
Edge-Constrained Marching Triangles

Neil H. McCormick and Robert B. Fisher
Division of Informatics, The University of Edinburgh.fnhm,rbfg@dai.ed.ac.uk

Abstract

Marching triangles is a method for producing a polygon
mesh surface approximation composed of triangular facets
which are approximately equilateral. This paper improves
the Marching Triangles algorithm where the inputs are mul-
tiple range images of scenes.C1 discontinuities (fold edges)
are detected and used to constrain the final triangulation,
thus increasing the accuracy of the mesh at sharp edges and
corners and decreasing the number of triangles with a poor
aspect ratio.

1. Introduction

Efficient surface triangulation is desirable for represent-
ing and rendering three-dimensional object models such
as historic sculpture [11] or machine parts to be reverse-
engineered [15]. Surface triangulation is also of much in-
terest to the computer graphics community and to those in-
volved in terrain or seabed mapping. Tessellation of a sur-
face may be performed using polygons of any order, but tri-
angulation is often used because the vertices of a triangle are
guaranteed to be coplanar. So what constitutes an efficient
triangulation? Two conflicting considerations arerepresen-
tational efficiency, that there should be as few triangles as
possible, andrepresentational accuracy, that there should
be as close an approximation to the original surface as pos-
sible. There is the related issue ofgeometrical optimisation
of each triangle, with suggested criteria including maximis-
ing either the minimum angle or the minimum height of a
vertex above its corresponding baseline [2]. For a set of
vertices in two dimensions, the well-known Delaunay tri-
angulation connects points whose Voronoi regions are adja-
cent, thus supposing that geometrically optimal triangles are
within a minimum containment circle. For points in three
dimensions there is an equivalent Delaunay tessellation in-
volving tetrahedra and a minimum containment sphere cri-
terion. The exterior faces of this tessellation are then called
the Delaunay triangulation of the surface in three dimen-
sions. This all leads to the widely-accepted idea that the

ideal surface triangle should be equilateral.

Three-dimensional surface triangulation is also com-
monly performed usingvolume-intersectionmethods such
as Marching Cubes [9]. These intersect the surface with cu-
bic or tetrahedral volumetric cells, producing triangles of
a non-uniform nature and thereby limiting representational
efficiency. Moreover the spatial resolution of the triangles
in such schemes is limited above by the size of the cell,
whilst increasing the size of the cell reduces the accuracy
of the resulting representation. Until recently [10] such
methods have also been characterised by noise and artefacts
around fold edges.

The Marching Triangles (MT) algorithm was introduced
by Hilton et al. [7] to overcome such limitations. Starting
with an initial ‘seed’ triangle, the vertices of which lie on
the surface, MT adds triangles incrementally to the current
frontier of the mesh. New triangles are added such that each
is as close to equilateral as possible and that each conforms
to a condition which is an approximation of the Delaunay
minimum containment sphere. ThisDelaunay surface con-
straint says that if the three vertices of a proposed triangle
lie on a circle, then the sphere defined by the centre and
radius of this circle should not contain any other vertices
which are part of the mesh [7]. This is a necessary approxi-
mation since we only have three of the four points needed to
define the Delaunay minimum containment sphere uniquely
and so we choose to constrain its centre to be the centroid
of the triangle. An alternative to constraining the centre is
to fix the radius of the Delaunay sphere and pivot the sphere
around a triangle edge until it touches another point [3].
This requires prior determinination of the final mesh points
and successive passes of the algorithm if point density is
non-uniform, while MT in one pass determines mesh points
as it progresses. Both methods have the advantage common
to advancing fronttriangulations [6, 13] that they allow the
triangulation of surfaces that are not closed. MT is also not
limited by the sampling resolution of the mesh points. How-
ever a problem with MT occurs when it is applied to range
data acquired from built environments where fold edges be-
tween planes abound. These cause the algorithm to stop at
the fold edge, to cut across the fold edge or (at best) to com-



plete the triangulation with poorly-formed thin triangles. To
improve this, we show in Section 2 how to constrain the
algorithm to commence from the fold edges. Our imple-
mentation of the MT algorithm is given in Section 3, where
some other problems with the Marching Triangles method
are solved. These include its behaviour at depth disconti-
nuities, triangulation over small gaps in the data, and some
limitations of the Delaunay surface constraint.

Figure 1. The basic Marching Triangles algo-
rithm applied to data from a factory scene.
Fold edges including the one in the centre of
this model should be straight but have been
‘cut’ by some of the triangles.

2. Edge Constraints

Constraining a range image mesh to edge data has been
suggested by Chen and Schmitt [4] and, in the context of
environment modelling, by Wolfartet al. [16]. In [4], bothC0 (depth) andC1 (fold edge) discontinuities are detected by
fitting curves to a two-sided neighbourhood and comparing
the limit or gradient of these curves respectively. In [16], a
Canny-like operator is used on the range data to find depth
discontinuities and local plane fitting is used to find the fold
edges. Sappa and Devy [12] refine edges detected by a scan
line method on a single range image, triangulate the image
in two dimensions from these edges and then refine the tri-
angulation using the three-dimensional length of each trian-
gle side. Our approach extends these ideas in two respects.
Firstly, the detected discontinuities from multiple registered
range images are amalgamated to improve accuracy. Sec-
ondly, lines are fitted to the set of fold edge data. Mesh ver-
tices may then be placed arbitrarily along these fitted lines

and so need not be constrained to the original data points.
This is necessary for ‘seeding’ the Marching Triangles al-
gorithm by placing triangle sides along fold edges.

We are interested in real-world environmental recon-
struction where the algorithm’s input is a set of registered
range images. In order to approximate the theoretical sur-
face, aninitial triangulation of each of these range images
is performed by connecting adjacent points subject to a dis-
tance threshold criterion [8]. We then only need to be able
to find the nearest point on each range image to any given
arbitrary pointp. The function to do this will be invoked
during the marching triangulation to find the nearest point
on each range image, the closest of which is returned. The
multiple range images are thus fused seamlessly into a sin-
gle mesh without the need to employ techniques such as
zippering [14].

Before MT commences, we pre-segment the range im-
ages to find fold edges, then form a set of seed triangles
that lie along these edges. This prevents ‘corner-cutting’,
avoids having to explicitly navigate around 90o-plus edges
and enables placement of more-uniform triangles along fold
edges. To find the range data points that lie on each fold
edge we threshold the angle between each pair of triangles
in the initial range image mesh. The methods of [4] or [16]
could also be used, but these suffer from the same limitation
as our simpler method, namely scale-dependency. The size
of the neighbourhood in each method affects the fold edges
detected and we have found that very detailed range images
(the factory scene is 1394�2752 range measurements) may
still be smooth enough at the ‘obvious’ fold edges whilst
detecting what seem to be spurious ones. Therefore each
range image is decimated to the scale of the marching tri-
angulation and the fold edge points are re-detected. Then
the fold edge points from the whole set of range images
are clustered into lines using a RANSAC [5] algorithm (see
Figure 2). The lines found by RANSAC are used to define
a new set of mesh vertices, equally spaced as far as possi-
ble by the length of a marching triangle edge. On each line,
each successive pair of points then becomes a new edge in
the Marching Triangles mesh. An advantage of this method
is that, in line with the MT technique as a whole, these ver-
tices are placed with arbitrary accuracy and are not limited
to range image point positions. Further, edge information
from multiple range images (which individually could be
noisy) is fused in a natural way.

3. The Algorithm

Once the seed mesh has been produced, the triangle
edges at the frontier of the mesh are placed on a linked edge
list. The algorithm itself then proceeds as follows. Each
triangle edge on the list is considered in turn. For each, letp1 andp2 be its endpoints. Then to form a new triangle:



o

o

o
o

o
o

o
o

o
o

o
o

o
oo

oo
o

o

o

o

o

o

o

o

o

o

o

o

(a)

(b)

(c)

Figure 2. Triangle seeding. Lines are fitted
to edge points using RANSAC (a), then mesh
vertices are positioned equally along the line
(b) before triangles are attached to both sides
of the fold edge (c).

1. Edgep1p2 is tested to make sure it is a frontier edge.

2. Connection from the edgep1p2 to the endpoints of ei-
ther of the two adjacent frontier edgespnextandpprev
is considered. One of the pointspprev or pnext will
be connected if: (a) the point is on the opposite side of
the edge from the third pointp3 of the existing trianglep1p2p3; (b) the point is reasonably close tobothpointsp1 andp2 on the current edge; and (c) the point satis-
fies the Delaunay surface constraint. For condition (b)
we take a multiple of the normal triangle side lengthl
(say 1.2l) as the maximum distance the point may be
from either of the current edge points, in order to pre-
vent formation of an excessively obtuse new triangle.

3. If it is not appropriate to connect either of the two adja-
cent edge points, a new point is projected out from the
midpoint of the frontier edgep1p2 perpendicular to the
edge and in the same plane as the triangle. This projec-
tion length is an input to the algorithm and determines
the size of the triangles in the mesh. Use of an adap-
tive projection length is possible [1]. The third vertex
of the new triangle is the nearest pointpnew on the
surface to this projected point. The new triangle is ac-
cepted if (a) it satisfies the Delaunay surface constraint
and (b) neither of the two new proposed edges cross
the two adjacent frontier edgesp1pnext andp2pprev
considered in step 2 above.

4. When the Delaunay surface constraint is not satisfied
in step 3 above, we check for an overlap of the new

proposed point onto any existing triangle. In this case,
the current edge is connected to the nearest frontier
edge vertex on that triangle, where ‘nearest’ means
nearest to the midpoint of the current edge.

Illustrations of steps 2 to 4 are contained in [7]. If none
of the above steps produces a new triangle, the algorithm
moves on to consider the next edge on the list. Each time
a new triangle is added to the mesh, any new vertices are
added to the vertex list and any new edges are added to the
end of the edge list. The algorithm continues until it ex-
hausts the edge list.

Note that steps 2 and 3 are reversed as compared with
previous implementations [1, 7]. There are two reasons for
this. Firstly, we wish to triangulate right to every depth dis-
continuity, whereas the algorithm in [7] would appear to
stop the triangulation short of the surface boundary. Tri-
angulating to the boundary normally requires non-standard
shapes of triangle for complete coverage, but this can lead
to a situation where the Delaunay surface constraint is not
enough to prevent triangles crossing (Figure 3(a)). Sec-
ondly, we can prevent thin triangles when the proposed
point is just next to an existing point which is just outside
the Delaunay sphere (Figure 3(b)). Another concern is with
the Delaunay surface constraint itself. Situations arise occa-
sionally where the constraint does not prevent a point from
crossing onto an existing triangle (Figure 3(c)). By consid-
ering a connection before a projection, we overcome such
situations without compromising the algorithm.

We also introduce a heuristic check on the fit of each pro-
posed triangle to the range data. This is desirable since oth-
erwise the MT algorithm can only be guaranteed to be near
the surface at mesh vertex points. This means a marching
triangle may cross a small gap in the surface. Each range
image is composed of a set of discrete locationsf(i; j)g,
with corresponding range measurementrij . We compare
the number of range measurementsNr which fall within
the projection4 of the marching triangle on to the plane of
the range image with the numberNe of possible locations.
If the ratioNr=Ne is too small (less than 95%) then the tri-
angle is rejected (and a different strategy, such as a smaller
projection length, may be tried).

Figure 4 shows the constrained MT mesh model of the
factory scene. The central fold edge is sharper when com-
pared with the corresponding mesh in Figure 1. The fold
edge along the bottom left wall is also much improved.

4. Conclusions

The Marching Triangles algorithm is an elegant method
for triangulating surfaces obtained from multiple range im-
ages, fusing the data in a straightforward manner. We
have extended the method to cope with fold edges by pre-
segmenting the range images to detect the fold edges and



Delaunay
sphere

close point

(a)
(b)

(c)

Delaunay
sphere

crossing point

depth
discontinuity

projected
point

Delaunay
sphere

short current edge

Figure 3. Problems with the Delaunay surface
constraint. (a) At depth discontinuities, short
edges may allow a new triangle to cross an
existing one. (b) A good point to connect on
an existing triangle may lie just outside the
sphere. (c) Triangle crossing may occasion-
ally occur even without short edges.

then seeding the MT algorithm by triangulating from these
fold edges. This prevents triangles from cutting off the fold
edges and also improves the fit of the mesh to the data.

References

[1] S. Akkouche and E. Galin. Adaptive implicit surface poly-
gonization using marching triangles.Computer Graphics
Forum, 20(2):67–80, 2001.

[2] M. Bern and D. Eppstein. Mesh generation and optimal tri-
angulation. Technical Report CSL–92–1, XEROX Palo Alto
Research Centre, March 1992.

[3] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and
G. Taubin. The ball-pivoting algorithm for surface recon-
struction. IEEE Transactions on Visualization and Com-
puter Graphics, 5(4):349–359, 1999.

[4] X. Chen and F. Schmitt. Surface modelling of range
data by constrained triangulation.Computer-Aided Design,
26(8):632–645, 1994.

[5] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to image
analysis and automated cartography. Technical Report 213,
Artificial Intelligence Centre, SRI International, 1980.

[6] M. Gopi, S. Krishnan, and C. T. Silva. Surface reconstruc-
tion based on lower dimensional localized Delaunay trian-
gulation.Computer Graphics Forum, 19(3):467–478, 2000.

[7] A. Hilton and J. Illingworth. Marching triangles: Delaunay
implicit surface triangulation. Technical Report CVSSP 01,
University of Surrey, January 1997.

Figure 4. The constrained mesh model for the
factory scene. Note how the central fold edge
is straighter than in Figure 1.

[8] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt.
Implicit surface-based geometric fusion.Computer Vision
and Image Understanding, 69(3):273–291, March 1998.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. Computer Graphics: Proc. SIGGRAPH, 26(2):71–
77, 1992.

[10] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel.
Feature sensitive surface extraction from volume data.Com-
puter Graphics: Proc. SIGGRAPH, pages 57–66, 2001.

[11] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J.Ginsberg,
J. Shade, and S. Fulk. The Digital Michelangelo Project:
3D scanning of large statues. InComputer Graphics: Proc.
SIGGRAPH, pages 131–144, 2000.

[12] A. D. Sappa and M. Devy. Efficient contour extraction
in range image segmentation for building modelling. In
Proceedings of the International Symposium on Virtual and
Augmented Architecture, pages 57–67. Springer, 2001.

[13] C. T. Silva and J. S. B. Mitchell. Greedy Cuts: an advancing
front terrain triangulation algorithm. InACM Symposium on
Geographical Information Systems, pages 137–144, 1998.

[14] G. Turk and M. Levoy. Zippered polygon meshes from range
images.Computer Graphics: Proc. SIGGRAPH, pages 311–
318, 1994.

[15] N. Werghi, R. B. Fisher, A. Ashbrook, and C. Robert-
son. Object reconstruction by incorporating geometric con-
straints in reverse engineering.Computer-Aided Design,
31(6):363–399, 1999.

[16] E. Wolfart, V. Sequeira, K. Ng, S. Butterfield, J. Goncalves,
and D. Hogg. Hybrid approach to the construction of trian-
gulated 3D models of building interiors. InLecture Notes
in Computer Science 1542: Computer Vision Systems (Pro-
ceedings ICVS ’99), pages 489–508, 1999.


