the policy parameters after and
before policy update in a Training Iteration (TI) respectively.
𝐴𝑡 (𝑠𝑡 , {𝒂𝑛𝑡 }𝑁𝑛=1) is the advantage function obtained through
𝑉𝝎 by using the Generalized Advantage Estimation (GAE)
technique developed in [60].

According to (4),

𝑎
𝑛,𝑚
𝑡 − Softmax( 𝑓𝜽𝑛 (𝑧𝑛,𝑚𝑡 )) = 𝜖𝑛,𝑚𝑡 ∼ N

(
0, 𝜎2

)
Therefore, each element 𝑎𝑛,𝑚𝑡 in 𝒂𝑛𝑡 follows a Gaussian distri-
bution:

𝑎
𝑛,𝑚
𝑡 ∼ N

(
Softmax( 𝑓𝜽𝑛 (𝑧𝑛,𝑚𝑡 )), 𝜎2

)

Note that the Gaussian noise 𝜖𝑛,𝑚𝑡 for each 𝑎
𝑛,𝑚
𝑡 is indepen-

dently sampled. Therefore,

𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 ) =
𝑀∏
𝑚=1

1
𝜎
√

2𝜋
𝑒−

1
2 (

𝑎
𝑛,𝑚
𝑡 −`𝑛,𝑚𝑡

𝜎
)2

where `𝑛,𝑚𝑡 = Softmax( 𝑓𝜽𝑛 (𝑧𝑛,𝑚𝑡 )).
For each sample 𝑢𝑡 ∈ B, ∇𝜽𝑛𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 ) can be calculated

by using 𝒂𝑛𝑡 and 𝒛𝑛𝑡 recorded in sample 𝑢𝑡 as shown below:

∇𝜽𝑛𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )
= 𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )∇𝜽𝑛 log 𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )

= 𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )∇𝜽𝑛 log
( 𝑀∏
𝑚=1

1
𝜎
√

2𝜋
𝑒−

1
2 (

𝑎
𝑛,𝑚
𝑡 −`𝑛,𝑚𝑡

𝜎
)2
)

= 𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )∇𝜽𝑛

(
𝑀∑︁
𝑚=1

(
log

(
𝑒−

1
2 (

𝑎
𝑛,𝑚
𝑡 −`𝑛,𝑚𝑡

𝜎
)2 ) ))

= 𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )
(
𝑀∑︁
𝑚=1

∇𝜽𝑛

(
− 1

2
(
𝑎
𝑛,𝑚
𝑡 − `𝑛,𝑚𝑡

𝜎
)2

))
= −

𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )
2𝜎2

( 𝑀∑︁
𝑚=1

∇𝜽𝑛 (𝑎𝑛,𝑚𝑡 − `𝑛,𝑚𝑡 )2
)

=
𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )

𝜎2

( 𝑀∑︁
𝑚=1

(𝑎𝑛,𝑚𝑡 − `𝑛,𝑚𝑡 )∇𝜽𝑛`
𝑛,𝑚
𝑡

)

(8)

Given

`
𝑛,𝑚
𝑡 = Softmax( 𝑓𝜽𝑛 (𝑧𝑛,𝑚𝑡 )) = 𝑒 𝑓𝜽𝑛 (𝑧

𝑛,𝑚
𝑡 )∑𝑀

𝑖=1 𝑒
𝑓𝜽𝑛 (𝑧𝑛,𝑖𝑡 )

,

we have

∇𝜽𝑛`
𝑛,𝑚
𝑡 =

𝑒 𝑓𝜽𝑛 (𝑧
𝑛,𝑚
𝑡 )

(∑𝑀
𝑖=1 𝑒

𝑓𝜽𝑛 (𝑧𝑛,𝑖𝑡 ) )2

𝑀∑︁
𝑖=1

𝑒 𝑓𝜽𝑛 (𝑧
𝑛,𝑖
𝑡 ) ·(

∇𝜽𝑛 𝑓𝜽𝑛 (𝑧𝑛,𝑚𝑡 ) − ∇𝜽𝑛 𝑓𝜽𝑛 (𝑧𝑛,𝑖𝑡 )
) (9)

where ∇𝜽𝑛 𝑓𝜽𝑛 (𝑧𝑛,𝑚𝑡 ) is the gradient of the priority function
(i.e., the DNN) in Figure 2.

Summarizing the above discussions, with respect to a mini-
batch B, ∇𝜽𝑛L(𝜋𝜽𝑛 ) is estimated using (10):

∇𝜽𝑛L(𝜋𝜽𝑛 ) ≈
1

‖B‖
∑︁
B

𝐴𝑡 (𝑠𝑡 , {𝒂𝑛𝑡 }𝑁𝑛=1)
𝜋𝜽𝑛

𝑜𝑙𝑑
(𝒂𝑛𝑡 |𝒛𝑛𝑡 )

·
𝜋𝜽𝑛 (𝒂𝑛𝑡 |𝒛𝑛𝑡 )

𝜎2

(
𝑀∑︁
𝑚=1

(𝑎𝑛,𝑚𝑡 − `𝑛,𝑚𝑡 )·

𝑒 𝑓𝜽𝑛 (𝑧
𝑛,𝑚
𝑡 )

(∑𝑀
𝑖=1 𝑒

𝑓𝜽𝑛 (𝑧𝑛,𝑖𝑡 ) )2

𝑀∑︁
𝑖=1

𝑒 𝑓𝜽𝑛 (𝑧
𝑛,𝑖
𝑡 )

(
∇𝜽𝑛 𝑓𝜽𝑛 (𝑧𝑛,𝑚𝑡 ) − ∇𝜽𝑛 𝑓𝜽𝑛 (𝑧𝑛,𝑖𝑡 )

))
(10)
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provided that 𝜋𝜽𝑛

𝜋𝜽𝑛
𝑜𝑙𝑑

falls in the range (−∞, 1 + Y6) if

𝐴𝑡 (𝑠𝑡 , {𝒂𝑛𝑡 }𝑁𝑛=1)) > 0 or (1 − Y, +∞) if 𝐴𝑡 (𝑠𝑡 , {𝒂𝑛𝑡 }𝑁𝑛=1)) < 0,
with respect to any {𝒂𝑛𝑡 }𝑁𝑛=1 and 𝑠𝑡 . Otherwise, ∇𝜽𝑛L(𝜋𝜽𝑛 ) =
0.

According to PPO, the policy 𝜋𝜽𝑛 can be improved by re-
peatedly updating the policy parameters 𝜽𝑛 along the direction
of ∇𝜽𝑛L(𝜋𝜽𝑛 ). Note that this technique for calculating the
policy gradient can be easily extended to the case with an
arbitrary number of controllers. With the help of TensorFlow,
the gradient calculation can also be fully automated in our
training system, regardless of how many controllers are in-
volved. The computational complexity is linear with respect
to the number of controllers.

V. SIMULATION

In this section, we first introduce the simulation setting
which includes the algorithm implementation and the network
simulation setting. To demonstrate the effectiveness of the
new policy design, evaluating it under a single-agent DRL
framework is more preferable compared to a multi-agent DRL
framework. This is mainly because the performance of MA-
DRL depends not only on the policy design but also other
factors, such as inter-agent cooperation and non-stationary
environment handling. In view of this, it is easier and more
straightforward to demonstrate the effectiveness of the new
policy design in a single-agent DRL setting where it is
compared with a non-adaptive policy7. Similar to [61], we
also investigate the influence of historical information and the
discount factor 𝛾 on the performance respectively.

After that, simulations are conducted to demonstrate the
necessity of using MA-DRL for policy training in a multi-
agent environment. In particular, the policy trained by MA-
PPO is compared with the policy trained by each agent
independently using single-agent training approach (denoted
by SA-PPO-MA) as we discussed in Section IV-C.

To demonstrate the effectiveness of the policy trained by
MA-PPO, it is also compared with a widely used man-made
policy weighted round robin (denoted by CWRR), a recently
proposed GD-based policy (denoted by GD) [10], and the
centralized single-agent policy (denoted by Central) with full
observability of the environment. In terms of comparisons
with other MA-DRL algorithms, MA-DDPG is closely related
to MA-PPO. However, deterministic policy gradient used in
MA-DDPG cannot be calculated with respect to our adaptive
policy network design, rendering MA-DDPG inapplicable.
Apart from that, the new technique developed in Section IV-C1
to compute the gradient of our policy network can be utilized
by any AC algorithms designed for training stochastic policies
such as TRPO [29] and Asynchronous Advantage Actor-
Critic (A3C) [21]. However, investigating the performance of
different AC algorithms is not the main focus of this paper.
Furthermore, compared to PPO, TRPO has high computation
complexity due to its use of both linear approximation of
the learning objective and quadratic approximation of the

6Y is a hyper-parameter that is set to 0.2 following PPO.
7The non-adaptive policy uses the traditional policy design where the policy

is directly represented as a DNN.

constraint for policy update [29], [62]. On the other hand,
A3C asynchronously executes multiple actors where each
actor interacts with its own copy of the environment. The
use of multiple actors inevitably requires more computation
resources. Apart from that, the policy updates in A3C rely
on the latest data collected from multiple actors without
using memory replay, which results in high sampling costs.
Therefore, both TRPO and A3C are not as suitable as PPO.
Moreover, as a representative algorithm among all AC algo-
rithms, studying the performance of PPO gives us an overall
good understanding of other AC algorithms. In the future,
combining our new policy design with different AC algorithms
in a multi-agent setting will be investigated when enough
computation resources and time are provided.

A. Algorithm Implementation

We implement MA-PPO based on the high-quality imple-
mentation of PPO provided by OpenAI baselines8. To identify
the suitable NN architecture for both the priority function
𝑓𝜽𝑛 and value function 𝑉𝝎 , different NN architectures are
compared to see their impacts on the network performance.
Based on our preliminary study, a fully connected multilayer
feed forward NN with two hidden layers of 64 ReLU units
is adopted for both 𝑓𝜽𝑛 and 𝑉𝝎 , which is also the same NN
architecture recommended in PPO.

Meanwhile, we follow closely the hyper-parameter settings
of PPO on Mujoco benchmarks in [28]. However, there are a
few exceptions. Specifically, the Gaussian noises 𝝐 𝑡 in (3) have
their standard deviations set to 0.01. During every algorithm
run, the policy is trained for 900 TIs which consist of 1800
episodes and each episode contains 60 time steps. Both 𝜽𝑛 and
𝝎 are trained using data sampled from the current TI. The NN
parameters 𝜽𝑛 and 𝝎 are updated using Adam optimizer with
3 × 10−4 learning rate, 40 minibatch size, and 8 epochs.

B. Network Simulation Setting

Simulations are conducted under real network topologies
provided by Sprint [63]: South America and Asia Sprint net-
works equipped with 8 and 14 switch centers respectively. A
set of heterogeneous controllers with capacities ranging from
6000 pkt/s to 9000 pkt/s have been deployed into the network
using existing controller placement algorithm [10]. Unless we
explicitly specify, the numbers of controllers deployed in the
South America and Asia networks are 3 and 4 respectively
during the simulation. For the centralized single-agent policy
(i.e., Central), the location of the centralized agent is selected
so that the average propagation latency between the agent and
all controllers is minimized. For SA-PPO-MA and MA-PPO, a
separate agent is placed for each switch center in the network.

Each episode is initialized with 0% utilization for all con-
trollers and 0 packets in the network. During our simulation,
the requests arriving at each agent follow the Poisson distribu-
tion. CWRR is used to make RD decisions during the warm-up
period. The warm-up period lasts for 30 simulated seconds
which is assumed to be sufficiently long for the network

8https://github.com/openai/baselines
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to enter and stay in a stationary condition. Each simulation
episode runs for 30 simulated minutes which is divided into a
series of time steps. Every time step lasts for 30 consecutive
simulated seconds. At the beginning of each time step, each
agent executes its policy individually to calculate the priority
of dispatching any new requests to each controller in the
network for the next time step, i.e., the next 30 simulated
seconds.

To enable the agent to learn how to dispatch requests under
different workloads, two episodes with two request arrival
rates are simulated in each TI. In particular, for the low
workload setting, the combined request arrival rate from all
switches is set to be 50% of the total control plane capacity
while the arrival rate under high workload is 80%.

For the policy to work properly, each agent must provide
its local observations {𝑧𝑛,𝑚𝑡 }𝑀

𝑚=1 to the priority function 𝑓𝜽𝑛

in Figure 2. In consideration of the importance of controllers’
capacities, their distance and current availability, as well as
the communication demand experienced by the agent, the
local observation 𝑧

𝑛,𝑚
𝑡 with respect to 𝐶𝑚 consists of the

following network statistics: (1) request arrival rate history of
the switch center 𝑆𝑤𝑛; (2) the processing capacity of 𝐶𝑚; (3)
the propagation latency between 𝑆𝑤𝑛 and 𝐶𝑚; (4) the queue
length of 𝐶𝑚; (5) the number of requests sent from 𝐴𝑔𝑡𝑛 to 𝐶𝑚
during the previous time step; (6) the total number of requests
received by 𝐶𝑚 during the previous time step.

In practice, the request arrival history is made up of a list
of request arrival rates measured in the past few time steps
by the agent. Intuitively, the longer the list, the easier it is
for the agent to detect traffic change patterns and adjusts its
request dispatching in consideration of future communication
demand. Moreover, an observation with a longer historical list
provides more information of the past, which can better fulfill
the Markov property. The impact of the history length will be
investigated in Section V-C2.

Similar to 𝑧
𝑛,𝑚
𝑡 , the global state 𝑠𝑡 contains the arrival

rate history from the data plane, all controllers’ processing
capacity, all controllers’ queue length, and the propagation
latency measured in 𝑫.

C. Simulation Result

1) Effectiveness of the Adaptive Policy Design: Adaptive
vs. Non-adaptive policy designs: As shown in Figure 4(b) and
Figure 4(d), our adaptive policy achieves similar performance
as the non-adaptive policy under low request arrival rates.
However, from Figure 4(a), we can spot a sudden growth
in response time for the non-adaptive policy as the request
arrival rate increases while the response time of our policy
remains low. This is mainly because in the non-adaptive
policy representation, the NN is designed to directly output
the request dispatching probabilities over all controllers given
all controllers’ state information. On the other hand, the NN
used in our policy is designed to estimate a priority value
with respect to one controller using the controller’s state
information. Given the larger dimensions of both inputs and
outputs, the mapping learned in the non-adaptive policy is
more complicated than in our policy. Therefore, an NN with
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Fig. 4: Comparison of different policy representations (adap-
tive vs. non-adaptive) in two network topologies.
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Fig. 5: Policy adaptiveness with a changing number of con-
trollers. 𝑋CTL refers to the policy trained in a network with
𝑋 controllers.

the same hidden layer configuration as our policy may not
be powerful enough to capture the mapping. This can be
further evidenced in Asia topology with more network nodes
(Figure 4(c)) where the performance difference at high request
arrival rates is more significant than in the South America
topology (Figure 4(a)). Therefore, our new policy design can
reduce the NN complexity without performance compromise.

Policy adaptiveness: Although our policy was only trained
under two different workloads (50% and 80%), it can perform
consistently well under different workloads, ranging from 30%
up to 90% as demonstrated in Figure 4.

To demonstrate the adaptiveness of our trained policy with
respect to different numbers of controllers, the policy trained in
a network with 4 controllers (4CTL) is evaluated in a network
with 6 controllers. Its performance is compared with the policy
trained with 6 controllers (6CTL). From Figure 5(a), we can
see that 4CTL can achieve similar performance compared to
6CTL. Similar conclusions can also be drawn from Figure 5(b)
where 6CTL is compared with 4CTL in a network with 4
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Fig. 6: Influence of historical information.
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Fig. 7: Influence of 𝛾.

controllers. Our simulation results confirm that the policy can
perform consistently well in networks with changing numbers
of controllers.

2) Performance Impact of History Length and 𝛾: Impact of
history length: Similar to [61], we investigate the influence
of historical information on the performance of our policy.
As shown in Figure 6, regarding the list of historical request
arrival rates contained in the agent’s observation, its length
needs to be set properly. With a larger history length, more
information of the past is included in the agent’s observation,
which provides a better approximation of a Markov state.
However, if the length is too large (e.g., 4), more learning
samples are required for the network to improve its perfor-
mance. On the other hand, when the length is too small (e.g.,
1), the response time stops reducing after 400 TI. It appears
that the most suitable length is 3 in our simulations for a good
trade-off between sampling costs and performance.

Impact of 𝛾: We also investigate the influence of 𝛾 on
the performance of our policy. Figure 7 demonstrates the
evaluation of the trained policies with different 𝛾 under a broad
range of request arrival rates in two topologies. From Figure 7,
we can see that the policy with 𝛾 = 0.9 consistently achieves
the lowest response time compared to policies with 𝛾 = 0.5
and 𝛾 = 0.7 in both topologies. It confirms our theory that
the agent should consider the influence of its actions on future
network performance, which is vital to prevent any controllers
from being overloaded due to accumulated requests over a long
run. Thus, for the remaining simulation studies, 𝛾 is fixed to
0.9. Apart from that, we also observe that as the request arrival
rate exceeds a certain value, the response time of all policies
increases sharply regardless of the 𝛾 values. This is mainly
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Fig. 8: Testing performance comparison during the learning
process under different request arrival rates in two topologies.
In particular, “LWL” and “HWL” indicate the two request
arrival rates (50% and 80% of the total control plane capacity)
used during the training.

because the control plane is highly loaded.
3) Effectiveness of MA-PPO: Training effectiveness: We

investigate how the performance improves as the training
proceeds at different TIs. From Figure 8, it can be observed
that the policies obtained at the later TIs achieve lower
response time compared to those obtained at the earlier TIs,
which implies that MA-PPO can effectively improve the per-
formance with continued training of the policy. For example,
in Figure 8(a) and Figure 8(b), the response time of the
initialized policies (i.e., TI=0) jumps from 90 ms to 2 s when
the arrival rate reaches 19k pkt/s. This is mainly because when
the policy is randomly initialized, its behaviors are similar to
a randomized policy which equally distributes requests among
all controllers. Therefore, as the request arrival rate increases,
controllers with low capacities are easily overloaded, resulting
in high response time. In comparison, the policies obtained
after 320 TIs can keep the response time below 1 s under the
same request arrival rate. Apart from avoiding overloading
controllers at high request arrival rates, the training also
consistently reduces the response time when the request arrival
rate is low. Similar patterns can also be observed in Asia
topology from Figure 8(c) and Figure 8(d).

Single-agent vs. Multi-agent training in MA-DRL:
To demonstrate the necessity of multi-agent training, we
compared training performance between MA-PPO and
SA-PPO-MA. As we discussed in Section IV-C, SA-PPO-
MA trains a policy and a value function on each agent
independently using single-agent PPO. Both its training and
testing performance is shown in Figure 9. During the training
process, we can observe a high variance in response time at
the later TIs from Figure 9(a), which implies that the learning
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Fig. 9: Training and testing performance of SA-PPO-MA in
South America Network.
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Fig. 10: Performance comparison between MA-PPO and SA-
PPO-MA.

fails to converge. This observation confirms the non-stationary
environment issue when single-agent DRL algorithms are used
in a multi-agent environment as we discussed in Section IV-C.
Correspondingly, during the testing process, we can also see
from Figure 9(b) that SA-PPO-MA can keep the response time
at a low level when the training arrival rate is low (i.e., the
left dotted line LWL). However, it fails to avoid overloading
controllers at the high training arrival rate (i.e., the right dotted
line HWL). This is mainly because SA-PPO-MA does not
consider the impact of other agents during the training. As
the request arrival rate increases, the importance of agent
cooperation becomes significant and the deficiency of SA-
PPO-MA becomes obvious.

We also compare the performance of the trained policies
via MA-PPO and SA-PPO-MA respectively on two network
topologies. Figure 10 confirms that polices trained by MA-
PPO can effectively cope with increasing requests through
better agent cooperation.

Performance comparison with existing policies: We com-
pare MA-PPO with several policies : (1) a widely used man-
made policy (CWRR), a GD-based policy (GD), and the
centralized single-agent policy (Central). Results are shown
in Figures 11 and 12.

In particular, we can see that in both topologies (Fig-
ure 11(b) and Figure 11(d)), the response time of CWRR
remains stable because the number of requests dispatched to
each controller is proportional to its capacity, which effectively
prevents overloading any controller at an early stage. However,
solely sending requests based on the controller capacity may
not achieve the optimal network performance. Especially,
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Fig. 11: Performance comparison among CWRR, Central, and
MA-PPO.
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Fig. 12: Performance comparison between MA-PPO and GD.

when the workload of the control plane is low, dispatching
more requests to a closer controller without overloading it
is a better option. In DRL, the relationship between the
network performance and RD probabilities is learned during
the interaction between the agents and the environment. There-
fore, we can see from both Figure 11(b) and Figure 11(d)
that MA-PPO achieves a lower response time compared to
CWRR. Apart from that, we also notice that MA-PPO achieves
a lower response time than Central, which confirms that
using a centralized agent can introduce additional propagation
latencies.

MA-PPO is also compared with GD, a model-based op-
timization approach. As shown in Figure 12, MA-PPO can
achieve slightly lower response time. This is mainly because
GD optimizes the response time for given network informa-
tion. However, in practice, network information such as request
arrival rates can only be estimated. The inaccurate network
information hinders GD achieving its optimal performance.

Even though both GD and MA-PPO achieve similar per-
formance, MA-PPO has the advantage of low computation
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and communication overheads. During our simulation, we
notice that the execution time of GD is 10 times longer than
running the MA-PPO policy. The reason is that to obtain the
request dispatching probabilities for the entire data plane (i.e.,
all switch centers), GD needs to iteratively perform gradient
calculation. This can be computational intensive especially for
a network with a large number of switch centers. In compar-
ison, each agent in MA-PPO runs its policy individually (a
forward pass from NN input layer to output layer) to calculate
the controller priorities used by the switch center where
the agent is placed on. Apart from that, for communication
overheads, GD requires the information collected from the
entire network while MA-PPO only uses its local network
observation. Therefore, MA-PPO is more suitable for large-
scale networks.

VI. CONCLUSION

In this paper, we achieved the research goal of optimizing
network performance by designing RD policies to properly
utilize controller resources. For this purpose, an MA-DRL
approach was proposed for learning adaptive RD policies for
SDN switches. In particular, the RD policy design problem
was formulated as an MA-MDP. To allow our policy to adapt
easily to a varying number of controllers, a new adaptive
design was proposed to support DNN-based policies. In line
with the new policy design, MA-PPO was developed to enable
the adaptive policy training by using a new policy gradient
calculation technique.

To demonstrate the effectiveness of our adaptive policy
design, our policy was compared with a non-adaptive policy
which is widely adopted in the literature. The results showed
that the adaptive policy can reduce the DNN complexity
without performance degradation. Apart from that, the new
policy design performed consistently well with a changing
number of controllers. Moreover, to evaluate the effectiveness
of MA-PPO, extensive simulation studies were conducted
which showed that the policy trained via MA-PPO signifi-
cantly outperformed man-made policies, model-based policies,
as well as the policy learned via single-agent DRL. Our
approach not only addresses the RD problem in SDN, it
can also be applied to facilitate the operations of T-SAC, an
anycast-based CDN architecture proposed in [4].
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