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Abstract

We address the problem of building watertight 3D models from sur-
faces that contain holes—for example, sets of range scans that ob-
serve most but not all of a surface. We specifically address situ-
ations in which the holes are too geometrically and topologically
complex to fill using triangulation algorithms. Our solution begins
by constructing a signed distance function, the zero set of which
defines the surface. |Initially, this function is defined only in the
vicinity of observed surfaces. We then apply a diffusion process to
extend this function through the volume until its zero set bridges
whatever holes may be present. If additional information is avail-
able, such as known-empty regions of space inferred from the lines
of sight to a 3D scanner, it can be incorporated into the diffusion
process. Our algorithm is simple to implement, is guaranteed to
produce manifold non-interpenetrating surfaces, and is efficient to
run on large datasets because computation is limited to areas near
holes. By showing results for complex range scans, we demonstrate
that our algorithm produces hole-free surfaces that are plausible, vi-
sually acceptable, and usually close to the intended geometry.

1 Introduction

Modern rangefinding systems can measure the shape of an object’s
surface with high accuracy and resolution. However, these systems
often cannot observe the entire surface, so the resulting 3D mod-
els may be incomplete. The most fundamental cause of holes is
occlusion—recesses may be too deep to be observed using a partic-
ular triangulation angle. However, holes can also be caused by low
reflectance, constraints on scanner placement, or simply missing
views.

In some applications, an incomplete surface model is
appropriate—it represents the surface exactly as measured, with-
out adding fabricated geometry. However, other applications re-
quire a watertight surface that bounds a volume of space. Examples
include computations of physical properties, fabrication of physi-
cal replicas, or presentation in contexts like schools and museums
where holes would be confusing and unattractive. Algorithms that
are used in these applications often require that surfaces are valid
2-manifolds and/or that the geometry does not intersect itself.

To allow such uses while maintaining the data’s accuracy and in-
tegrity, we need a surface reconstruction method that strictly pre-
serves the geometry where it exists and smoothly transitions to

valid, plausible geometry in unobserved areas. For scientific ap-
plications, it is also important to know which parts of the surface
were observed and which parts are hypothetical.

One difficulty of hole filling is choosing appropriate topology.
Many holes are simple and can be filled with disc topology; in
these cases, triangulation algorithms can easily construct suitable
patches. However, some holes have convoluted geometry, for which
a naive triangulation algorithm may produce a self-intersecting sur-
face. Other holes have multiple boundary components that should
be filled, not with discs, but with patches that connect two or more
loops of the boundary. This case occurs frequently when the data is
intermittent (such as occurs with low object reflectance or grazing
observation angles; see Figure 4c). A topologically inflexible ap-
proach may fail to find a valid manifold surface that passes through
all available data in these areas. Moreover, decisions about hole
topology are inherently global and must be made consistently.

To summarize, the ideal hole filling algorithm should:

e produce manifold, non-self-intersecting surfaces for any in-
put, no matter how noisy or convoluted,

e choose appropriate (possibly non-disc) topology for unusually
shaped holes,

e construct plausible, visually pleasing geometry,

e distinguish in the output model between observed and fabri-
cated surfaces,

e use all available information, including knowledge of the
scanner’s lines of sight and noise characteristics, and

e be efficient and scalable to large datasets, since scanned mod-
els can contain upwards of a billion samples [13].

We describe a new technique for filling holes in scanned models
by processing a volumetric representation—the zero set of a signed
distance function defined only near the observed surface. After
converting the input data into a volume (we use VRIP, the volu-
metric surface reconstruction algorithm introduced by Curless and
Levoy [7]), we apply diffusion in 3D to extend this incomplete sur-
face description until it forms a watertight (hole-free) model. The
result is always topologically consistent (i. e., manifold), cannot
self-intersect, and maintains fidelity to the original data wherever it
exists.

2 Prior work

Hole filling can be performed as a post-processing operation, ap-
plied after surface reconstruction, or it can be integrated into a sur-
face reconstruction algorithm. One widely used approach for filling
holes in an already reconstructed surface is to fill each connected
component of the surface’s boundary with a patch that has the topol-
ogy of a disc. This technique works well for simple holes in nearly
flat surfaces, but the 3D boundary of a hole can be convoluted, like
a tangled loop of string. In general it is NP-complete to triangulate
a closed boundary without self-intersections [3].

Scan-based methods of surface reconstruction [7, 17], which
consider each scan, or range image, as a connected measurement
of the surface, can use either separate or integrated hole filling. In
either case, they begin by making the distinction between observed
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Figure 1: Hlustration of 2D diffusion in progress. (a) We begin with the source term; (b) the two surfaces are extended; (c) the surfaces begin
to interact; (d) the hole closes; (e) the shape is converged. Brown denotes unknown areas (v = 0); grayscale values encode signed distance,
with black and white corresponding to outside (d = —1) and inside (d = 1) respectively. The red curve marks the zero set.
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Figure 2: The same example as Figure 1, but with space carving. Incorporating the additional information into the diffusion process causes
the converged surface to stay out of the region known to be empty. In (a) the blue marks where the space-carving source term indicates that
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space is empty (w. > 0, visible here only when w, = 0).

and unobserved surface. Specifically, they maintain the notion of
connectivity between samples within each range image, and they
explicitly avoid connecting samples that, due to missing data or a
sudden change in depth, are probably not adjacent on the surface.

The only scan-based method we know of that integrates hole fill-
ing into surface reconstruction is Curless and Levoy’s VRIP [7].
Their method marks the region of 3D space that lies between the
scanner and observed surfaces and is therefore known to be empty,
then extracts a surface that includes the boundary of this region
in addition to the observed surface. This so-called space carving
method creates a surface that bounds the maximum region of space
consistent with the scans, an approach that is guaranteed to produce
a watertight surface. However, this method requires knowledge of
scanner lines of sight, and it performs poorly if these lines of sight
do not adequately cover the volume outside the object. Our algo-
rithm, by contrast, will use space carving information if it is avail-
able, but it can operate without it. Also, VRIP’s implicit assump-
tion that all unseen space is inside the object may lead to surfaces
that are less plausible than would result from methods that try to
smoothly extend the observed surfaces.

Point-cloud methods [1, 2, 4, 8, 10, 18], on the other hand, which
treat the union of all the scans as an unorganized set of 3D points,
generally fill holes during reconstruction. With no notion of con-
nectivity between range samples, the large gap across a hole is con-
ceptually equivalent to the space between adjacent samples.

Some point-cloud methods that interpolate the original samples,
such as those based on alpha shapes [8, 2] or crusts [1], can bridge
holes. However, these algorithms are slow, and they may fail if
sample noise approaches sample density—which it often does. In
algorithms based on alpha shapes [8, 2], it may be difficult to find
a single alpha (or probe sphere radius) that bridges holes without
also bridging fine surface details.

Another class of point-cloud methods works by evolving a closed
“shrink-wrap” or “inflating balloon” surface until it interpolates or
approximates the data. Some of these methods are level-set meth-
ods [6, 18], which resemble our method in their use of a 3D signed
distance function to represent the surface. However, there are im-
portant differences. In order to use these methods to fill holes they
must be applied to the entire surface, even though the holes typi-
cally involve only a small fraction of the total area—perhaps only
a few percent. As a result, these level-set methods are slow to run

on large models. Our diffusion process, on the other hand, operates
only near holes; we do not attempt to maintain a distance function
throughout the volume. Also, since our algorithm operates after
surface reconstruction is complete, it is compatible with any recon-
struction method. Finally, our algorithm provide a mechanism for
including additional constraints, such as regions of space known to
be empty.

A different application of diffusion to filling gaps in sampled
data is the image reconstruction work of Bertalmio et al. [5]. Like
our method, they iterate a combination of simple operators to prop-
agate information from known regions of the image into the un-
known (e. g., scratched) regions. However, their method propa-
gates sharp linear features, whereas ours propagates the zero set of
a smooth function. Also, their method is designed to keep adjacent
parallel propagating fronts from colliding, whereas ours is designed
to find and connect such fronts.

3 Volumetric diffusion

Our hole filling algorithm can be used on any 3D surface model.
The surface is first converted to our volumetric representation,
which is a regularly spaced 3D grid of values of a clamped signed
distance function ds(x). This function is defined only near the ob-
served surface, and it is positive inside the surface and negative out-
side, with its values limited to [—1, 1]. The observed surface is the
zero set of ds.> One can construct d in many ways; our implemen-
tation uses the VRIP algorithm [7] to build this function directly
from a collection of range scans. One could alternatively build
ds using volumetric scan conversion from an already reconstructed
surface [9]. At the same time we define an associated weight func-
tion ws, which ranges from 0 to 1 and measures our confidence in
the value of d,. In most areas ws = 1, but it typically decreases
near boundaries of the observed surface, where noise increases.
The goal of our algorithm is to extend ds to a function d that
is defined over the entire volume, though in practice we only com-
pute d near the surface—in fact only near holes in the surface. We
achieve this by diffusing the values of d, outward from the observed
surface into adjoining undefined areas. As the function spreads, so

LAn alternative definition, equivalent in practice, is a filtered sidedness
function: —1 outside the object’s surface and +1 inside.
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Figure 3: Examples of diffusion in 2D. Above: source term; below: diffusion result with zero set marked in red. (a) A double step discontinuity
that is filled as two separate steps; (b) a narrower double step that results in the topological decision to build a bridge across the pit. (c) The
common case in which the bottom of a depression is missed; (d) a flat surface with several holes.

does its zero set. In particular, the diffused function propagates
inward across the holes, eventually spanning the holes. Once diffu-
sion is complete, the zero set of this function is the desired hole-free
surface.

The diffusion we propose is similar, although not identical, to
classic solutions for the heat equation [12]. In heat diffusion, a
scalar field representing temperature is propagated from each node
in a computational domain to its neighbors according to the mate-
rial’s thermal conductivity. Optionally, after each diffusion step, a
source term is added into each node, representing the addition of
heat to the system. In the terminology of image processing, these
propagation and adding steps have been shown to be equivalent to
spatial convolution and image compositing, respectively [11].

The diffusion process consists of alternating steps of blurring
and compositing. We begin with d = ds, and each iteration first
convolves d with a lowpass filter h, then composites ds back into
the volume using the over operator [15]. The algorithm uses two
volumes, the diffusion volume and the source volume. The diffu-
sion volume, which is where the computation takes place, has two
values at each point, d;(x) € [—1, 1], the value of d after i itera-
tions, and v;(x) € {0, 1}, which indicates where the value of d;
is known. The source volume represents the observed surface, and
contains two values, ds(x) € [—1,1] and ws(x) € [0,1]. The
initialization is:

(do,vo) = (dsv[u)S > O])v

where [p] = 1 if p is true and 0 otherwise. A single iteration is:

(U?i,Ui) = hx(di-1,vi-1)
d; = wsds —|—(1—w5)(fi.

During the convolution only valid voxels are used; h is renormal-
ized to include only these voxels. The convolution also extends v
to include all voxels where a value was computed. This process is
continued for as many iterations as necessary to achieve a suitable
surface. Due to the repeated blurring, the choice of the filter & is
not critical; our implementation uses a 3 x 3 x 3 box or a 7-point
“plus” filter. The output surface is extracted by running Marching
Cubes [14] once, after diffusion is complete, to extract the d = 0
isosurface. Figure 1 shows the stages of diffusion for a simple test
case.

This volumetric diffusion algorithm, implemented naively,
would consume time and memory proportional to n®, the number of

voxels in the volume, per iteration. Because most of the volume is
empty, and only a small fraction of the surface contains holes, this
is inefficient for large models. We take two measures to accelerate
the computation: we use a sparse representation of the volume that
avoids using memory for undefined areas, and we limit the com-
putation to voxels that are not more than a certain predetermined
distance from the holes in the original surface.

To implement the first optimization, we represent both the source
volume and the working volume using a simple block structure.
The volume is divided into fixed-sized cubical blocks, and storage
is only allocated for those blocks where the values are changing;
otherwise only a single value is stored. Since the time and space
spent on the block occupancy table is negligible, this representation
in practice requires memory proportional to the volume of space
that is being used to store the surface and the diffusion result.

To implement the second optimization, we simply flag the vox-
els that are within m voxels from an edge in the source term® and
process only those voxels during diffusion. The choice of m de-
pends on the size of the largest hole that must be filled; m must be
greater than half the width of that hole.®> Typical values of m for
the examples shown in this paper are 15 to 30 voxels.

With these two optimizations, the algorithm requires space pro-
portional to the surface area and time that depends on m and the
area and size of holes. If we let &k be the fraction of the surface area
that is within distance m of a boundary, the processing time for a
diffusion iteration is proportional to kn®m. The value of k reflects
both the size and the shape of the holes, but is typically small (a few
percent).

Range scanners provide information about where surfaces are
not as well as where they are [7], based on the known emptiness of
space between the range scanner and the observed surface. When
such space carving information is available, it may be incorporated
into the diffusion process as a second source term, (d., w.). For
volumes of space that are known to be empty, we set d. = —1, in-
dicating that those areas are outside the surface, and we set w. = a.
The parameter « can be thought of as our confidence that these vox-
els are indeed empty. In practice, it controls how far into the empty
region surfaces will be built; for high « the surface will turn sharply
to avoid empty regions, and for lower values it will remain smoother

2A voxel is an edge voxel if it is valid, has at least one invalid neighbor
(in vo), and has at least one valid neighbor with the opposite sign (in ).

3The required value of m can be made lower by extending the computa-
tion region dynamically to include voxels within distance m of the frontier
of the evolving d = 0 isosurface. However, we do not currently do this.
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Figure 4: Results of our algorithm on holes that occur in practice. (a) A closeup (30 x 40 mm) of a fragment of the Forma Urbis Romae, a
marble map of ancient Rome, shows a hole that has complex topology, though simple geometry. The surface is relatively flat, but the hole
has many islands, which would be thrown away by algorithms based on triangulating the boundary. (b) A detail (75 x 50 mm) from the head
of Michelangelo’s David shows holes in a surface with complex geometry. Our diffusion process creates plausible surfaces to fill the holes.
(c) A piece (40 x 50 mm) of Michelangelo’s Night, a highly polished marble statue. The statue’s high specularity and the grazing scanning
angle in this example created an area that is mostly hole, rather than mostly surface, but the same computation fills it in as well.
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Figure 5: Volumetric diffusion applied to a larger dataset. The volume contained 440 million voxels, and the output triangle mesh contained
4.5 million triangles. Processing time for diffusion on a 1 GHz Pentium I1l PC was 20 minutes; the maximum memory allocated was 550
MB. The number of voxels touched during the diffusion was 4.5% of the total; the number of blocks allocated was 11.5% of the total.
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at the expense of protruding slightly into the empty region. Typical
values for « range from 0.001 to 0.01. At the boundaries between
empty and unseen volumes of space, w. ramps to zero over a length
dependent on the precision of the scanner. When using space carv-
ing in the diffusion, we still initialize do to ds, but during each
iteration we composite with (d.,w.), then (ds,ws). This has the
effect of applying a constant, gentle pressure toward —1 (outside)
as the function diffuses into the known-empty region of space. An
example of space carving in 2D is shown in Figure 2.

4 Results

We have applied our algorithm using the clamped distance function
generated by VRIP for ds, with w derived from VRIP’s confidence
values. These confidences account for several sources of uncer-
tainty, most notably surface orientation relative to the scanner’s line
of sight and distance to the nearest edge of the observed surface.

To illustrate the behavior of our algorithm, we show results in
Figure 3 for several synthetic 2D test cases that resemble different
types of holes. These images show that the algorithm generates
plausible, smooth surfaces for a variety of configurations, and that
it can generate different topologies.

Figure 4 shows results for three scanned models from the Digi-
tal Michelangelo Project [13]. These examples illustrate the algo-
rithm’s ability to fill a variety of very different holes that arise in
practice using the same computation.

To demonstrate the scalability of the system, Figure 5 shows re-
sults for the entire foot of the David with 1 mm voxel spacing.

The value of space-carving information is demonstrated in Fig-
ure 6. The example shows the first two toes of the David’s right
foot. In this case, the diffusion process made a topological choice
to build a bridge between the toes. While the bridge is consistent
with the shape of this large hole, it is not the correct topology. (Note
that Figure 5 did not use space carving; the bridge occurs only for
very specific parameter settings, and it did not happen to form in
that particular run.) The space carving information, represented by
blue in the slices of the volumetric representation, provides addi-
tional knowledge that prevents this bridge from ever forming.

5 Conclusions

We have presented a new technique for filling holes in range scans
by using diffusion to complete a volumetric representation of the
surface. The method is simple and effective, and it always pro-
duces a closed, manifold triangle mesh without self-intersections.
We have demonstrated its feasibility on real data of significant size.

One limitation of our present implementation is that, since our
source term comes from VRIP, the scanner’s lines of sight define
the boundary between ws = 0 and w,s > 0. Generally this bound-
ary is approximately perpendicular to the scanned surface, but when
all available scans were taken obliquely it may be angled. Since the
zero set of our diffusion process tends to propagate perpendicularly
to the boundary of ws, this can cause undesired ripples in the con-
structed surface. The correct solution would be to create a clamped
signed distance function (or a filtered sidedness function) directly
from the reconstructed surface [9]. We are currently addressing this
problem.

Diffusion processes, and the closely related level set methods,
fit into a very general computational framework [16], so our al-
gorithm can be extended in many ways. In particular, although we
have incorporated into our algorithm several important forms of an-
cillary information about our input data, there are other constraints
we might wish to add:

e Ouralgorithm leads to smooth surfaces that generally blend well
with the observed surface. However, greater control over the
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Figure 6: An example of using space carving information in the
diffusion process. (a) Between the toes of Michelangelo’s David,
occlusion causes a large hole with ambiguous topology. (b) Filling
the hole without space carving can result in an inappropriate bridge;
(c) space carving constrains the choice to the correct topology. (d-
e) Slices of the source volume without space carving (d) and with
space carving (e). (f-g) The same slices of the diffused volume,
showing the bridge that forms in (f) without space carving but is
avoided in (g). Further diffusion will reduce the protrusion in (g)
near where the bridge formed in (f).
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properties of the generated surface—for example, its curvature [14] William E. Lorensen and Harvey E. Cline. Marching cubes: A
or surface area—might be desirable. This can be achieved by high resolution 3D surface construction algorithm. Computer
incorporating terms related to the surface properties into the dif- Graphics (Proceedings of SGGRAPH 87), 21(4), July 1987.

fusion process [16, 18].

e Although space carving can often resolve ambiguous topology,
there will always be cases that require high-level knowledge to
disambiguate. We suggest that this knowledge is best provided
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Computer Graphics (Proceedings of SGGRAPH 84), 18(3),
July 1984.

throlugh user_ir&t_ervelntign. Trl‘f user could r::aniplulate ds di- [16] James Albert Sethian. Level set methods: evolving interfaces

rgé:t y 8], %r indirectly by marking points in the volume as out- in geometry, fluid mechanics, computer vision, and materials
Side or Insice. science. Cambridge University Press, 1996.
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