A Fault-Tolerant Token based
Atomic Broadcast Algorithm

Richard Ekwall André Schiper
nilsrichard.ekwall@a3.epfl.ch andre.schiper@epfl.ch

Abstract— Many atomic broadcast algorithms have been pub-
lished in the last twenty years. Token based algorithms represent
a large class of these algorithms. Interestingly, all the token based
atomic broadcast algorithms rely on a group membership service
and none of them uses unreliable failure detectors directly. This
paper presents the first token based atomic broadcast algorithm
that uses an unreliable failure detector instead of a group
membership service. It requires a system size that is quadratic
in the number of supported failures. The special case of a single
supported failure (f = 1) requires n = 3 processes.

We experimentally evaluate the performance of this algorithm
in local and wide area networks, in order to emphasize that
atomic broadcast is efficiently implemented by combining a fail-
ure detector and a token based mechanism. The evaluation shows
that the new token based algorithm surpasses the performance
of the other algorithms in most small system settings.

I. INTRODUCTION

Atomic broadcast (or total order broadcast) is an important
abstraction in fault-tolerant distributed computing. Atomic broad-
cast ensures that messages broadcast by different processes are
delivered by all destination processes in the same order [22].
Atomic broadcast algorithms can be classified according to the
mechanism used for message ordering [16]. Token circulation is
one important ordering mechanism. In these algorithms, a token
circulates among the processes, and the token holder has the
privilege to order messages that have been broadcast. Addition-
ally, sometimes only the token holder is allowed to broadcast
messages.

However, the ordering mechanism is not the only key mech-
anism of an atomic broadcast algorithm. The mechanism used
to tolerate failures is another important characteristic of these
algorithms. If we consider asynchronous systems with crash
failures, the two most widely used mechanisms to tolerate failures
in the context of atomic broadcast algorithms are (i) unreliable
failure detectors [9] and (ii) group membership [12]. For example,
the atomic broadcast algorithm presented by Chandra and Toueg
in [9] (together with a consensus algorithm using the failure
detector &S [9]) falls into the first category; the atomic broadcast
algorithm by Birman et al. in [6] falls into the second category.

A. Group membership vs. failure detector

A (virtually synchronous) group membership service provides
a consistent membership information to all the members of a
group [29]. It can be used to remove processes that are suspected
to have crashed (in the primary-partition membership). In con-
trast, an unreliable failure detector, e.g., ¢S, does not provide
consistent information about the failure status of processes. It can,

To appear in IEEE Transactions on Dependable and Secure Computing.

for example, tell to process p that r has crashed, and to process
q that r is alive, at the same time.

Both mechanisms can make mistakes, e.g., by incorrectly
suspecting correct processes. However, the overhead of a wrong
failure suspicion is high when using a group membership: the
suspected process is removed, a costly operation. Depending on
which process is suspected, this removal is absolutely necessary
for the atomic broadcast algorithm that relies on the membership
service: the notification of the removal allows the algorithm to
avoid being blocked. Moreover, to keep the same replication
degree, the removal of a process is usually followed by the
addition of another (or the same) process. So, with a group
membership service, a wrong suspicion can lead to two costly
membership operations: removal of a process followed by the
addition of another process. With a failure detector, neither the
removal, nor the addition is needed.

In an environment where wrong failure suspicions are fre-
quent,' algorithms based on failure detectors thus have advantages
over algorithms based on a group membership service. The
cost difference has been evaluated through simulation in [35] in
the context of two specific (not token based) atomic broadcast
algorithms.

Atomic broadcast algorithms based on a failure detector have
another important advantage over algorithms based on group
membership: they can be used to implement the group mem-
bership service! Indeed, a (primary partition) group membership
service can use atomic broadcast to order its views. This leads to
a simple protocol stack design [27]. Such a design is not possible
if atomic broadcast relies on group membership.

B. Why token based algorithms?

According to [3], [26], [37], token based atomic broadcast algo-
rithms are extremely efficient in terms of throughput: the number
of messages that can be delivered per time unit. The reason is that
these algorithms manage to reduce network contention by using
the token (1) to avoid the ack explosion problem (which happens
if each broadcast message generates one acknowledgment per
receiving process), or (2) to perform flow control (e.g., a process
is allowed to broadcast a message only when holding the token).
However, none of the token based algorithms use failure detectors:
they all rely on a group membership service (which does not
necessarily appear explicitly in the algorithm, but can be imple-
mented in an ad-hoc way, as in [26]). It is therefore interesting
to try to design token based atomic broadcast algorithms that
rely on failure detectors, in order to combine the advantage of
failure detectors and of token based algorithms: good throughput

'For example, when setting timeouts used to suspect processes to small
values (in the order of the average message transmission delay), to reduce the
time needed to detect the crash of a process.

(without sacrificing latency) in stable environments, but adapted
to frequent wrong failure suspicions.

C. Contributions of the paper.

The paper presents the first token based atomic broadcast algo-
rithm that uses unreliable failure detectors instead of group mem-
bership. The algorithm requires a system size that is quadratic in
the number of supported failures (rather than linear, as in typical
atomic broadcast algorithms). In the special case of a single sup-
ported failure, only three processes are needed. The performance
of this algorithm is evaluated experimentally and compared to
other failure detector based atomic broadcast algorithms, both in
local area networks and in wide area networks.

These results are obtained in several steps. We first give a new
and more general definition for token based algorithms (Sect. II)
and introduce a new failure detector, denoted by R, adapted
to token based algorithms (Sect. III). The failure detector R
is shown to be strictly weaker than ¢7P, and strictly stronger
than ©S. Although OS is strong enough to solve consensus
and atomic broadcast, R has an interesting feature: the failure
detector module of a process p; only needs to give information
about the (estimated) state of p; 1. For p; 1, this can be done
by sending I am alive messages to p; only, which is extremely
cheap compared to failure detectors where each process monitors
all other processes. Moreover, in the case of three processes (a
frequent case in practice, tolerating one crash), our token based
algorithm works with ©S.

Section IV concentrates on the consensus problem and presents
a token based algorithm based on the failure detector R. An algo-
rithm that solves atomic broadcast is presented in Section V. The
algorithm is inspired from the token based consensus algorithm
of Section IV. Note that a standard solution consists in solving
atomic broadcast by reduction to consensus [9]. However, this
solution is not adequate here, because the resulting algorithm
would be highly inefficient. Our atomic broadcast algorithm
is derived from our consensus algorithm in a more complex
manner. The detour through the consensus algorithm makes the
explanation easier to understand.

Sections VI to IX present experimental performance compar-
isons between the token based atomic broadcast algorithm and
several other failure detector based atomic broadcast algorithms.
The evaluations are done in a local area network (Section VII),
in wide area networks (Section VIII) and in large size systems
(Section IX). These experimental evaluations show that the token
based algorithm often surpasses the performance of the other
algorithms in systems supporting one or two failures, both in the
common case without failures and wrong suspicions (in local and
wide area networks), and also in the case where wrong suspicions
occur repeatedly.

II. SYSTEM MODEL

We assume an asynchronous system composed of n processes
taken from the set IT = {py, ..., pn—1}, with an implicit order on
the processes. The k'" successor of a process p; is D(i+k) mod n>
which is noted p;;; for the sake of clarity. Similarly the Kt
predecessor of p; is simply denoted by p;_j. The processes com-
municate by message passing over reliable channels. Processes
can only fail by crashing. A process that never crashes is said
to be correct, otherwise it is faulty. At most f processes are

Sfaulty. Finally, the system is augmented with unreliable failure
detectors [9] (see below).

A. Agreement problems

The agreement problems considered in this paper are presented
below.

1) Consensus: In the consensus problem, a group of processes
II have to agree on a common value based on proposals of the
processes [9]. Consensus is defined by two primitives: propose
and decide. When a process p calls propose(v), we say that p
proposes v. Similarly, whenever p calls decide(v), it decides v.

As in [9], we specify the (uniform) consensus problem by
the four following properties: (1) Termination: Every correct
process eventually decides some value, (2) Uniform integrity:
Every process decides at most once, (3) Uniform agreement: No
two processes (correct or not) decide a different value, and (4)
Uniform validity: 1If a process decides v, then v was proposed by
some process in II.

2) Atomic broadcast: In the atomic broadcast problem, defined
by the primitives abroadcast and adeliver, processes have to agree
on a common total order delivery of a set of messages.

Formally, we define (uniform) atomic broadcast by four proper-
ties [22]: (1) Validity: If a correct process p abroadcasts a message
m, then it eventually adelivers m, (2) Uniform agreement: If
a process adelivers m, then all correct processes eventually
adeliver m, (3) Uniform integrity: For any message m, every
process p adelivers m at most once and only if m was previously
abroadcast. and (4) Uniform total order: If some process, correct
or faulty, adelivers m before m/, then every process adelivers
m’ only after it has adelivered m.

B. Token based algorithms

In most traditional token based algorithm, processes are orga-
nized in a logical ring and, for token transmission, communicate
only with their immediate predecessor and successor (except
during changes in the composition of the ring). This definition
is too restrictive for failure detector based algorithms. We define
an algorithm to be token based if (1) processes are organized in a
logical ring, (2) each process p; has a failure detector module F'D;
that provides information only about its immediate predecessor
pi—1 and (3) each process only sends tokens to and receives
tokens from its f + 1 predecessors and successors, where f is
the number of tolerated failures.

C. Failure detectors

We refer below to two failure detectors introduced in [9]: OP
and ©S. The eventual perfect failure detector OGP is defined by the
following properties: (i) Strong completeness: Eventually every
process that crashes is permanently suspected by every correct
process, and (ii) Eventual strong accuracy: there is a time after
which correct processes are not suspected by any correct process.
The ¢S failure detector is defined by (i) Strong completeness and
(ii) Eventual weak accuracy: there is a time after which some
correct process is never suspected by any correct process.

D. Related work

As mentioned in the introduction, previous atomic broadcast
protocols based on tokens need group membership or an equiva-
lent mechanism. In Chang and Maxemchuk’s Reliable Broadcast

Protocol [10], and its newer variant [26], an ad-hoc reformation
mechanism is called whenever a host fails. Group membership is
used explicitly in other atomic broadcast protocols such as Totem
[3], the Reliable Multicast Protocol by Whetten et al. [37] (derived
from [10]), and in [15].

These atomic broadcast protocols also have different ap-
proaches with respect to message broadcasting and delivery.
In [10], [37], the moving sequencer approach is used: any process
can broadcast a message at any time. The token holder then orders
the messages that have been broadcast. Other protocols, such as
Totem [3] or On-Demand [15] on the other hand use the privilege
based approach, enabling only the token-holder to broadcast (and
simultaneously order) messages. In these algorithms, the token is
effectively broadcast to all processes, although the token owner-
ship is passed along the processes on the ring. Both approaches
can be used in the algorithm presented in this paper.

Finally, the different token based atomic broadcast protocols
deliver messages in different ways. In [15], the token holder issues
an “update dissemination message” which effectively contains
messages and their global order. A host can deliver a message
as soon as it knows that previously ordered messages have
been delivered. “Agreed delivery” in the Totem protocol (which
corresponds to adeliver in the protocol presented in this paper)
is also done in a similar way. On the other hand, in the Chang-
Maxemchuk atomic broadcast protocol [10], a message is only
delivered once f + 1 sites have received the message. Finally, the
Train protocol presented in [14] transports the ordered messages
in a token that is passed among all processes (and is in this respect
related to the token based protocols presented in this paper).

Larrea et al. [24] also consider a logical ring of processes,
with a different goal however. They use a ring for an efficient
implementation of the failure detectors GW, ¢S and ¢P in a
partially synchronous system.

Finally, the IEEE 802.4 Standard [1] defines a token-based ac-
cess control protocol on top of a bus topology network, essentially
implementing total order at the MAC layer.

III. FAILURE DETECTOR R

For token based algorithms we define a new failure detector
denoted R (stands for Ring). Given process p;, the failure
detector attached to p; only gives information about the immediate
predecessor p;_1. For every process p;, R ensures the following
properties:

o Completeness: If p;_1 crashes and p; is correct, then p; 1
is eventually permanently suspected by p;, and

e Accuracy: If p;_1 and p; are correct, there is a time ¢ after
which p;_; is never suspected by p;.

The weaker/stronger relationship between failure detectors has
been defined in [9]. We show that (a) OP is strictly stronger than
R (denoted OP = R) if f > 1, and (b) R is strictly stronger
than OS if n > f(f + 1) + 1 (denoted R > ©S).

Lemma 3.1: OP is strictly stronger than R if f > 1.

The proof of Lemma 3.1 is presented in the appendix.

The relationship between R and <S is more difficult to
establish. We first introduce a new failure detector ©S2 (Sect.
III-A), then show that ©¢S2 >~ &S (Sect. III-B) and R = ¢S2 if
n> f(f+1)+1 (Sect. llI-C). By transitivity, we have R > ¢S
ifn>f(f+1)+1.

A. Failure detector ©S2

For the purpose of establishing the relation between R and ¢S
we introduce the failure detector ©S2 defined as follows:

o Strong completeness: Eventually every process that crashes
is permanently suspected by every correct process and

e Eventual “Double” Accuracy: There is a time after which
two correct processes are never suspected by any correct
process.

B. OS82 strictly stronger than OS

&S and ©S82 differ in the accuracy property only: while ¢S
requires eventually one correct process to be no longer suspected
by all correct processes, ¢S2 requires the same to hold for two
correct processes. From the definition, it follows directly that
OS82 > OS.

C. R stronger than OS82 if n > f(f+1)+1

We show that R is stronger than ©S2 if n > f(f +1) + 1 by
giving a transformation of R into the failure detector ¢S2.

Transformation of R into ¢S52: Each process p; maintains a
set correct; of processes that p; believes are correct.

(i) This set is updated as follows. Each time some process p;
changes its mind about p;_; (based on R), p; broadcasts (using
a FIFO reliable broadcast communication primitive [22]) the
message (p;—1, faulty), respectively (p;_1, correct). Whenever p;
receives (p;, faulty), then p; removes p; from correct;; whenever
p; receives (p;,correct), then p; adds p; to correct;.

(iia) For process p;, if correct; is equal to II (no suspected
process), the output of the transformation (the two non-suspected
processes) is pg and pj. All other processes are suspected.

(iib) For process p;, if correct; is not equal to II (at least one
suspected process), the output of the transformation (the two non-
suspected processes) is pi and pg41 such that k is the smallest
index satisfying the following conditions: (a) pg_1 is not in
correcti, and (b) the f processes py....,pr4r—1 are in correct;.
Apart from pj, and py 1, all other processes are suspected.

For example, for n = 7, f = 2, and correct; = {po, p2,P3,D5},
the non-suspected processes for p; are ps and ps. All other
processes are suspected. If correct; = {po,p1,p2,p3,p5}, the
non-suspected processes for p; are pg and p; (the predecessor of
po is pg, not in correct;). All other processes are suspected.

Lemma 3.2: Consider a system with n > f(f+1)+1 processes
and the failure detector R. The above transformation guarantees
that eventually all correct processes do not suspect the same two
correct processes.

Proof: (i) Consider ¢ such that after ¢ all faulty processes
have crashed and each correct process p; has accurate information
about its predecessor p;_1. It is easy to see that there is a time
t' > t such that after ¢’ all correct processes agree on the same
set correct;. Let us denote this set by correct(t').

(i) The condition n > f(f + 1) + 1 guarantees that the
set correct(t') contains a sequence of f consecutive processes.
Consider the following sequence of processes: 1 faulty, f correct,
1 faulty, f correct, etc. If we repeat the pattern f times, we have
f faulty processes in a set of f(f + 1) processes. If we add one
correct process to the set of f(f+1) processes, there is necessarily
a sequence of f + 1 correct processes. With a sequence of f + 1

correct processes, there is a sequence of f consecutive processes
in correct(t').

(i) In the case correct(t') =TI, po and p; are trivially correct.

(iv) In the case correct(t') # II, we first of all show that py, is
correct. Consider the sequence of f + 1 processes py, ..., Pi4f-
Since there are at most f faulty processes, at least one process p;
in pg,...,peyy is correct. If p; = pi, we are done. Otherwise,
if p; is correct, p;_1 is correct as well, since the failure detector
of p; is accurate after ¢’ and does not suspect p;_;. By the same
argument, if p;_; is correct, p;_o is correct. By repeating the
same argument at most f — 1 times, we have that p; is correct.

(v) In the case correct(t’) # II, we prove now that pj 1 is
correct. Since py, is correct and pj_; is not in correct(t’) (by
the selection rule of p; and py1), pp—1 is faulty. Thus, there
are at most f — 1 faulty processes in the sequence of f processes
Pk+1s- - - Pi+f- In the special case f =1 ({pgy1,.--,Phyf-1} =
(), all processes in pg41,. .- Pk~ f are correct. In the case f > 1,
there is a non-empty sequence pyi,...,Pg+f—1 in correct(t').
Furthermore, there are at most f — 1 faulty processes among the
f processes pyy1,....prf- By the same argument used to show
that py, is correct, we can show that py; is correct. |

The transformation of R into ©S2 ensures the Eventual “dou-
ble” accuracy property if n > f(f + 1) + 1. Since all processes
except two correct processes are suspected, the Strong complete-
ness property also holds. Consequently, if n > f(f+ 1)+ 1 we
have R = ©82.

D. Weaker version of R

The following failure detector is slightly weaker than R, but
powerful enough to replace R in all the algorithms presented in
this paper. It differs from R only in the Accuracy property:

o Accuracy: There is a sequence {pg,...,py4yr} of f + 1
correct processes and a time t after which p;_; is not
suspected by p;, fori € {x +1,...,2 + f}.

This failure detector is not further developed in this paper, as it
is more complex than R, also requires n > f(f+1)+1 processes
and provides only few additional benefits (it is, for example, still
strictly stronger than <¢S8).

IV. TOKEN BASED CONSENSUS USING UNRELIABLE FAILURE
DETECTORS

The following section presents the token based consensus
algorithm using failure detectors that is the basis for the atomic
broadcast algorithm presented later. We first describe how the
token is propagated (so that it is not lost in case of a process
crash), then present the basic idea of the algorithm, before the
algorithm itself.

A. Token circulation

Consensus is achieved by passing a token between the different
processes. The token contains information regarding the current
proposal (or the decision once it has been taken). The token is
passed between the processes on the logical ring pg, p1, ..., Pn—1-

To avoid the loss of the token due to crashes, process p; sends
the token to its f 4 1 successors in the ring, p;+1, ... ,pi+f+1.2

2The token should be seen as a logical token. Multiple backup copies
circulate in the ring, but they are discarded by the algorithm if no suspicion
occurs. Henceforth, the logical token will simply be referred to as the token”.

The algorithm is expressed as a sequence of rounds. In each round
a single process sends its token: process p; can only send a token
in rounds ¢ + k - n with £ > 0. Since there are n processes, a
complete revolution of the token requires n rounds. For example,
in a system with 3 processes, process pg sends its first token in
round 0. Processes p; and ps then send a token for the first time in
rounds 1 and 2, respectively. The second revolution of the token
starts when pg sends the token in round 3.

When awaiting the token for round r, process p; first waits to
get the token from p; 1 (sent in round r — 1). If p;_; crashes, p;
would wait forever. To avoid this, p; accepts the token from any
of its predecessors, if it suspects p;_1 (line 1 of Algorithm 1).

B. Token based consensus algorithm

1) Basic idea: Each token holder “votes” for the proposal in
the token and then sends it to its neighbors. As soon as a sufficient
number of token holders have voted for some proposal v, then v
is decided. The decision is then propagated as the token circulates
along the ring.

The algorithm can however not blindly increase the votes. We
say that there is a gap in the token circulation if the token received
by process p; in round round; is not from p;_; (i.e., the token
was not sent in round round; — 1, but in some round before that).
Now, upon receiving the token, a process does the following (see
Algorithm 1): as soon as there is a gap in the token circulation,
votes is reset by the receiver p; (line 3). After that, votes is
incremented (line 4). If at that point votes is greater than the vote
threshold f + 1, p; decides on the estimate of the token (lines 5
and 6). The decision is then propagated with the token (line 7,
with some details omitted). Note that a decision is only taken if
f successive processes receive the token from their predecessor
(and therefore increment the votes without resetting them).

Algorithm 1 Basic token handling by p;

1: upon receiving (votes, est, round) S.t.

(round = round; — 1) or

(pi—1 € Dp, and

round; — f — 1 < round < round; — 2) do
2: if round # round; — 1 then {gap in the token circulation’}
3 votes «— 0 {reset token}
4: wotes < votes + 1
5: if votes > f + 1 then
6 decide(est)
7

send (votes, est, round;) t0 {pix1,...,Ditf+1}

2) Conditions for Agreement vs. Termination: In the above
algorithm, where votes are reset as soon as a gap in the token
circulation is detected, Agreement holds if the vote threshold is
greater or equal to f + 1. Termination additionally requires the
failure detector R and that there be at least n > (f +1)f + 1
processes in the system.

3) Detailed algorithm: The token contains the following fields:
round (round number), est (current estimate value), votes (accu-
mulated votes for the est value) and decided (a boolean indicating
if est is the decision).

Furthermore, each process p; has two variables: round; that
contains the next sending round of p; and decision; that stores
the value of the decision (or L if p; has not decided yet).

The initialization code is given by lines 1 to 8 in Algorithm 2.
Lines 4-6 show pg sending the initial token (in round 0, with vg

Algorithm 2 Token based consensus (code of p;)

1: upon propose(v;) do
decision; «—_1; round; «— i
constant destSet; < {p;y1,...,Pit 41}
if p; = po then {send token with (round, est, votes, decided) }
send (0,vo, 1, false) to {p1,...,pr41}
roundg < n
else if p; € {pp—f,...,pn—1} then {send “dummy” token}

send (—1,v;,0, false) to {p1,...,Diyrs1}

Token handling by p;:
9: upon receiving (round, est, votes, decided) s.t.
(round = round; — 1) or
(pi—1 € Dp, and
round; — f — 1 < round < round; — 2) do

10: if decision; #1 then {p: has already decided}

11: send (round;, decision;, 0, true) to destSet;

12: else {p: has not decided yet}
13: if (round # round; — 1) then

14: votes «— 0 {reset votes if gap}
15: votes «— votes + 1 {add vote of p;}
16: if (votes > f 4 1) or decided then

17: decision; < est {decide if enough votes}
18: decide(decision;); decided < true

19: send (round;, est, votes, decided) to destSet;

20: round; < round; +n {set next sending round}

21: upon receiving (round, est, —, decided) s.t.
round < round; —n do

22: if decided and decision; =1 then

23: decision; < est

24: decide(decision;)

{decision in token}

as estimate). Lines 7-8 show the dummy token sent to prevent
blocking in case processes po, ...,ps_1 are initially crashed. A
dummy token has round = —1 and votes = 0, and is sent only
to processes {p1,...,pr}. The estimate est of this token is the
proposed value v; of the sender process p;.

The token handling code is given by lines 9 to 24 in Algo-
rithm 2. At line 9, process p; starts by receiving the token (from
pi—1, or another process if p;_; is suspected) for the expected
round;. If p; has already decided in a previous round, then p;
directly sends a token with the decision (line 11).

If p; has not yet decided, then p; starts by detecting if there is
a gap in the token circulation (line 13) and resets the votes if it
is the case (line 14). The votes are then incremented (line 15).

On line 16, p; verifies if enough votes have been collected
(votes > f 4 1) or if the token already contains a decision
(decided = true). If one of these conditions is true, p; decides
(lines 17-18). Process p; then sends its token to the f+1 sucessors
on line 19 and increments its next sending round round; by n.

Lines 9-20 ensure that at least one correct process eventually
decides. However, if f > 1, this does not ensure that all correct
processes eventually decide. Consider the following example: p;
is the first process to decide, p;4+; is faulty. In this case, p;y2
may always receive the token from p;_1, a token that does not
carry a decision; p; might be the only process to ever decide.
Lines 21-24 ensure that every correct process eventually decides.
Note that the stopping of the algorithm is not discussed here. It

propose(vy) decide(vy)

propose(vy) -

4
/(2,v0,0,true)

P1

(—1,v,,0,false) //'

P2

(1,v9,0,true)

i

time

le---

propose(vy) /'

decide(vy)

(a) No crash, no suspicion

propose(vo) % -
Po % “ -

decide(vy)

propose(vy)

p1 g 4 >
) : (I,v2,1,false) /'//<2,V2A07true>
propose(v) //l(—l,vzio,false) ,’/ tige
P2 decide(v3) o
(b) po crashes
Fig. 1. Example execution of the consensus algorithm

can easily be added.

4) Example run of the algorithm: Figure 1 presents an example
execution of the consensus algorithm in a system with n = 3
processes. The dashed arrows correspond to “backup” tokens (that
are used only when failures or suspicions occur) whereas the
solid arrows show the main token (transmitted between process
p; and p;41). When no crashes nor suspicions occur (Figure 1(a)),
process pj receives po’s token and increments the votes for pg’s
proposal vg. With two votes, p; decides vg. The token is then
passed on to p2 (with the decided flag set to true) that decides.
Finally, pg decides after the last token transmission.

In the case of a crash of pg, p; eventually suspects pg and thus
accepts p2’s token (with po’s proposal vs). Since there is a gap
in the token circulation, the votes are reset (no decision can be
taken) and the token is sent from p; to po. Process po receives
the token, increments the votes and decides va. Process p; then
decides one communication step later after receiving the backup
token (with the decision flag).

5) Proof of the token based algorithm: The proofs of the
Uniform validity and Uniform integrity properties are easy and
omitted. We prove only the Uniform agreement and Termination
properties.

Proof: (Uniform agreement) Let p; be the first process to
decide (say in round r), and let v be the decision value. By
line 16 of Algorithm 2, we have votes > f + 1. Votes are
reset for each gap. So, votes > f + 1 ensures that all processes
pj € {pi—y,...,Pi—1}, sent a token with est = v in rounds
r— f,...,r — 1 respectively.

Any process pj, successor of p; in the ring, receives the token
from one of the processes p;, ..., p;—s. Since all these processes
sent a token with est = v, the token received by pj necessarily
carries the estimate v. So after round r, the only value carried by
the token is v, i.e., any process that decides will decide v. [|

Proof: (Termination) Assume at most f faulty processes and
the failure detector R. We show that, if n > f(f + 1) + 1, then
every correct process eventually decides.

First it is easy to see that the token circulation never stops: if
p; s a correct process that does not have the token at time ¢, then
there exists some time ¢’ > t such that p; receives the token at

time t'. This follows from (1) the fact that the token is sent by a
process to its f + 1 successors, (2) the token reception procedure
(line 9 in Algorithm 2), and (3) the completeness property of
R (which ensures that if p; waits for the token from p;_; and
pi—1 has crashed, then p; eventually suspects p;_1 and accepts
the token from any of its f + 1 predecessors).

The second step is to show that at least one correct process
eventually decides. Assume the failure detector R, and let ¢
be such that after ¢ no correct process p; is suspected by its
immediate correct successor p; 1. Since we have n > f(f+1)+1
there is a sequence of f + 1 correct processes in the ring. Let
Di,---,Pit+s be this sequence. After ¢, processes p;i1,..., Pty
only accept the token from their immediate predecessor. Thus,
after t, the token sent by p; is received by p;11, the token sent
by p;41 is received by p;42, and so forth until the token sent by
Pits—1 1s received by p;y r. Once p;; ; has executed line 15 of
Algorithm 2, we have votes > f+1. Consequently, p; ¢ decides.

Finally, if one correct process p;. decides, and sends the token
with the decision to its f+1 successors, the first correct successor
of pg, by line 21 or line 9, eventually receives the token with the
decision and decides (if it has not yet done so). By a simple
induction, every correct process eventually also decides.]

V. TOKEN BASED ATOMIC BROADCAST USING UNRELIABLE
FAILURE DETECTORS

In this section we show how to transform the token based
consensus algorithm into an atomic broadcast algorithm. Note that
we could have presented the atomic broadcast algorithm directly.
However, since the consensus algorithm is simpler than the atomic
broadcast algorithm, we believe that a two-step presentation
makes it easier to understand the atomic broadcast algorithm.

Note also that it is well known how to solve atomic broadcast
by reduction to consensus [9]. However, the reduction, which
transforms atomic broadcast into a sequence of consensus, yields
an inefficient algorithm here. The reduction would lead to multiple
instances of consensus, with one token per consensus instance. We
want a single token to “glue” the various instances of consensus
together. A variation of the algorithm that follows is presented
in [19]. The algorithm presented here is easier to understand,
with processes that send regular messages (at line 10) and tokens
(versus only tokens in [19]).

To be correct, the atomic broadcast algorithm requires the
failure detector R, a number of processes n > f(f + 1) + 1,
and a vote threshold at f + 1 in order to decide, as was the case
in the consensus algorithm above.

A. Overview

In the token based atomic broadcast algorithm, the token
transports sets of messages. More precisely, the token carries the
following information: (round, ordering, votes, ordered).

The round and wotes fields are the same as in the consensus
algorithm. The set of messages ordering is the current proposal
(these messages are delivered as soon as a sufficient number of
consecutive “votes” have been collected). The field ordered is the
set of all ordered messages that the token is aware of (i.e., a set
of consensus decisions: pairs associating a sequence number to a
set of messages).

Algorithm 3 Token based atomic broadcast (code of p;)

1: Initialization:
unordered; < 0; ordered; «— 0: round; < 0
nextCons; +— 1

2

3

4: if p;, = po then {token: (round, ordering, votes, ordered) }
5: send (0, unorderedo, 1,0) to {p1,...,psr41}

6 roundg < n

7 else if p; € {p,—f,...,pn—1} then {send “dummy” token}
8 send (—1,0,0,0) to {p1,...,Pitf4+1}

9: To execute abroadcast(m):

10: send m to all.

11: upon delivering m do
12: if m & {msgs | (msgs, —) € ordered;} then
13: unordered; < unordered; U {m}

14: procedure delivery(seq):
15: while 3(nextCons;, msgs) € seq do

16: ordered; «— ordered; U {(nextCons;, msgs)}

17: unordered; «— unordered; \ msgs

18: adeliver messages in msgs in a deterministic order
19: nextCons; < nextCons; + 1

Token handling by p;:
20: upon receiving (round, ordering, votes, ordered) s.t.
(round = round; — 1) or
(pi—1 € Dp; and
round; — f — 1 < round < round; — 2) do
21: if |ordered| < |ordered;| then {“old” token}

22: ordering < ()

23: else {token with new information}
24: delivery(ordered)

25: if (round # round; — 1) or (ordering = () then

26: votes «— 0 {reset votes}
27: votes «— votes + 1

28: if votes > f + 1 then

29: delivery({(neztCons;, ordering)})

30: ordering «— ()

31: if ordering = () then

32: ordering < unordered;

33: votes = 1

34: token « (round;, ordering, votes, ordered;)

{new proposal}

35: send token to {pit1,...,Ditfi1}
36: round; < round; +n
37: upon receiving (round, —, —, ordered) s.t.

round < round; —n do
38: if |ordered| > |ordered;| then
39: delivery(ordered)

B. Details

Each process p; manages the following data structures (see
Algorithm 3): round; (the current round number), unordered;
(the set of all messages that have been abroadcast but not yet
ordered), ordered; (the set of all ordered messages that p; knows
of, represented as a set of (consensus number, set of messages)
pairs) and nextCons; (the next attributable sequence number).

Lines 1 to 19 of Algorithm 3 present the initialization of
the atomic broadcast algorithm, as well as the abroadcast and

adelivery of messages. Lines 1 to 8 correspond to lines 1 to 8
of the consensus algorithm (Algorithm 2). The delivery(seq)
procedure is called in the token handling part of Algorithm 3.

From line 20 and on, Algorithm 3 describes the token handling.
Lines 21 to 30 of Algorithm 3 correspond to lines 10 to 18 of
Algorithm 2. The procedure delivery(...) is called to adeliver
messages (line 29). When this happens, a new sequence of
messages can be proposed for delivery. This is done at lines 31
to 33. Finally, lines 37 to 39 handle the reception of other tokens.
This is needed for Uniform agreement when f > 1 (these lines
play the same role as lines 22-24 in Algorithm 2).

The proof of the algorithm can be derived from the proof of
the token based consensus algorithm.

C. Optimizations

The following paragraphs present the optimizations that were
applied to the token based atomic broadcast algorithm presented
in Algorithms 3. The performance figures presented later include
these optimizations.

First of all, in Algorithm 3, the token carries entire messages,
rather than only message identifiers. The algorithm can be op-
timized so that only the message identifiers are included in the
token. This can be addressed by adapting techniques presented in
other token based atomic broadcast algorithms, e.g., [10], [26],
and is thus not discussed further.

The optimization above reduces the size of the token but does
not prevent it from growing indefinitely. This can be handled as
follows. Consider a process p that receives the token with s; the
highest sequence number in the ordered set and later, in a different
round, receives the token with a sequence number sg > s; in the
same field. When p receives the token with the messages ordered
at sequence number sg, at least f+1 processes (and so at least one
correct process) have received a token containing messages up to
s1. All pairs (s, msgs) with s < s can thus be removed from the
ordered set in the token. In good runs (no failures, no suspicions),
this means that a process that adelivers new messages in round
¢ (thus increasing the size of the ordered set in the token) then
removes those messages from the token in round i + n.

The circulation of the token can also be optimized. If all
processes are correct, each process actually only needs to send
the token to its immediate successor. So, by default each process
p; only sends the token to p;yq. This approach requires that if
process p; suspects its predecessor p;_1, it must send a message
to its predecessors p;_ to p; o, requesting the token.> A process,
upon receiving such a message, sends the token to p;. If all
processes are correct, this optimization requires only a single
copy of the token to be sent by each token holder instead of
f + 1 copies, thus reducing the network contention by a factor
f+1

Furthermore, in Algorithm 3, the set of adelivered messages
are only transported in the token (in the ordered field). As a
consequence, the token has to perform a complete revolution for
all processes to adeliver a given message. This leads to high
latencies (i.e., the time between abroadcast(m) and adeliver(m)),
especially as the size of the system (and thus the token ring)
increases. To achieve a lower latency, a process p; that exe-
cutes line 29 sends the pair (nextCons;, ordering) to all other

3This request should only be sent once during each round, to avoid an
explosion of request messages in the case of very frequent wrong suspicions.

processes. Upon receiving this message, the other processes can
adeliver the messages in the ordering set without having to wait
for the next token.

Finally, in Algorithm 3, a single proposal is contained in
the token. The proposal contains a batch of messages to be
ordered and a decision on a batch can be taken at the earliest f
communication steps after the batch is proposed. As f increases,
each decision requires more and more steps (and so messages are
adelivered slower and slower).

To achieve higher throughputs, it is thus essential to be able to
have several proposals in a single token, i.e. propose a new batch
of messages before the last one has been adelivered. To do this we
allow the token to contain several proposals, with separate votes
for each proposal (instead of a single proposal with a single votes
variable in Algorithm 3). Moreover, the proposal also contains
the consensus number in which it was proposed. This consensus
number is used as a tie-breaker (to ensure Uniform total order)
whenever several proposals reach f + 1 votes at the same time.
The proposals with smallest consensus numbers are adelivered
first.

VI. EXPERIMENTAL PERFORMANCE EVALUATION

The performance of the token based atomic broadcast algorithm
presented above has been evaluated in simulation in [19]. This
simulation showed that the performance of the new algorithm is
better than previous algorithms using failure detectors.

As with any simulation, the performance results strongly de-
pend on the chosen model. To further confirm the good perfor-
mance of the new algorithm, we experimentally evaluate the token
based algorithm under varying conditions in real networks. We
consider both local and wide area networks, with several different
system sizes and network link characteristics. The new token
based algorithm is once again compared to the same two failure
detector based algorithms as in [19].

We focus on the case of a system without any process failures
and examine the situations where (1) no suspicions occur and
those where (2) wrong suspicions occur repeatedly. Situations (1)
and (2) assess, respectively, the two desired properties of the new
token based algorithm: high reachable throughputs in good runs
(which are common) and a good performance in a system with
frequent wrong failure suspicions.

A. Algorithms

We now present the atomic broadcast algorithm that is com-
pared with the token based atomic broadcast algorithm presented
in Section V.

The atomic broadcast algorithm proposed by Chandra and
Toueg [9] reduces atomic broadcast to a sequence of consensus
executions. The algorithm is shortly reminded below.

Whenever a message m is abroadcast, it is first reliably broad-
cast to all processes. The order of the abroadcast messages that
have not yet been adelivered is then determined by consecutive
consensus executions 1,2,3, etc. Each consensus execution is
performed on a set of undelivered messages. To adeliver a
message m that is abroadcast, the algorithm thus needs one
reliable broadcast and one consensus execution. The cost (in
terms of communication steps and sent messages) of adelivering
an application message depends on the choice of the underlying
consensus and reliable broadcast algorithms.

In our performance study, we consider the reliable broadcast
algorithm presented in [9], that requires one communication step
and n? messages per reliable broadcast. Furthermore, we consider
the two consensus implementations that were already used in
the simulated performance study in [19]. Both algorithms use
an unreliable failure detector ¢S to solve consensus and require
at least a majority of correct processes to reach a decision.
The characteristics of the two consensus algorithms are shortly
recalled in the following paragraphs.

1) Chandra-Toueg consensus [9]: The Chandra-Toueg al-
gorithm solves consensus using a centralized communication
scheme. A coordinator collects the estimates of all processes and
proposes a value. All processes then acknowledge this proposal
to the coordinator or refuse it if the coordinator is suspected. If
the proposal is accepted, the coordinator reliably broadcasts the
decision to all processes.

If neither failures nor suspicions occur, this algorithm requires
2n messages and one reliable broadcast to reach a decision. The
decision is received after 3 communication steps by all processes
(2 in the case of the coordinator).

2) Mostéfaoui-Raynal consensus [28]: The Mostéfaoui-Raynal
algorithm solves consensus using a decentralized communication
scheme. Again, a coordinator collects the estimates of all pro-
cesses and proposes a value. This time, all processes retransmit
this proposal to all other processes or send an invalid value (L) if
the coordinator is suspected. Any process that receives a majority
of acknowledgments decides and informs the other processes of
its decision.

If neither failures nor suspicions occur, this algorithm requires
2n? messages to reach a decision. The decision is received after
2 communication steps by all processes (or a single step in the
case of non-coordinator processes if n = 3).

As in [35], all the algorithms are optimized for runs without
failures and without suspicions, to minimize the latency when the
load on the system is low (rather than minimizing the number
of sent messages) and to tolerate high loads. For example, both
consensus algorithms send the proposal of a new consensus at
the same time as the decision of the previous one (to reduce
the amortized latency, see also [20]). Different optimizations
(choosing a different reliable broadcast protocol based on a failure
detector to reduce the number of sent messages) could of course
influence the performance results.

B. Elements of our performance study

The following paragraphs describe the benchmarks (i.e., the
performance metrics, the workloads and the faultloads) that were
used to evaluate the performance of the three implementations of
atomic broadcast (two atomic broadcast algorithms, one of which
uses two different consensus algorithms). Similar benchmarks
have been presented in [32], [35]. The three algorithms that
are compared are noted TokenFD (the token based algorithm
presented in Section V), CT (Chandra-Toueg’s atomic broadcast
with Chandra-Toueg’s &S consensus) and MR (Chandra-Toueg’s
atomic broadcast with Mostéfaoui-Raynal’s ¢S consensus). The
algorithms are implemented in Java, using the Neko [33] frame-
work.

1) Performance metrics and workloads: The performance met-
ric that is used to evaluate the algorithms is the latency of atomic
broadcast. For a single atomic broadcast, the latency L is defined
as follows. Let ¢, be the time at which the abroadcast(m) event

up (no failure)

trust trust
suspect

S — i
'mistake duration Ty !

mistake recurrence time Tyr

Fig. 2. Quality of service model of a failure detector in the suspicion-steady
faultload. Process ¢ monitors process p.

occurred and let ¢; be the time at which adeliver(m) occurred on
process p;, with ¢ € 0,...,n—1. The latency L is then defined as

LY (% Z?;(} t;) —ta. In our performance evaluation, the mean
for L is computed over many messages and for several executions.
95% confidence intervals are shown for all the results.

The latency L is measured for a certain workload, which spec-
ifies how the abroadcast events are generated. We chose a simple
symmetric workload where all processes send atomic broadcast
messages (without any payload) at the same constant rate and the
abroadcast events come from a Poisson stochastic process. The
global rate of atomic broadcasts is called the throughput T', which
is expressed in messages per second (or msgs/s).

Furthermore, we only consider the system in a stationary
state, when the rate of abroadcast messages is equal to the
rate of adelivered messages. The clocks of the processes are
synchronized to sub-1 ms precision at the beginning of each run
of an experiment.

2) Faultloads: The faultload specifies the events related to
process failures that occur during the performance evaluation [23],
[32]. In our experiments, the faultload focuses on the process
crashes and the behavior of the unreliable failure detectors. We
evaluate the atomic broadcast algorithms in the normal-steady and
suspicion-steady faultloads [32] which are presented below.

a) Normal-steady: In the normal-steady faultload, only runs
without process failures and without wrong suspicions are con-
sidered. The parameters that influence the latency are n (the
number of processes), the algorithm (TokenFD, CT or MR) and
the throughput.

b) Suspicion-steady: In the suspicion-steady faultload, no
processes fail, but wrong suspicions occur. This faultload is
implemented by using simulated failure detectors, whose quality
of service is modeled as in [11].

The two quality of service metrics presented in [11] that apply
to the (failure free) suspicion-steady faultload are presented in
Figure 2 and detailed below:

o The mistake recurrence time Ty g is the time between two

consecutive mistakes (the failure detector module on process

q wrongly suspects process p).

e The mistake duration T); is the time needed to correct the

mistake of the failure detector (the time needed for ¢ to trust

p again).

To keep the model as simple as possible, we consider that the
two random variables T, and T associated with each failure
detector are independent and identically distributed and follow an
exponential distribution with a (different) constant parameter.

Finally, this simulated failure detector model does not put any
load on the network, since no messages are exchanged between
the failure detector modules. However, since in a real failure
detector implementation, a good quality of service can often be
achieved without sending messages frequently, this trade-off is
acceptable.

TABLE 1
MAXIMUM THROUGHPUT IN A normal-steady FAULTLOAD

(a) n = 3: one supported failure (b) Two supported failures

Algorithm | Throughput Algorithm | Throughput
TokenFD 5250 msgs/s TokenFD (n = T7) | 3000 msgs/s
CcT 4000 msgs/s CT (n=05) 2125 msgs/s
MR 3500 msgs/s MR (n = 5) 1875 msgs/s
20 T T T
TokenFD —— |
_ MR 1 _ .
(%] [}
E E]
) 3 i
s s i
k< s
o "
0 1250 2500 3750 5000 0 750 1500 2250 3000

throughput [1/s]

(b) n = 5 (CT, MR), n = 7 (To-
kenFD): two supported failures

throughput [1/s]

(a) n = 3: one supported failure

Fig. 3. Latency vs. throughput with a normal-steady faultload

C. Related work

Most performance evaluations of the algorithms mentioned
above consider a local area network or a simulated model in
which all processes and network links are symmetrical [13],
[19], [21], [311, [32], [34], [35]. All processes have the same
processing power and have identical peer-to-peer round-trip times.
Furthermore, the evaluations only consider low round-trip times
between processes (and thus comparatively high message pro-
cessing costs): a setting which is favorable to algorithms that
limit the number of sent messages, at the expense of additional
communication steps.

The performance of atomic broadcast algorithms in wide area
networks has been evaluated in hybrid models that combine a
local area network with emulated network delays [36]. The effect
of message loss [4] and the performance of other distributed
algorithms [5] (that are however not representative of failure
detector based algorithms) have also been evaluated in wide area
networks.

VII. RESULTS IN A LOCAL AREA NETWORK
A. Evaluation environment

The experiments were executed on a local area network of
nodes with Pentium 4 processors at 3 GHz, with 2 MB of L2
cache and 1 GB of RAM. The nodes are interconnected by a
single Gigabit Ethernet switch. The round-trip time between two
nodes is approximately 0.1 ms. All nodes run Linux (with a 2.6.11
kernel) and Sun’s Java 1.5.0_05 virtual machine.

B. Normal-steady faultload

The performance of the three algorithms in a system without
failures nor suspicions is presented in Figure 3. The horizontal
axis shows the throughput (in messages per second) that is
applied, whereas the latency of the algorithms (in ms) for a given
throughput is shown vertically. Table [summarizes the maximum
throughput reached by the three algorithms (while remaining in
a stationary state) in the experiments.

In a system with three processes (Figure 3(a)), in which
all three algorithms support one failure, CT achieves slightly

T T 40 T
¥ TokenFD ———] 35 L
6 | MR --———-—- .
7 L CT - % 30
E 8 E 25|
T 4] & 20
g 3™ . & 15|
S 2 B & q0 k-
1 g 5|
0 Il Il " Il 0 Il Il Il
10 100 1000 10000 10 100 1000 10000

mistake recurrence time Tyg [ms] mistake recurrence time Ty;g[ms]

(b)y n = 5 (CT, MR), n = 7 (To-
kenFD): two supported failures

(a) n = 3: one supported failure

Fig. 4. Latency vs. mistake recurrence time Ty r with a suspicion-steady
faultload, a throughput of 1500 msgs/s and a mistake duration Thy = 5ms.

lower latencies than MR, while TokenFD reaches the highest
throughput and lowest latencies of the three algorithms. CT' and
MR need to send more messages than TokenFD in this setting: to
abroadcast m both algorithms reliably broadcast m (with a cost
of 6 messages), then propose and acknowledge m (4 messages for
CT, 6 for MR). The decision of both algorithms is propagated with
the proposal of the next consensus and no separate message is
needed for this. CT thus sends 10 messages to adeliver m, whereas
MR sends 12 messages. TokenFD broadcasts m (2 messages),
sends 2 messages for the token circulation and broadcasts the
decision (2 messages), for a total of 6 messages. The additional
messages sent by CT and MR add a load on the network and the
CPUs that explains the difference in performance with respect to
TokenFD.

The situation is similar in a system where two failures are
tolerated (Figure 3(b)), except that TokenFD has a higher latency
than CT and MR when the throughput is low. The explanation is
the following: in TokenFD, the number of communication steps
needed to adeliver a message is equal to f+2 (with f the tolerated
failures) and thus, as f increases, the latency of adeliver also
increases. In MR and CT however, the number of communication
steps does not depend on f and the latency of the algorithms is
less affected by the increase of the system size.

C. Suspicion-steady faultload

The performance of the TokenFD, CT and MR algorithms in
a system with wrong suspicions (but without process failures)
is discussed in the following paragraphs. We consider the case
where the frequency of these wrong suspicions varies (but the
duration of a wrong suspicion is fixed). In [17], several other
parameters are examined for the suspicion-steady faultload. The
parameters presented here (throughput of 1500 msgs/s and a
duration of wrong suspicions of 5 ms) were chosen because they
are representative of the entire parameter space.

Figure 4 illustrates the performance of the three algorithms in
systems supporting one or two failures. We present the latency
of the three algorithms for a throughput of 1500 msgs/s and
wrong suspicions that last on average T = 5ms. As mentioned
above, different throughputs and durations of wrong suspicions
are analyzed in [17]. The horizontal axis of each graph represents
the recurrence time of wrong suspicions (wrong suspicions occur
frequently on the left side of the graph and rarely on the right
side) and the vertical axis again represents the latency of atomic
broadcast.

In the case of a system with three processes supporting one
failure (Figure 4(a)), the TokenFD algorithm achieves lower

latencies than CT and MR, both in the case of rare wrong
suspicions, shown on the right hand side of the graph (as TR,
the mistake recurrence time grows, the suspicion-steady faultload
approaches the normal-steady faultload presented previously) and
when wrong suspicions occur extremely frequently (shown on the
left hand side of the graph). TokenFD achieves lower latencies
than CT and MR in a system with three processes for two reasons:
first of all, TokenFD can order messages as soon as there exists
one process that is not suspected by its successor, whereas in CT
and MR, a single process that suspects the coordinator can delay
a consensus decision. Secondly, a wrong suspicion is more costly
in CT and MR: if consensus cannot be reached in a given round,
the consensus algorithm starts a new round and needs to send at
least an additional 4n = 12 or n 4+ n? = 12 messages in 4 and 2
additional communication steps respectively.

In the case of TokenFD, a wrong suspicion incurs a cost of at
least an additional f 4+ 1 = 2 messages and one communication
step. The cost of a wrong suspicion also explains why the latency
of MR is lower than that of CT when suspicions are frequent,
whereas CT outperforms MR when (almost) no wrong suspicions
occur.

When a system that supports two failures is considered (Fig-
ure 4(b)), the results are slightly different. Indeed, when the
interval between wrong suspicions is low enough — around 15
ms — the algorithms cannot adeliver messages at the offered
load and the latency increases sharply. In the case of CT and MR
in a system with n = 5 processes, 4 processes can potentially
suspect the coordinator and send a nack (CT) or L (MR) that can
prevent a decision in the current round. Only 2 processes could
suspect the coordinator in the case of n = 3. The increased fault
tolerance also affects TokenFD: indeed, in a system supporting
two failures (i.e., n = 7), a batch of messages can only be ordered
if two consecutive processes do not suspect their respective
predecessors.

D. Summary

In a system with n = 3 processes without crashes nor wrong
suspicions, the latency of atomic broadcast is lower when using
TokenFD than CT or MR. Furthermore, TokenFD allows a higher
rate of abroadcasts while maintaining the system in a stationary
state. When two failures are tolerated (requiring 5 processes
with CT and MR, 7 processes with TokenFD), CT and MR
achieve lower latencies than TokenFD when the system load is
low. As soon as the load reaches about 1500 msgs/s, TokenFD
again outperforms both other algorithms. These results confirm
that performance-wise TokenFD behaves better than other failure
detector based algorithms in small systems. Furthermore, the
latency of TokenFD also remains low with respect to the two
other algorithms, when the load on the system increases in good
runs.

Concerning the second desired property — handling wrong
suspicions well — the results above show that in small systems,
the performance of the TokenFD algorithm is better than both CT
(which is shown to handle wrong suspicions better than a group
membership based algorithm in [35]) and MR when the interval
between wrong suspicions is short. These results confirm that the
second desired property of the TokenFD algorithm holds: wrong
failure suspicions do not drastically reduce the performance of the
algorithm. This in turn allows an implementation of the failure de-
tector with aggressive timeouts, which consequently allows actual

Sophia (France, Grid’5000)
Nancy

(France, Grid’5000)

@ @ Iée(ﬁnes Grenoble
lz2ms 32.8Mb/s
B::ﬁ;@‘{z?ms @} 20.1 ms @

Fig. 5. WAN evaluation environments (WAN Three Locations, WAN 20.1)

failures to be detected fast. If the failure detector implementation
commits a mistake and wrongly suspects a process that is still
alive, this mistake does not cost much in terms of performance.

VIII. RESULTS IN A WIDE AREA NETWORK

The performance of the algorithms that we consider is affected
by a trade-off between the number of communication steps and
the number of messages needed to reach a decision. Some algo-
rithms reach decisions in few communication steps but require
more messages to do so. Others save messages at the expense
of additional communication steps (to diffuse the decision to all
processes in the system for example). This trade-off is heavily
influenced by the message transmission and processing times.
When deploying an atomic broadcast algorithm, the user must
take these factors into account in order to choose the algorithm
that is best adapted to the given network environment.

Furthermore, evaluating the performance of atomic broadcast
on wide area networks is not only of theoretical interest. As [25]
shows, it is feasible to use atomic broadcast as a service to provide
consistent data replication on wide area networks. We initially fo-
cus on the case of a system with three processes — i.e., supporting
one failure — where either (i) all three processes are on different
locations and (ii) the three processes are on two locations only
(and thus one of the locations hosts two processes). The system
with three processes is interesting as it has no single point of
failure and represents the case in which the group communication
algorithms reach their best performance. Furthermore, atomic
broadcast provides strong consistency guarantees (that can be used
to implement active replication for example [30]) and is limited
to relatively small degrees of replication. Google, for example,
uses the Paxos consensus algorithm for Chubby, its distributed
lock service, in systems with n = 5 processes (supporting up to
f = 2 process failures) [8]. If a large degree of replication is
needed, then alternatives that provide weaker consistency should
be considered [2].

A. Evaluation environments

The algorithms are evaluated with the normal-steady faultload
and with a large variation in link latency (e.g., round-trip times
ranging from 4 to 300 ms).

Four wide area network environments are used to evaluate
the performance of the three atomic broadcast and consensus
algorithms (Figure 5 presents two of the environments). All
machines run Linux (2.6.8 to 2.6.12 kernels) and Sun’s Java 1.5.0
virtual machine. The following paragraphs describe the different
wide area network environments in which the atomic broadcast
algorithms are evaluated.

1) Three-location wide area network: The first evaluation
environment (noted WAN Three Locations, Figure 5, left) is
a system with three locations on Grid’5000 [7], a French grid of
interconnected clusters designed for the experimental evaluation
of distributed systems. The round-trip times of the links between
the three processes are respectively 17.2 ms, 12.5 ms and 10.6 ms.

'I"okenFD‘ E— ‘ Token‘FD E— 'I"okenFD‘ _—
35 | MR(loc. 1) ~---—- i 35 MR (shifting) ------- i 35 F MR (loc.2) ———---- i
— CT (loc. 1) - _ CT (shifting) -~ .- _ CT (loc. 2) -
é 30 [ook R E 30 F g L. B é 30 - R
> o > >
2 & 25 | i g
: I Sy
< T F] =
O X Hemmmmmm R
15 i 15 | i
L L L L L L L L L L 10 L L L L L
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

throughput [1/s]

(a) Initial coordinator on location 1.

throughput [1/s]

(b) Shifting initial coordinator

throughput [1/s]

(c) Initial coordinator on location 2

Fig. 6. Average latency of the three algorithms as a function of the throughput in the WAN Three Locations setting.

The observed bandwidth of the links are 30.1 Mbits/s, 41.4
Mbits/s and 48.7 Mbits/s.

2) Two-location wide area networks: Three processes are
distributed on two different locations in a wide area network.
The location with two processes is denoted the local location,
whereas the location with a single process is the distant location.
Three different two-location environments are considered:

— WAN 295: The first two-location environment consists of
a local location in Switzerland and a distant one in Japan. The
round-trip time between the locations is 295 ms and the bandwidth
of the connecting link is 1.74 Mb/s.

— WAN 20.1 and WAN 3.9: The two following environments
are systems with both locations on Grid’5000. The WAN 20.1
system (Figure 5, right) features a round-trip time between
locations of 20.1 ms and a link bandwidth of 32.8 Mb/s. The
WAN 3.9 system features a round-trip time between locations
of 3.9 ms and a link bandwidth of 152 Mb/s. The performance
characteristics of the three algorithms are similar in WAN 20.1
and WAN 3.9.

Due to a lack of space, we present the results in the WAN
Three Locations and WAN 20.1 settings here and refer the
reader to [18] for the WAN 295 and WAN 3.9 settings.

B. The issue of the initial coordinator location

Both CT and MR are coordinator based algorithms: a coor-
dinator process proposes the value that is later decided upon.
Upon starting a consensus execution in one of these algorithms,
one process is selected deterministically as coordinator (this is
the initial coordinator). Later on in the consensus execution, the
coordinator process may change in case of suspicions.

The choice of the initial coordinator process in a local area
network is not an issue, since all processes are symmetrical
(same hardware and same network latency between processes).
In a wide area network, however, the performance of the CT
and MR algorithms heavily depends on the choice of the ini-
tial coordinator. In the following performance evaluation, we
therefore consider runs with an initial coordinator on each one
of the wide area network locations (this initial coordinator is
fixed for all consensus executions), as well as runs where the
initial coordinator, for each consensus execution, is on a different
location (i.e., a shifting initial coordinator).

C. Comparing the performance of the three algorithms

1) WAN Three Locations: The average latency of the three
algorithms in the WAN Three Locations environment is pre-
sented in Figure 6. TokenFD and MR outperform CT for all

locations of the initial coordinator and for all throughputs, due
to the additional communication step that is needed by the CT
algorithm. TokenFD and MR perform similarly when the initial
MR coordinator is on site 1 (which is the worst-case scenario for
MR), whereas MR achieves slightly better latencies than TokenFD
for both other initial coordinator locations.

Surprisingly enough, the result of using a shifting initial
coordinator in the CT and MR algorithms are opposite: in the
case of MR, the latency is lower using a shifting initial coordinator
than a fixed initial coordinator on any location, whereas in CT it
is higher. The explanation is the following: MR and CT both start
a new consensus execution after two communication steps if the
coordinator is on a fixed location. If the coordinator shifts, a new
execution can start as soon as the next non-coordinator process
decides. This is done after one communication step in MR (if
n = 3), but after three steps in CT.

2) WAN 295, WAN 20.1 and WAN 3.9: The average latency
of the three atomic broadcast and consensus algorithms in the
WAN 20.1 environment is presented in Figure 7 (the WAN 295
and WAN 3.9 environements are presented in [18]). TokenFD has
lower latencies than CT and MR when they use a distant initial
coordinator (Figure 7(a)), whereas the situation is reversed when
the coordinator is initially on a local location (Figure 7(c)). When
the initial coordinator shifts at each new consensus execution, MR
and TokenFD have similar latencies while CT is slightly slower.

Finally, when the CT or MR algorithm is used with an initial
coordinator on the local location, the system never reaches a sta-
tionary state given a sufficiently high throughput (2000 msgs/s in
Figure 7(c)). The processes on the local location reach consensus
decisions very fast without needing any input from the distant
location. The updates that are then sent to the distant location
saturate the link between both locations (its bandwidth is only
32.8 Mbits/s in WAN 20.1). The process on the distant location
thus takes decisions slower than the two local processes and
prevents the average latency of atomic broadcast from stabilizing.
This problem does not affect the settings with a distant or shifting
initial coordinator, since the distant location periodically acts as
a consensus coordinator, providing a natural flow control. We see
that setup issues, such as the choice of the initial coordinator,
affect the maximum achievable throughput of the algorithms.

D. Summary

As expected, the performance results presented above show that
communication steps have the largest impact on performance in
wide area networks, whereas the number of sent messages is a
key to the performance in a local area network (as illustrated in
Section VII). As the network latency decreases, the impact of the

"TokenFD —— 40 " TokenFD — — i 40 TokenFD —— R
MR (distant) MR (shifting) ———- MR (local) -

@ 50 | cr (dIStant)rVm:r;___*,_,*ﬂx'“*/,’; - CT (shifting) - P = 30 CT (local) -------- i
£ e I vy E £ }
> _x > > X

%) B X %) %) ¥ |
13 JUNVIVENVENSSSS S s I3 |
= e = = 4

25 i i |

1 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

throughput [1/s]

(a) Distant coordinator

Fig. 7.

additional messages that need to be sent and processed increases.
In the case of a network with a 20.1 ms (or 3.9 ms [18]) round-trip
time, this impact is clearly observable. However, for a given set of
parameters, the algorithm with the best performance is generally
the same (whether a wide area network with a 3.9 ms round-trip
time is considered or one with a 20.1 ms or 295 ms round-trip
time).

Finally, we also saw that choosing a CT and MR coordinator on
the local location yields low latencies, but is not necessarily the
best solution in terms of throughput, since the system cannot reach
a stationary state as the total throughput increases. An additional
ad-hoc flow control mechanism is needed. Shifting the initial
coordinator between locations at each new consensus execution or
choosing the TokenFD algorithm results in a natural flow control
which enables the system to remain in a stationary state even for
high throughputs (at the expense of a higher adelivery latency).

IX. PERFORMANCE OF THE ALGORITHMS IN LARGE SYSTEMS

The experimental performance evaluation of the three atomic
broadcast algorithms in Sections VII and VIII was limited to
relatively small systems and the algorithms could be criticized
for not scaling well as the number of processes in the system
increases. This scalability problem is due to different factors
for each of the considered algorithms. The MR algorithm, for
example, is affected by the O(n?) messages that need to be
transmitted and processed to solve consensus. In the case of CT,
a fan-in problem arises: one process needs to receive and handle
replies from all other processes in order to solve consensus and
thus becomes a bottleneck for the performance of the system.
Finally, in the TokenFD algorithm described in Section V, the
number of communication steps needed to solve atomic broadcast
increases with the size of the system. We evaluate the algorithms
in systems with up to 23 processes. In larger systems, fault
tolerance is less of an issue and group communication services
with weaker consistency guarantees might be preferred.

A. Evaluation environments

The performance of the algorithms is measured in a large local
area network and then in a wide area networks of interconnected
clusters. The characteristics of these environments are the follow-
ing.

1) Local area network: The first set of experiments were
executed on the local area network cluster previously presented
in Section VIIL

throughput [1/s]

(b) Shifting initial coordinator

throughput [1/s]

(¢) Local coordinator

Average latency of the three algorithms as a function of the throughput in the WAN 20.1 setting.

50 T T T T T T
n=21 + n=.
40 Fn=17 ¥ E 40 n= i
@ n=13 @ n=13,
é 30 | n=g i 4 E 30 n g
3 n= / 3 n
2 2} n3 i 41 $ 20 n]
] * v = -
10 F WX - 10 B
* el &
TR - e - ¥=K
0 .3 R T e e 0 £ 3 = = = =
0 250 500 750 1000 1250 0 200 400 600 800 100012001400
throughput [1/s] throughput [1/s]

@ CT (f=[%)]) (b) TokenFD

Fig. 8. Latency vs. throughput of the CT and TokenFD algorithms in a local
area network with 3 to 21 processes.

2) Wide area network — Grid’5000: The second set of experi-
ments were executed on Grid’5000, which was mentioned in Sec-
tion VIII. Grid’5000 is composed of 14 sites (in 9 geographical
locations), among which seven were used for our measurements.

All the sites (Bordeaux, Rennes, Toulouse, Lyon, Nancy, Orsay,
Sophia) feature nodes with AMD Opteron 246 or 248 dual
processors at 2 GHz or 2.2 GHz respectively, with 1IMB of L2
cache and 2GB of RAM. The machines on the different sites
all run Linux (with a 2.6.8 or a 2.6.12 kernel). The nodes on a
given site are interconnected by Gigabit Ethernet and run Sun’s
Java 1.5.0.06 AMDG64 Server Virtual Machine. The geographical
location and round trip times between sites are presented in [17].

The coordinator process of the CT consensus algorithms always
runs on a node of the Orsay site. The TokenFD passes the token
among sites in the following order: Orsay — Bordeaux — Nancy
— Lyon — Toulouse — Sophia — Rennes.

B. Comparing the performance of the three algorithms

1) Local Area Network: Figure 8 shows the latency versus
the throughput of the Chandra-Toueg (Figure 8(a)) and TokenFD
(Figure 8(b)) atomic broadcast algorithms when all processes in
the system participate in the algorithms. The figure shows results
for system sizes ranging from 3 to 21 processes, supporting from
1 to 10 failures (CT) or 1 to 4 failures (TokenFD). The horizontal
axis shows the load on the system (in messages per seconds), and
the average latency (ms) is shown on the vertical axis.

In the case of a small system with 3 processes, the latency
remains almost constant as the throughput increases, for all three
algorithms. In the largest system with 21 processes, however, the
latency increases extremely fast with the throughput, especially
for the CT algorithm, where O(n?) messages are needed to
solve atomic broadcast. In the case of TokenFD, the scalability
problem is less severe (since only O(n) messages are sent by the
algorithm). The fault tolerance is however lower and the latency

EVNEIATARN

1

m% 3 F .
50 Eﬁg_af._wws%&&ﬂ
e B S

0 1000 2000 3000 1000 2000 3000
throughput [1/s] throughput [1/s]

@ CT (f=1%]) (b) TokenFD

latency [ms]
i
latency [ms]

Fig. 9. Latency vs. throughput of the CT and TokenFD algorithms in the
Grid’5000 wide area network with 3 to 23 processes.

still increases with the system size (O(y/n) communication steps
are needed to adeliver messages).

2) Wide area network — Grid’5000: We now evaluate the
performance of the algorithms in a wide area network, to examine
how high latency channels affect the performance of the atomic
broadcast algorithms.

Figure 9 shows the latency versus the throughput of the three
atomic broadcast algorithms running on all processes, on the
Grid’5000 wide area network. The figure shows results for system
sizes ranging from three to 23 processes, supporting from 1 to 11
failures (CT) or 1 to 4 failures (TokenFD).

For a given system size and a given algorithm, the latency
of the algorithms remains relatively stable until a threshold is
reached. Above that threshold, the latency quickly increases. This
is especially the case for the smaller systems (n = 3 to n = 15).

Furthermore, in the wide area network, the additional commu-
nication steps (which are costly) needed by the TokenFD algo-
rithm as the system size increases strongly affect the performance
of the algorithm. Figure 9(b) shows that if a single failure is
supported (n = 3), then the maximum throughput of the algorithm
is above 3250 msgs/s. This threshold drops to approximately 2000
msgs/s when n = 7 and f = 2, and does not exceed 500 msgs/s
when n = 23 and f = 4. Each additional supported failure
requires an additional 12 ms communication step.

C. Summary

In the local area network, the performance of CT depends
strongly on the number of messages that are sent. As the size
of the system increases, its performance drops due to the O(n?)
messages that are sent. The TokenFD algorithm is less affected
by the size of the system, since the algorithm only sends O(n)
messages. The 1/n communication steps needed by TokenFD to
adeliver a messages only have a minor effect on the performance
of the algorithm in the local area network.

In the wide area network, on the other hand, the perfor-
mance TokenFD is strongly affected by the additional (expensive)
communication steps between sites. The performance of CT
shows similar trends in the wide and local area networks. The
CT algorithm needs a fixed number of communication steps to
adeliver a message and is thus not more affected by a large wide
area system than by a large local area system.

X. CONCLUSION

According to various authors, token based atomic broadcast
algorithms are more efficient in terms of throughput than other
atomic broadcast algorithms; the token can be used to reduce net-
work contention. However, all published token based algorithms

rely on a group membership service; none of them use unreliable
failure detectors directly. The first part of this paper presented the
first token based atomic broadcast algorithms that solely relies on
a failure detector, namely the new failure detector called R. Such
an algorithm has the advantage of tolerating failures directly (i.e.,
it also tolerates wrong failure suspicions), instead of relying on
a membership service to exclude crashed processes (which, as a
side-effect, also excludes incorrectly suspected processes). Thus,
failure detector based algorithms have advantages over group
membership based algorithms, in case of wrong failure suspicions,
and possibly also in the case of real crashes.

The local area network performance evaluation in the second
part of this paper showed that the token based algorithm TokenFD
surpasses the Chandra-Toueg atomic broadcast algorithm (using
the Chandra-Toueg or Mostéfaoui-Raynal consensus algorithm)
for systems that support up to two process failures, both in runs
without faulty processes and in the case of wrong suspicions.
However, TokenFD requires a system size n that is quadratic in
the number of failures f. In systems that need to handle a high
fault-tolerance degree (i.e., when f becomes large), TokenFD’s
relative performance degrades compared to CT and MR.

Furthermore, although token based atomic broadcast algorithms
are usually considered to be efficient only in terms of throughput,
our experimental performance evaluation showed that for small
values of n, our algorithm outperforms the two other algorithms
in terms of latency as well, at all but the lowest loads.

Finally, this paper also presented the performance of the token
based algorithm in wide area networks and systems with a large
number of processes. This evaluation showed that the token based
algorithm provides a natural flow control in wide area networks,
which both other algorithms do not. In large wide area networks,
however, the latency of the token based algorithm is affected by
the additional costly communication steps that are needed.

REFERENCES

[1] Token Passing Bus Access Method, ANSI/IEEE standard 802.4. 1985.

[2] L. Alvisi and K. Marzullo. Waft: Support for fault-tolerance in wide-
area object oriented systems. In Proc. 2nd Information Survivability
Workshop — ISW 98, pages 5-10, Los Alamitos, CA, USA, October
1998. IEEE Computer Society Press.

[3] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P.Ciarfella. The
Totem Single-Ring Ordering and Membership Protocol. ACM Trans. on
Computer Systems, 13(4):311-342, November 1995.

[4] T. Anker, D. Dolev, G. Greenman, and I. Shnayderman. Evaluating total
order algorithms in WAN. In Proc. International Workshop on Large-
Scale Group Communication, Florence, Italy, October 2003.

[5] O. Bakr and I. Keidar. Evaluating the running time of a communication
round over the internet. In PODC ’02: Proc. twenty-first annual
symposium on Principles of distributed computing, pages 243-252,
Monterey, California, USA, 2002. ACM Press.

[6] K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and
Atomic Group Multicast. ACM Trans. on Computer Systems, 9(3):272—
314, August 1991.

[7] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou,
S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet,
and O. Richard. Grid’5000: a large scale, reconfigurable, controlable
and monitorable Grid platform. In Grid’2005 Workshop, Seattle, USA,
November 13-14 2005. IEEE/ACM.

[8] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. In PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed computing, pages
398-407, New York, NY, USA, 2007. ACM.

[9] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of ACM, 43(2):225-267, 1996.

[10] J. M. Chang and N. Maxemchuck. Reliable Broadcast Protocols. ACM
Trans. on Computer Systems, 2(3):251-273, August 1984.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service
of failure detectors. IEEE Transactions on Computers, 51(2):561-580,
May 2002.

G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication
Specifications: A Comprehensive Study. ACM Computing Surveys,
4(33):1-43, December 2001.

A. Coccoli, P. Urbdn, A. Bondavalli, and A. Schiper. Performance anal-
ysis of a consensus algorithm combining Stochastic Activity Networks
and measurements. In Proc. Int’l Conf. on Dependable Systems and
Networks (DSN 2002), pages 551-560, Washington, DC, USA, June
2002.

F. Cristian. Reaching Agreement on Processor Group Membership in
Synchronous Distributed Systems. Distributed Computing, 4(4):175—
187, April 1991.

F. Cristian, S. Mishra, and G. Alvarez. High-performance asynchronous
atomic broadcast. Distributed System Engineering Journal, 4(2):109—
128, June 1997.

X. Défago, A. Schiper, and P. Urban. Total Order Broadcast and
Multicast Algorithms: Taxonomy and Survey. ACM Computing Surveys,
36(2):372-421, December 2004.

R. Ekwall. Atomic Broadcast: a Fault-Tolerant Token based Algorithm
and Performance Evaluations. PhD thesis, Ecole Polytechnique Fédérale
de Lausanne, Switzerland, May 2007. Number 3811.

R. Ekwall and A. Schiper. Comparing Atomic Broadcast Algorithms in
High Latency Networks. Technical Report LSR-Report-2006-003, Ecole
Polytechnique Fédérale de Lausanne, Switzerland, July 2006.

R. Ekwall, A. Schiper, and P. Urbdn. Token-based Atomic Broadcast
using Unreliable Failure Detectors. In Proceedings of 23rd IEEE
Symposium on Reliable Distributed Systems (SRDS-23), Florianopolis,
Brazil, Oct. 2004.

R. Friedman and R. van Renesse. Packing messages as a tool for
boosting the performance of total ordering protocols. In 6th IEEE
Symposium on High Performance Distributed Computing, pages 233—
242, Portland, OR, USA, Aug. 1997.

R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma. High Throughput
Total Order Broadcast for Cluster Environments. In IEEE International
Conference on Dependable Systems and Networks (DSN 2006), Philadel-
phia, PA, USA, June 2006.

V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related
Problems. Technical Report 94-1425, Department of Computer Science,
Cornell University, May 1994.

K. Kanoun, H. Madeira, and J. Arlat. A Framework for Dependability
Benchmarking. In Workshop on Dependability Benchmarking (jointly
organized with DSN-2002), pages F7-F8, Bethesda, Maryland, USA,
June 2002.

M. Larrea, S. Arevalo, and A. Fernandez. Efficient algorithms to
implement unreliable failure detectors in partially synchronous systems.
In Int. Symposium on Distributed Computing, pages 34—48, 1999.

Y. Lin, B. Kemme, M. Patifio-Martinez, and R. Jiménez-Peris. Consistent
data replication: Is it feasible in WANs?. In Proc. 11th Euro-Par
Conference, pages 633—643, Lisbon, Portugal, September 2005.

N. F. Maxemchuk and D. H. Shur. An Internet multicast system for
the stock market. ACM Trans. on Computer Systems, 19(3):384—412,
August 2001.

S. Mena, A. Schiper, and P. Wojciechowski. A Step Towards a New
Generation of Group Communication Systems. In Proc. Int. Middleware
Conference, pages 414-432. Springer Verlag, LNCS 2672, June 2003.

A. Mostefaoui and M. Raynal. Solving Consensus using Chandra-
Toueg’s Unreliable Failure Detectors: A Synthetic Approach. In 13th.
Intl. Symposium on Distributed Computing (DISC’99). Springer Verlag,
LNCS 1693, September 1999.

A. Schiper and S. Toueg. From Set Membership to Group Membership:
A Separation of Concerns. [EEE Transactions on Dependable and
Secure Computing, 3(1):2-12, 2006.

F. B. Schneider. Replication Management using the State-Machine
Approach. In S. Mullender, editor, Distributed Systems, pages 169-197.
ACM Press, 1993.

A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic Total Order
in Wide Area Networks. In 2Ist IEEE Symp. on Reliable Distributed
Systems (SRDS-21), pages 190-199, Osaka, Japan, October 2002.

P. Urban. Evaluating the Performance of Distributed Agreement Al-
gorithms: Tools, Methodology and Case Studies. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne, Switzerland, Aug. 2003. Number
2824.

P. Urbdn, X. Défago, and A. Schiper. Neko: A single environment to
simulate and prototype distributed algorithms. Journal of Information
Science and Engineering, 18(6):981-997, Nov. 2002.

[34] P. Urban, N. Hayashibara, A. Schiper, and T. Katayama. Performance
comparison of a rotating coordinator and a leader based consensus
algorithm. In Proc. 23rd IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 4-17, Florianépolis, Brazil, October 2004.

P. Urban, I. Shnayderman, and A. Schiper. Comparison of failure
detectors and group membership: Performance study of two atomic
broadcast algorithms. In Proc. of the Int’l Conf. on Dependable Systems
and Networks (DSN), pages 645-654, June 2003.

P. Vicente and L. Rodrigues. An Indulgent Total Order Algorithm with
Optimistic Delivery. In 21st IEEE Symp. on Reliable Distributed Systems
(SRDS-21), pages 92-101, Osaka, Japan, October 2002.

B. Whetten, T. Montgomery, and S. M. Kaplan. A high performance
totally ordered multicast protocol. In Dagstuhl Seminar on Distributed
Systems, pages 33-57, 1994.

[35]

[36]

(37]

APPENDIX
PROOF OF LEMMA 3.1

From the definition it follows directly that OGP is stronger or
equivalent to R, denoted by ¢P = R. We prove that OP > R.

We prove that &P > R in a system with f > 1 by contraction.
We denote by D! the output of R at time ¢ on p; (which gives
information about p; _1). Df is the set of processes that p; suspects
at time ¢ and can either be the empty set) or {p;_1}. From the
definition of R, Vj # i : Vt : p;_1 & D}

For a contradiction assume &P = R in a system with f > 1.
Let algorithm A allow us to construct &P from R. Also, assume
that process p; is faulty. With p; faulty, there is a time ¢o after
which the output Dﬁ of R on p; does not change (whether p;
is correct or faulty, or crashes before or after ¢g): Vt > tg : Dg =
Do,

Consider first a run Ry of A in which p;_; is correct. By
accuracy, let t,s be the time at which p;_; is no more suspected
by correct processes. We define ¢; = max(tg, tns).

Then, construct run R, of A as follows. Run R; is identical to
Ry except that p; 1 crashes at time ¢; (with f > 1, there can be
two faulty processes in the system). For all processes II—{p;_1},
run R; is indistinguishable from run Ry up to ¢;. Therefore, no
correct process suspects p;_1 at time ¢;. By completeness, in run
Ry, there must exist a time ¢ > ¢, such that all correct processes
suspect p;_1 forever after to.

Construct run Ry of A as follows. Run R» is identical to R
except that p;_; is correct in Ro and delay all messages sent
by p;_1 after ¢; such that they are received after ¢5. Since V¢ >
to : Df- = Df.", run Ry is indistinguishable from R; until ¢o.
Therefore, p; 1 is suspected by all correct processes at ts.

To summarize, starting from run Ry of A in which p;_; is
correct, we have constructed run Rz of A in which p;_1 is correct
but suspected one more time. Repeating the same construction
shows that p;_; can be suspected an unbounded number of times.
a

