
Efficient Interactive Rendering of Detailed Models
with Hierarchical Levels of Detail

Ali Lakhia
The University of California at Berkeley

Email: lakhia@eecs.berkeley.edu

Abstract— Recent acquisition systems, such as the one devel-
oped at the University of California at Berkeley, are capable of
collecting large, detailed, highly textured models that standard
levels of detail (LOD) rendering techniques [15] cannot handle
efficiently.

We propose an out-of-core rendering engine which applies the
cost and benefit approach of the Adaptive Display algorithm
by Funkhouser and Śequin [15] to Hierarchical Levels of Detail
(HLODs) [8]. Unlike the Adaptive Display algorithm, we do not
skip objects to maintain interactivity when many objects are
visible.

Funkhouser and Śequin apply hysteresis by adding a penalty in
the benefit heuristics to discourage disturbing visual effects due
to fast switching of detail in the model. However, this penalty
may not be sufficient if the user is moving around rapidly in
the scene. Instead, we have developed a more robust temporal
hysteresis by retaining the amount of detail that is rendered over
a time period.

We have implemented our rendering engine to run on a
common personal computer with a standard graphics card. The
engine is capable of visualizing, in both walk-through and fly-
through mode, a detailed model of 114 city blocks comprised
of 7 million triangles and 720 million color pixels. Our engine
maintains a constant frame rate and limits excessive flickering
simultaneously.

I. I NTRODUCTION

Recently, an acquisition system has been developed at the
Video and Image Processing Lab at Berkeley which is capable
of rapidly acquiring large, detailed, 3D textured models of
urban environments from the ground level by using two 2D
laser scanners and digital cameras [10], [11]. Far-range Digital
Surface Map (DSM) data and aerial imagery is then registered
with respect to the ground-based model and merged to create
a single model [12].

The final city model has over 114 complete blocks of build-
ing facades, where none of the buildings share the geometry
or the texture with any other building. The total number of
triangles are about 7 million. The texture consists of over
720,000,000 pixels or about 2160 MB of uncompressed data.
An overview of the entire model can be seen in Fig. 2 (a). A
closeup in Fig. 2 (b) shows the details in the model.

A. Goals

The primary goal of this work is to address the rendering
of such large models on a common personal computer with a
standard graphics card and average amount of system memory.

The rendering system should scale with the size of the
model without discarding any of the collected data. We argue

(a) (b)

Fig. 1. (a) LOD of large object is too coarse near the camera; (b) Using a
higher detailed representation wastes detail that is far away from the camera.

that small changes in geometry and texture are perceptible
if seen from a certain view-point and at a certain distance.
That is, rather than throwing away data, we should manage
the details in the model to solve interactive rendering issues.

Lastly, the rendering system should maintain a specified
frame rate while maintaining some coherency between frames
and minimizing toggles between discrete levels of detail.

B. Organization

The paper is organized as follows. Section II reviews
previous work in interactive visualization of large scenes. We
also explain why these approaches are not suitable to meet
our goals. In Section III, we elaborate on our approach. We
present overall results in Section IV.

II. PREVIOUS WORK

A. Representation of Data

Polygon representations are most popular and their render-
ing is well optimized for most, if not all, graphic hardware
architectures. Levels of detail (LODs), introduced by Clark
in 1974, consist of a hierarchy of objects at ever simpler
representations [3]. He used the appropriate representations
to improve interactivity.

Rendering discrete LODs of large objects, however, are less
optimal. For example, consider a slanted view of a building
facade in Fig. 1. Note that a coarse representation of the object
is ideal for the portion of the object that is far away from the
camera but is too coarse near the camera. Similarly, a highly
detailed LOD provides good detail near the camera but wastes
too many triangles for detail that is not perceptible from that
position.

One possibility to overcome this is to break large objects
into smaller pieces. However, smaller pieces restrict simplifi-
cation locally to that piece and yield substantially sub-optimal

(a) (b)

Fig. 2. (a) The entire city model, as seen through our rendering system, has about 114 blocks. The grey regions are triangles that do not have corresponding
texture; (b) Closeup of one of the blocks in the city model.

LODs at the coarsest levels. The use of a hierarchy of LODs,
or HLODs, was proposed to overcome suboptimal use of
LODs [8].

Progressive meshes are a flexible representation of polygon
geometry that can be adaptively tailored to produce different
LODs [17], [19], [25]. These LODs may also be made view-
dependent such that more detail is presented where it is most
observable by the user [18]. However, progressive meshes are
not able to fully utilize the graphics hardware accelerations
since the geometry changes frequently.

Geometry that is stored as triangle strips provides a compact
representation that saves memory, reduces bandwidth, and
takes less time to render [9]. This technique was improved
to generate triangle strips for LOD meshes [1] and in real-
time [27]. Nonetheless, such techniques do not make render
time output-dependent and rendering of large models require
some management to ensure interactiveness.

Point-based rendering is yet another technique that scales
well with complexity [20], [24]. Hybrid approaches have been
developed that use both polygons and points as rendering
primitives [2], [4] to efficiently use large flat surfaces and
creases. However, these algorithms exploit minimal graphics
hardware acceleration.

Dachsbacher et al. proposed a way to convert a hierarchy
of points and polygons into a linear list that could then be
rendered quickly by graphics hardware with minimal CPU
load [5]. The trade-off with this approach is that hierarchical
culling cannot be performed since parent-child relationship is
lost in a sequential list.

Height fields are often used for terrain visualization [7],
[21], [23], [28]. However, our city model has detailed building
facades as well as aerial data. Thus, our model cannot easily
be represented as height fields and these strategies are not
applicable to our problem.

Maciel and Shirley introduced the use of image-based
“impostors” to replace the underlying 3D geometry [22] and
their idea was refined by others [6], [26]. Such an approach
works well for highly detailed polygonal models with little

or no texture since it trades off geometric complexity with
texture management. However, this trade-off is less desirable
for models, such as ours, with large texture maps.

B. Data Management

Memory usage must be managed to prevent swapping of
data between memory and the hard disk. Funkhouser prevents
swapping by asynchronously prefetching data as needed [14].
However, the prefetching algorithm cannot guarantee availabil-
ity of objects in memory and objects may pop into view after
they are loaded.

Varadhan and Manocha implement an out-of-core rendering
engine using two processes: one that renders the scene, and
one that prefetches HLODs [29]. However, if the prefetching
heuristics are miscalculated or the user moves unpredictably,
the rendering engine may stall while that HLOD is loaded.
That is, the render time is dependent on the loading time of
an object.

The details of the model must also be managed to limit
the load of the graphics pipeline and to ensure interactivity.
Funkhouser and Séquin use a heuristic to determine the ratio of
cost and benefit of each object at each of its LODs [15]. They
equate the graphics pipeline load management problem to the
multiple choice knapsack problem, and offer an approximation
to the optimal solution [15]. However, they employ a simple
2-level LOD hierarchy that is inefficient for large, detailed
objects.

Maciel and Shirley use a hierarchy of LODs and imposters.
They traverse the hierarchy in a bottom-up fashion [22],
and thus, the complexity of their algorithm isO(N) with
respect to the total number of nodes. This limits scalability.
Lastly, their hysteresis implementation worsens their frame
rate dramatically.

Erikson et al. traverse the hierarchy top-down and use
a screen-space error metric to choose which HLODs are
refined [8]. However, the refinement process does not directly
consider the cost of each refinement and can result in signifi-

cantly non-optimal use of render times1. The polygon budget is
simply based on previous frame render times, which can lead
to frequent switching of HLODs between successive frames.

C. Other Approaches

Wand et al. suggest a novel rendering algorithm that is
output sensitive [30]. They use a randomized Z-buffering
algorithm that chooses dynamically from a set of random
surface sample points to render the scene. Their data set uses
the same geometry repeated numerous times to demonstrate
their approach with a high triangle count.

III. PROPOSEDAPPROACH

Our experimental tests show that texture size is largely non-
linear in relationship with the time taken to render an object.
Therefore, our approach is to manage texture indirectly by
efficiently managing the geometry that is rendered in each
frame.

We choose to use HLODs to represent our model because,
as mentioned previously, they are more efficient than discrete
LODs. Also, discrete HLOD nodes better utilize graphics
hardware acceleration and optimization techniques such asdis-
play lists. HLODs also allow hierarchical culling, substantially
reducing CPU and GPU load.

Our approach is to generate an HLOD hierarchy from the
model, followed by pre-processing to reduce computations
during rendering. As shown in Fig. 3, our rendering engine
consists of a rendering and a loading thread. The rendering
thread traverses the HLOD hierarchy to render each frame by
selecting a front that is then sent to the graphics pipeline.On
traversal, each node’s priority is calculated and maintained in
a priority queue. The loading thread queries the priority queue
and asynchronously pre-fetches those nodes with the highest
priority and unloads the nodes deemed least important.

These are discussed in more detail in the sections below.

HLODs on
disk

Loading
Thread

Rendering
Thread

Priority
Queue

HLOD
Hierarchy

Load HLOD

Update
HLOD status

Traverse
HLODs

Query high
priority HLODs

Update
HLOD priorities

Graphics Pipeline

Render
HLODs

Input
User

Fig. 3. Overview of the rendering engine architecture.

1Consider an example where 4 candidates for refinement are available and
one of them has a slightly higher screen-space error. If thisrefined candidate
consumes the entire triangle budget while using the same number of triangles
as the other 3 replacements combined, then we get a sub-optimal solution.

(a) (b) (c)

Fig. 4. (a) A set of triangles before split; (b) cutting planeis used to create
two sets of triangles that are shown separated for clarity. New vertices are
created on the plane; (c) The split triangles are re-triangulated.

A. Model Preparation

The city model is is split up into blocks that typically
corresponds to one side of a city block. For each block,b,
we generate the least detailed HLOD,hlod0, by simplifying it
using Qslim Simplication Software [16] so that the block has
cdesiredTri triangles. Therefore, the simplification factor is:

simplificationhlod0 =
numTrib

cdesiredTri

Here,numTrib is the number of triangles in the block that
is being processed. The original texture data is down-sampled
by this simplification factor as well.

Next, we defineclevelFactor as the ratio of the number of
triangles and size of texture between two successive levels
of the hierarchy. To create the next level in our hierarchy,
hlodd+1, we simplify the original block’s triangle mesh and
down-sample texture by a simplification factor computed from
the previous factor:

simplificationhlodd+1
=

simplificationhlodd

clevelF actor

We also createclevelFactor −1 cutting planes perpendicular
to the longest dimension of the block that run from one end
of the bounding box to the other end.

We apply each cutting plane to a block in order to separate
its triangles into two sets, depending on which side of the
plane the vertices fall. Vertices that form triangles across the
cutting plane are split into 3 smaller triangles by introducing
two vertices at the intersection of the two edges and the cutting
plane. This technique, illustrated in Fig. 4, minimizes cracks
that appear when HLODs at different levels are next to each
other.

This division step yieldsclevelFactor pieces, where each
piece corresponds to a node in the HLOD hierarchy. The
division and simplification process is recursively repeated on
each piece with a smaller simplification factor until the factor
becomes less than 1.

The end result is a hierarchy where the top most node
is most simplified and represents the entire block. The next
level has clevelFactor pieces that collectively represent the
parent. That is, each node in this level has more detail but
represents an increasingly smaller portion of the entire block.
This relationship holds all the way to the leaf nodes that are
most detailed but contain the smallest piece of the block.

hlod0

hlod1

hlod2 hlod2 hlod2
l

hlod1

hlod2 hlod2 hlod2

hlod1

hlod2 hlod2 hlod2

Fig. 5. HLODs for a single block. The nodehlod0 is most coarse whereas
hlod2 is the most detailed. Note thathlod0’s siblings are other blocks.

We repeat this procedure for all the blocks in our model.
Our final data has a total of 3028 nodes from 207 blocks.
The maximum depth of the hierarchy is 5. One such block is
shown in Fig. 5 whereclevelFactor is shown to be 3.

On average we expect each node to havecdesiredTri trian-
gles. However, the actual number of triangles vary consider-
ably due to the varying density of samples, and varying effect
of simplification along different subsections of the block.

B. Other Pre-processing

We pre-compute and save each node’s 1) bounding box for
culling purposes, 2) cost that measures the estimated render
time, 3) static benefit that is adjusted during run-time, and4)
average normal to calculate foreshortening.

The cost of a node,n, is approximately proportional to the
time needed to render the node. It is the weighted sum of the
number of textured and untextured triangles:

costn = numTexTrin × ctex +
numUnTexTrin × (1− ctex)

(1)

The constant weight,ctex, is calculated empirically by
comparing the render time of a set of triangles both with
texture and with flat shading.

We compute a static approximation of the benefit, which is
then dynamically adjusted during the rendering phase, as the
geometric mean of the accuracy of its representation and its
total surface area. Specifically, given thattri(n) is the set of
triangles in noden and areat is the area of triangle,t, we
have:

staticBenefitn =
√

numTrin×
∑

t∈tri(n)
areat (2)

Since most of our nodes are facades of buildings, the
orientation of most of the triangles is fairly uniform. Therefore,
we compute the normal of a node by taking the average normal
of each triangle,

−−−−−→
normalt, weighted by its area and then

normalized:

−−−−−−−−−→
avgNormaln =

∑

t∈tri(n)
(
−−−−→
normalt×areat)

‖
∑

t∈tri(n)
(
−−−−→
normalt×areat)‖

(3)

C. Rendering Thread

The rendering thread recursively traverses nodes in the
hierarchy in a top-down, breadth-first manner to render each
frame. Since we need not visit all the nodes in the hierarchy,
the running time is dependent on the target render time for
one frame and the number of objects in the scene.

Breadth-first traversal ensures that all siblings are queried
before their children. If a node is visible and not loaded in
memory, none of its siblings can be rendered either and the
parent node must be rendered instead2.

costn

benefitn

priorityn

timeSlicen

timeNeededn

hystn

cumHystn
prioritym hystm

Fig. 6. Dependency graph of front selection in the renderingthread

Node selection, as illustrated in Fig. 6, is dependent on the
cost and benefit of a node, which determine its priority. The
time slice is assigned by splitting the available render time
among the node and its siblings based on the ratio of their
priorities and their cumulative priority. This time slice is then
recursively divided among each node’s children.

Subsequently, the estimated time needed to render a node
is compared with the time slice allocated to the node. This
comparison is used to update a hysteresis counter for each
node to limit excessive switching of HLODs. Finally, a cumu-
lative hysteresis value is calculated for a set of siblings which
determines if all the visible siblings should be rendered ornot.

Priority Heuristics: Upon visiting each node,n, the render-
ing thread calculates its priority based on a benefit and cost
ratio so that a higher priority indicates higher importance:

priorityn =
benefitn

costn

Recall thatstaticBenefitn is calculated offline for each
node in (2). This benefit is measured as the approximate,
unforeshortened screenspace of a node that is 1 unit away.
We compute the benefit from the static benefit, by adjusting
for distance, visibility and foreshortening:

benefitn =
staticBenefitn × visn × foreshortenn

distance 2
n

The distance is measured fromn to the camera and is
adjusted by adding a portion of the user’s velocity to exploit
temporal coherence.

We compute visibility,visn, by frustum culling. We do not
perform occlusion culling because of its high overhead but it
would be easy to incorporate it into our heuristics:

visn = 1 + (cvis × frustumV isn)

2Note thathlod0 nodes are always kept loaded in memory.

Here, frustumV isn is 1 if n is in the view frustum.
Otherwise, it linearly decreases to 0 based on the distance
of n from the view frustum. The constant,cvis, weighs the
importance of visibility.

Lastly, we adjust the static benefit for foreshortening by
multiplying with the dot product of the normal of the image
plane,

−−→
view, and the average normal ofn,

−−−−−−−−−→
avgNormaln

from (3). This is weighted by a constant,cfore:

foreshortenn = 1 + (
−−→
view ·

−−−−−−−−−→
avgNormaln × cfore)

The cost ofn, costn, is also calculated offline as shown
in (1).

Time Slicing: We calculatetimeSlicen or the amount of
time that has been allocated to rendern, in a top-down
approach based on the overall time target, andn’s relative
priority with respect to the total priority of its siblings:

timeSlicen = shareT imen ×
priorityn

∑

i∈sib(n)
priorityi

(4)

Here, sib(n) is defined to be the set of all visible nodes
that have the same parent asn. Also, shareT imen is the
total time a node and all its siblings share. This is assigneda
constant value,ctargetT ime, for all n at level 0. Each node,n
at hlod0, recursively passes along its time slice,timeSlicen,
to its children to be shared among them based on (4). Thus,
shareT imen is defined as:

shareT imen =

{

timeSliceparent(n) if parent(n) exists
ctargetTime otherwise

Next, we estimate the time required to rendern, which is
proportional ton’s cost:

timeNeededn = vtime × costn

Note thatvtime is a variable that is adjusted in a feedback loop
based on comparing actual time used to render a frame with
the estimated render time needed for all the nodes rendered.
The need for this feedback loop is due to the fact that most
graphics hardware performance is based on factors besides
number of triangles, such as the fill rate.

One possible implementation of the rendering algorithm is
to keep recursing as long as:

shareT imen >
∑

i∈sib(n)

timeNeededi

When the above condition does not hold for a set of siblings,
their parent is selected to be rendered instead. This approach
guarantees that the time slice of the parent is never exceeded
by the children. Consequently, the total estimated render time
will never exceedctargetT ime.

In practice, however, the feedback loop introduces excessive
switching of the HLODs asvtime oscillates up and down.
Therefore, we must extend the above approach to incorporate
hysteresis.

Hysteresis:The Adaptive Display algorithm of Funkhouser
and Séquin incorporates a hysteresis component as part of the
benefit heuristics [15]. However, this approach can still cause
switching of LODs as objects become visible or invisible [13].
Furthermore, we would like the loading to be independent of
hysteresis.

Maciel and Shirley implement a counter that is incremented
every time the algorithm wishes to switch from parent to
children. The switching is allowed only if the counter exceeds
a pre-fixed threshold [22]. However, this implementation is
inflexible and does not account for nodes that need to be
switched more urgently than others. Consequently, their frame
rate exhibits dramatic variation.

We choose, instead, to increment or decrement the counter
based on an urgency factor. Let us denote the counter byhystn
for noden. With each traversal ofn, we update the counter:

hystn ← hystn +
timeSlicen − timeNeededn

timeNeededn

We add a constraint to the above and restricthystn to lie in
the range of−chystLimit and chystLimit. That is, if the time
slice of n is larger compared to the time needed to rendern,
then the hysteresis counter will approach positivechystLimit

over time. If both are almost the same,hystn remains near a
0 value. Otherwise, it tends to negativechystLimit.

The approximate hysteresis counter value of 0 indicates that
selecting that node to render will approximately use the render
time allotted to the node. However, a node cannot be rendered
without rendering its siblings. Therefore, we need a cumulative
hysteresis value for all the siblings. Our approach is:

cumHystn =
∑

i∈sib(n)

trunc

(

hystn

chystSwitch

)

Here,trunc() truncates the floating point value to an integer
by discarding the decimal value. This eliminates the least
significant bits responsible for oscillations.

The constant,chystSwitch, determines the threshold for
switching and should be between 1 andchystLimit. A higher
value implies longer delay to switch HLODs but with a looser
guarantee on how close the render time will be toctargetT ime.
Conversely, a lower value implies that render times will be
closer to ctargetT ime at the expense of more switching of
HLODs.

Our rendering algorithm recurses breadth-first and updates
the cumulative hysteresis value until it reaches the last sibling.
If cumHystn is less than zero, we render the parent of the
siblings. Otherwise, we recursively visit the children of all the
sibling nodes, again, in a breadth-first order.

This describes the implementation of our rendering thread.
Unlike Maciel and Shirley, we do not use the hysteresis
counter to override switching of nodes [22]. Instead, our
counter is sensitive to the urgency of a node needing to be
switched. Consequently, we rely on the hysteresis counter
alone to select the front.

D. Loading Thread

The rendering thread starts rendering with onlyhlod0 nodes
in memory. The rendering thread relies on the loading threadto
asynchronously query the priority queue and load high priority
nodes that have not been loaded.

The loading is done incrementally by reading only a small
portion of a node at a time. The priority queue is checked
between each incremental load, and the previous loading is
suspended and loading of a new node is started if the priority
changes. This feature makes our loading more responsive to
erratic movements by the user.

To limit memory usage and avoid swapping, we assume that
memory usage for a node is proportional to its cost. Thus,
memory usage is bounded by the set of nodes in memory,
mem:

maxMemory > cmemory ×

∑

i∈mem

costi

The loading thread prevents memory usage from substan-
tially exceeding a fixed size,maxMemory, by unloading the
nodes in the setmem with the smallest priority until the above
condition is satisfied. The constant,cmemory, is established
experimentally3 and maxMemory is based on the system
resources.

IV. RESULTS

We have implemented our rendering engine on a Windows
architecture using the Visual C++ language. Our tests are run
on a Windows XP PC with a 2.0 GHz Intel Pentium IV CPU,
1024 MB of system RAM, and a Nvidia GeForce4 Ti 4600
graphics card with 128 MB of RAM.

Our implementation allows the user to move around in all
6 degrees of freedom without any restrictions. The user has
the choice of standing still or navigating at arbitrary speeds.

A. Detail Management Effectiveness

We show that our rendering engine adapts to varying
rendering loads by varying the amount of detail in the scene.
We conduct a walk-through at ground level, with many nodes
culled away, that gradually becomes a fly-through such that
the entire model is visible.

Fig. 7 shows the number of each type of HLOD that is
rendered over time. For the path described above, initially
many highly detailed HLODs are rendered. However, as more
objects become visible, fewer highly detailed HLODs are
selected to be rendered. That is, as we add more data to
be rendered, our engine decreases detail, and degenerates
gracefully to the case where no detail is rendered.

B. Flicker Prevention

In order to measure the flickering, we count each time a
node gets upgraded to its children between successive frames.
Similarly, we tally each downgrade from sibling nodes to a
parent node.

3We cannot precisely calculate storage requirements for display lists.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 N

od
es

 R
en

de
re

d

Frame Number

hlod0 hlod1 hlod2 hlod3

Fig. 7. Walk-through at ground level renders fewer total HLODs thus more
detailed HLODs are selected. During fly-through, we render only hlod0 and
hlod1 nodes.

-3

-2

-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 T

og
gl

es

Frame Number

Up Toggle
Down Toggle

Moving Average of Total Toggles

Fig. 8. Flickering measured during walk-through where the moving average
is taken over 35 frames. A down toggle is shown in the negativeaxis for
clarity.

We show the upgrade and downgrade toggles for 200 frames
corresponding to a walk-through, followed by 200 frames in
drive-through mode in Fig. 8. Note that in drive-through mode,
the toggles are more frequent since the user is moving around
the scene about 10 times faster. Overall, the result shows that
we do not get successive up and down toggles associated with
oscillations from the feedback loop.

C. Frame Rate Consistency

We measure the actual render time and compare it to the
the target render time during a fly-through and a walk-through.
These results are shown in Figs. 9 (a) and (b) respectively.

As can be seen from these figures, the fly-through render
times are much closer to the target render time since a large
majority of nodes that are selected to be rendered arehlod0

nodes that are resident in memory. The walk-through mode
culls away severalhlod0 nodes and, thus, the time utilization

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

R
en

de
r

T
im

e
(m

ill
is

ec
on

ds
)

Frame Number

Actual Render Time
Target Render Time

(a)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

R
en

de
r

T
im

e
(m

ill
is

ec
on

ds
)

Frame Number

Actual Render Time
Target Render Time

(b)

Fig. 9. Actual render time compared to target render time of 30 milliseconds for (a) fly-through and (b) walk-through.

depends on the loading of more detailed HLODs.
On average, our algorithm well-utilizes the alloted render

time, and prevents the actual render time from exceeding the
target render time.

V. CONCLUSION

We have presented an algorithm that uses hierarchical levels
of detail to efficiently render large, detailed models for walk-
through and fly-through modes of interaction. Our implemen-
tation runs on a common PC with a moderate graphics card
and system memory.

Our rendering engine limits memory usage, maintains a
specified frame rate by managing detail, and incorporates hys-
teresis into a simple unified approach. Furthermore, our pre-
fetching scheme does not skip objects that are visible or delay
rendering to load objects. Lastly, our implementation scales
well with increasing data size and degenerates gracefully to
the case where it does not render any of the more detailed
HLODs.

VI. FUTURE IMPROVEMENTS

Our cost heuristics currently do not account for the texture
size because increasing the texture does not generally increase
the render time. The exception to this occurs when the texture
size exceeds the texture memory on the graphics card. In
this case, the render times change substantially. Although
our feedback loop compensates for this situation, a future
improvement would be to directly address this. Lastly, the
foreshortening in the benefit heuristics could be improved by
clustering similarly oriented triangles together in one node.

ACKNOWLEDGMENT

We would like to thank John Flynn, Chris Frueh and Lu Yi
for their contributions to the implementation. We are grateful

to Avideh Zakhor and Carlo Séquin for his valuable insights.
This research was funded by Army Research Office MURI
contract #DAAD19-00-1-0352.

REFERENCES

[1] O. Belmonte, I. Remolar, J. Ribelles, M. Chover, C. Rebollo, and
M. Fernandez. Multiresolution triangle strips. InProceedings IASTED
Invernational Conference on Visualization, Imaging and Image Process-
ing (VIIP 2001), pages 182–187, 2001.

[2] B. Chen and M. X. Nguyen. Pop: a hybrid point and polygon rendering
system for large data. InProceedings of the conference on Visualization
’01, pages 45–52. IEEE Computer Society, 2001.

[3] J. H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM, 19(10):547–554, 1976.

[4] J. D. Cohen, D. G. Aliaga, and W. Zhang. Hybrid simplification:
combining multi-resolution polygon and point rendering. In Proceedings
of the conference on Visualization ’01, pages 37–44. IEEE Computer
Society, 2001.

[5] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sequential point
trees. InSIGGRAPH 2003, Computer Graphics Proceedings, pages 657–
662. ACM Press / ACM SIGGRAPH, 2003.

[6] X. Decoret, F. Sillion, G. Schaufler, and J. Dorsey. Multi-layered impos-
tors for accelerated rendering.Computer Graphics Forum, 18(3):61–73,
1999.

[7] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller,C. Aldrich,
and M. B. Mineev-Weinstein. ROAMing terrain: real-time optimally
adapting meshes. InIEEE Visualization, pages 81–88, 1997.

[8] C. Erikson, D. Manocha, and W. V. Baxter, III. HLODs for faster display
of large static and dynamic environments. InProceedings of the 2001
symposium on Interactive 3D graphics, pages 111–120. ACM Press,
2001.

[9] F. Evans, S. S. Skiena, and A. Varshney. Optimizing triangle strips
for fast rendering. In R. Yagel and G. M. Nielson, editors,IEEE
Visualization ’96, pages 319–326, 1996.

[10] C. Frueh and A. Zakhor. Fast 3D model generation in urbanen-
vironments. InInternational Conference on Multisensor Fusion and
Integration for Intelligent Systems, volume 2.2, pages 165–170. The
University of California at Berkeley, 2001.

[11] C. Frueh and A. Zakhor. Data processing algorithms for generating tex-
tured 3D building façade meshes. In3D Data Processing, Visualization
and Transmission, pages 834–847, 2002.

[12] C. Frueh and A. Zakhor. Constructing 3D city models by merging
ground-based and airborne views.IEEE Computer Graphics and
Applications, 23(6):52–61, 2003.

[13] T. A. Funkhouser. Database and Display Algorithms for Interactive
Visualization of Architectural Models. PhD thesis, The University of
California at Berkeley, 1993.

[14] T. A. Funkhouser. Database management for interactivedisplay of large
architectural models. In W. A. Davis and R. Bartels, editors, Graphics
Interface ’96, pages 1–8. Canadian Human-Computer Communications
Society, 1996.

[15] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for inter-
active frame rates during visualization of complex virtualenvironments.
Computer Graphics, 27(Annual Conference Series):247–254, 1993.

[16] M. Garland and P. S. Heckbert. Surface simplification using quadric
error metrics.Computer Graphics, 31(Annual Conference Series):209–
216, 1997.

[17] H. Hoppe. Progressive meshes. InProceedings of the 23rd annual
conference on Computer graphics and interactive techniques, pages 99–
108. Microsoft Research, ACM Press, 1996.

[18] H. Hoppe. View-dependent refinement of progressive meshes.Computer
Graphics, 31(Annual Conference Series):189–198, 1997.

[19] H. Hoppe. Efficient implementation of progressive meshes. Computers
and Graphics, 22(1):27–36, 1998.

[20] M. Levoy and T. Whitted. The use of points as a display primitive.
Technical report, Computer Science Department, University of North
Carolina at Chapel Hill, January 1985. TR 85-022.

[21] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and
G. Turner. Real-time continuous level of detail rendering of height
fields. Proceedings of SIGGRAPH’96, pages 109–118, 1996.

[22] P. W. C. Maciel and P. Shirley. Visual navigation of large environments
using textured clusters. InSymposium on Interactive 3D Graphics, pages
95–102, 211, 1995.

[23] R. Pajarola, M. Antonijuan, and R. Lario. Quadtin: Quadtree based
triangulated irregular networks. InProceedings of IEEE Visualization,
pages 395–, 2002.

[24] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point
rendering system for large meshes. In K. Akeley, editor,Siggraph 2000,
Computer Graphics Proceedings, pages 343–352. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

[25] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping
progressive meshes. In E. Fiume, editor,SIGGRAPH 2001, Computer
Graphics Proceedings, pages 409–416. ACM Press / ACM SIGGRAPH,
2001.

[26] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and J.Snyder.
Hierarchical image caching for accelerated walkthroughs of complex
environments.Computer Graphics, 30(Annual Conference Series):75–
82, 1996.

[27] M. Shafae and R. Pajarola. DStrips: Dynamic triangle strips for real-
time mesh simplification and rendering. InProceedings Pacific Graphics
2003, pages 271–280. IEEE, Computer Society Press, 2003.

[28] R. Toledo, M. Gattass, and L. Velho. Qlod: A data structure for interative
terrain visualization. Technical report, VISGRAF Laboratory, 2001. TR-
01-13.

[29] G. Varadhan and D. Manocha. Out-of-core rendering of massive
geometric datasets. InProceedings of the conference on Visualization,
pages 69–76. IEEE Computer Society, 2002.

[30] M. Wand, M. Fischer, I. Peter, F. M. auf der Heide, and W. Straßer. The
randomized z-buffer algorithm: Interactive rendering of highly complex
scenes. In E. Fiume, editor,SIGGRAPH 2001, Computer Graphics
Proceedings, pages 361–370. ACM Press / ACM SIGGRAPH, 2001.

