From 3D Shape Captureto Animated M odels

Adrian Hilton, Jonathan Starck and Gordon Collins

Centre for Vision, Speech and Signal Processing
University of Surrey, Guildford GU27XH, UK
a.hilton@surrey.ac.uk
http://www.ee.surrey.ac.uk/Research/V SSP/3DVision

Abstract

This paper presents a framework for construction of an-
imated models from captured surface shape of real objects.
Algorithms are introduced to transform the captured sur-
face shape into a layered model. The layered model com-
prises an articulation structure, generic control model and
a displacement map to represent the high-resolution surface
detail. Novel methods are presented for automatic control
model generation, shape constrained fitting and displace-
ment mapping of the captured data. Results are demon-
strated for surface shape captured using both multiple view
images and active surface measurement. The framework
enables rapid transformation of captured data into a struc-
tured representation suitable for realistic animation.

1 Introduction

Realistic object representation remains a primary goal of
computer graphics research [13, 11]. Model construction
is a major bottleneck in the wide-spread use of shape cap-
ture for computer animation. Currently manual techniques
are widely used in film and broadcast production to build
models of real objects suitable for realistic animation. Ad-
vances in active sensor technology together with research
in computer vision and graphics has resulted in systems
for capturing surface models of complex 3D objects, peo-
ple and internal environments [2, 13, 10, 11]. These ap-
proches produce accurate and realistic 3D models of com-
plete objects with a level-of-detail not possible with previ-
ous manual techniques. However, such techniques result in
object models which are represented as unstructured polyg-
onal meshes consisting of millions of polygons. Conversion
of such models to a structured form suitable for animation
require labour intensive manual remeshing. In this paper we
present a general framework for reconstructing structured
representation suitable for realistic animation from captured
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Figure 1. Example animated model from cap-
tured 3D surface measurements

3D data. Figure 1 illustrates the use of this framework to an-
imate a Cyberware whole-body 3D scan. Captured 3D data
can either be from active sensors which project a structured
light onto the object surface [2, 4] or passive reconstruction
from multiple view images such as shape-from-silhouette or
structure-from-motion.

Terzopoulos [19] introduced the reconstruction of ‘func-
tional models’ instrumented for facial animation from cap-
tured 3D face shape of real people. However, previous work
based on this approach was limited to generic models with
simple shapes [14] or limited classes of shape [7]. In this
paper we present a general framework for fitting generic
functional models to captured measurements of 3D objects
with complex shape. This framework bridges-the-gap be-
tween layered models widely used for character animation
[6] and captured 3D surface shape.



2 Reconstruction of Functional M odels

In this section the algorithms developed to reconstruct
animated models from captured data are presented. A gen-
eral approach is presented for reconstruction of functional
animated models from a set of 3D surface measurements.
Captured data of a real object may have a wide variation in
shape and pose and does not contain any information on the
non-rigid surface deformation required during animation.
Therefore, prior knowledge is required either in the form
of a generic model for a particular class of objects or man-
ual intervention to explicitly identify the object pose and
constraints for non-rigid animation. Section 2.1 first intro-
duces the layered animation framework used for represen-
tation of the captured data in a form suitable for animation.
The remainder of this section then presents the algorithms
developed for reconstruction of layered representations for
known objects where a generic animation model exists and
for previously unmodelled objects where no generic model
is available.

2.1 Overview of Layered Animation Framework

The pipeline for reconstructing animated models from
captured 3D surface data is illustrated in Figure 2. The out-
put from the system is a layered representation of the cap-
tured 3D data which is structured in a form suitable for re-
alistic and efficient animation. The representation consists
of three layers: articulated skeleton, control model and dis-
placement map. The skeleton and control model provide
a generic structure for animation with the control model
surface non-rigidly deformed by animation of the skeleton.
A displacement map is then used to represent the captured
surface detail by mapping the captured data onto the con-
trol model surface. This enables animation of the high-
resolution captured surface detail based on deformation of
the underlying control model. The challenge is to estab-
lish a mapping between the generic model and captured data
with the correct correspondence for non-rigid deformation.
Reconstruction of a layered representation from 3D surface
data comprises three stages:

1. Manual Registration: Initially the generic control
model is manually posed for approximate alignment
with the capture data.

2. Shape Fitting: A shape constrained fitting algorithm
is introduced to deform the control model to approxi-
mate the data while preserving the control model pa-
rameterisation required for animation.

3. Displacement Mapping: A continuous mapping is
then established between the generic model surface
and the unstructured captured data. This mapping is

then used to parameterise the high-resolution captured
data in the form of a displacement map from the con-
trol model surface.

Layered representations are widely used in character an-
imation to achieve realistic surface deformation based on
manipulation of an underlying skeleton model [6]. Skeleton
structures are widely used as the basis for manipulating an-
imated models either interactively or from motion-capture
data. The control model is a low-resolution polygon mesh,
M7, representing a coarse approximation of the character
shape and topology. A control model can be derived ei-
ther by simplification of the captured data model (section
2.5) or from a library of generic objects models which have
been structured for efficient animation such as those avail-
able from ViewPoint DataLabs [3]. A primary motivation
for using existing databases of generic animated models
is that the representations have been optimised by experi-
enced animators for realistic and efficient surface deforma-
tion. Displacement maps have previously been used to rep-
resent high-resolution surface shape [17, 10, 11]. This paper
presents a complete framework for reconstruction of ani-
mated models using displacement maps. The control model
is animated based on the underlying skeleton structure and
enables real-time visualisation. As in previous work [18]
the vertices of the low-resolution model are mapped to
the skeleton structure. Real-time seamless animation is
achieved using a geometric transform [18]. More realis-
tic deformation corresponding to a particular surface type
could also be implemented using a parametric or physics-
based approach to deform the control model.

2.2 Shape Constrained Fitting

Once the generic model is posed to match the 3D data
set the next stage is to deform the shape of the generic con-
trol model so that it closely conforms to the 3D surface. A
requirement for natural animation of the conformed control
model is that the mesh topology and vertex parameterisa-
tion does not change during conformance. A shape con-
strained deformable model is used to preserve the prior pa-
rameterisation of the control model while fitting to the 3D
data set. The novelty of this approach lies in the formulation
of a unique parameterisation for arbitrary triangular meshes
which is used as the internal energy in mesh deformation.

The deformable surface model & minimises the energy
function E(Z) incorporating the potential energy from data
fitting P(Z), and the internal energy from the shape of the
model S(Z).

E(@) = P(@) + S(7) (1)

In previous work internal energy terms have been derived
based on treating the surface as a membrane or thin-plate
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Figure 2. Functional Models Pipeline for An-
imating Michelangelo’s David from Captured
Data

material under tension[19]. This yields the surface with
minimum area or distortion that fits to the data. However,
the thin-plate and membrane energy do not preserve the sur-
face parameterisation which is essential for animation.

To maintain a control model suitable for animation we
must constrain both the local shape and parameterisation.
Montagnat and Delingette [15] developed an internal energy
constraint for simplex meshes with 3 connected vertices.
Local frames were used to define the location of each vertex
in terms of the 3 neighbour vertices using the barycentric
coordinates in the plane and the simplex angle defining the
offset from the plane. This gives a local shape parameteri-
sation for simplex meshes which is unchanged under rigid-
body transformations and uniform scaling. An internal en-
ergy constraint for mesh deformation is defined to preserve
the local shape and parameterisation using a spring force
between the current vertex position and the reconstructed
default position during deformation. In this work we gener-
alise the approach to arbitrary triangular meshes commonly
used in computer animation.

For an arbitrary triangular mesh a vertex position is not
well defined in relation to the vertex neighbourhood, Fig-
ure 3(a). With an irregular number of vertices in the 1-

neighbourhood it is not possible to obtain a consistent defi-
nition of a local frame to describe the position of the central
vertex. We therefore consider a triangle face-based scheme
as used by Kobbelt et. al. [9]. The vertex positions of a tri-
angle face can be defined by the barycentric coordinates and
height offset in the local frame of the vertices on the faces
edge-connected to the central face, the vertices surrounding
the central triangle as shown in Figure 3(b). The position of
a mesh vertex is therefore constrained by the local position
in the triangle face frames in the 1-neighbourhood of the
vertex, leading to a 2-neighbourhood support structure for a
vertex position.

(a) Triangular mesh  (b) Triangle-face frame

Figure 3. Triangle face frame defining local
vertex locations

We define the internal energy of a shape constrained
model as the integral across the surface of the deviation in
the local shape from the generic shape defined in each face
based frame. This is given by the summation of the error at
the mesh vertices, x;, preserving the local parameterisation
and shape in the vertex positions. Equation 2 defines the in-
ternal energy where (af;, 87y, hY;) are the default barycen-
tric coordinates (c, ) and height offset & in the ft* face
based frame for the i* vertex with valence N;.
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Figure 4 illustrates the internal energy using the local
shape constraint for an arbitrary triangulated mesh to restore
the original shape Figure 4(a) of a severly distorted mesh
Figure 4(b). Iterations of the mesh deformation to minimise
the internal energy, equation 2, are shown in Figures 4(c—
e) with the final model converging to the original shape.

For fitting to dense real 3D data sets the external energy
of equation 1 P(Z) is derived by summing a data fit error
e(%) across the model surface #(u,v). We define the er-
ror metric in fitting the data as the least-squared error be-
tween the model and the 3D data set. The potential energy
function is given by Equation 3 where Z; spans the set of I
model vertices and §; spans the set of J 3D data points.



Figure 4. Shape constrained fitting
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To achieve robust matching we use the all-neighbours
assignment [8] with the constraints: 0 < my;; < 1,
i1t my; = 1and YUZ{ my; = 1. The approach uses
the robust point matching technique introduced by Rangara-
jan et al. [16] to determine the assignment weights through
a coarse-to-fine refinement, further details are omitted due
to limitations on space. The advantage of this approach
over the standard nearest point matching is that it allows for
greater initial misalignment between the control model and
the data. Fitting is performed by an iterative gradient de-
scent solution to minimise the energy function equation 1:

dz, Z; — @(agy, By, hiy)
d—””t=2mﬁ<@3—@>—2( — 7)
i ! ’

(4)
We fit the deformable model to the 3D data-set by al-
ternately updating the assignment to the 3D points m;;,
then updating the vertex positions of the model Z;. Figure
12(c) illustrates the control model obtained after shape con-
strained fitting to the Stanford Michelangelo data set [13].

2.3 Mapping Captured Data

In previous work [18] we introduced the normal-volume
mapping to automatically parameterise an arbitrary high-
resolution mesh model, M*, with respect to a low-
resolution control model, MZ%. It was shown that this

parameterisation could be used to seamlessly animate the
high-resolution model based on deformation of the under-
lying control model. In this section we summarise the key
details of the normal-volume mapping which are used for
displacement map generation.

For each triangle ¢, in an arbitrary mesh M we define a
normal-volume, V' N (t,.), by displacing the triangle vertices,
U, along the vertex normals, 7i;, as illustrated in Figure 5.
The union of the normal-volumes for all triangles in mesh
M encloses a continuous volumetric envelope which can
be used to define a continuous mapping between points in
3-space and the mesh surface.

To obtain a continuous mapping we project points in 3-
space along the corresponding interpolated triangle normal.
A point p; on the surface of triangle t; = (%, U,,%;) and
its unit normal +7; can be defined by bilinear interpolation
using barycentric coordinates as:

P = aby+ P+ (1—a-p)y
; = oaity +Pis+ (1 —a—p)i; (5)

where for a point inside the triangle the barycentric coordi-
nates a, 8 and (1 — a — $3) are all positive scalar variables.
Bilinear interpolation of the normal gives a continuous vari-
ation in the triangle normal, ii;, across the planar surface
and between adjacent triangles. The resulting normal field
is continuous such that for every point Z inside the normal-
volume there is a corresponding normal 77; which passes
through that points. Figure 5 illustrates the normal pass-
ing through a point Z. Thus any point # inside the normal
volume V™ (¢,.) can be expressed as:

z= a(ﬁr‘*‘dﬁr)‘}‘ﬂ(ﬁs‘*‘dﬁs)+(1_a_ﬁ)(ﬁt+dﬁt) (6)

where d is the Euclidean distance of the points Z along the
normal #i; from p. The above equation can be viewed geo-
metrically as an offset surface at a distance d which defines
a plane passing through point Z as illustrated in Figure 5. As
shown in previous work [18] for an arbitrary point Z we can
obtain the parameters («, 3, d) for triangle ¢,. by solving for
the plane in the normal-volume which passes through the
point. If @, 8 and (1 — a — f3), are in the range [0, 1] then
the point, z, maps to a point on the triangle surface.
Parameterisation of a high-resolution model, M ¥, with
respect to a low-resolution model, ML, is achieved by eval-
uation of the normal-volume mapping to the high-resolution
model vertices. Each model vertex #7 has an associated
set of four mapping parameters (r;, o, 32, dH) where
r; is the low-resolution triangle index, (af?, sH) are the
barycentric coordinates of the corresponding point on the
low-resolution model triangle and d# is the distance along
the interpolated triangle normal. Having computed this
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Figure 5. Normal volume mapping.

mapping the model can be exactly reproduced and animated
from the low-resolution model, M, together with the high-
resolution vertex parameters and mesh topology.

2.4 Displacement Mapping of Surface Detail

In this section we present a process for computing a dis-
placement map representation of the high-resolution surface
model. The displacement map is an efficient image based
representation of the high-resolution surface detail[17]. An
approximation of the high-resolution model can be rapidly
reconstructed from the displacement map image together
with the low-resolution control model. Animation of the
low-resolution control model can be used to achieve effi-
cient animation of the high-resolution surface detail.

Figure 6 illustrates the process of displacement map gen-
eration for a single triangle in the low-resolution control
model, M L. Initially a mapping is established between the
high-resolution mesh, M, and the control model, M, in
3D space using the triangle normal-volume as shown in Fig-
ure 6(a). The high-resolution model is then mapped to a 2D
image plane using a set of texture coordinates for each trian-
gle in the low-resolution model, Figure 6(b). The distance
between the high and low resolution model surfaces along
the interpolated surface normal is then sampled on a regular
grid to obtain the displacement map image, Figure 6(c).

The normal-volume mapping defines a parameterisation
for all triangle vertices 57 in a high-resolution model, M ¥,
in terms of the nearest triangle ¢~ on a low-resolution con-
trol model ML. The mapping of a vertex, 77, to a point
on triangle ¢ is defined by equation 6 as a point on the tri-
angle surface in barycentric coordinates p = (o, 8H)
and the distance d along the interpolated triangle nor-
mal. Thus, for every vertex ¢ in the high-resolution model
MH we obtain a mapping specified by four parameters
(ri,al, BH dH) where r is the low-resolution triangle in-

i 0

dex.

Let us define a set of texture coordinates, {@l =
(uF,vF)} Y6, for the low-resolution model MT which
uniquely map each triangle to a two-dimensional texture
map plane, T. For each triangle, t} = (7%, 7%, 0L), there
is a continuous mapping to a corresponding triangle in the
texture image domain ¢-7 = (@}, a%,dk). We can ob-
tain a mapping of the high-resolution model to the tex-
ture map plane, 7', by combining the low-resolution model
texture mapping with the normal-volume mapping of the
high-resolution model A onto the low-resolution model
ME. Given the normal-volume mapping (r;, o, pH, d)
for vertex & in the high-resolution model onto triangle ¢~
in the low-resolution model the mapping to texture coordi-

nates is:

@ = aj'dy + B G, + (1— o' —gNE; ()

This enables us to map any triangle t2f = (], 1, ;1)
in the high-resolution model into a triangle the t7 =
(@j’, @, ') in the texture image plane, 7'. Thus any point
on the high-resolution model surface # can be mapped to a
point in the texture image plane @(Z). It should be noted
that this mapping is not injective, multiple points on the
high-resolution model may map to the same point on the
low-resolution model due to over-folding of the surface.
This many-to-one projection is a known limitation of dis-
placement maps. In practice this problem can be avoided
by either adding additional triangles to the low-resolution
model to ensure a one-to-one mapping for the entire surface
or by approximating the surface geometry as discussed in
section 2.5.

Given the mapping of the high resolution model, A/ ¥,
to the texture plane, T', we can obtain a sample of the high-
resolution model surface, Z(#), for any point & in the texture
plane which is inside the region to which the high-resolution
model maps. For a point i we can find the triangle 77 =
(@ff, @t ,af') from the high-resolution model which it is

inside such that:

@ =yal" + vt + (1 -y - v)at (8)

where v, v, (1 —y—v) € [0, 1] are barycentric coordinates.
From the normal-volume mapping we know the distance d
of each vertex ! along the interpolated low-resolution tri-
angle normal. The distance for any point inside the triangle
is:

d"(@) = ydi' + vd] + (1 —v—v)dy (9)

The mapping defined above enables the distance be-
tween the low and high resolution models to be sampled
at any point in the image plane. This mapping is used to
generate a displacement map image D where the distance



(a) Mapping of MH to M

(b) Mapping M Hto 2D plane

(c) Sampling distance M~ to MH

Figure 6. Displacement map generation for high-resolution model, M 7.

is sampled for a set of discrete points @(n, m) in the image
plane. Further details of the implementation of the displace-
ment map generation are presented in [17].

2.5 Control Model Generation

The layered model reconstruction from 3D scan data pre-
sented thus far assumes that a generic shape model is avail-
able a priori. Instrumented generic models are available
from commercial databases [3] for a wide variety of objects.
In this section we consider the generation of a suitable con-
trol model for the case where no generic model is available
a priori. A requirement of the layered representation us-
ing displacement maps is that there is a one-to-one injective
mapping between the captured data and control model sur-
face. This requirement must be satisfied to ensure that the
captured surface is represented without loss of detail. In
this section we introduce a constrained mesh simplification
algorithm that guarantees that the resulting simplified mesh
is injective with the control model.

Mesh simplification algorithms for efficient representa-
tion have been widely developed in computer graphics us-
ing both geometric and appearances based error metrics [5].
Techniques for ensuring an injective mapping between the
simplified mesh and the original surface have been devel-
oped [12] which use heuristic constraints on the normals.
This method does not guarantee that the resulting model is
injective. In this work we have developed a mesh simplifi-
cation algorithm that ensures that the mapping is injective
using the normal volume mapping.

Simplification is performed by edge-collapse with edges
prioritised by a measure of the resulting geometric error
[12]. Injectivity between the high-resolution captured data
model and control model is preserved by testing the normal-
volume mapping for each vertex. Given a high-resolution
triangle t i (Z;, 7, ©1) and a low resolution triangle on the
control model ¢z (%, Zn,Z,) the normal-volume defines

a mapping such that T; = (Oz,’,ﬂi,dz’), T = (aj,ﬁj,dj)
and zx = (g, Bk, dr). Now we can express the condition
which must be satisfied for injective mapping as:

(P (s, B5) — Pi(aus, Bi)) x (

7
(&5 — &) x (&% — 73)] > 0

where the mapped triangle points (p;, p;, ) are defined ac-
cording to equation 5. This condition states that the normal
of the captured triangle ¢ z and the triangle mapped on to the
low-resolution triangle ¢ must lie in the same half-space.
Enforcing this condition during simplification ensures that
there is a one-to-one injective mapping between the control
model and captured data. The simplification proceeds by
testing the mapping according to equation 10 for each tri-
angle in the 2-neighbourhood of an edge prior to collapse.
During simplification additional constraints can be placed
on the mesh to obtain a suitable structure for animation by
interactively labelling edges to not be deleted.

Figures 8 illustrates the constrained mesh simplification
applied without any fixed edges according to captured mod-
els of a horse and Venus statue. The resulting simplified for
the horse from 96K to 504 triangles and for the Venus statue
from 100K to 84 triangles. The resulting simplified meshes
are injective with the original mesh and enable parameter-
isation of the captured data using the normal-volume map-
ping without loss of accuracy. The constrained mesh sim-
plification enables automatic generation of control models
of previously unmodelled objects suitable for a layered rep-
resentation.

3 Results

In this section we present results for application
of the framework to 3D surface measurements from

(ajaﬂj) _@(auﬂz))] ° (10)



(a) Captured Model (b) Mapping to Cube

(c) Displacement Map

Figure 7. Displacement Map of Head-to-Cube using the Normal Volume Mapping

(a) Captured Data

(b) Simplification

Figure 8. Injective Control Model Generation

both active and passive sensors. Further exam-
ples of the animations produced can be viewed at
www.ee.surrey.ac.uk/CVSSP/3DVision /AnimatedStatues
and /PrometheusResults.

3.1 Active 3D Surface Measurement Data

Figure 9 presents the results for animation from a laser
scan of a monster character head produced by an animation
studio[4]. The control model generated by simplification
of the captured data is shown in Figure 9(b) and result-
ing mouth animation produced by manipulating the con-
trol model in Figure 9(c). The original captured data size

is 935Kb and the layered model size including the control
model and skeleton is 34Kb.

Figure 10 shows the reconstructed model for a Cyber-
ware (www.cyberware.com) 3D scan of a person. The
model was reconstructed using a generic humanoid model
of approximately 2500 polygons. Initially the model was
manually aligned with the data using the articulated skele-
ton. Shape constrained fitting was then performed followed
by normal-volume mapping to generated the displacement
map. Figure 11 shows an analysis of the errors between
the captured data and the reconstructed model with uni-
form quaternary subdivision of the control model at levels
of 0,1,2 and 3. Results indicate a mean error of 0.5mm with
an rms error of less-than 2mm for level 3 subdivision. A
guantisation error of 0.48mm was used for the displacement
map. Mean and rms errors were computed using the Metro
tool [1].

Figure 12 presents the reconstruction of a layered anima-
tion model for the 3D Scan of Michelangelo’s David (data
courtesy of Stanford [13]). The original data and layered
representation are presented for comparison in Figure 12(a)
and (b). Accurate reconstruction is achieved even though
the captured statue is in a complex pose with the right hand
connected to the hip and left hand connected to the shoul-
der. The shape constrained fit of the 2500 triangle generic
model to the data together with the resulting displacement
map image are shown in Figure 12(c). Finally sample poses
from the animation of the statue are shown in Figure 12(d).
This example is presented to illustrate the capacity of the
framework to reconstruct accurate layered representation
for highly detailed objects.



(c) Animation

Figure 9. Layered animation for monster head

Figure 10. Animation of a Cyberware Whole-
body Scan

Figure 11. Errors in reconstruction from Cy-
berware model with uniform subdivision at
0,1,2 and 3 levels

3.2 Multiple View Images

The framework developed can also be applied for the
reconstruction of animated models from shape captured
from multiple view images or image sequences. Appli-
cation of the framework is the same as for reconstruction
from 3D scan data. Figure 13 shows the reconstruction of
a ballet dancer in a six camera blue-screen studio. Five
of the images are captured from the front and one image
from the back looking down, three images are shown. The
visual hull of the dancer reconstructed from the image
silhouettes is shown in Figure 13(b) together with the initial
skeleton pose. Figure 13(c) is the shape constrained model
reconstruction using the 2500 polygon generic model.
It should be noted that in the raw voxel data there is a
large ambiguity at the front and back of the chest due to
occlusion. The shape constraints ensure that a reasonable
model is reconstructed in ambiguous regions. In the case
of image silhouettes the reconstructed surface is too noisy
to warrant displacement mapping of the surface detail the
control model surface is therefore used for animation. An
example animation of the texture mapped dancer model
standing in a Venice street scene is shown in Figure 13(d).
The full animation is available at:
www.ee.surrey.ac.uk/CVSSP/3DVision/PrometheusResults/.

4 Conclusions

In this paper we have presented a general framework
for animation of 3D surface date captured from either ac-
tive sensors or multiple view images. A layered representa-



(b) Reconstruction

(d) Animation in Street Scene

Figure 13. Dancer Model Reconstruction from

(d) Animation Multiple View Image Silhouettes

Figure 12. Layered Model Reconstruction for
Michelangelo’s David (courtesy Stanford [13])



tion is reconstructed composed of a skeleton, control model
and displacement map. The control model is manipulated
via the skeleton to produce non-rigid mesh deformation us-
ing techniques widely used in animation. High-resolution
captured surface detail is represented using a displacement
map from the control model surface. This structure enables
seamless and efficient animation of highly detailed captured
object surfaces. Novel algorithms have been introduced to
perform the following tasks:

e Shape constrained fitting of a generic control model to
approximate the captured data. The shape constrained
fitting ensures that for an arbitrary triangulated control
model the original parameterisation is preserved which
is essential for realistic animation.

e Automatic mapping of the high-resolution data to the
control model surface based on the normal-volume is
used to parameterise the captured data. This parame-
terisation is then used to generate a displacement map
representation. The displacement map provides an
efficient representation of the captured surface detail
which can be adaptively resampled to generate ani-
mated models at multiple levels-of-detail.

e Automatic control model generation for previously un-
modelled objects. A mesh simplification algorithm has
been developed to produce control models from the
captured 3D surface. The control models produced are
guaranteed to be injective with the captured data en-
abling displacement mapping without loss of accuracy
using the normal-volume.

This framework enables rapid transformation of 3D sur-
face measurement data of real objects into a structured rep-
resentation for realistic animation. Limited manual interac-
tion is required to initially align the generic control model or
define constraints for remeshing of previously unmodelled
objects. The algorithms developed then enable automatic
construction of a layered shape representation. Results have
been presented for reconstruction of a layered representa-
tion from 3D scan data of computer graphics character mod-
els and people. The shape constrained fitting of the generic
control model has been used for reconstruction of animated
models from the visual hull produced by multiple view im-
age silhouettes. Shape constrained fitting to relatively in-
accurate and ambiguous data produces a reasonable shape
approximation. In both cases the approach produces mod-
els suitable for realistic animation.
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