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Abstract— CODEX (COrnell Data EXchange) stores secrets exemplifies what we are finding to be a general approach—
for subsequent access by authorized clients. It also is a vehicle carefully choosing a semantics for the service that skirts the

for exploring the generality of a relatively new approach to ; g
building distributed services that are both fault-tolerant and need to do certain typ&s of coordination but nevertheless can
meet the needs of clients.

attack-tolerant. Elements of that approach include: embracing

the asynchronous (rather than synchronous) model of compu- Embracing the asynchronous model aso means that
tation, use of Byzantine quorum systems for storing state, and CODEX cannot offer real-time guaranteesto clients. Availabil-
employing proactive secret sharing with threshold cryptography

for implementing confidentiality and authentication of service

responses. Besides explaining the CODEX protocols, experiments

to measure their performance are discussed.

Index Terms— Distributed systems, Fault tolerance, Access
controls, Client/server and multitier systems, Information storage

1. INTRODUCTION

CODEX (COrnell Data EXchange) is a distributed service
for storage and dissemination of secrets. It was designed to
be one of the components in a secure publish/subscribe com-
munications infrastructure, providing the support for storing
secret keys used to encrypt published information objects and
ensuring that (only) authorized subscribers retrieve those secret
keys. Confidentiality, integrity, and availability of the secret
keys being stored is crucial; server failures must be tolerated;
and attacks must be thwarted.

The protocols to coordinate CODEX servers avoid a large
class of vulnerabilities by making only weak assumptions
about the execution environment. For example, correct oper-
ation of the protocols does not depend on assumptions about
message delivery delays or processor execution times. Since
denia of service attacks invalidate such assumptions about
timing, we build into CODEX an intrinsic defense against
certain denial of service attacks by designing for this asyn-
chronous model of execution. In particular, the confidentiality,
integrity and availability of secret keys stored by CODEX
cannot be compromised by attacks to cause delays.

But adopting the asynchronous model brings challenges.
Protocols for consensus and other replica-coordination prob-
lems arising in distributed systems require stronger assump-
tions [14]. CODEX does employ replication, so this gap must
somehow be bridged. The solution employed by CODEX
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ity is eventual. However, nothing about the CODEX protocols
per se introduces unpredictable delays in processing client
requests. Real-time bounds could therefore be derived for the
case where the system and environment are not under attack.
Admittedly, some clients require that responses aways be
generated in a timely manner—this is simply an unsatisfiable
requirement if denial of service attacks can cause arbitrary
slowdowns.

The design of CODEX also explicates a second set of tech-
nical problems that arise when moving beyond fault-tolerance
to supporting attack-tolerance as well. That is the tension
between employing replication and protecting confidentiality.
Integrity and availability are enhanced by replication; confi-
dentiality is not. In CODEX, besides client secrets (which
are stored in encrypted form and therefore can safely be
replicated), secrets are used to implement the service itself

« for encrypting the client secrets that CODEX is storing,
and
« for authenticating CODEX responses to clients.

These service secrets cannot be stored in encrypted form, since
they must be available for use by CODEX servers. So such
secrets cannot be replicated.

To preserve confidentiality of secrets used for implementing
confidentiality and authentication, CODEX employs secret
sharing [38], [1] with proactive refresh [27], [25], [24], [17],
[16], [41] in concert with threshold cryptography [8], [9], [6],
[7], [18], [31]: secrets are split into shares; each secret share
is periodically refreshed and stored by a separate server; and
cryptographic operations are performed by first having each
server compute a partial result using its local secret share and
then combining the partia results to obtain what would have
been computed if the cryptographic operation were performed
using the original secret rather than the shares.

CODEX was motivated by and satisfies an application need,
but the project was actually undertaken to address broader
scientific questions. The COCA distributed certification au-
thority [40] demonstrated that a fault-tolerant and attack-
tolerant service could be implemented by embracing the asyn-
chronous model and by employing proactive secret sharing
in conjunction with threshold cryptography. We wondered
whether COCA represented a singular point or did it instantiate
a genera recipe that could be repeated for other services too?



Building another system (CODEX) was expected to shed light
on these questions about generality.

This paper thus should be seen not only as a discussion of
how one might implement a service for storing and dissemi-
nating secrets but as an exercise in evaluating (and refining)
a promising recipe for building services that are both fault-
tolerant and attack tolerant. The CODEX system itself is
implemented as approximately 42K lines of C++ code, most of
which consists of general-purpose libraries designed to allow
rapid devel opment of new services, especially those employing
quorum replication.t

We proceed asfollows. In §2, assumptions made by CODEX
about the execution environment are discussed. The client
interface to CODEX is next explained in §3. Then, §4 gives
a high-level view of the protocols that characterize CODEX
(and its predecessor COCA); protocol details are given in
Appendix A and Appendix B. CODEX performance is the
subject of §5, and related work is described in §6. Section §7
contains some concluding remarks.

2. ASSUMPTIONS ABOUT THE ENVIRONMENT

CODEX makes only a few, rather weak assumptions about
the environment in which it executes and about attackers. We
believe these few assumptions constitute a realistic approxi-
mation of the hosts and links comprising today’s Internet.

Communications links between hosts are presumed to be
unreliable and insecure.

Insecure Links Assumption Messages in transit may be
disclosed to, deleted, or altered by adversaries; new
messages may be injected. But a message sent sufficiently
often from one host to another will eventualy be deliv-
ered.

The only weaker assumption we can imagine is to offer no
guarantee that hosts can use links to communicate, but without
communication it would beimpossible for clientsto coordinate
with CODEX or with each other.

Under the Insecure Links Assumption, message delivery
delays are potentially unbounded, which models network con-
gestion and certain denia of service attacks. A second source
of delay in CODEX arises because clients and servers are
executed by hosts that have finite resources. Here, parallel
activity (perhaps from a denial of service attack) means
that message transit and process execution can be slowed
arbitrarily. The situation is abstractly characterized by:

Asynchrony Assumption Message delivery and server
computation times are unbounded.

Note, the Asynchrony Assumption is actualy a non-
assumption about timing.

Finaly, the only assumption we make about hosts is that
not too many fall under control of the adversary.

Compromised Hosts A host is either correct or compro-
mised. A compromised host might deviate arbitrarily from
its protocols and/or disclose information. But fewer than
one-third of the hosts runing CODEX servers are assumed
to be compromised at any time.

1The complete CODEX source is available for download from the CODEX
homepage ht t p: / / www. um acs. und. edu/ ~mmar sh/ CODEX

If al hosts run the same software then an adversary that
compromises one replica will probably be able to exploit that
same vulnerability at other replicas and compromise them too.
A single exploit could then cause Compromised Hosts to be
violated. One solution is to employ diversity, so that CODEX
servers are not identical in their design or implementation
and therefore do not have common vulnerabilities. For some
system components, diverse implementations already exist. For
other components, diversity must be created—here, automatic
introduction of diversity during compilation, loading, or in the
run-time environment is a promising approach.

3. CODEX CLIENT INTERFACE

CODEX binds secrets to names. Bindings are write-once—
only a single value is ever bound to each name. The three?
CODEX operations enable clients to manipulate and retrieve
bindings:

« Create introduces a new name;

« Write associates a (presumably secret) value with a name;

« read returns the value associated with a hame.

Having create and write be distinct—rather than a single
compound operation—provides the flexibility to separate the
administration of a secret from associating a value with that
secret. We expect distinct principals will be concerned with
these two kinds of operations, and we expect the operations
to occur at different times.

Clients of CODEX can expect the following security prop-
erties to hold:

CODEX Availability : Authorized invocations of create,
read and write that are not concurrent with other in-
vocations involving the same CODEX name, if repeated
sufficiently often, cause the corresponding operations to
be performed.

CODEX Confidentiality : Executing read isthe only way
to learn a value that CODEX stores.

CODEX Integrity : Executing write, giving a name that
does not yet have a value associated, is the only way to
bind a value to that name.

Authorization policies specify which invocations of oper-
ations are performed and which are ignored by CODEX.
A client p presents credentials Cy(p, N) when invoking an
operation # for aname N; the authorization policy Po(N) for
operation § and name N defines a relation = such that

Co(p, N) Fo Po(N)

holds if credentials Co(p, V) are sufficient for the operation
to be performed. CODEX does not include an implementa-
tion for |=¢ nor does it fix a representation for credentials.
However, contemporary authorization engines, like SDSI[35],
KeyNote[2] or the work of Hayton et al. [23], do provide such
implementations and could well be incorporated into CODEX.

2The lack of any sort of key deletion operation in CODEX is deliberate.
After a key has been deleted, information encrypted using that key becomes
unavailable, which we saw as inconsistent with the archival nature of the
publish/subscribe system CODEX was designed to support.



1) Client p sends to CODEX the invocation message
MC(N) : <create, N, Cc(p, N), Pw(N), PR(N)>[)
2) Client p awaits confirmation message
Mg (ny: (bound, Mc(n))copex

Fig. 1. Client protocol for the create operation.

CODEX associates a separate authorization policy with each
of the three operations it supports. Po(N) controls which
clients can create a new CODEX name N. Having such an
authorization policy helps defend against resource-exhaustion
attacks—for example, the CODEX name space might be
partitioned into groups, with a unique client authorized to
do create for CODEX names in a group. Pw (IN) governs
which clients can write the value that CODEX binds to V.
And Pr(N) governs which clients can read that value.

To invoke a CODEX operation, a client p opens a TCP
connection to CODEX and sends an invocation message;
invocation messages for unauthorized or otherwise ill-formed
operations are ignored by CODEX. Upon completing an
operation, CODEX replies to p with a confirmation message.
If no confirmation message is received after a respectable
interval, then the client may resend the invocation message;
receipt of duplicate invocation messages does not cause prob-
lems for CODEX, because the three CODEX operations are
idempotent.

Invocation messages are digitally signed by the client invok-
ing the operation; confirmation messages are digitally signed
by CODEX and contain either the invocation message m or
its digital signature sig(m), so that a client can ascertain that
the response is not a replay.

3.1 create

Figure 1 givesthe invocation message M ¢y and confirma-
tion message® ]\Z/c( ~) for acreate operation that is on behalf
of client p and that defines a new name N to have write policy
Pw (V) and read policy Pr(N).

Each CODEX name can be defined only once. Duplicate
create invocation messages bring copies of the same confir-
mation message; subsequent or concurrent create invocation
messages for a given name but with different authorization
policies are considered ill-formed and are ignored.

3.2 write

Figure 2 gives the invocation message My () and confir-
mation message J\ZIW(N) for a write operation by a client p
intending to associate value s with name N. Keyword write,
name N, and credentials Cy (p, N) in My, () should not be
surprising.

Vaue s is being sent in encrypted form (fourth field
of Myy(n)) SO passive wiretappers that intercept and read
Myy(ny are unable to compromise CODEX Confidentiality.

The inclusion of create confirmation message MC(N) in
Myy(ny (fifth field) ensures that name N has been created

3Henceforth, we write (m), to denote a message m digitaly signed by
client p and write E(v) to denote the result of encrypting a value v according
to the CODEX public key.

1) Client p sends to CODEX the invocation message
MW(N) : <Wr|tea Na CW(p7 N)) E(S)) MC(N)) H(Sap)>[)
2) Client p awaits confirmation message
My (ny: (stored, N, sig(Myy(n)))copex

Fig. 2. Client protocol for the write operation.

before p attempts to associate a value with V. Even though a
client might be careful to send the write invocation message
after sending the create invocation message, CODEX will
not necessarily receive this pair of messages in that order
(due to the Insecure Links Assumption coupled with message
retransmissions). By requiring that a write invocation message
contain acreate confirmation message, the ordering pathol ogy
is avoided.

I(s,p), the final field of My (y), is a non-malleable
proof* that p knows plaintext s (as opposed to knowing only
encrypted plaintext E(s), which is aready the fourth field
of My (n))- Eliminate the requirement that I1(s, p) appear in
My (ny and amalicious client ¢ could then read s as follows:
Intercept Myy(ny, copy E(s) from My (yy into a write
invocation message for some new name N, that ¢ creates and
for which Pr(N,) includes ¢; then, perform a read naming
N,. Such attacks are ruled out if write invocation messages
require demonstrations of plaintext knowledge, because now
attacker ¢ is unable to construct needed final field I1(s, ¢) due
to the non-malleability of II(s, p).

Because CODEX names are write-once, subsequent write
invocation messages are considered ill-formed and ignored if
they attempt to bind different values to a name. Also, concur-
rent write invocation messages containing the same name but
different values are considered ill-formed and ignored.

3.3 read

The confirmation message for aread must convey the value
val(N) that CODEX binds to a name NN, but not as cleartext
or else a passive wiretapper intercepting that message would
be able to compromise CODEX Confidentiality.

A naive solution would be to encrypt val(NN) using the
public key of the destination client (say) p. But CODEX
is implemented by a set of servers, and according to the
Compromised Hosts Assumption no server can be trusted
to have val(N) as cleartext. So this naive solution would
require a protocol to transform E(wal(N)) (which is what
CODEX servers store) into val(N) encrypted by client p’s
public key, without plaintext becoming available during inter-
mediate steps. Such re-encryption protocols (e.g., [26], [39])
unfortunately involve considerable communication overhead;
the cost makes them infeasible for use here.

Therefore, CODEX employs blinding[4] to protect the con-
fidentiality of val(IN) while in transit. A client performing
a read includes E(b,) in the invocation message, where
E(b,) is a fresh random blinding factor b, encrypted with

4A proof TI(s, p) that p has knowledge of s is defined to be non-malleable
if that proof cannot be transformed into a proof TI(¢, p) that p knows some
other secret s’ or transformed into a proof II(s, ¢) that some other principal
q knows secret s. The scheme used by CODEX is described in Appendix B.



1) Client p sends to CODEX the invocation message
MR(N) : <read7 N7 CR(p7 N)a E(bl))7 H(bp7p)>p

2) Client p awaits confirmation message
Mpvy: (blind, N, val(N) x by, Sig(MR(N)»CODEX

Fig. 3. Client protocol for the read operation.

the CODEX public key. By construction, for a homomorphic
cryptosystem such as RSA,

E(val(N)) x E(by) = E(val(N) x by)

holds and, by design, each CODEX server stores E(val(N)).
Thus, each CODEX server can compute E(val(N) x b,) from
information available to it (viz E(val(N)) and E(b,)) and
can then employ threshold decryption to obtain val(N) x b,
without ever materializing val(IN) or b,; so the confirmation
message sent to p contains val(N) x b,, which is undecipher-
able without b,,. And client p (which does know b,,) recovers
val(N) by dividing val(N) x b, by b,,.

Figure 3 details invocation message M gy and confirma-
tion message M r(v) for aread operation by a client p to
retrieve the value CODEX binds to a name N. Given the
preceding discussion, the presence of keyword read, name
N, credentials Cr(p, N), and encrypted blinding factor E(b,,)
in Mp(ny should not be surprising.

To understand the need for including knowledge of plaintext
proof TI(b,, p) in Mg n, consider aclient ¢ that is authorized
to read IV, but is under control of an adversary. And suppose
there were no requirement that clients provide knowledge of
plaintext proofs in invocation messages. Here is an attack that
alows ¢ to determine val(N): By intercepting an invocation
message from a client p, client ¢ learns E(b,); by intercept-
ing the corresponding confirmation message, client ¢ learns
val(N) x b,. Client ¢ now initiates read, twice, naming N,:

« first, ¢ sends encrypted blinding factor E(b,) (obtained

by interception); val(N,) x b, is returned

« second, ¢ sends encrypted blinding factor E(b,) for some

fresh b, known to ¢; val(IN,) X b, is returned.

Client ¢ can now recover b, by computing:

val(Ng) x by
(val(Nq) x bg)/bg

This knowledge of b,,, then allows client ¢ to calculate val (V)
from val(N) x b, (intercepted earlier). Note, however, that
g would be unable to provide II(b,,q) for its first read
invocation, so this attack is foiled by requiring read invo-
cation messages to contain knowledge of plaintext proofs for
encrypted blinding factors.

4. COCA ReDuUX: CODEX As A DISTRIBUTED SERVICE

The protocols used by CODEX resemble those in COCA,
since a reason for building CODEX was to explore how
broadly applicable those COCA protocols are. Grouped ac-
cording to function, here is a high-level description of the
protocols.

4.1 Coordinating Server Replicas

COCA and CODEX both employ server replication to
ensure availability; a Byzantine quorum system [28] stores
the service state. Each CODEX operation is implemented as
a sequence of service steps, where a service step involves the
servers comprising some quorum. The same quorum is not
necessarily involved in all service steps for a given operation,
because quorums are defined so that the intersection of any
two quorums contains a correct server—when performing a
service step X, results of al previous service steps are thus
available from the correct servers in the quorum performing
Y. For asystem with 3¢+ 1 servers, as many as ¢ compromised
servers can be tolerated if the set of quorums comprises al
sets containing 2t + 1 servers.

The service steps comprising an operation and the exis-
tence of quorums is hidden from CODEX clients. Besides
simplifying client interactions with CODEX, hiding such
internal details allows server cryptographic keysto be changed
periodically, a powerful defense (as discussed below in §4.3).

CODEX internals are hidden (as also done in COCA) by
employing a delegate—itself a CODEX server—to receive
the invocation message from a client and then to orchestrate
execution of the operation by initiating the various service
steps. The delegate is aso responsible for constructing the
confirmation message that is sent back to the client when op-
eration execution is finished; responses received from servers
are combined to form this response.

A single delegate could be compromised. Clients therefore
send each invocation message to ¢ + 1 servers, recruiting ¢ + 1
delegates so that at least one is correct. A response from a
correct delegate will be correct. Moreover, because delegate re-
sponses include cryptographically-secureinformation obtained
from a quorum of services, clients are able to identify and
reject corrupted responses from compromised delegates. (The
method for doing this—self-verifying messages—is sketched
below.) All responses from correct delegates will thus be
consistent; any responses from a compromised delegate will
either be consistent with the correct response or will be
detectable.

The existence of ¢ + 1 delegates leads to considerable
duplication of server effort, but idempotence of service steps
ensures these executions do not interfere with each other. Still,
there is the matter of performance, as each delegate forwards
the same requests to all servers, waits for (the same) responses,
and so on. Fortunately, an optimization employed in COCA
applies to CODEX as well.

« Servers cache copies of the response they compute for a
given request, so a server only has to do the real work
once and can reply to a duplicate request with a cached
response.

o Most of the delegates delay before starting, and each del-
egate immediately terminatesits activity if ever it receives
evidence® that another delegate has sent a confirmation
message back to the client. A delegate will see evidence
because, being a server, it is also processing delegates

50nly messages that cannot be forged constitute evidence that may be used
to cause delegate termination.



reguests on behalf of that same client’s ¢ other invocation
messages.

Each service step is performed by a subset of the CODEX
servers, not by all servers. States at correct servers could thus
diverge, and replica coordination becomes tricky. In COCA,
which supports operationsto read and update val ues associated
with names, server states include unforgeable integrity checks
and unforgeable ordered labels. When a COCA operation is
performed by a quorum, the state of one server in the quorum
is selected—specifically, a state is selected that satisfies the
integrity checks and has the largest label. This selection
criterion yields the most recent correct state, because every
pair of quorums intersects and every operation is performed
by some quorum.

In CODEX, the semantics of operations provides the ba
sis for a simpler way to determine which server's state is
most recent for any given CODEX name. This is because
the state-altering CODEX operations—create and write—are
performed only once for a given name, and the create must
precede the write. So a state in which a name N has been
defined is more recent than a state where N has not been
defined, and a state in which some value is bound to N is
more recent than a state in which no value is bound to V.
Moreover, by including the create confirmation message in a
write invocation (it is the fifth field; see Figure 2), a server
that was not involved in performing the create for a given
name but that is involved in processing a write for that name
always receives the justification it needs to perform a create
retroactively for that name.

The possibility does exist in CODEX for concurrent invo-
cation of conflicting operations with a given name, such as
multiple create operations (but with differing authorization
policies) or multiple write operations (but with differing
values). CODEX makes no guarantees about termination for
conflicting create and write operations, pushing the problem
onto CODEX clients. By transferring this burden to clients,
CODEX avoids an unsolvable agreement problem (given the
Asynchrony Assumption). So CODEX clients must synchro-
nize with each other and/or partition the name space to ensure
that conflicting operations are not executed concurrently. Au-
thorization policies Pc(N) and Py (N) provide the means to
enforce name-space partitioning.

Finally, some defense is needed against compromised clients
or servers, since they might not follow the CODEX proto-
cols and might send bogus messages in an effort to subvert
CODEX. CODEX employs the same defenses here as COCA.
All CODEX messages are constructed to be self-verifying,
which means the receiver of a message m has a validity check
to determine that information conveyed in m is not a replay
and is consistent with the CODEX protocols. A message that
passes the check is said to be valid. Receivers ignore self-
verifying messages that are not valid, effectively transforming
Byzantine server failures to message loss.

Typically, a message is made self-verifying by adding
cryptographically-protected information, such as a digital sig-
nature (perhaps even a threshold digital signature) or a cryp-
tographic proof of plaintext knowledge. Sometimes a validity
check will embody inferences involving messages from mul-

tiple distinct senders. One example is that if ¢t + 1 servers
attest to a statement P, then at least one correct server has,
so P must hold and a message attesting to P should pass the
validity test; another example is that if a quorum of servers
attest to a statement then it is safe to conclude that no quorum
of servers would attest to the negation of that statement.

4.2 Secure Links from Insecure Links

In CODEX, as in COCA, repeated message retransmission
is used to overcome message loss admitted by the Insecure
Links Assumption. Repeated retransmission of a given mes-
sage is ended once the sender has been notified of successful
receipt. This notification is usually signaled in a subsequent
message (sometimes, but not always, an acknowledgment)
from the receiver or from some other process that has received
a message (directly or indirectly) from the receiver.

Some CODEX protocol steps require that a message be
conveyed to any set comprising AckNo out of the 3t + 1
CODEX servers. This is implemented by executing 3t + 1
repeated sends in paralel, and terminating all once responses
have been received from AckNo servers.

Confidentiality of message contents is implemented in
COCA by encryption; CODEX in addition uses blinding, for
the performance reasons outlined in §3.3. Receivers detect
message alteration in both COCA and CODEX by employing
digital signatures.

4.3 Servers and Service Authentication

In CODEX, as in COCA, each server has a public/private
key pair, with the public key known to al servers (hence,
known to all delegates). Delegates can thus authenticate re-
sponses from servers and determine when responses have been
received from a quorum. Clients do not know server public
keys. This alows server private keys to be changed without
incurring an obligation to inform clients of the corresponding
new public keys.

The private key of a server is not only changed when server
compromise is detected but it is aso changed periodically.
Such periodic key refresh is known as proactive security,
since it anticipates and defends against undetected server
compromise as well as detected server compromise.

Recal from §3, confirmation messages are signed by
CODEX and secrets stored by CODEX are encrypted using
its public key. The corresponding private key is shared by
the n CODEX servers using an (n,t + 1) secret sharing
scheme, so no CODEX server has to be trusted with that
private key.® Threshold cryptography is then employed to
generate signatures on confirmation messages and to decrypt
content that was encrypted under the CODEX public key.
Specificaly, a delegate recruits t + 1 CODEX servers to each
generate partial cryptographic results using its share; these
results are then combined by the delegate. A set of ¢t 4+ 1
servers, by assumption, includes one that is not compromised,
so each threshold cryptographic operation is performed only if

6with an (n,t 4+ 1) sharing, there are n shares, any subset of size ¢t + 1
suffices for recovering the secret, but nothing about the secret can be learned
from a smaller subset.



some correct server has received sufficient evidence to justify
executing the operation.

An adversary must know at least ¢t + 1 shares in order to
construct the CODEX private key. Whereas the Compromised
Hosts Assumption rules out the adversary controlling ¢ + 1
servers, it does not rule out the adversary compromising one
server and learning the CODEX private key share stored there,
being evicted, compromising ancther, and ultimately learning
t+ 1 shares. To defend against such mobile virus attacks, both
COCA and CODEX employ the APSS [41] proactive secret
sharing protocol. This protocol is periodicaly executed, each
time generating a new sharing of the private key but without
ever materializing the private key at any server. Because older
secret shares cannot be combined with new shares, a mobile
virus attack would succeed only if it is completed in the
interval between successive executions of APSS, and this
interval can be as short as a few minutes. (Executions of APSS
measured by Zhou et al. take a few seconds [40].)

5. PERFORMANCE MEASUREMENTS

Performance measurements of CODEX were made both
for a LAN deployment and for an Internet deployment. Both
deployments comprised four servers running on separate hosts,
s0 the system was capable of tolerating a single compromised
server (i.e, t = 1 is being assumed). We also assumed for our
experiments that the first delegate that a client contacted was
correct, which we modeled by deploying a single delegate
(rather than ¢ + 1 delegates) on one of the hosts running a
CODEX server.” Our measurements were performed using
the Unix getrusage system call, which has an inherent
granularity of 10ms; values presented are the means and RMS
variances of the distributions.

ElGamal [12] is used in the prototype for encryption, and
RSA [34] is used for digital signatures.® The public moduli for
RSA and ElGamal are 1024 hits. Private keys are split into five
shares—four are randomly generated and the fifth constrains
the sum of all the shares to be the shared secret. Each server
receives three of the four random shares and the fifth “public”
constraint share.®

In the CODEX prototype, secure communication is estab-
lished using the OpenSSL implementation of the TLS ver-
sion 1 protocol. Connections between servers are maintained
for aslong as possible; the impact on protocol execution times
caused by using these secure links is thus minimal.

We conjectured that modular exponentiations for cryp-
tographic operations would dominate the most expensive

"The case where the first delegate contacted is compromised is no different
for CODEX than for COCA. Since the performance implications of this were
explored extensively in the evaluation of COCA, making the simplifying
assumption here of a correct delegate seemed defensible.

8A suitable proof of plaintext knowledge for RSA was not known to
us at the time we ran these experiments or we would have used RSA for
encryption as well asfor digital signatures. In fact, avariant of the Fiat-Shamir
identification protocol can be used for proofs of plaintext knowledge [30],
[21].

9Here, we follow the convention of [31], in which al private shares are
generated in the same way and are independent of one another. A simpler
scheme would generate only four shares, where the fourth adds the necessary
congtraint to the three random shares and each server receives only three
shares, but the security of such a sharing has not been proved.

CODEX operations, so we decomposed the cost of crypto-
graphic operations accordingly. To simplify the exposition,
costs are normalized to T4, the cost of performing one
exponentiation with an exponent on the order of the size of
the public modulus.

Message Signing: This operation involves one exponen-
tiation with an exponent on the order of the size of the
public modulus. The cost for message signing is thus, by
definition, T'g;,.

Partial Signatures: This operation involves one expo-
nentiation but the size of a threshold RSA share is
approximately twice that of the public modulus, so that
exponentiation takes twice as long. The exponentiation
must be done for each of the four shares held by a server.
We therefore expect cost of computing a partia signature
to be approximately 87 .

Partial Decryption: This operation is similar to partia
signature generation, except that threshold ElGamal does
not require shares larger than the public modulus. The ex-
pected time for a partial decryption is thus approximately
ATy

II(s,p) Verification: This operation involves two expo-
nentiations, one approximately the size of the public
modulus and the other using a 160-bit (SHA-1) hash
output: an approximate cost of 1 4+ 160/1024 with our
normalization. For a delegate, this computation must be
done twice, since the delegate also receives the request
as a server. Therefore the cost of checking I1(s, p) proofs
is approximately 2.37;, for a delegate and 1.27;, for
other servers.

DLProof Generation: When using ElGamal, a simulta-
neous discrete log proof is needed to demonstrate that a
partial decryption result is correct. Generating this proof
requires two exponentiations and must be done for each
of the four shares held, so the cost for generating a
simultaneous discrete log proof is approximately 87 ;.

DLProof Verification:  Verifying a simultaneous discrete
log proof involves four exponentiations, where two use
hash results as exponents. The hash algorithm (SHA-1)
has a 160-bit output, so the normalized cost of each
verification is 2 + 2 - (160/1024). Each server must
perform this verification on the partial results from five
shares when examining the supporting evidence for a
read confirmation message, which costs 11.5T;,. The
delegate must aso verify the proofs from the partial
results of four shares contributed by each of thetwo (¢t+1)
servers needed to form a threshold decryption, or eight
additional verifications costing 18.57';,, for a total cost
to the delegate of 307, for 13 verifications.

From these individual costs and the protocol details (see
Appendix A), we can predict the total cost of each CODEX
operation. Note, the cost of checking a signature is negligible,
so this is ignored in the accounting that follows. A create
operation costs'® each server roughly 9 Tig. A write operation

0Each server signs the request as part of its ACCEPT in step 3a, which
costs T4, and each server generates a partial signature in step 4b, which
costs 87%;g.



TABLE 1
PERFORMANCE OF CODEX OVER A LAN.

Operation Total CPU Time (ms) Non-Idle Time (ms) Idle Time (ms)

create 172.8 £4.1 170.8 £5.1 7.0+ 4.0
write 241.6 +4.7 239.3 +6.1 7.4+4.8
read 1055 £ 5.3 1052 £ 7.3 8.0+5.3

The stetistics for each of the measurements come from 110 requests. All times
are measured on the delegate.

will cost about 12.3 Ty, for the delegate’ and 11.2 Ty,
for other servers’. A read operation will cost the delegate!®
roughly 53.3 T's;, and other servers'® 33.8 T;,. In the absence
of other significant time costs, we would then expect (for the
delegate) write to take about 1.37 times as long as create and
expect read to take about 5.92 times as long as create. This
is consistent with actual measurements reported below.

5.1 LAN Deployment

The LAN deployment of our CODEX prototype comprised
four dual-Pentium 111 systems (1130MHz processors) running
Linux. Round-trip times for ICMP echo packets typically
measured well under 1ms, making network delays unobserv-
able. The hosts and the network were relatively quiescent
during the experiment. The client was executed on a separate
machine; its processing and latency times are not included in
our measurements.

Mean execution times measured for CODEX create, write,
and read operations are shown in Table 1, and the fractions of
time spent performing various actions are shown in Table 2.
To minimize the impact of network latency and process
scheduling on the values reported in Table 2, time spent on
cryptographic operations is compared to the non-idle time
rather than the total time. Observe that a CODEX read takes
the longest of the three CODEX operations and the cost of
read is dominated by creating and verifying proofs of correct
partial decryption, as expected. The other significant processor
time cost for read is computation of partia cryptographic
results, also in agreement with predictions.

Table 3 gives direct comparisons with predictions of the
costs for the various cryptographic operations. All measured
ratios are consistent with our predictions, so we feel confident
that modular exponentiations are indeed the dominant cost of
the CODEX protocols in a LAN deployment.

An adversary can launch a number of attacks on the service.
We consider two, both attempted denias of service:

UThe delegate verifies I1(s, p) proofs in steps 1 and 3, costing 2.3 Ty,
generates signatures in steps 3a and 5a, for a combined cost of 2 7;;,, and
generates a partial signature in step 6b, which costs 8 73;, .

2A non-delegate server only has to verify one II(s, p) proof, in step 3, so
the verification cost is now only 1.2 Ti;,.

13The delegate verifies I1(by, p) proofs in steps 1 and 2, costing 2.3 Ty;g .
In step 2a it performs a partial decryption (4 T3;,), generates a discrete log
proof (8 Ts;y), and generates asignature (T, ). It verifies 13 separate discrete
log proofs in steps 3 and 3a, for 30 T};,, and generates a partial signature in
step 3b costing 8 Ty

40nly one TI(by,p) proof is verified by a non-delegate server, so that
cost is reduced from 2.3 Ty, to 1.2 Ty;y. Similarly, only five discrete log
proofs need to be verified (the others are performed by the delegate in order
to assemble the response and evidence), reducing the DLProof verification
cost to 11.5 T;g.

TABLE 2
COSTS OF OPERATIONSFOR CODEX ovER A LAN.

create write read
TLS 0.01240.025 0.011 & 0.021 0.006 4 0.006
Message Signing 0.104 4 0.027 0.144 £+ 0.023 0.017 £ 0.004
Partial Signature 0.818 +0.040 0.590 4+ 0.018 0.130 4 0.004
Partial Decryption 0.071 + 0.003
II(s,p) Verification 0.212 +0.026  0.048 + 0.005
DLProof Generation 0.130 = 0.003
DLProof Verification 0.593 + 0.007
Other 0.043 +0.045 0.035 +0.031 0.007 4 0.008

The values shown are fractions of the non-idle time spent on the operation.
The statistics for each of the operations come from 110 requests. All times
are measured on the delegate.

TABLE 3
RATIOS OF TIME SPENT IN VARIOUS CRY PTOGRAPHIC OPERATIONS
RELATIVE TO MESSAGE SIGNING.

Observed Ratio  Predicted Ratio
Partial Signature 6.8+ 1.3 8
Partial Decryption 3.6 0.7 4
II(s, p) Verification 2.5+0.5 23
DL Proof Generation 6.8+1.3 8
DLProof Verification 29.3+5.4 30

Observed quantities are averaged over the operations in which they are used.

« an attack that increases message | atencies between servers
« an attack that decreases CPU cycles available on servers.

For the first class of attacks, increased message latencies
were simulated by modifying the CODEX binary so that
message delivery could be delayed in a controlled way. We
then ssimulated having one link under attack and then having
two links under attack. (Recall, the client delegate is never
attacked in our experiments.) The performance of CODEX
under these attack scenarios is shown for create and write in
Fig. 4; there was little point in measuring the performance
of read, because it requires participation of only 2 (i.e,
t + 1) servers so delaying 2 out of 4 servers does not delay
completion of this operation.

The horizontal axis in the graph of Fig. 4 is the fixed
latency (in seconds) added to message delivery for links under
attack; the vertical axis is the time taken to process a request.
Notice that CODEX performance does not degrade when only
asinglelink isunder attack. Thisis because a4 server CODEX
system can tolerate a single compromised host. But when two
links are being attacked, any request requiring 2t + 1 (i.e., 3)
responses will be affected by the added latency—each added
second of latency adds one second to the processing time
for such operations. So link latencies only affect rounds of
communications requiring 2t + 1 responses, and we conclude:

o The threshold signatures in create and write are unaf-
fected.

« The create operation requires one round of communica-
tions with 2¢ + 1 servers (the forwarding of the request
and receipt of ACCEPT messages), so it is affected.

o The write operation requires two rounds of communica
tions with 2¢ +1 servers (one for My, () and ACCEPT,
and another for VERIFY and VERIFIED), so it is delayed
twice as much as create.

We next simulated an attack that steals CPU cycles from



Time taken during Link Attack

| -©--create, 1 slow link (fit CL=99.99%)
--e--create, 2 slow links (fit CL=78.93%)
[~--write, 1 slow link (fit CL=98.21%)
| —®—write, 2 slow links (fit CL=10.81%)

Processing time (s)
N

| slope = 1.9994 0.0009

2 |- .
““slope = 1.0004 0.0007
{ | L | | |
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Round-trip latency (s)

Fig. 4. Processing time for requests as a function of the effectiveness of an
attack against the network. Times are measured by the wall clock. Each point
represents fifty requests with standard-deviation error bars marked. Fits and
confidence levels (CL) are shown, with the one-link points fit to a constant
and the two-link points fit to a line.

CODEX by running additional CPU-intensive processes on
servers under attack. The results are shown in Fig. 5. The hor-
izontal axis shows the number of CPU-intensive background
processes competing with the CODEX server process, and
the vertical axis is the time required to complete a request.
Processing times and variances are shown for varying attack
strengths, with fits to the expected dependences.

As with the network attack, attacking a single server does
not affect performance, since 2¢+ 1 servers remain unaffected.
Fig. 5 shows that the time required to process a create or
write request increases linearly with the additional load on
the processors. But the slopes here are shallower because
the computations are not concentrated in the protocol steps
requiring full-quorum participation.

« For the create operation, over 80% of the time is spent
in partial signature generation, which is unaffected, and
that suggests the slope of the graph should be under 20%
of the baseline time.

o For the write operation roughly 60% partial-signature
time trandates to a slope of |ess than 40% of the baseline.

In both cases the dopes in Fig. 5 are actually somewhat
smaller, in part because of other expensive operations un-
affected by the attack and in part because of issues such
as process scheduling which might tend to favor the server
process over the background processes.

Time taken during Processor Attack

| --®-create, 2 slow processors (fit CL=96.34%)

| —m—write, 2 slow processors (fit CL=77.42%)

slope = 0.031 0.006 #process
baseline = 0.27% 0.002 s

o
4]

Processing time (s)

0.25 F '

slope = 0.011 0.008 gprocess
| baseline = 0.193-0.001 s

I S RS R SR S
0 0 2 4 6

# Background Processes

Fig. 5. Processing time for requests as a function of the effectiveness of
an attack against servers. Times are measured by the wall clock, and each
point represents fifty requests with standard-deviation error bars. Linear fits
and confidence levels (CL) are shown for two-server attacks. For clarity one-
server attack results are omitted. Baseline values represent the processing time
in the absence of an attack.

TABLE 4
AVERAGE ROUND-TRIP TIMES FOR | CMP ECHO PACKETS.

INRIA Academia Sinica  UT Sydney

Cornell 135.3 £45.2 203.1 £ 0.6 223.5 + 0.6
INRIA 296.4 + 18.1 323.1 +£2.8
Academia Sinica 376.9+0.9

All times are measured in milliseconds and are averaged over ten round trips.

5.2 Internet Deployment

The Internet deployment of our CODEX prototype used for
servers the PlanetLab® Pentium 4 processors running Linux
and located at:

« Cornell University, Ithaca NY (1795MHz)

« INRIA, Sophia-Antipolis France (2193MHz)

o Academia Sinica, Taipel Taiwan (2392MHz)

o University of Technology at Sydney, Sydney Austraia
(1795MHz)

The server at Cornell also was the delegate. Average round-
trip times for ICMP echo packets at the beginning of the
experiment are shown in Table 4. Asin the local deployment,
the client was executed on a separate host (also located at
Cornell) and was not included in the measurements.

Mean execution times for CODEX create, write, and read
operations are given in Table 5; the fractions of time spent
performing various actions are shown in Table 6 (again relative

Bhttp://www.planet-lab.org



TABLE 5
PERFORMANCE OF CODEX OVER THE INTERNET.

Operation Total CPU Time (ms) Non-Idle Time (ms) Idle Time (ms)

create 324.3 +41.8 197.9 £ 16.4 133.0 £ 38.7
write 490.4 £ 53.3 277.3 £28.6 215.5 £ 54.6
read 1441 £ 117.5 1404 £+ 113.8 43.3+33.0

The stetistics for each of the measurements come from 110 requests. All times
are measured on the delegate.

TABLE 6
COSTS OF OPERATIONSFOR CODEX OVER THE INTERNET.

create write read
TLS 0.007 +£0.017 0.010 £ 0.019 0.004 £ 0.005
Message Signing  0.108 +0.022 0.145 £+ 0.021 0.018 4 0.008
Partial Signature 0.855 + 0.040 0.606 4+ 0.040 0.238 4+ 0.033
Partial Decryption 0.059 £ 0.007
II(s,p) Verification 0.209 + 0.026  0.039 + 0.005
DLProof Generation 0.117 + 0.009
DLProof Verification 0.515 + 0.030
Other 0.031 +£0.043 0.028 +0.031 0.008 + 0.006

The values shown are fractions of the non-idle time spent on the operation.
The statistics for each of the operations come from 110 requests. All times
are measured on the delegate.

to non-idle time to reduce sensitivity to latencies and schedul-
ing); and comparisons with predictions are given in Table 7.
A processing time of 1.4s for a CODEX read suggests that
current-generation commaodity hardware could handle roughly
40 requests per minute.

The time required for CODEX to produce a response is
longer for the Internet deployment than the for LAN deploy-
ment. Mostly, this is a result of slower connections between
servers. But processing times also increased—despite hav-
ing faster processors in the Internet deployment. We believe
this increased processing time can be attributed to memory
swapping with the Internet deployment. The entire CODEX
executable resided in RAM with our LAN deployment, but an
examination of the Cornell PlanetLab machine revealed only
50% of the CODEX executable to be resident, with the rest
in swap space.

6. RELATED WORK

CODEX is structurally similar to e-Vault[19], which is a
data storage and key management system but, in contrast to
CODEX, is not intended to distribute secrets. Both e-Vault
and CODEX employ blind decryption of public-key encrypted
data, a transparent client interface, and secure data storage.
Whereas CODEX holds one private key for the service as a

TABLE 7
RATIOS OF TIME SPENT IN VARIOUS CRY PTOGRAPHIC OPERATIONS
RELATIVE TO MESSAGE SIGNING.

Observed Ratio  Predicted Ratio
Partial Signature 8.5+2.9 8
Partial Decryption 3.3+1.0 4
II(s, p) Verification 2.34+0.7 23
DLProof Generation 6.3+ 1.8 8
DLProof Verification 27.2+£7.7 30

Observed quantities are averaged over the operations in which they are used.

split secret, e-Vault holds the private keys of al its clients
as split secrets. By using a client’s public/private key pair to
protect its symmetric keys, e-Vault obviates the need for the
proofs of plaintext knowledge that CODEX requires. But with
many more private keys as split secrets, the cost of the periodic
share-refresh is much higher for e-Vault than for CODEX.
Also, e-Vault makes a (weak) synchrony assumption, so it
exhibits a vulnerability to network-delay attacks.

Fraga and Powell[15] present what is perhaps the first
intrusion-tolerant data storage service in the context of a file
system. In their system, files are fragmented and stored on a
set of archive servers. Access to files is governed by secu-
rity servers, to which a client must authenticate. A separate
symmetric key must be held by the client for each server.
Unlike CODEX, this system employs concurrency control in
order to make operations atomic, though atomicity need only
be enforced on a per-file basis.

Other work closely related to CODEX concerns key dis-
tribution and key management systems, including multicast
key distribution systems, fault-tolerant key distribution centers
(KDCs), and key escrow systems.

Multicast Key Distribution. Large-scale key distribution has
been studied extensively for encrypted broadcast and multicast
applications (see [13] for a survey). The god is to distribute
secrets from a sender to authorized recipients. These schemes
are predominantly coordinated by the sender (or a service
acting as its proxy) and require the sender to know all of
the authorized recipients.

The design of [11] shifts some of the coordination to
servers acting as “ subgroup managers’ and employs capability
certificates to authorize recipients so that the recipient set need
not be known a priori. A dual encryption scheme isolates most
recipients from changes necessitated by new clients joining or
leaving the broadcast group. The sender still keeps track of
what clients belong to the group, though this is only needed
to prevent a client from joining multiple subgroups and forcing
a greater number of key changes. This design has very good
scaling properties; it is not particularly fault-tolerant, though.
Specifically, the protocols are ill-equipped to handle any faults
that are not fail-stop and there is no integrity guarantee for the
keys distributed. These properties—scalability without strong
delivery assurance—are sensible for some applications, such
as pay-per-view television broadcasts or online multimedia
streaming. CODEX, in contrast, provides stronger delivery
assurance, albeit without as good scaling properties.

Fault-tolerant KDCs. Much work has been done in con-
structing fault-tolerant KDCs. These are primarily credentials-
issuing services, creating fresh secrets (symmetric keys) rather
than distributing existing secrets (as CODEX does).

Deswarte et al. [10] describe a system that performs both
authentication and authorization. Both operations are per-
formed by distributed services and result in a client receiving
one or more session keys (possibly included in tickets). For
authentication, the client must authenticate itself to each
server, and in order to tolerate faulty servers the client must
share a distinct secret with each server. This makes adding
new clients and servers expensive, though the authors note
that a public key cryptosystem could be used instead of shared



secrets. Authorization uses the session key returned by the
authentication phase, and a single key can be used for all
authorization servers.

The Kupereg[22] authentication service combines the func-
tionalities of a KDC and a certification authority; it comprises
asingle KDC and replicated ticket-granting servers, and thus,
unlike CODEX, has asingle point of failure. Because Kuperee
uses public keys to identify clients, it obviates the usual
KDC requirement that a secret be shared with each client.
Kuperee still must maintain some information about clients,
namely their public keys, but these need not be protected using
proactive secret sharing.

More traditional KDCs are presented by Gong[20] and Naor
et al.[29]. The service shares a secret with each authorized
client in these. Both systems tolerate Byzantine faults; the
system discussed in [20] assumes synchrony between replicas,
hence it is vulnerable to certain denial of service attacks.
The system in [29] involves no synchrony assumption (like
CODEX), but (unlike CODEX) requires secure links between
clients and individual servers, which further increases the over-
head of proactive recovery by requiring clients periodically
to receive updated server public keys or new link-specific
symmetric keys. When a client needs a new symmetric key,
it participates in a threshold calculation of a pseudo-random
function dependent on a KDC secret key. This direct client
participation is more efficient than the transparent design of
CODEX, and it might be appropriate in situations where
operational efficiency is significantly more important than
recovery efficiency. We could have designed CODEX aong
these lines, but it would have meant abandoning the transparent
interface and incurring higher proactive recovery cost.

Key Escrow. Key escrow systems store client secrets (pri-
vate/symmetric keys) for access by third parties (eg, law
enforcement) with appropriate authority. In the context of
CODEX, this is equivalent to requiring authorization policies
for the read operation to recognize special credentias.

Chen et al.[5] describe a key escrow system that mediates
Diffie-Hellman key agreement between clients, potentially in
different domains, and in which a threshold number of servers
must participate in order to recover the negotiated session key,
which is split among the servers using secret sharing. This
differs from a KDC in that the system merely acts as a proxy;
it does not enforce any sort of authorization. The primary
functionality of this system is computation, rather than storage
or distribution.

The Q key management service[33] also implements key
escrow, though it manages private keys rather than symmetric
keys. Q aso servesas a CA, a private key repository, and a de-
cryption service. It is built using the Rampart[32] toolkit 6 and
tolerates Byzantine failures by using state machine replication.
Q) assumes a synchronous system, relying on timeouts to make
progress, and requires secure links between clients and servers,
again requiring that clients be kept abreast of new server public
keys. Because escrowed keys are stored using secret sharing,
proactive recovery requires that shares be regenerated for each
escrowed key.

16A similar toolkit is discussed in Cachin[3].

10

7. CONCLUDING REMARKS

We expected that building CODEX would be a straight-
forward exercise in applying the architecture that we had
developed for COCA. In some ways it was; in other ways
it wasn't.

The idea of having a service key and implementing it
as a shared secret that is proactively refreshed but never
materialized at any server worked well in CODEX, just as
it did with COCA. The idea of carefully choosing a service
interface so that impossible problems (e.g., agreement in an
asynchronous system) need not be solved within the service
also again worked well. Some services cannot be built while
following these tenets; by constructing first COCA and now
CODEX, we have contributed a bit to better understanding
which services can.

A surprise in developing CODEX was that read and write
invocations must include proofs of plaintext knowledge or else
attackers can learn secrets CODEX is storing. The approach
to attack-tolerance embodied in CODEX (and COCA) does
not address vulnerabilities in the service operations, their
interfaces, or their semantics. Such a separation is convenient,
but attacks that abuse the service interface must ultimately be
addressed too. Methods to identify service-interface vulnera-
bilities are badly needed.

APPENDIX A
CODEX ProTocoL DETAILS

Descriptions of CODEX protocols for create, write, and
read operations are given below. These protocols assume each
server has a public/private key pair, where the public key is
known to al servers; for a message m, we write o,;(m) to
denote the signature server .S; computes using that private key.
Each server also stores a share of the CODEX private key, with
shares periodicaly refreshed using the APSS [41] proactive
secret sharing protocol.

To simplify the exposition, the protocols below are formu-
lated in terms of communications links implementing confi-
dentidity, integrity, and mutual authentication of end hosts.
This link semantics is achieved in CODEX with a shared
session key established by TLS using the public/private key
of each server.

A.1 Protocol Details. create
Client p sends invocation message

MC(N): <Createa N, CC(pa N)7PW(N)7PR(N)>P

to ¢t + 1 delegates. Each delegate D upon receiving M ¢ ()
from a client p proceeds as follows.

1) D determines the validity of My by checking that

p is authorized to create this name and checking the
signature on M¢ (). If apreliminary registration exists
for N at D, then D also checksthat M ¢y is consistent
with that registration.

2) &) If thereisnoregistration for name N at D, then D
stores M¢ (), Creating a preliminary registration
for N. Whether or not a new preliminary regis-
tration for N was just created, D next forwards



M¢(ny dong with anonce n to al 3t +1 CODEX
servers S;

Vi.D — S; :n, Mc(n)

using a repeated send primitive and awaiting ac-
knowledgments from 2t + 1 servers.

b) If thereis a verified registration for name N at D
matching M) then D sends cached correspond-
ing confirmation message J\ZIC(N) to client p and
terminates the protocol.

c) Otherwise, D terminates the protocol.

3) Upon receipt of amessage “n, M ¢ ()" from D, a server

S; determines validity of the message by using the

validity tests of step (1).
a) If Mgy isvalid then S; stores M¢ (), creating
a preliminary registration for name N and replies

Si —D: TL,ACCEPT7JZ(M0(N))

b) If there is a verified registration for name N at
S; matching M¢(ny then S; sends cached corre-
sponding confirmation message J\ZIC( ~) to delegate
D.

Si — D TL,Mc(N)

D, upon receipt and determining that this message
is valid, stores the verified registration and replies
to client p:

D — p: MC(N)

) If Mgy is not determined to be valid then S;
rejects the request:

S; — D :n,REJECT

If D receives REJECT messages from ¢+ 1 servers
then obtaining a quorum in step 2a will not be
possible, so D terminates the protocol.

4) An ACCEPT message received by D is determined to

be valid if third field o;(M¢(ny) checks. Each valid
ACCEPT message received by D is added to an evi-
dence set £p. Once 2t + 1 pieces of such evidence have
been collected, no other registration for name N can be
accepted, so D creates a verified registration for N and
composes confirmation message J\ZIC( ~) by invoking a
threshold signature protocol with all servers. Let J\ZIC‘( N
be confirmation message J\ZIC( ~) Without the CODEX
signature.

a) Vi.D — S;: Ep, Mg(N)

b) D awaits partial signatures from ¢ + 1 servers and
uses those partial signatures to construct MC( N)-
Confirmation message My is cached at D.

C) D—p: MC(N)

A.2 Protocol Details: write
Client p sends invocation message

My (n): (write, N, Cw (p, N), E(s), Mo(ny, (s, D)) p
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to ¢ + 1 delegates. Each delegate D upon receiving My ()
from a client p proceeds as follows.

1

2)

3

4)

5)

6)

D determines the validity of My () by checking that p
is authorized to write this name, checking the signature
on My, checking the validity of create confirmation
Mg, checking the validity of knowledge of plaintext
proof II(s,p), and checking that val(N) a D either
aready equals E(s) or is uninitialized.

If Myy(ny is valid then D localy binds E(s) to name
N and then forwards My (ny aong with a nonce n to
al 3t + 1 CODEX servers S;

Vi.D — S; i n, My (n)

using a repeated send primitive and awaiting acknowl-
edgments from 2t + 1 servers.
Upon receipt of amessage “n, My (ny” from D, aserver
S; applies the validity checks of step (1).
a) If My isfoundto bevalidthen S; localy binds
value E(s) to name N and replies

Si —D: TL,ACCEPT,O’Z(MV[/(N))

b) If Mc(ny is not found to be valid then then S;
rejects the request:

S; — D : n, REJECT

If D receives REJECT messages from ¢+ 1 servers
then it terminates the protocol.

An ACCEPT message received by D is deemed valid
if third field o;(Myy(n)) checks. Each valid ACCEPT
message received by D is added to an evidence set £ p.
When 2¢+1 pieces of such evidence have been collected,
D sends to all servers a message indicating the value
to which N should become bound. In what follows,
n’ is a fresh nonce, MI;,(N) is confirmation message
MW( ~) but without the CODEX signature, and the send
is repeated until 2t + 1 responses are received.

Vi.D — S; :n/,VERIFY, My (n, Mv_wNwED

A VERIFY message received by a server S; is deemed
valid if accompanying evidence set £p contains 2t + 1
valid ACCEPT messages.
a) Upon receipt of a valid VERIFY message, server
S; binds E(s) from My to name N and replies
to D:

Si — D+, VERIFIED, 3 (My, )

b) If the VERIFY message is not valid, then server
S; rejects the request:

S; — D :n,REJECT

If D receives REJECT messagesfrom ¢+ 1 servers
then it terminates the protocol.
Each VERIFIED message received by D is added to
evidence set £,. Once &, contains 2t + 1 pieces of
evidence, D invokes a threshold signature protocol with
all servers:



&) Vi.D — S Ep, My
b) D awaits partial signatures from ¢ + 1 servers and
uses those partial signatures to construct My ().

A.3 Protocol Details: read

Client p selects a random secret blinding factor b,,, encrypts
it using the CODEX public key, and sends invocation message

Mpgny: (read, N,Cr(p,N), E(b,), 11(by, p))p

to ¢t + 1 delegates. Each delegate D upon receiving M gy
from a client p proceeds as follows.

1) D determines the validity of My ) by checking the
signature on M gy and checking validity of knowledge
of plaintext proof I1(b,, p). If D knows'’ Pr(N) then
it aso checks that p is authorized to read this name.

a) If My isvdid then D forwards Mgy adong
with anonce n to al 3t + 1 CODEX servers S;

Vi.D — S; :n, M)

using a repeated send primitive and awaiting ¢ + 1
REJECT messages or ¢t + 1 ACCEPT messages
with partial decryptions from the same sharing.

b) If Mgy is not vaid then D terminates the
protocol.

2) Upon receipt of amessage “n, M g(ny” from D, a server
S; applies the validity checks of step (1) and checks
whether some vaue val(N) is localy bound to name
N. If no value is locally bound to N, then D ignores
the request. Otherwise:

a) If the validity checks are passed then S; computes
blinded ciphertext ¢; = E(val(N) x b), its partia
decryption D;(¢;) according to the share stored by
S, of the CODEX private key, and proof DL; of
the validity of D;(c;). This information is sent to
D:

Si — D : n,ACCEPT, 0;(Mg(n)), ¢i, Di(ci), DL;

b) If the validity checks did not pass then S; rejects
the request:

S; — D : n, REJECT

If D receives REJECT messages from ¢+ 1 servers
then it terminates the protocol.

3) An ACCEPT message received by D is deemed valid
if 0;(Mpny) checks and DL; is valid. Each valid AC-
CEPT message received by D is added to an evidence
set £p. When ¢ + 1 pieces of such evidence have been
collected, D invokes a threshold signature protocol with

all serversto sign Mﬁ( N) creating confirmation message

MR(N): R
a Vi.D— S;: Eb,Mg(N
b) D awaits partial signatures from ¢ + 1 servers and
uses those partial signatures to construct Mg ).
) D—p: MR(N)

17 D might not have participated in the create operation (either directly or
by receiving a valid write request), so D might not know Pr(N).
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APPENDIX B
NON-MALLEABLE PROOF II(m, C)

For ElGamal [12], an encryption of m can be written
(¢" mod P,m x y" mod P), where (P,g,y) is the public
key and r is a random exponent chosen by the encryptor.
Knowledge of » alows us to compute m (the converse is not
true), so for a non-malleable proof II(m, C) that principal C
knows m given E(m), it suffices to prove that C' knows 7.

We base the construction on a result by Schnorr and
Jakobsson[37] in which they present a non-malleable form of
ElGamal encryption using a Schnorr signature[36] to make
modification of the ciphertext detectable. Constructing this
signature requires knowledge of r, and we exploit this to
construct II(m, C) by including C’s identity in the signature.
The signature is non-malleable, so no other identity can be
substituted for that of C.

All operations are modulo a large prime P of the form
P =2Q+1, where ( is another large prime. The construction
in[37] is.

1) Select r, s uniformly at random in Zg.

2) Compute ¢ = H(g®,g",m x y"), where H is a secure

hash function, such as SHA-1.

3) Compute z = s + cr (over Z, not Z p).

4) Output the signed  encryption:

(g",m xy",c,z) = (a,b,c,2)
A signed ciphertext (a, b, ¢, z) is valid if H(g*a¢a,b) = ¢
holds. Schnorr and Jakobsson prove that this construction is
secure against adaptive chosen ciphertext attacks.

Our contribution is noticing that step 2 can be changed to
include C’s identity (such as a certificate or credentials), which
we will also denote C. Step 2 then becomes

2") Compute c = H(g®,g",m x y",C).
This new construction is a valid signature if
H(g?a=¢a,b,C) = ¢ holds. Thus in addition to non-
malleability we have a binding of the ciphertext to a
particular identity. The security of this scheme is the same as

in [37).

E(m,r,s) =
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