
Short Papers___

The Effect of the Specification Model on the
Complexity of Adding Masking Fault

Tolerance

Sandeep S. Kulkarni and Ali Ebnenasir

Abstract—In this paper, we investigate the effect of the representation of safety

specification on the complexity of adding masking fault tolerance to

programs—where, in the presence of faults, the program 1) recovers to states

from where it satisfies its (safety and liveness) specification and 2) preserves its

safety specification during recovery. Specifically, we concentrate on two

approaches for modeling the safety specifications: 1) the bad transition (BT)

model, where safety is modeled as a set of bad transitions that should not be

executed by the program, and 2) the bad pair (BP) model, where safety is modeled

as a set of finite sequences consisting of at most two successive transitions. If the

safety specification is specified in the BT model, then it is known that the

complexity of automatic addition of masking fault tolerance to high atomicity

programs—where processes can read/write all program variables in an atomic

step— is polynomial in the state space of the program. However, for the case

where one uses the BP model to specify safety specification, we show that the

problem of adding masking fault tolerance to high atomicity programs is NP-

complete. Therefore, we argue that automated synthesis of fault-tolerant

programs is likely to be more successful if one focuses on problems where safety

can be represented in the BT model.

Index Terms—Fault-tolerance, automatic addition of fault tolerance, safety

specification, formal methods, program synthesis.

�

1 INTRODUCTION

AUTOMATIC addition of fault tolerance is desirable in the design of
fault-tolerant programs as it is difficult (if not impossible) to
anticipate all classes of faults at design time. Since it is often the
case that the designer is aware of a program that is correct in the
absence of faults, automatic addition of fault tolerance to an
existing program generates a fault-tolerant program that is correct
by construction. Moreover, such automated addition of fault
tolerance has the potential to reuse the computations of the
existing fault-intolerant program during the addition of fault
tolerance, thereby synthesizing fault-tolerant programs that pre-
serve the efficiency of their fault-intolerant version.

Kulkarni and Arora [1] present synthesis algorithms for adding

fault tolerance to high atomicity programs—where processes can

read/write program variables in an atomic step. They show that

the complexity of the addition of fault tolerance is polynomial in

the state space of the fault-intolerant program if the safety

specification is represented as a set of bad transitions. In [2],

Gärtner and Jhumka conjecture that representing safety specifica-

tion as a set of sequences of transitions results in exponential

complexity for adding fault tolerance. They validate their claim in

the context of some examples.
In this paper, we focus on the effect of the representation of

safety specification on the complexity of adding masking fault

tolerance to high atomicity programs. In the presence of faults, a
masking fault-tolerant program 1) recovers to states from which it
satisfies its (safety and liveness) specification and 2) preserves its
safety specification during recovery. We consider two approaches
that are restricted models of the safety specification specified by
Alpern and Schneider [3]. Specifically, in [3], the safety specifica-
tion is specified as a set of computation prefixes, where a
computation prefix is a finite sequence of transitions. A computa-
tion violates the safety specification if one of its prefixes is ruled
out by the safety specification.

The first approach (used in [1]) considers the restrictive model
of [3] where the safety specification is specified in terms of a set of
bad transitions that must not occur in program computations. In
other words, intuitively, a program computation violates safety
specification if there exists a bad transition in that computation.
We denote this model as the bad transition (BT) model. Clearly, this
model is more restrictive than that in [3]; given the safety
specification specified in terms of “bad transitions” that should
not occur in program computations, we can obtain the correspond-
ing set of prefixes that should not occur in program computations.

The second approach is a generalization of the BT model where
safety specification is specified in terms of a set of sequences of at

most two transitions. In this model, a computation violates the
safety specification if and only if it contains any sequence ruled out
by the safety specification. We denote this model as the bad pair

(BP) model. It is straightforward to observe that the BP model is a
generalization of the BT model and a specialization of the model
presented by Alpern and Schneider.

We show that synthesizing a masking fault-tolerant program
from its fault-intolerant version in the BP model is significantly
more complex than synthesizing a fault-tolerant program in the BT
model. Specifically, for high atomicity programs, the synthesis in
the BT specification model can be performed in polynomial time.
(This result has been previously shown in [1].) However, for the
same program model, the synthesis in the BP specification model is
NP-complete. (This result is shown in this paper.) It follows that
the problem of adding masking fault tolerance for the case where
safety is represented as a set of computation prefixes that should
not occur in a program computation is NP-hard. With this result,
we argue that the synthesis of fault-tolerant programs will be more
successful if we focus on more restrictive specifications from the
BT model.

Organization of the paper. In Section 2, we present preliminary
concepts. Then, in Section 3, we state the problem of adding
masking fault tolerance to fault-intolerant programs. Subsequently,
in Section 4, we show that adding masking fault tolerance to high
atomicity programs is NP-complete for the BP model. Finally, in
Section 5, we make concluding remarks.

2 PRELIMINARIES

In this section, we give formal definitions of programs, problem
specifications, faults, and fault tolerance. The programs are
specified in terms of their state space and their transitions. The
definition of specifications is adapted from Alpern and Schneider
[3] and Kulkarni and Arora [1]. The definition of faults and fault
tolerance is adapted from Arora and Gouda [4] and Kulkarni [5].

2.1 Program

A program p (denoted p ¼ hSp; �pi) is specified by a finite state
space, Sp, and a set of transitions, �p, where �p is a subset of Sp � Sp.
A state predicate of p is any subset of Sp. A state predicate S is
closed in the program p iff (if and only if) the condition

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 1

. The authors are with the Software Engineering and Network Systems
Laboratory, Department of Computer Science and Engineering, Michigan
State University, East Lansing MI 48824.
E-mail: {sandeep, ebnenasi}@cse.msu.edu.

Manuscript received 22 July 2004; revised 24 June 2005; accepted 1 Aug.
2005; published online 2 Sept. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0111-0704.

1545-5971/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

ð8s0; s1 :: ðððs0; s1Þ 2 �pÞ ^ ðs0 2 SÞÞ) ðs1 2 SÞÞ

holds. A sequence of states, � ¼ hs0; s1; . . .i with lenð�Þ states, is a
computation of p iff the following two conditions are satisfied:
1) 8j : 0 < j < lenð�Þ : ðsj�1; sjÞ 2 �p and 2) if � is finite and

terminates in state sl, then there does not exist state s such that
ðsl; sÞ 2 �p. A sequence of states, hs0; s1; . . . ; sni, is a computation
prefix of p iff

8j : 0 < j � n : ðsj�1; sjÞ 2 �p;

i.e., a computation prefix need not be maximal.
The projection of program p on state predicate S, denoted as

pjS, is the program

hSp; fðs0; s1Þ : ðs0; s1Þ 2 �p ^ s0; s1 2 Sgi:

In other words, pjS consists of transitions of p that start in S and
end in S.

Notation. When it is clear from the context, we use p and �p
interchangeably. For example, a state predicate S is closed in p iff S
is closed in �p. Also, we say that a state predicate S is true in a state
s iff s 2 S.

2.2 Specification

Following Alpern and Schneider [3], we let the specification consist
of a liveness specification and a safety specification.
The liveness specification is represented by a set of infinite

sequences of states. A computation satisfies the liveness

specification if it contains a suffix that is in the liveness
specification. For specifying the safety specification, we consider

two models: the BT model and the BP model.

2.2.1 The BT Model

In this model, the safety specification is specified in terms of a set
of bad transitions that should not occur in program computations.
Thus, in the BT model, safety is specified by a subset of Sp � Sp. As

a result, a computation violates safety specification iff it
contains a bad transition. To illustrate a specification in BT model,
let x represent an integer counter whose domain is f0 � � � kg, where

k > 1. Then, x never increases by more than one is an
example of safety specification in the BT model.

2.2.2 The BP Model

Now, we consider a special case of the model presented by Alpern
and Schneider [3], [6]. In the bad pair (BP) model, the safety

specification is modeled as a set of finite sequences that consist of at
most two transitions. Thus, in this model, safety can be modeled as
a subset of ðSp � SpÞ [ðSp � Sp � SpÞ, i.e., a computation vio-

lates the safety specification iff it contains a subsequence that is
ruled out by the safety specification. For example, a requirement
that an increase in x must not be immediately followed by

a decrease in x is a safety specification in the BP model. In the
context of the BT and the BP models, we say a computation
satisfies the safety of specification iff it does not

violate the safety specification.
Given a program p, a state predicate S, and a specification spec,

we say that p satisfies spec from S, S 6¼ fg, iff 1) S is closed in p

and 2) every computation of p that starts in a state where S is true
satisfies the safety and liveness of spec. If p satisfies spec from S, we
say that S is an invariant of p for spec.

2.3 Faults and Fault Tolerance

The faults that a program is subject to are systematically
represented by transitions. A class of faults f for program p ¼
hSp; �pi is a subset of the set Sp � Sp. We use p½�f to denote the

transitions obtained by taking the union of the transitions in p and
the transitions in f . We say that a state predicate T is an f-span

(read as fault-span) of p from S iff the following two conditions

are satisfied: 1) S � T and 2) T is closed in p½�f . Observe that, for all

computations of p that start at states where S is true, T is a

boundary in the state space of p up to which (but not beyond

which) the state of p may be perturbed by the occurrence of the

transitions in f .
We say that a sequence of states, � ¼ hs0; s1; . . .i with

lenð�Þ states, is a computation of p in the presence of

f iff the following three conditions are satisfied:

1) 8j : 0 < j < lenð�Þ : ðsj�1; sjÞ2 ð�p [fÞ, 2) if � is finite and

terminates in state sl, then there does not exist state s such

that ðsl; sÞ 2 �p, and 3) 9n : n � 0 : ð8j : j > n : ðsj�1; sjÞ 2 �pÞ.
The first requirement captures that, in each step, either a

program transition or a fault transition is executed. The

second requirement captures that faults do not have to

execute. Finally, the third requirement captures that the

number of fault occurrences in a computation is finite. This

requirement is the same as that made in previous work [7],

[8], [4], [9] to ensure that eventually recovery can occur.

2.3.1 Masking Fault Tolerance

We say a program p is masking f-tolerant from S for spec iff 1)

p satisfies spec from S and 2) there exists a state predicate T such

that the following three conditions hold: a) T is an f-span of p from

S, b) p½�f satisfies the safety of spec from T , and c) every

computation of p½�f that starts from a state in T contains a state of

S. Condition b stipulates that p satisfies its safety specification even

in the presence of faults and condition c captures that, in the

presence of faults, p will eventually recover to its invariant S if f

perturbs p to T � S.

Note that, in this paper, we only focus on the problem of adding

masking fault tolerance in high atomicity programs. Questions

related to other fault tolerance properties (e.g., failsafe and

nonmasking) considered in [1] and questions related to adding

fault tolerance to distributed programs are outside the scope of this

paper. We refer the interested reader to [11] for current results (in

the BT model) related to these questions.

3 PROBLEM STATEMENT

In this section, we reiterate the problem of adding masking fault

tolerance from [1]. During automated addition of fault tolerance,

we begin with the fault-intolerant program, its invariant, faults,

and the safety specification that needs to be satisfied in the

presence of faults. The goal is to only add masking fault tolerance

to develop a program that reuses the given fault-intolerant

program. In other words, we require that no new computations

are introduced when faults do not occur.

Now, consider the case where we begin with the fault-

intolerant program p, its invariant S, specification spec, and faults

f . Let p0 be the fault-tolerant program derived from p, and let S0 be

an invariant of p0. If S0 contains a state s0 that does not belong to S,

then the computations of p0 may reach s0 and create new

computations in the absence of faults that do not belong to p.

Hence, we require S0 to be a subset of S. Likewise, if p0jS0 includes

transitions that do not belong to pjS0, then p0 may introduce new

computations in the absence of faults. Thus, the set of transitions of

p0jS0 must be a subset of pjS0. Therefore, the decision problem of

adding masking fault tolerance to fault-intolerant programs (from

[1]) is as follows:

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

For a given fault-intolerant program p, its invariant S, the
specification spec, and faults f , does there exist a masking fault-
tolerant program p0 and the invariant S0 such that S0 � S, p0 jS0 � pjS0
and p0 is masking f-tolerant from S0 for spec?

Remark. Observe that, in the above problem statement, every
computation of p0½�f that starts in the fault-span has a suffix that is
a computation of p0 that starts in a state in S0 (which is a subset of
S). As S0 � S and p0jS0 � pjS0, this suffix is also a computation of p.
Since p satisfies its specification (including liveness specification)
from S, it follows that p0 also satisfies the liveness specification. For
this reason, liveness specification is not needed in the above
problem statement.

4 NP-COMPLETENESS PROOF

In this section, we show that, in general, the problem of

synthesizing masking fault-tolerant programs from their fault-

intolerant version becomes NP-complete if the safety specification

is specified in the BP model.1 Toward this end, in Section 4.1, we

present a mapping between a given instance of the 3-SAT problem

and an instance of the (decision) problem of adding masking fault

tolerance. Then, in Section 4.2, we show that the given 3-SAT

instance is satisfiable iff the answer to the decision problem is

affirmative.

4.1 Mapping 3-SAT to the Addition of Masking Fault
Tolerance

The problem statement for the 3-SAT problem [12] is as follows:

Given is a set of propositional variables, x1; x2; . . . ; xn, and a Boolean
formula y ¼ y1 ^ y2 ^ . . . ^ yM , where each yj (1 � j �M) is a
disjunction of exactly three literals.

Does there exist an assignment of truth values to x1; x2; . . . ; xn such
that y is satisfiable?

Next, we identify each entity of the instance of the problem of

adding masking fault tolerance, based on the given 3-SAT formula.

Recall that the instance of the decision problem of synthesizing

masking fault tolerance consists of the fault-intolerant program, p,

its invariant, S, its (safety) specification, and a class of faults f .
The state space and the invariant of the fault-intolerant

program, p. The invariant, S, of the fault-intolerant program, p,
includes only one state, say s. Corresponding to the propositional
variables and disjunctions of the given 3-SAT instance, we include
additional states outside the invariant (cf. Fig. 1). Specifically, for
each propositional variable xi, we introduce three states ai, bi, and
ci (1 � i � n). Also, for simplicity, we introduce a propositional
variable xnþ1 which is always true and, corresponding to xnþ1, we

introduce two states anþ1 and bnþ1. For each disjunction yj, we
introduce a state dj outside the invariant (1 � j �M).

The transitions of the fault-intolerant program. For the
convenience of representing safety specification, we classify
transitions as short, long, and medium transitions. The only
transition inside the invariant of the fault-intolerant program is
the medium transition ðs; sÞ. Also, we introduce short transitions
ðai; biÞ and ðbi; ciÞ for each propositional variable xi (1 � i � n). We
also introduce a short transition ðanþ1; bnþ1Þ for xnþ1.

Moreover, corresponding to each propositional variable xi, we
introduce long transitions ðbi; aiþ1Þ, ðbi; biþ1Þ, ðci; aiþ1Þ, and ðci; biþ1Þ
(1 � i � n). From bnþ1, we introduce a long transition ðbnþ1; sÞ to
the invariant. Corresponding to each disjunction yj, we have the
following long transitions:

. If xi is a literal in yj, then we include the long transition
ðdj; aiÞ.

. If :xi is a literal in yj, then we include the long transition
ðdj; biÞ.

Fault transitions. The class of faults f is equal to the set of
medium transitions fðs; djÞ : 1 � j �Mg.

The safety specification of the fault-intolerant program, p.

Safety will be violated if a short (respectively, long) transition is

followed by another short (respectively, long) transition. Note that

ðs; sÞ and fault transitions are medium transitions (cf. Fig. 1).

Hence, they can be followed by (respectively, preceded by) any

transition. Also, all transitions except those identified above violate

the safety specification. This is to ensure that transitions such as

ðdj; sÞ, ðai; sÞ, ðbi; sÞ, ðci; sÞ ðð1 � j �MÞ ^ ð1 � i � nÞÞ, and ðanþ1; sÞ
cannot be used for recovery.

4.2 Reduction from 3-SAT

In this section, we show (with Lemmas 1 and 2) that the given
instance of 3-SAT is satisfiable iff masking fault tolerance can be
added to the problem instance identified in Section 4.1.

Lemma 1. If the given 3-SAT formula is satisfiable then there exists a

masking fault-tolerant program for the instance of the decision

problem identified in Section 4.1.

Proof. Since the 3-SAT formula is satisfiable, there exists an
assignment of truth values to the propositional variables xi,
1 � i � n, such that each yj, 1 � j �M , is true. Now, we
identify a masking fault-tolerant program, p0, that is obtained
by adding fault tolerance to the fault-intolerant program p

identified in Section 4.1.

The invariant of p0 is the same as the invariant of p (i.e., fsg).
We derive the transitions of the fault-tolerant program p0 as

follows (as an illustration, we have shown a partial structure of

p0 where x1 ¼ true, x2 ¼ false, and x3 ¼ true in Fig. 2):

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 3

Fig. 1. The states and the transitions corresponding to the propositional variables in the 3-SAT formula. (Except for transitions marked as fault, all are program

transitions. Also, note that the program has no long transitions that originate from ai and no short transitions that originate from ci.)

1. Additional insights about our NP-completeness proof can be found in
the Appendix.

. For each propositional variable xi, 1 � i � n, if xi is true,

then we include the short transition ðai; biÞ. In this case,

we also include the long transition ðbi; aiþ1Þ if xiþ1 is

true or ðbi; biþ1Þ if xiþ1 is false.

. For each propositional variable xi, 1 � i � n, if xi is

false, then we include the short transition ðbi; ciÞ. In this

case, we also include the long transition ðci; aiþ1Þ if xiþ1

is true, or ðci; biþ1Þ if xiþ1 is false.

. We include the transitions ðanþ1; bnþ1Þ and ðbnþ1; sÞ
corresponding to xnþ1.

. For each disjunction yj that includes xi, we include the
transition ðdj; aiÞ iff xi is true.

. For each disjunction yj that includes :xi, we include the
transition ðdj; biÞ iff xi is false.

Now, we show that p0 is masking fault-tolerant in the
presence of faults f .

. p0 in the absence of faults. p0jS ¼ pjS. Thus, p0 satisfies
spec in the absence of faults.

. p0 is masking f-tolerant for spec from S. To show this

result, we let T 0 be the set of states reached in the

computations of p0½�f starting from s.

- p0 satisfies its safety specification from T 0. Since
the instance of the 3-SAT formula is satisfiable,
each propositional variable xi is assigned a unique
truth value. Thus, for each pair of transitions
ðai; biÞ and ðbi; ciÞ, one of them is excluded in the
set of transitions of p0. Hence, a computation of p0

cannot include two consecutive short transitions.
Also, the only way to execute two consecutive long
transitions in the original fault-intolerant program
is to execute a long transition that terminates in
state bi, 1 � i � n, and then execute a long
transition that originates in bi. If the former
transition is included, then xi is assigned the truth
value false. However, in this case, no outgoing
long transition from bi is included. Thus, p0 cannot
execute two consecutive long transitions.

- Starting from every state in T 0, a computation of

p0 reaches s. By construction, p0 contains no cycles
outside the invariant. Hence, it suffices to show
that p0 does not deadlock in T 0 � S0. Now, let yj ¼
xi _ :xk _ xr be a disjunction in the 3-SAT for-
mula. Since yj evaluates to true, p0 includes a
transition from fðdj; aiÞ; ðdj; bkÞ; ðdj; arÞg. Also, by
considering the truth values of xi and xiþ1,
1 � i � n, we observe that, for every state in
fai; bi; cig in T 0, there is a path that reaches a state

in faiþ1; biþ1; ciþ1g. Finally, from anþ1 (respectively,
bnþ1) there is an outgoing transition to bnþ1

(respectively, s). It follows that p0 does not dead-
lock in T 0 � S. tu

Lemma 2. If there exists a masking fault-tolerant program for the

instance of the decision problem identified earlier, then the given 3-

SAT formula is satisfiable.

Proof. Before we use the masking fault-tolerant program p0 to

identify the truth value assignment to the propositional

variables in the 3-SAT formula, we make some observations

about p0. Let S0 be the invariant of p0 and let T 0 be the fault-span

used to show the masking fault tolerance property of p0. Since

S0 6¼ fg and S0 � S ¼ fsg, the conditions S0 ¼ S and pjS0 ¼ p0jS0

must hold.
Since faults may directly perturb p0 to dj (1 � j �M), the

condition dj 2 T 0 holds. Thus, p0 must provide safe recovery
from each dj, i.e., each computation of p0 starting at dj must
satisfy safety and reach a state in S0. As a result, for each dj,
there exists i, 1 � i � n, such that either ðdj; aiÞ or (ðdj; biÞ and
ðbi; ciÞ) is included in p0jT 0, i.e., either ai or ci must be reachable.
Hence, we have

Observation 1. There exists i, 1 � i � n, such that either ai 2
T 0 or ci 2 T 0.

Now, consider the case where ai 2 T 0 and ci 2 T 0. In this
case, ðai; biÞmust be included as all transitions terminating in ai
are long transitions. Further, if ci 2 T 0, then ðbi; ciÞ must be
included since it is the only transition that reaches ci. In this
case, p0½�f can violate safety by executing ðai; biÞ and ðbi; ciÞ.
Hence, we have:

Observation 2. If ai 2 T 0, then ci =2 T 0.
Moreover, if ai 2 T 0, then ðai; biÞ 2 p0jT 0 since all transitions

terminating in ai are long transitions. Hence, bi 2 T 0. Now, to
guarantee safe recovery from bi, p

0 must include either ðbi; aiþ1Þ
or (ðbi; biþ1Þ and ðbiþ1; ciþ1Þ). Thus, either aiþ1 2 T 0 or ciþ1 2 T 0.
Also, if ci 2 T 0, then either ðci; aiþ1Þ or (ðci; biþ1Þ and ðbiþ1; ciþ1Þ)
must be included. Thus, we have:

Observation 3. If ðai 2 T 0Þ _ ðci 2 T 0Þ holds, then we have
(8l : i < l � n : ððal 2 T 0Þ _ ðcl 2 T 0ÞÞ).

Now, let sm be the smallest value for which ððasm 2
T 0Þ _ ðcsm 2 T 0ÞÞ holds. Based on Observation 3, we have
ð8l : sm < l � n : ðal 2 T 0Þ _ ðcl 2 T 0ÞÞ. Hence, we make value
assignment to the propositional variables of the 3-SAT formula
as follows:

. For t < sm, we assign true to xt.

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

Fig. 2. The partial structure of the fault-tolerant program.

. For sm � t, if at 2 T 0, then xt ¼ true. And, if ct 2 T 0,
then xt ¼ false.

Based on Observations 1-3, it is straightforward to observe

that a unique value is assigned to each xi (1 � i � n). To

complete the proof, we need to show that, with this truth-value

assignment, the 3-SAT formula is satisfiable. We show this for a

disjunction yj (1 � j �M). Without loss of generality, let

yj ¼ xi _ :xk _ xr. Since state dj can be reached by the

occurrence of a fault from s, p0 must provide safe recovery

from dj. Since the only safe transitions from dj are those

corresponding to states ai, bk, and ar, p
0 must include at least

one of the transitions ðdj; aiÞ, ðdj; bkÞ, or ðdj; arÞ. Now, if

ðdj; aiÞ 2 p0, then ai 2 T 0 and, hence, xi is assigned true. Further,

if ðdj; bkÞ 2 p0, then no long transition from bk can be included

as it would allow p0 to execute two long transitions succes-

sively. Hence, p0 must include ðbk; ckÞ. Thus, ck 2 T 0 and, hence,

xk is assigned false. It follows that, irrespective of which

transition is included from dj, yj evaluates to true. Therefore,

the 3-SAT formula is satisfiable. tu
Theorem 1. If the safety specification is specified in the BP model, then

the problem of adding masking fault tolerance to high atomicity
programs is NP-complete.

Proof. The NP-hardness of adding masking fault tolerance in the
BP model follows from Lemmas 1 and 2. To show that this
problem is in NP, we proceed as follows: Given an input for the
problem of adding masking fault tolerance, we guess fault-
tolerant program p0, its invariant S0, and its fault-span T 0. Now,
we need to verify that

1. S0 � S,
2. S0 is closed in p0,
3. p0jS0 � pjS0,
4. T 0 is closed in p0½�f ,
5. p0 does not deadlock in T 0 � S0,
6. safety is not violated in p0jT 0, and
7. p0jðT 0 � S0Þ is acyclic.

Since each of these conditions can be verified in polynomial
time in the state space, the theorem follows. tu

Corollary 1. If the safety specification is specified by a set of
computational prefixes that should not occur in program computa-
tions (as in [3]), then the problem of adding masking fault tolerance is
NP-hard in the size of Sp.

Proof. Note that the instance of the problem obtained in Section 4.1
by reducing the 3-SAT formula is also an instance of the
synthesis problem where safety specification is specified as
defined in [3]. Hence, the corollary follows. tu

5 CONCLUSION

In this paper, we investigated the effect of the representation of

the safety specification on the complexity of adding masking

fault tolerance. It is shown in the literature [1] that if one

represents the safety specification by a set of bad transitions

(denoted the BT model) that should not be executed by a

program, then adding masking fault tolerance to that program

in the high atomicity model— where processes can read/write

all program variables in an atomic step—can be done in

polynomial time in the state space of the input fault-intolerant

program. However, in this paper, we showed that if safety is

represented by a set of sequences of transitions, where each

sequence contains at most two transitions (denoted the bad pair

(BP) model), then adding masking fault tolerance to programs is

NP-complete. With this result, we argue that adding fault

tolerance to existing programs can be done more efficiently if

we focus on the BT model.

Although the BT model is a restricted version of the BP model,

it is general enough to capture other representations for modeling

safety considered in the literature. For example, in the bad state (BS)

model (e.g., [12], [13]), a computation violates safety if it reaches a

state that is ruled out by the safety specification. The BS model is a

restrictive version of the BT model. Hence, the algorithms in [1] can

be extended to the BS model. Thus, the complexity of adding fault

tolerance in the BS model is (approximately) in the same class as

that of the BT model.

Also, we observe that the expressiveness of the BT model has

the potential to capture the safety specification of practical

problems. As an illustration, we have modeled the safety

specification of several examples including a simplified version

of an aircraft altitude controller [10]. After modeling safety in the

BT model, we have automatically added masking fault tolerance to

the controller program for faults that perturb the altitude sensors.

As a result, we argue that, although the results of this paper limit

the applicability of efficient addition of fault tolerance to problems

that can be specified in the BT model, this model can capture a

broad range of interesting problems in the synthesis of fault-

tolerant programs.

APPENDIX A

AN EXPLANATION INTO THE NP-COMPLETENESS

RESULT IN SECTION 4

Because of the similarity between the BP model and the BT model,

the reader may wonder if it is possible to reduce (in polynomial

time) an instance of the BP model, say BPinstance, to an instance of

the BT model, say BTinstance such that BPinstance has a solution iff
BTinstance has a solution. If such a reduction were possible, it would

contradict the result (from [1]) that the synthesis problem for the

BT instance can be solved in polynomial time. An anonymous

referee of the paper suggested one such reduction. In this

supplemental material, we consider this reduction. The counter-
example for the correctness of this reduction provides an insight

into the NP-completeness result in Section 4.2

We proceed as follows: First, we identify the possible reduction

from the synthesis in the BP model to the synthesis in the BT

model. Then, we show that this reduction is incorrect with the help

of a counterexample. Subsequently, we identify the reason behind

the failure of such a reduction. This reason identifies the main

difference between the BT model and the BP model.

A.1 Polynomial-Time Reduction

The goal is to transform an instance BPinstance of the problem of

adding masking fault tolerance in the BP model into an instance
BTinstance of adding masking fault tolerance in the BT model. Given

a program p, its state space Sp, its invariant S, its safety

specification spec (specified in the BP model), and a class of faults

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 5

2. Note that this discussion does not conclusively prove that any such
reduction does not exist. The direct proof that (assuming P 6¼ NP) shows
the nonexistence of such reduction follows from the proof that synthesis in
the BP model is NP-complete (cf. Section 4 in the paper) and the proof that
the algorithm in [1] is in P. However, this example does identify one of the
main difficulties in adding fault tolerance in the BP model. This difficulty is
the main reason behind the NP-completeness of adding masking fault
tolerance to an instance of the BP model.

f , we construct another program p0, fault-class f 0, invariant S0, and

safety specification spec0 in the BT model.

. Constructing the state space. The new state space, Sp0 , is

equal to ðf�g [SpÞ � Sp, where � is a distinguished state

not in Sp. The distinguished state � is for representing the

case where the program is just starting and there is no

historical information available. Each state in Sp0 tracks

both the current state and the historical information of the

previous state of the program p.
. Constructing program transitions. The transition func-

tion �p0 for program p0 will be a pair of state pairs,
i.e., �p0 � ððSp [f�gÞ � SpÞ � ðSp � SpÞ. A transition
ððs0; s1Þ; ðs2; s3ÞÞ is well-formed if and only if
s1 ¼ s2.

. Constructing the invariant. The state predicate S0 ¼
fðf�g [SpÞ � Sg constructs the invariant of the BTinstance,
which is closed in p0. By contradiction, consider a
transition ððs0; s1Þ; ðs1; s2ÞÞ 2 �p0 such that ðs0; s1Þ 2 S0
and ðs1; s2Þ =2 S0. Since ðs1; s2Þ 2 �p and s1 2 S, it follows
that s2 2 S. Thus, ðs1; s2Þ 2 S0 must hold. Therefore, S0

is closed in p0.
. Constructing the safety specification. The specification

spec0 is equal to BT1 [BT2 [BT3, where

1. BT1¼fððs0; s1Þ;ðs1; s2ÞÞ2ðSp0 �Sp0 Þjðs1; s2Þ2specg.
2. BT2 ¼ fððs0; s1Þ; ðs1; s2ÞÞ 2 ðSp0 � Sp0 Þ j ðs0; s1; s2Þ

2 specg.
3. BT3 ¼ fððs0; s1Þ; ðs2; s3ÞÞ 2 ðSp0 � Sp0 Þ j

ððs0; s1Þ; ðs2; s3ÞÞ is not well-formedg.
. Constructing fault transitions. The class of faults f 0 in

BTinstance is equal to

fððs0; s1Þ; ðs1; s2ÞÞ 2 ðSp0 � Sp0 Þ j ðs1; s2Þ 2 fg:

Obviously, the complexity of such construction of an instance in

the BT model is polynomial in Sp. Now, to reduce the problem of

adding masking fault tolerance in the BP model to the problem of

adding masking fault tolerance in the BT model, we need to show

that:

Conjecture: The original instance BPinstance in the BP model has
a masking f-tolerant program iff the newly constructed instance
BTinstance in the BT model has a masking f 0-tolerant program.

A.2 Counterexample

Unfortunately, the above conjecture is invalid. Hence, we present a

counterexample to refute this conjecture. In this counterexample,

we begin with the SAT formula ðx1 ^ :x1Þ. We derive the

corresponding BP model. (Note that, although, in Section 3 of the

paper, the reduction is from 3-SAT, it can be easily extended to be

from SAT.) Then, we use the above reduction to obtain the BT

model. We show that fault tolerance can be added to the instance in

the BT model although it cannot be added to the instance of the BP

model.

Now, we generate the BP instance for this formula. The BP

instance is as shown in Fig. 3. Next, we reduce this BP instance to

the BT instance using the above reduction approach. Since there

are eight states in the BP instance, according to the above

reduction, there would be 9*8 states in the BT model. However,

many of these states are not interesting; for example, if the current

state is d1 (cf. Fig. 3), then the previous state must be s. Likewise, if

the current state is b1, then, previous state can either be d2 or a1.

Hence, in reducing BP instance to BT instance, for simplicity of

presentation, we only consider the 14 states shown in Fig. 4. (Note

that fault tolerance can be added to this instance of the BT solution

by only considering these 14 states. Therefore, the addition of

remaining states does not affect the existence of the fault-tolerant

program obtained by the addition of masking fault tolerance to the

BT instance.)
Masking fault tolerance cannot be added to the instance in

the BP model in Fig. 3.

Proof. Both d1 and d2 are reachable from s by fault transitions.
Hence, recovery must be added from these states. Therefore,
ðd1; a1Þ and ðd2; b1Þ must be in the fault-tolerant program. Since
there is only one transition from a1, ða1; b1Þ must be included in
the fault-tolerant program. From b1, the fault-tolerant program
cannot include the transition ðb1; c1Þ as execution of ða1; b1Þ

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

Fig. 3. Program corresponding to the SAT instance y1 ^ y2 in the BP model.

followed by ðb1; c1Þ violates safety. Likewise, ðb1; a2Þ cannot be

included; inclusion of this transition will cause the execution of

two consecutive long transitions ðd2; b1Þ and ðb1; a2Þ. This causes

b1 to be a deadlock state. Since this is not permitted in a masking

fault-tolerant program, it follows that masking fault tolerance

cannot be added to the instance in the BP model in Fig. 3. tu

Masking fault tolerance can be added to the instance in BT

model in Fig. 4.

Proof. Fig. 5 shows the program obtained by adding masking fault

tolerance to the BT instance. tu

Based on the above discussion, it follows that the above

conjecture is incorrect.

A.3 Explanation

The following describes why the conjecture is incorrect. To prove

the conjecture, one needs to show that 1) if fault tolerance can be

added to the BP instance, then it can be added to the BT instance

and 2) if fault tolerance can be added to the BT instance, then it can

be added to the BP instance. Of these, the first result can be shown.

But, the second result is incorrect. This is because, as shown in the

above example, the BT model chooses the transition ðb1; c1Þ
(respectively, ðb1; a2Þ) if the program reaches b1 from d2 (respec-

tively, a1). However, the BT model drops the transition ðb1; c1Þ
(respectively, ðb1; a2Þ) if the program reaches b1 from a1 (respec-

tively, d2). Now, taking the solution from the BT model to obtain a

solution in the BP model, we cannot do this “fine-tune”

modification to the program. Specifically, we have to either

include the transition ðb1; c1Þ (respectively, ðb1; a2Þ) or drop it. We

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005 7

Fig. 4. Fault-intolerant program in the BT model derived using the above reduction.

Fig. 5. Masking fault-tolerant program in the BT model.

cannot include it conditionally, as done in the BT model. Now, if
we include the transition ðb1; c1Þ (respectively, ðb1; a2Þ), then it leads
to safety violation and if we exclude it, then it leads to deadlock.
Therefore, even if the BT instance has a solution, the corresponding
BP instance may not.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

constructive feedback. They especially thank the reviewer who

provided a possible polynomial-time reduction (considered in the

Appendix) from the BP model to the BT model. The counter-

example for this reduction provides additional insights into the

complexity of adding masking fault tolerance in BP model. This

work was partially sponsored by US National Science Foundation

(NSF) grant NSF CAREER CCR-0092724, US Defense Advanced

Research Projects Agency Grant OSURS01-C-1901, the Office of

Naval Research Grant N00014-01-1-0744, NSF grant EIA-0130724,

and a grant from Michigan State University.

REFERENCES

[1] S.S. Kulkarni and A. Arora, “Automating the Addition of Fault-Tolerance,”
Proc. Sixth Int’l Symp. Formal Techniques in Real-Time and Fault-Tolerant
Systems, pp. 82-93, 2000.

[2] F.C. Gärtner and A. Jhumka, “Automating the Addition of Failsafe Fault-
Tolerance: Beyond Fusion-Closed Specifications,” Proc. Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT), pp. 183-198, Sept. 2004.

[3] B. Alpern and F.B. Schneider, “Defining Liveness,” Information Processing
Letters, vol. 21, no. 4, pp. 181-185, Oct. 1985.

[4] A. Arora and M.G. Gouda, “Closure and Convergence: A Foundation of
Fault-Tolerant Computing,” IEEE Trans. Software Eng., vol. 19, no. 11,
pp. 1015-1027, Nov. 1993.

[5] S.S. Kulkarni, “Component-Based Design of Fault-Tolerance,” PhD thesis,
Ohio State Univ., 1999.

[6] F.B. Schneider, “Enforcing Security Policies,” ACM Trans. Information and
System Security, vol. 3, no. 1, pp. 30-50, 2000.

[7] E.W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,”
Comm. ACM, vol. 17, no. 11, 1974.

[8] A. Arora and S.S. Kulkarni, “Designing Masking Fault-Tolerance via
Nonmasking Fault-Tolerance,” IEEE Trans. Software Eng., vol. 24, no. 6,
pp. 435-450, June 1998.

[9] G. Varghese, “Self-Stabilization by Local Checking and Correction,” PhD
thesis, Massachusetts Inst. Technology, 1993.

[10] S.S. Kulkarni and A. Ebnenasir, “A Framework for Automatic
Synthesis of Fault-Tolerance,” Technical Report MSU-CSE-03-27,
Michigan State Univ., http://www.cse.msu.edu/~sandeep/software/
Code/synthesis-framework/, 2003.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[12] E.A. Emerson and E.M. Clarke, “Using Branching Time Temporal Logic to
Synthesize Synchronization Skeletons,” Science of Computer Programming,
vol. 2, no. 3, pp. 241-266, 1982.

[13] P. Attie and A. Emerson, “Synthesis of Concurrent Programs for an Atomic
Read/Write Model of Computation,” ACM Trans. Programming Languages
and Systems, vol. 23, no. 2, Mar. 2001.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

