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Abstract—Securing ad hoc networks is notoriously challenging, notably due to the lack of an online infrastructure. In particular, key

management is a problem that has been addressed by many researchers but with limited results. In this paper, we consider the case

where an ad hoc network is under the responsibility of a mother certification authority (mCA). Since the nodes can frequently be

collectively isolated from the mCA (e.g., for a remote mission) but still need the access to a certification authority, the mCA preassigns

a special role to several nodes (called servers) that constitute a distributed certification authority (dCA) during the isolated period. We

propose a solution, called DICTATE (DIstributed CerTification Authority with probabilisTic frEshness), to manage the dCA. This

solution ensures that the dCA always processes a certificate update (or query) request in a finite amount of time and that an adversary

cannot forge a certificate. Moreover, it guarantees that the dCA responds to a query request with the most recent version of the queried

certificate in a certain probability; this probability can be made arbitrarily close to 1, but at the expense of higher overhead. Our

contribution is twofold: 1) a set of certificate management protocols that allow trading protocol overhead for certificate freshness or the

other way around, and 2) a combination of threshold and identity-based cryptosystems to guarantee the security, availability, and

scalability of the certification function. We describe DICTATE in detail and, by security analysis and simulations, we show that it is

robust against various attacks.

Index Terms—Ad hoc networks, system design, security, public-key infrastructure, Quorum Systems, simulations.
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1 INTRODUCTION

AD hoc networks are collections of peered mobile nodes
that communicate through wireless links. Such net-

works require stringent security protocols to protect their
nodes from various attacks [1], [2]. However, implementing
these protocols is difficult because these networks are
constructed without using an online infrastructure and
because the wireless links are particularly vulnerable. In
this paper, we design a secure and efficient public-key
infrastructure (PKI) for ad hoc networks.

Public-key cryptography supports mechanisms that

achieve security objectives such as confidentiality, authen-

tication, and nonrepudiation. It can also pave the way for

applying symmetric-key cryptography by bootstrapping a

secured channel through mutual authentication and the

establishment of a shared secret. However, a carefully

planned PKI1 is necessary to implement these security

mechanisms. In the Internet, PKIs (e.g., [3]) usually involve

a certification authority (CA), which is a trusted third party

(TTP) that certifies the authenticity of the binding between a

public key and its subject entity. Whereas a CA can be

implemented in a centralized server for a certain authority

domain, a distributed implementation [4] could be prefer-

able for improving availability. As an alternative, PGP [5] is

a more flexible PKI that enables users to enjoy public-key

cryptography without any support from a CA.
In ad hoc networks, centralized CAs can work only for

small authority domains, since the availability of such a CA

would be problematic in a large domain due to the highly

dynamic network topology. Based on this consideration and

on previous results for wired networks, existing proposals

for building a PKI in ad hoc networks can be classified into

two main trends: 1) A single authority domain across the

whole network with a distributed implementation of CA

[1], [2] and 2) multiple authority domains of small sizes

with a “centralized” authority for each [6].
In addition to distributing the certification authority,

applying the joint authority approach [7], [8] can further

increase the security of a CA in large distributed systems.

This approach advocates the combination of an offline

identification authority (IA) and an online revocation authority

(RA). The IA authenticates the initial binding between a

public key and its subject entity, and the RA keeps track of

the status of certificates issued by the IA. Thanks to this

separation, compromising the online authority (which is

usually more vulnerable than an offline authority) does not

enable the adversary to issue certificates to new users,

which limits the consequent damages. In spite of the
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apparent advantage, no known proposal for ad hoc net-
works has adopted this approach.

Our proposal improves the joint authority approach to
build a PKI for ad hoc networks. Our approach uses an
offline IA to issue initial certificates and also to assign
special nodes (or servers) to constitute an online distributed
RA. We propose a DIstributed CerTification Authority with
probabilisTic frEshness (DICTATE) to manage the online
RA. DICTATE applies threshold cryptography to distribute
trust among the RA servers. It also makes use of the services
provided by PILOT, a group communication system we
proposed in [9]. To issue a (public-key) certificate, DIC-
TATE requires a defined number of RA servers to sign the
certificate and then replicates it in a quorum of RA servers.
In response to a certificate query, DICTATE forwards it
again to a quorum. Our underlying PILOT system guaran-
tees that one quorum forms a probabilistic intersection with
another, so that in practice a certificate query acquires, with
a high probability, the most recent status of the targeted
certificate. Our solution is network friendly: DICTATE can
tune the protocol performance online to a desired trade-off
between the freshness (of a certificate status) and overhead
(to achieve the freshness), according to the level of the
required freshness and network resource consumption.

The remainder of this paper is structured as follows:
Section 2 surveys the existing solutions and summarizes the
motivations for our work. Section 3 details the problem to
be solved and the system model. Section 4 presents our joint
authority design and DICTATE protocols. Section 5
analyzes DICTATE against different attacks. Section 6
simulates DICTATE and compares the results with analy-
tical results. Section 7 concludes the paper.

2 RELATED WORK

This section surveys PKIs in both wired networks and ad
hoc networks. It shows that certain principles can be
inherited from wired networks for implementing a PKI in
ad hoc networks, but a direct migration would not perform
well. We further summarize the rationale that leads to the
design of our protocols at the end.

2.1 PKIs in Wired Networks

The X.509-based public-key infrastructure [3], a represen-
tative of PKIs in wired networks, implicitly assumes
centralized CAs. While the availability of such a centra-
lized authority may become a problem in large distributed
systems, individual CAs, whose compromise would
paralyze the certification function of their domains, also
appear to be single points of failure for security. The
distributed implementation of a CA (e.g., � [4] and COCA
[10]) improves the availability of the certification function
by organizing different certification servers into a peer-
based structure. It also enhances the robustness of the
authority against a certain amount of server failures
through the use of threshold cryptography. However, all
these benefits are obtained at the cost of additional
protocol complexity. Particularly, maintaining a reliable
group communication system [4] or Byzantine quorum
systems [10] is not a trivial task.

PGP [5], an alternative to the PKI based on trusted

authorities, provides practical security to protect low-

value communications, such as e-mails. PGP is based on

referral certification, which allows multiple users to

“recommend” a certain user by signing certificates of its

public key. This scheme is not perfectly secure because,

for example, dishonest users may issue false certificates to

cheat other users. The third solution to implement a PKI,

SPKI/SDSI [11] has an egalitarian design similar to PGP.

It circumvents the dependency on global name spaces, to

which both X.509 and PGP are subject, with the concept

of linked local name spaces.

2.2 PKIs in Ad Hoc Networks

The need for a PKI in an ad hoc network is due to the
security requirements of various mechanisms, especially
routing (e.g., [12], [13], [14]). However, the distinctive
features of ad hoc networks lead to designs of PKIs that are
different from those in wired networks.

Zhou and Haas [1] explore the issue of distributed CA in

ad hoc networks, with the assumption of a single authority

domain across the network. Their solution achieves avail-

ability by replicating certificates in multiple servers and

employs threshold cryptography to thwart various attacks.

However, [1] does not contain a full description of protocols

to maintain and control the access to the distributed CA.

Luo et al. [2], [15] extend the work of Zhou and Haas by

distributing the authority throughout the network. Their

proposal focuses on performance: Only localized protocols

are used to access the certification function. Unfortunately,

the online identification service provided by [2] seems to be

vulnerable to the Sybil attack [16], where an attacker can

take enough shares within the CA by claiming several

identities and can thus reconstruct the system’s private key.

Hubaux et al. [17], [6] follow another approach by

assuming each node to be its own authority domain. As a

counterpart of PGP in ad hoc networks, the self-organized

public-key management in [6] allows nodes to certify each

other. With the assumption of transitive trust among nodes,

appropriate certificate chains are found to verify the

certificate of a public key. The disadvantage with such a

scheme is that the assumption of a transitive trust could be

too strong for mobile networks.

Recently, several proposals have extended the aforemen-

tioned approaches in different ways. Extensions to Zhou

and Haas’s work usually try to solve two problems left

open in [1]: 1) how to select the CA servers and 2) how to

maintain the CA. Yi and Kravets [18] suggest selectively

assigning powerful nodes as CA servers and apply multiple

unicastings for accessing CA. They do not explicitly explain

how the initial identification is performed when a node

joins a network for the first time. Bechler et al. [19]

introduce a cluster-based architecture for supporting a

distributed CA. However, the online identification service

relies on referral certifications from existing network

members, which could weaken the security level of the

system. Khalili et al. [20] apply an identity-based approach

instead of the certificate-based one [18], [19]. They use a set
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of preconfigured nodes to form the distributed authority

and apply localized protocols similar to those of [2] for the

key generation service. Unfortunately, key revocations

appear to be difficult because the key generation service

refuses to issue keys for a particular identity more than once

in order to thwart identity spoofing.

An extension to the trust model in [6] is described in

[21]. The trust chain and recommendation protocol used

in [6] are again applied but supplemented by a reference

protocol. This solution does not commit to perfect security

since it is dedicated to low-value communications. A

downside of such protocols is that they do not address the

security issues with a network-oriented point of view (for

example, the topology of a trust graph does not match the

changing network topology), which could impair their

viability in ad hoc networks. Montenegro and Castelluccia

[22] describe a way of binding an identity to its public key

without the need of a certificate: The hash of the public

key is used as part of the IP address. Unfortunately, a

node would have to change its “name” (or identity) upon

a key revocation.

A common weakness of PKIs in ad hoc networks is the

lack of proper revocation mechanisms. While proposals in

[20], [19], [21] do not address the certificate revocation, the

solutions in [2], [6], [18] rely on proactive mechanisms to

push a certificate revocation list (CRL) to other nodes.

Although no quantitative evaluation is provided in [2], [18],

there is no doubt that proactive pushing, by flooding the

network, consumes network resources constantly. There-

fore, an on-demand scheme that queries the status of a

certificate in question would be more suitable for ad hoc

networks.

2.3 Lessons from the Past

According to the experiences from the previous work
mentioned above, we summarize our design rationale for
the PKI in ad hoc networks as follows:

. Authentication techniques differ in the level of
protections that they provide for the targeted
communications. Relying on a TTP as an authority
yields a high-level protection to secure high-value
communications in large-scale networks.

. Performing initial identifications with a full online
certification service is questionable. The joint author-
ity approach that integrates an offline IA and an
online distributed RA can achieve both security and
availability of the CA.

. The proactive share refreshing, which is already
expensive enough in wired networks, is not suitable
for ad hoc networks (except an extreme case [2]
where localized protocols apply). Certain out-of-
band mechanisms have to be used for refreshing key
shares.

. The network performance should be kept in mind
when addressing security issues. Security protection
can be somewhat sacrificed to spare network
resources in some cases.

. Certificate revocation is an important but often
neglected CA service. In wireless networks, it

becomes even more significant because (suspected)
key compromises can happen more often.

3 GOAL AND MODEL

This section states the problem to be solved and models the
considered environment.

3.1 Problem Statement

We consider a relatively large-scale ad hoc network
(consisting of tens or even hundreds of nodes) with a
random mobility pattern, i.e., nodes moving independently
within a given field. The network (real life examples include
networks temporarily built for rescue or exploration
operations) has intermittent connections to a mother
certification authority (or mCA), which is a trusted authority
connected to the backbone with its public data (including its
public key) known to all wireless nodes. When the network
is disconnected from the mCA (e.g., to perform a rescue
operation), it requires a CA that serves requests from nodes
to update their public key or to query public key certificates
of other nodes. We first give the three properties of a secure
CA in such a network as follows:

. Liveness: The CA always processes a request in a
finite amount of time.

. Safety: An adversary is never able to forge a
certificate.

. Freshness: A query to the CA returns the most
recent status of a targeted certificate.

Then, we specify our CA with probabilistic freshness: It meets
the liveness and safety properties, and it ensures the
freshness property with a probability that is termed F d, or
freshness degree.

For any correct node, our goals are to:

1. make the CA compliant with the specifications
above,

2. provide a certain flexibility for the CA to tune the
protocol performance (with respect to F d and the
overhead) online to the desired trade-off,

3. maintain an adequate efficiency, i.e., incur reason-
able overhead (defined as the network load [9]) even
in the case of a high freshness requirement, and

4. keep all protocols transparent to a human user.

3.2 System and Adversary Model

We assume that each node owns a unique identity. We also
assume that, in the network, there is a subset (typically 10 to
20 percent of the network)2 N (jNj ¼ n) of securely
protected and computationally powerful nodes (which the
mCA can identify and will use to constitute a distributed
CA). A subset T � N can be compromised during a certain
period of time, where jTj ¼ t < n=3.3 The remaining part of
N consists of a set C of correct nodes.
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2. It is not our goal in this paper to find the optimal size for this set, but
we note that generally the larger the size is, the more heavily the network is
loaded, whereas the load on individual nodes becomes smaller.

3. Although probabilistic quorum systems [23] (unlike Byzantine
quorum systems [24]) still work if t � n=3 and a threshold cryptosystem
requires only t < n=2, the system performance degrades dramatically when
t goes beyond n=3. Therefore, we require t < n=3 even though our CA is
based on the principle of probabilistic quorum systems.



For the adversary model, we consider the following
attacks that could be mounted by a malicious node:

. Impersonation: A node pretends to be someone else
to submit a certificate update.

. Key Compromise: A node tries to compromise the
private keys of other nodes.

. Denial of Service (DoS): A node tries to slow down
the CA by clogging the resources (especially com-
munication resources).

. Misc: A node launches eavesdropping, message
insertion, corruption, deletion, and replay attacks.

In addition to these attacks, a compromised node may
exhibit Byzantine failure, i.e., deviate arbitrarily from the
(DICTATE) protocol specification.

4 OUR SOLUTION: JOINT AUTHORITY AND

DICTATE

Our solution takes the joint authority approach [7], [8]: The
mCA (which is connected to the backbone) acts as the
offline IA and it assigns the set N of special nodes to
constitute a distributed CA (dCA hereafter) that performs
the role of the online RA (Fig. 1). The dCA nodes are named
servers, and other nodes are named clients. The mCA
controls the admission of a node (either a server or a client)
to the network at its command, through the issuance of a
certificate that asserts the binding between the identity and
initial public key of the node. When the network is
disconnected from the mCA, clients submit their requests
to the dCA. On one hand, a query request returns the public
key certificate of another client. On the other hand, an
update request updates a client’s public key certificate stored
in the dCA. Our solution prevents key compromises
through the following revocation4 mechanism: A certificate
should be periodically updated or it will become invalid.
The dCA guarantees the legitimacy of an update only if the
client who submits the request does not have its private key
been stolen or been compromised. Otherwise, the client has
to reidentify itself with the mCA through out-of-band
mechanisms. A client does not always query a certificate in
the case of secure communication; it performs a query only
if it suspects the validity of the certificate (e.g., due to a
relatively small version number, which we will explain later
in this section) that it obtains directly from another client.

Our dCA has a public/private key pair. This public-key
pair is based on RSA.5 The public key, which bears a
certificate issued by the mCA, is known to the whole
network. The private key of the dCA is shared among the
dCA servers by a ðtþ 1; nÞ robust threshold cryptosystem
[27]. A credential generated with the private key testifies the
authority of the whole dCA. Each dCA server, like a usual
node, has its own public/private key pair. We apply an
identity-based scheme [28] and a corresponding signature
scheme [29] for this public-key pair and make the identities
of all dCA servers publicly known, such that any network
node knows the public key of a dCA server. The private key
of a server is generated by the mCA; it only represents the
authority of an individual server. Applying an identity-
based cryptosystem incurs much less communication over-
head (we elaborate on this issue when explaining the key
revocation in the next paragraph, and we also describe the
usage of this cryptosystem in Sections 4.2 and 4.3). The
system initialization is illustrated in Fig. 1a.

Periodically,6 there is a checktime, as shown in Fig. 1b, at
which the dCA servers (physically) go back to the mCA for
a “purgation” (only dCA servers should go through this
procedure; clients can still perform their remote operations).
During the checktime, the mCA, through out-of-band
mechanisms, detects compromised servers and has them
reinitiated or substituted by new ones; it also refreshes the
secret shared among the dCA. Since online detection of
compromised servers is hard and cooperative detection
schemes [26] may suffer from blackmail attacks, offline
detection seems to be the only way to guarantee security.
Note that server identities are fixed, and the key revocation
of a server is done by using as public key the combination of
the identity and the timestamp corresponding to a certain
checktime interval [28] (i.e., no information such as revocation
lists or certificates needs to be distributed). A client can
verify the validity of a message from any server with the
knowledge of its identity and a local clock loosely
synchronized with the checktime. The above descriptions
show that, unlike the traditional joint authority approach,
the mCA not only provides identification service but also
manages the dCA. Therefore, we use the terms mCA and
dCA instead of IA and RA in this paper.
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Fig. 1. Operating principles of the joint CA: (a) initialization phase and (b) checktime.

4. Strictly speaking, our solution revokes only (possible) compromised
keys rather than compromised nodes [25]. Since achieving the latter
involves intrusion/misbehavior detections whose existing solutions (e.g.,
[26], [2]) are vulnerable to various attacks, we provide interfaces (described
in Section 4.3.1) in our protocols to accommodate future solutions.

5. The threshold cryptosystem based on RSA allows a noninteractive
signing protocol, which would not be the case, for example, for an ElGamal-
like threshold cryptosystem.

6. The length of this period depends on the hostility of the environment
that a given remote operation of the network involves and the amount of
time spent for the operation; it should guarantee that no more than t dCA
servers could be compromised during such a period.



The interactions between nodes (including servers and
clients) and the mCA (e.g., identification, key generation,
and refreshing shared secrets) are well-defined in existing
proposals [30], [27], [28], so we do not discuss them in
detail; in the remainder of the paper, we rather focus on
DICTATE, which maintains the online part of our certifica-
tion service (i.e., the dCA). We first introduce the principles
of PILOT [9], the basis of DICTATE, then we describe
operations of DICTATE in detail.

4.1 Overview of PILOT

PILOT [9] is a group communication system that provides
services for multicast and data replication. The parts of our
PILOT system used to implement DICTATE are illustrated
by the gray part in Fig. 2. PILOT is a two-layer system. It has
a probabilistic multicast protocol, Route Drive Gossip
(RDG), as its basis. The protocol is gossip-based in nature:
It proceeds round7 by round and the receivers in each round
are chosen randomly (weighted according to the length of
the routing path); they relay packets to the receivers of the
later round(s) (we allow a packet to be relayed once only to
the receivers of the next round in this paper). This protocol
guarantees that the reliability degree, defined as the fraction
of a multicast group receiving a given packet, is predictable
in a probabilistic sense. The fanout, F , is a very important
parameter related to RDG; it refers to the number of
receivers chosen by a certain sender in a round and, thus,
strongly influences the protocol reliability.

Upon this layer, the Probabilistic quorum system for Ad
hoc Networks (PAN) provides reliable data sharing. It
assumes a special group of nodes to store the shared data in
a replicated manner. Any node belonging to the group is
termed server, and the rest of the nodes are termed clients. A
data query or update is directed to an arbitrary server, and
its dissemination within the group is performed by the PAN

server query protocol or update protocol (the two protocols
differ in that a query requires a reply and an update does
not). Since the PAN server query and update protocols rely
on RDG, the probability that a query acquires the most
recent update of the corresponding data object is again
predictable and rather high in practice. Certain parameters,
including F , have to be set when a primitive in PILOT is
invoked. These parameters determine the protocol perfor-
mance in terms of reliability and overhead [9].

Previous approaches for guaranteeing the reliability of

queries and updates in a certification service apply either

reliable group communication systems [4] or Byzantine

quorum systems [10]. These approaches incur too much

overhead and are thus not practical in ad hoc networks. Our

approach, on one hand, builds a certification service upon

probabilistic quorum systems (PAN) and, thus, provides a

way of flexibly trading reliability for efficiency. On the other

hand, the use of probabilistic multicast (RDG) in our

approach allows us to fulfill the threshold signature scheme

with (tþ 1) anycasts.

4.2 Protocol Overview

In this section, we summarize the main operations of

DICTATE. These operations are classified into external and

internal (with respect to the dCA server group) protocols,

according to the entities that are involved. The rationale

behind these operations is explained in Section 4.3.
The notations used throughout all subsequent sections

are as follows:

. s, sid: DICTATE (or dCA) server and its identity.

. c, cid: DICTATE (or dCA) client and its identity.

. hmik: message m with signature signed by key k
(identity-based signature) of a server.

. ½m�k: message m with signature signed by key k
(RSA signature).

. KD: public key of DICTATE (or dCA).

. kD; kDs: private key of DICTATE (or dCA) and key
share, respectively.

. K?, k?: public key and private key of node “?,”
respectively. “?” can be c, s, or a.

. ½CtK �k: certificate of public key K signed by private
key k. The format of its data part is ½cid;K; v�, where
cid identifies the owner of K and v is the version
number. Note that the certificate is not timestamped
because it is not trivial to agree on a common
timestamp among a set of servers who sign the
certificate. Instead, the version number serves as a
timestamp.

4.2.1 DICTATE External Protocol

This part of DICTATE runs between clients and servers.
Access Control. When a client c wants to access DICTATE,

it tries to contact an arbitrary DICTATE server s, and they

exchange the following messages:

c! s : Ac ¼ ½cid; ½CtKc
�kD ; rtype; seqno�kc

c s : As ¼ hsid; seqnoiks ;

where rtype refers to the request type (update or query) and

seqno is a sequence number. The server s admits the access

of the client c with As only if Ac is proven to be valid. After

successfully finishing this interaction, this server becomes

the agent (later referred to as awith identity aid) of the client

for this specific request.
Client Request and Server Reply. A client sends certificate

update and replication requests to update its public key and

related certificate, and it sends a certificate query to get the

current public key certificate of another client.
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Fig. 2. The protocol structure of DICTATE: It is built upon PILOT (the

gray part).

7. The duration of a round is a parameter of RDG: It should be short
enough to maintain a low propagation delay but be long enough to avoid
network congestion. Although we make a synchrony assumption (in terms
of rounds) in Section 5.2.2 to facilitate our analysis, it does not mean that
PILOT is a synchronous system. In fact, nodes are not synchronized in our
simulations.



To register a new public key, a client c first generates a

new public/private key pair K0c=k
0
c and then sends an

update request to its agent a ( in Fig. 3):

c! a : Uc ¼ ½cid; ½K0c�kc �k0c ;

where kc is the current private key whose corresponding

public keyKc is to be updated. Upon completing the task of

certificate update, the agent responds with the following

message ( in Fig. 3):

c a : Ua ¼ ½CtK0c �kD :

The client c verifies ½CtK0c �kD using KD. If the certificate is

valid, c sends a replication request to a, so that the

certificate will be stored in the dCA for future queries

( in Fig. 4):

c! a : Rc ¼ ½cid; ½CtK0c �kD ;F d�kc ;

where F d indicates the required freshness degree (defined

in Section 3.1). Finally, the agent a provides its client c with

evidence that it has faithfully respected the protocol
( in Fig. 4):

c a : Ra ¼ hsid1; ½CtK0c �kDiks1 ; hsid2; ½CtK0c �kDiks2 ; � � � ;

where hsid1; ½CtK0c �kDiks1 ; hsid2; ½CtK0c �kDiks2 ; � � � is a list of
signatures generated by servers that receive Rc; it proves
that those servers have indeed received the new
certificate. Though an abuse of concept, here we refer to
hsid; ½CtK0c �kDiks only as the signature (no plaintext
included) for the concatenation of a server id sid and
the certificate ½CtK0c �kD .

To obtain the public key certificate of a client, a client c
sends a query request to its agent a ( in Fig. 5):

c! a : Qc ¼ ½cid; ^cidcid�kc
where ^cidcid is the identity of the owner of the queried public
key certificate. A server s that receives the request replies
directly to c with the following message ( in Fig. 5):

c s : Qs ¼ hsid; ½CtK ^cidcid
�kDiks :

Clients involved in the aforementioned protocols should
be able to perform signing (with a RSA key), signature
verifications (especially pairing computations [29]), and
generating public/private key pairs. While a laptop does
have this capability, small mobile devices (e.g., PDA) would
need more powerful processing units to perform these
computations.

4.2.2 DICTATE Internal Protocol

This part of DICTATE runs among servers.
Certificate Update. An agent a forwards a valid client

update to several servers via the PAN server query8

protocol with a message haid;Uc; ½CtKc
�kDika ( in

Fig. 3) and waits for enough copies of partially signed
certificates ½CtK0c �kDs

to come back ( in Fig. 3). The
agent then tries to combine all these certificates to create a
valid one, ½CtK0c �kD , signed by the private key of DICTATE,
and returns this new certificate back to the client via the
message Ua.
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Fig. 3. DICTATE operations: Certificate Update. Note that, since

DICTATE uses the service provided by a multihop routing protocol,

any node (either a server or a client) can serve as relay to forward a

message.

Fig. 4. DICTATE operations: Certificate Replication. Further legends can

be found in Fig. 3.

8. Although this protocol is a part of the DICTATE server update
protocol, it invokes the underlying query protocol of PAN because it expects
a reply from each receiver.

Fig. 5. DICTATE operations: Certificate Query. Further legends can be

found in Fig. 3.



Certificate Replication. The agent, upon receiving a
replication request Rc from its client, replicates the
certificate via the PAN server protocols with a message
haid;Rcika ( in Fig. 4). As a consequence, a quorum
�U (j�U j ¼ 5 in Fig. 4) of servers receives haid;Rcika . The
agent then expects acknowledgements fhsid; ½CtK0c �kDiksg :
s 2 � �UU from a set � �UU (j� �UU j ¼ 2 in Fig. 4) of servers (
in Fig. 4), where � �UU � �U . The size of �U and � �UU is
determined by the required freshness degree F d. Finally,
the agent replies to the client with Ra.

Query Forwarding. An agent a forwards a valid client
query to several servers via the PAN server update protocol
with a message haid;Qcika ( in Fig. 5), but it does not
expect replies from other servers. The replies Qs from a
quorum � �QQ (j� �QQj ¼ 2 in Fig. 5) of servers are directly sent
back to the client.

Detailed proofs of the protocol compliance with our
specification are provided in Section 5 (where we also
explain how to determine the quorum size). Here, we only
give some intuitive ideas on the relationship between the
freshness degree F d and the quorum sizes:

F d ¼ Prf�U \� �QQ 6� Tg; ð1Þ

while F d ¼ 1 iff

j� �UU j þ j� �QQj � nþ tþ 1: ð2Þ

Note that 9 server s : s 2 �U _ s 62 � �UU could happen because
a reply from s to a might not get through due to the
unreliable routing protocol. It is enough that �U \� �QQ 6� T
for probabilistic guarantee (1), but a deterministic guarantee
(2) requires � �UU \� �QQ 6� T.

4.3 Protocol Rationale

This section explains the underlying principles of the
DICTATE protocols.

4.3.1 DICTATE External Protocol

Access Control. A server verifies the validity of Ac by
checking whether:

1. the nonce fcid; seqnog is unique,
2. the certificate ½CtKc

�kD is valid and matches cid,
3. the signature by kc is verifiable with Kc, and
4. the client is authorized, by the access control policy,

to perform rtype.

We do not detail the access control policy in this paper. This
policy can be specified according to different application
requirements and, in particular, provides an interface to
accept inputs from certain intrusion/misbehavior detection
algorithms (whose accusations against certain nodes dis-
allow the access of those nodes and hence revoke their
certificates). The access control phase is important because
it allows a request (especially for certificate update) to be
checked against certain policies before the client actually
performs the computationally intensive key generation. The
server maintains a state for each valid request until the
request is fulfilled.

A client updates the nonce if it needs to retransmit Ac

(e.g., due to the loss of As). A server replies to every Ac that
has a unique nonce (but only keeps one request state for the

client if the time interval between two requests is too short).
As a result, no reply As would be sent to an adversary that
launches a replay attack.

Client Request and Corresponding Reply. The role of the
update request Uc is to prove to the agent that the client c
owns the private keys kc and k0c corresponding to the
current public key Kc and the newly proposed public key
K0c, respectively. The agent is able to check the validity of Uc

given the ½CtKc
�kD transferred in the access control phase.

If an agent were trustworthy, it could be asked to directly
perform the replication after obtaining ½CtK0c �kD , without
notifying its client. However, we want to protect the client
against possible compromise of the agent. The server reply
Ua allows the client to check the validity of the new
certificate before asking the agent to replicate it. Also, each
server s that receives the replication request Rc is required
to provide the “receipt” hsid; ½CtK0c �kDiks to the client. This
scheme defends DICTATE against a compromised agent
who pretends to be correct by finishing the certificate
update task but fails to replicate the certificate to other
DICTATE servers afterward. In addition, the client men-
tions its required freshness degree9 F d, so that the agent can
set proper parameters to invoke the underlying protocols
according to the requested degree. There is no way for both
a replication and a query to request a freshness degree,
otherwise the system performance becomes unpredictable.
Although greedy clients might always request the highest
freshness degree (i.e., F d ¼ 1), which incurs a large protocol
overhead, DICTATE discourages greed by means of an
implicit “self-castigation:” The higher F d, the longer the
delay of the response. Note that a lower freshness degree
does not mean a lower level of security; we refer to
Section 5.2.2 for detailed explanations.

A query requestQc is propagated through the agent, as it
needs to go through certain sanity checks. But, the reply
should not go through the agent; otherwise, a compromised
agent could return bogus information to the client and the
client has no way of knowing whether the agent is telling
the truth or not. Therefore, the client should collect all
replies and select the most recent version of the required
certificate by itself.

4.3.2 DICTATE Internal Protocol

In previous literature (e.g., [10]), it is considered very
important that a CA be independent from other network
nodes. This requirement improves the scalability of a
network because, for example, a client does not need to
be informed about the revocation of a server public key.
DICTATE is also divided into two parts, i.e., external and
internal, for the same purpose. However, since we do not
want to trust an agent (the bridge between the two parts),
we would like a client to be able to verify the response from
any server. This explains why we apply an identity-based
public-key system for DICTATE servers: It grants the ability
of verifying servers’ responses to a client without jeopardiz-
ing the network scalability. Alternatively, a solution to our
problem can be based on the concept of Byzantine Fault
Tolerance [10]. Such a solution would let a client access a set
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9. This value is set by an application without involving a human user,
based on the value of the communication that will use the key later.



of agents (tþ 1 in the case of t possible compromised
servers) to “mask” the failure. Unfortunately, a resulting
scheme would leave the certification service open to easily
launched resource-clogging DoS attacks in wireless net-
works and cause a well-behaved client to experience a very
long delay for a request.

No underlying secure group communication scheme
(e.g., [31]) is needed to support DICTATE. The system is
built upon PILOT, which is in turn based directly on unicast
routing; therefore, it can secure itself with the prerequisite
that the public key of each server is known to the whole
network.

Certificate Update. An agent a signs the update request

Uc and the previous certificate ½CtKc
�kD from its client c

and disseminates this message within DICTATE via the

PAN server query protocol.10 Each server again verifies

the validity of Uc in the same way the agent did. A server

s, upon validating the request from a, updates the

certificate CtKc
by increasing the version number v as v ¼

vþ 1 and substituting Kc with K0c. Then, it generates a

partially signed certificate ½CtK0c �kDs
and sends it to a.

Determining the parameters (including the fanout F , see
Section 4.1) to invoke PAN is a key issue to ensuring a
successful completion of the threshold signing procedure
because an agent should collect at least tþ 1 partially
signed certificates to obtain a valid certificate signed by the
private key of DICTATE. According to the analysis
provided in Section 5.2.2, the agent can decide on values
of certain parameters by which the PAN server query
protocol reaches more than tþ 1 servers. The agent might
need to invoke this procedure more than once before
finishing.

The other issue is how to transfer the responses to a
query (with respect to PAN) back to an agent. This problem
is common to all internal protocols. In [9], we suggest a
direct call to the unicast routing primitive. The strengths of
this approach are: 1) the complexity of the protocols is low
and 2) a compromised server cannot block a transmission.
Unfortunately, several parallel transmissions to a common
destination may congest the network. Reverse path forward-
ing is an alternative. As illustrated in Fig. 3, a reply follows
the tree created in the dissemination phase back to the agent
and there are packet-level aggregations at internal vertices
of the tree. This approach improves the protocol efficiency if
the percentage of compromised servers is low, but suffers
from a high protocol complexity. Even worse, a compro-
mised server s launching a DoS attack by blocking the
transmission in the reply phase can greatly reduce the
efficiency of the protocol, especially when s is close to the
agent. We suggest that an agent switches between unicast
routing and reverse path forwarding based on the estima-
tion of the percentage of compromised servers.

Certificate Replication. This protocol is built upon both the
PAN server update protocol and the PAN server query
protocol. The parameters for invoking PAN are set to meet
the freshness requirement F d of the client. How to estimate

the size of the resulting quorum �U under certain
parameters is described in Section 5.2.2. Each server, upon
receiving the message haid;Rcika , verifies its validity and
then stores the certificate ½CtK0c �kD . If the client requests the
highest freshness degree, the PAN server query protocol is
invoked to require a reply hsid; ½CtK0c �kDiks from each server
s 2 �U , and the resulting reply quorum � �UU should respect
(2); otherwise, the PAN server update protocol is invoked.
In the latter case, replies are only required from those
servers receiving a replication request directly from the
agent, which is already enough to prove the agent’s
compliance with the protocol; the resulting freshness degree
is estimated by (1).

Query Forwarding. The agent’s task is trivial in this
protocol. It simply forwards a valid query request to other
servers via the PAN server update protocol. Each server
receiving the query request replies directly to the client with
its own copy of the certificate, if the query is valid (proved
by checking the signature of the agent). The client waits for
a certain period of time until it collects the replies from a
quorum � �QQ of servers. The minimum size expected for � �QQ

is j� �QQjmin, which is set by DICTATE (based on the network
size and the query rate [9]) and known to all nodes; it
cannot be modified by a client (in contrast to the situation of
j� �UU j whose value can be modified by a client through F d).
Within this collection, the certificate with the highest
version number is chosen as the response to this query.

5 SECURITY ANALYSIS

In this section, we verify the security of DICTATE against
the properties specified in Section 3.1 by considering
malicious/compromised clients and compromised servers
separately.

5.1 Protection from Malicious/Compromised
Clients

Malicious clients have no way to impersonate other nodes,
because a server can verify the identity of a client by
checking the ownership of the private key corresponding to
a certified public key. Hence, a malicious client cannot
impair the safety property.11 If the certificate update is
performed frequently, an attacker is given virtually no
chance to compromise a private key before the key expires.
All exchanged messages are authenticated (signed by their
senders) but do not require confidentiality, so attacks such
as eavesdropping and message corruption cannot degrade
the security of DICTATE. However, DICTATE can suffer
from DoS attacks launched by clients replaying certain
requests to cram the service queue. Defending against such
attacks is difficult because a server should anyway verify a
request before knowing its legitimacy. Actually, DICTATE
already decreases the risk of such a DoS attack by involving
only one agent for each request. Another kind of DoS attack
is routing disruption [12]. Fortunately, the liveness property
of DICTATE can be guaranteed, provided that, between a

318 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

10. This protocol will be used for several purposes in DICTATE. Such
flexibility is granted by a callback procedure [9] included in PAN, which can
be defined to retrieve any information (e.g., ½CtK0c �kDs

) from the upper layer
(DICTATE in this case).

11. A bogus certificate update could be disseminated within DICTATE if
this update request were admitted by a compromised agent. Since this
attack has the same effect as an agent propagating a fictitious update or
replica, we refer to Section 5.2 for a detailed analysis.



sender and a receiver, there exists at least one routing path
that contains no malicious nodes.

Compromised clients, when behaving as described
above, cannot compromise DICTATE. However, owning
the identities and certificates of once legitimate nodes, they
pose potential threats to other nodes that still believe in
their legitimacy. DICTATE does not directly thwart these
threats; it rather relies on inputs from misbehavior detection
algorithms (e.g., reputation systems [32], [33]) to identify
and thus evicts these nodes (we refer to Section 4.3.1 for
details).

5.2 Defense against Compromised Servers

The attacks performed by a given compromised server vary
with the role of that server.

5.2.1 Compromised Agents

A compromised agent may decline to serve a request for a
client. A client can detect such an attack by setting a timer
for each request and can change the agent should the timer
expire. If an agent fulfilled the task of certificate update but
tried to cheat its client without following up the replication,
it would fail to provide evidences

hsid1; ½CtK0c �kDiks1 ; hsid2; ½CtK0c �kDiks2 ; � � � :

In both cases, the liveness property of DICTATE is ensured,
provided that the client eventually finds some correct server
as its agent. A compromised agent may also provide
fictitious requests (or replies) to other servers (or its clients).
Such behavior does not compromise the safety property of
DICTATE because a message receiver can always verify the
validity of the message signed by its original sender.
Although fictitious requests disseminated by a compro-
mised agent do reduce the service capacity of DICTATE,
this kind of DoS attack can be easily detected, so that correct
servers may convoke an emergency checktime in order to
purge the compromised server.

5.2.2 Compromised Common Servers

We call a common server a server that does not have the
role of the agent for a given request. A compromised
common server can 1) issue partially signed certificates of
any bitstring, 2) behave as a malicious node, and 3) deviate
from the protocol requirements by omitting the verifica-
tion of all replicas (which leads to a later reply to a query
with an obsolete certificate) or by simply not storing or
forwarding a replica. DICTATE defends itself against 1) by
using a ðtþ 1; nÞ threshold cryptosystem, such that the
liveness and safety properties are guaranteed as long as
the total number of compromised servers is no more than
t. For the second type of attacks, we refer to Section 5.1
for related discussions. The third type consists in attacks
of our particular interests; we consider them to be DoS
attacks that we term inaction DoS (or iDoS) and analyze
them in detail.

Since DICTATE is built upon a probabilistic quorum
system, the degree F d that iDoS attacks will not compro-
mise the freshness property of DICTATE is the probability
that 9s : s 2 C \�U \� �QQ (i.e., there exists at least one
correct server that receives both a replica and a later query

to the replica), as expressed in (1). In this sense, DICTATE
can be considered as a special instance of ðb; "Þ dissemina-
tion quorum systems [23] (b ¼ t and " ¼ 1� F d in our case),
innovating on the system design with an asymmetric
quorum construction and a randomized quorum size [9].
To compute F d, we rewrite (1) by using the concept of
combination and also by taking expectations over prob-
ability distributions (of corresponding random variables) as
follows:

F d �
X�rr
r¼0

Xn
i¼0

1�A

B

� �
�rðiÞpr

A ¼ n� j�r
U j

j� �QQjmin

 !
is the number of events

where �U \� �QQ ¼ ;;

B ¼ n

j� �QQjmin

 !
is the total number of events

of taking j� �QQjmin out of n;

ð3Þ

where �r is the probability distribution of j�r
U j (i.e.,

�rðiÞ ¼ Prfj�r
U j ¼ ig), and pr is the probability that a query

occurs rþ 1 rounds12 later than when the considered
certificate was replicated. Note that both j�r

U j and �r are
functions of r. In order to simplify the case, we compute
only the lower bound of F d by plugging in the minimum
value of j� �QQj set by DICTATE. Now, we show how to
calculate �r with a recurrence relation defined by a Markov
chain. Note that the Markov chain is 2D because the
number of servers that will receive a message in the next
round depends on the increase in the number of servers
that have received the message in the current round (see
Section 4.1 for details). Let Sr ¼ j�r

U j and Sr be a vector
½Sr; Sr�1�Tr�0 for brevity; the distribution of Sr is estimated
with the following recurrence relation, with the initial
condition PrfS0 ¼ ½1; 0�Tg ¼ 1:

Pr Srþ1 ¼
j

i

� �� �

¼
Xi
i1¼0

n� i

j� i

� �
ð1� qi�i1Þj�iqði�i1Þðn�jÞPr Sr ¼

i

i1

� �� �
;

�rðiÞ ¼
Xi
i1¼0

Pr Sr ¼
i

i1

� �� �
;

ð4Þ

where

q ¼ 1� F

n� 1

� �
n� t

n� 1

� �
EH ½ð1� pfÞH � ð5Þ

is the probability that a certain server does not receive
the propagated message in a given gossip round (recall
that F is the fanout, see Section 4.1). This expression
takes into account the probability that either 1) the server
is not chosen as a gossip destination, 2) the server is
compromised (we assume the worst case iDoS attack
where a compromised server drops any message it
receives), or 3) the message fails to reach its destination:
as pf is an identical and independent probability of
failure for each node along a routing path in a certain
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12. We assume that nodes gossip in synchronous rounds for the analysis,
but our protocols do not rely on synchronization in practice.



network environment and H is a random variable
representing the length of an arbitrarily chosen routing
path, the expectation (or EH) of ð1� pfÞH characterizes
the end-to-end failure probability. We refer to [9] for
detailed discussions.

DICTATE is not limited to the probabilistic semantics of
the freshness. A deterministic assurance can be provided by
meeting the requirement of (2) such that j� �UU \� �QQj � tþ 1
and, thus, � �UU \� �QQ includes at least one correct server. In
this case, DICTATE becomes an instance of strict dissemi-
nation quorum systems [24]. Of course, such a protocol
setting incurs much higher overhead than that of a
probabilistic protocol. As we mentioned in Section 4.3.1, a
lower freshness degree does not mean a lower level of
security. Since DICTATE provides an online revocation
service, the goal of a client that queries the status of a given
certificate is to check the validity of the corresponding
public key obtained from the other client. Although there is
a rare chance of obtaining an incorrect status due to the
probabilistic nature of DICTATE, it does not compromise
the security of the revocation service but only reduces its
efficiency (because an incorrect status prevents the client
from using a correct public key before the client completing
a successful query).

6 SIMULATIONS

In this section, we verify the performance of DICTATE with
respect to the freshness degree F d, under the iDoS attacks
launched by compromised servers.

6.1 Parameters and Assumptions

We use ns-2 [34] with the Monarch Project wireless and
mobile extensions. This simulator provides both implemen-
tations of ad hoc routing protocols (we use DSR as an
example) and wireless MAC, based on the Lucent Wave-
LAN IEEE 802.11 product, with a 2Mbps transmission rate
and a nominal range of 250m.

We simulate an ad hoc network with 100 nodes in a
square area of 1km2. The movement pattern is defined by
the “random waypoint” model [35], and we update it by
setting a positive minimum speed (as suggested by [36]).
We pair the mobility parameters, such that each node has a
maximum speed of 2m/s, 5m/s, 10m/s, and 20m/s, and a
corresponding average pause time of 10s, 20s, 40s, and 80s,
respectively.

In our simulations, the dCA contains 19 servers, which
means that the system can sustain up to 6 ¼ ð19� 1Þ=3
compromised servers. The dCA servers are assumed to be
predefined. The external protocols and the internal certifi-
cate update protocol of our DICTATE are omitted to
simplify the interpretation of the results. Certificate replica-
tions and queries are assumed to be independent Poisson
arrival processes with intensities �R and �Q, respectively.
They are emulated by Poisson traffic sources attached to
each server, generating packets of 512 bytes.13 The overall
access rate �O ¼ �R þ �Q is set at 2s�1, and we also assume
that �O ¼ 8�R. This allows each client to update its

certificate about every 5 minutes and to query certificates
of other clients every 45 seconds, which is more than
enough to thwart key compromises and impersonations.
The duration of a gossip round is set to 200ms, and the
value of j� �QQjmin is set to 3 for all simulations.14

We assume that all replication and query requests are
targeted at the same certificate. The assumption might seem
to be exaggeratedly pessimistic because the chance that a
queried certificate has just been updated is negligible (recall
that there are in total 100� 19 ¼ 81 certificates to be
updated and queried). However, the goal is to force a
query to always return the result of the latest replication
and thus to illustrate the lower bound of the freshness
degree that is provided by DICTATE. We term the resulting
freshness degree pessimistic F d. In addition, we also
evaluate optimistic F d: A query is considered to be
successful even if it only returns the result of the
penultimate replication.

We first investigate the impact of t (the number of
compromised servers) on the performance of DICTATE,
then we show how the analytical results in Section 5.2.2 can
be used to tune the freshness degree to a required value.
DICTATE is operated over 400 seconds of simulated time.
The first 30 seconds of the simulation are used for system
initialization. Then, each traffic source continues generating
traffic according to the predefined intensity until the end.
Each simulation was carried out 10 times with different
scenario files created by ns-2.

6.2 Impact of t on DICTATE Performance

We first set the fanout used for certificate replication at
F ¼ 2 and vary the number of compromised servers t, as
well as node mobility parameters. Note that we always
designate the mobility pair by the maximum node speed.
As shown in Figs. 6a and 6b, the freshness degree F d

degrades modestly even in the worst case (i.e., t ¼ 6) for
low mobility scenarios (i.e., Speedmax ¼ 2 or 5m=s). In
these cases, we can claim that F d � 0:95 in practice,
considering that t ¼ 6 is a rare case and the pessimistic
F d shows the lower bound of the DICTATE performance.
However, the effect of t is significant for high mobility
scenarios (i.e., Speedmax ¼ 10 or 20m=s). In both cases
where t ¼ 4 and 6, the pessimistic F d drops to values
around 0:80. The system has to adjust itself if, in such
situations, a freshness degree higher than 0.90 is
requested by a client. We show the tunability of
DICTATE in Section 6.3.

The network load incurred by DICTATE is shown in
Fig. 6c. This load is reasonably low since each request costs
less than eight unicastings on average, given that there are
two requests per second and the expected length of a
routing path is about two hops (for our simulation
scenarios). If a traditional access protocol were used for
these requests, which would mean accessing DICTATE
servers by multiple unicastings, the resulting load would be
much higher. It can also be observed that the larger the
number of compromised servers, the lower the load
(because a compromised server drops any message instead
of relaying it).
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13. This is approximately the size of haid;Rcika , the largest message
involved in the simulated part of DICTATE, if the RSA key is 1,024 bits and
the identity-based ECC key is 163 bits.

14. Although DICTATE may not always guarantee F d ¼ 1 with
j� �QQjmin ¼ 3 when t > 1, the simulation results show that F d can be made
as close to 1 as possible even when t > 1.



6.3 Tuning the Freshness Degree

As we have already mentioned, the parameter settings used
in Section 6.2 are not appropriate to cope with a large
proportion of compromised servers in high mobility
scenarios. So, if an agent is aware of a significant increase
in compromised servers, it will adjust the parameter
settings for the internal protocols. The simulations de-
scribed in this subsection illustrate how such adjustments
are performed based on the analysis in Section 5.2.2, given a
required freshness degree of 0.90.

A fanout F that ensures F d � 0:90 can be deduced from
expressions (3) to (5), given a particular value of t and
certain network conditions. The analytical results for t ¼
4 and 6 are shown by the bottom curves in Figs. 7a and 7b,
respectively. The simulation results also provided in these
two figures further prove that the fanouts resulting from the
analysis (F ¼ 2:7 for t ¼ 4 and F ¼ 3:4 for t ¼ 6)15 indeed
lead to satisfactory freshness degrees, i.e., the experimental
values of F d are always higher than the predicted values. Of
course, the system actually trades its overhead for the
freshness degree in these cases. The comparison between
Fig. 6 and Fig. 7 shows that an increase of network load up
to 50 percent is traded for an improvement of about
300 percent of the freshness degree (i.e., 1�F d is divided
by 3) in the extreme situation: t ¼ 6 and Speedmax ¼ 20m=s.

7 CONCLUSION

In this paper, we have focused on the design of a
certification authority in ad hoc networks. We take a joint
authority approach that combines an offline identification
authority and an online distributed revocation authority.
We have then proposed DICTATE, based on our previous
work on reliable group communication systems, to control
the online authority. The originality of DICTATE includes
1) flexible certificate management protocols with tunable
freshness to trade overhead for robustness, and 2) provable
robustness against various attacks, especially Byzantine
failures of the DICTATE servers.

Our proposed specification of distributed CA with
probabilistic freshness takes the peculiarities of ad hoc
networks into account. As a consequence, the freshness
property can be sacrificed to some extent, in the case that
the required freshness degree is low and the network
resources are scarce. In order to meet the specification,
DICTATE is implemented in a “closed” server group
backed by an identity-based cryptosystem, so that the Sybil
attack is thwarted and messages from individual servers are
universally verifiable. Also, the authority employs thresh-
old cryptography to distribute trust in order to tolerate a
certain number of compromised servers. Finally, DICTATE
relies on a probabilistic group communication system,
PILOT, to propagate certificate updates, replications, and
queries to its server group, which guarantees a certain
probability, rather high in practice, for a query to obtain the
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Fig. 6. Freshness degree F d and network load versus the number of compromised servers t, under four mobility scenarios. The fanout for certificate

replication is set at F ¼ 2. (a) Pessimistic freshness degree. (b) Optimistic freshness degree. (c) Network load.

Fig. 7. Freshness degree F d and network load versus the node mobility. The fanout for certificate replication is adjusted according to analytical

results, in order to cope with a large proportion of compromised servers and high node speed. (a) Fresheness degree with t ¼ 4, F ¼ 2:7.

(b) Fresheness degree with t ¼ 6, F ¼ 3:4. (c) Network load.

15. A real number x:y for F means that each server, when propagating a
message, takes F ¼ x with probability 1� y=10 and F ¼ xþ 1 with
probability y=10.



latest status of a certificate. Despite the seeming complexity,

DICTATE executes automatically without the need of any

human involvement.
We have identified potential attacks against DICTATE

and evaluated the robustness of DICTATE through detailed

security analysis. We notice that one of these attacks, called

inaction DoS (iDoS) attack, is a serious threat to DICTATE;

we have thus verified the system performance under such

attacks by simulations. The results show that 1) iDoS attacks

can only have a marginal effect on the performance of

DICTATE in low node speed scenarios and 2) increasing

node speed weakens the tolerance of DICTATE to such

attacks. In the latter case, the system can be tuned online to

trade its overhead for a higher degree of freshness. We have

improved the analytical model proposed for PILOT to

predict the freshness degree of DICTATE. The validity of

predictions is evaluated by simulations in a way that the

analytical results are used as the basis to adjust system

parameters for tuning the DICTATE performance.
We are in the process of further studying the perfor-

mance of DICTATE with a complete implementation. It is

also a part of our future work to consider the integration of

DICTATE with potential applications such as secure

routing and secure group communications.
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