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Abstract—Open nature of peer-to-peer systems exposes them to malicious activity. Building trust relationships among peers can

mitigate attacks of malicious peers. This paper presents distributed algorithms that enable a peer to reason about trustworthiness of

other peers based on past interactions and recommendations. Peers create their own trust network in their proximity by using local

information available and do not try to learn global trust information. Two contexts of trust, service, and recommendation contexts, are

defined to measure trustworthiness in providing services and giving recommendations. Interactions and recommendations are

evaluated based on importance, recentness, and peer satisfaction parameters. Additionally, recommender’s trustworthiness and

confidence about a recommendation are considered while evaluating recommendations. Simulation experiments on a file sharing

application show that the proposed model can mitigate attacks on 16 different malicious behavior models. In the experiments, good

peers were able to form trust relationships in their proximity and isolate malicious peers.

Index Terms—Peer-to-peer systems, trust management, reputation, security

Ç

1 INTRODUCTION

PEER-TO-PEER (P2P) systems rely on collaboration of peers
to accomplish tasks. Ease of performing malicious

activity is a threat for security of P2P systems. Creating
long-term trust relationships among peers can provide a
more secure environment by reducing risk and uncertainty
in future P2P interactions. However, establishing trust in an
unknown entity is difficult in such a malicious environ-
ment. Furthermore, trust is a social concept and hard to
measure with numerical values. Metrics are needed to
represent trust in computational models. Classifying peers
as either trustworthy or untrustworthy is not sufficient in
most cases. Metrics should have precision so peers can be
ranked according to trustworthiness. Interactions and
feedbacks of peers provide information to measure trust
among peers. Interactions with a peer provide certain
information about the peer but feedbacks might contain
deceptive information. This makes assessment of trust-
worthiness a challenge.

In the presence of an authority, a central server is a
preferred way to store and manage trust information, e.g.,
eBay. The central server securely stores trust information
and defines trust metrics. Since there is no central server in
most P2P systems, peers organize themselves to store and
manage trust information about each other [1], [2].
Management of trust information is dependent to the
structure of P2P network. In distributed hash table (DHT)-
based approaches, each peer becomes a trust holder by
storing feedbacks about other peers [1], [3], [4]. Global trust

information stored by trust holders can be accessed
through DHT efficiently. In unstructured networks, each
peer stores trust information about peers in its neighbor-
hood or peers interacted in the past [2], [5], [6]. A peer
sends trust queries to learn trust information of other
peers. A trust query is either flooded to the network or sent
to neighborhood of the query initiator. Generally, calcu-
lated trust information is not global and does not reflect
opinions of all peers.

We propose a Self-ORganizing Trust model (SORT) that
aims to decrease malicious activity in a P2P system by
establishing trust relations among peers in their proximity.
No a priori information or a trusted peer is used to leverage
trust establishment. Peers do not try to collect trust informa-
tion from all peers. Each peer develops its own local view of
trust about the peers interacted in the past. In this way, good
peers form dynamic trust groups in their proximity and can
isolate malicious peers. Since peers generally tend to interact
with a small set of peers [7], forming trust relations in
proximity of peers helps to mitigate attacks in a P2P system.

In SORT, peers are assumed to be strangers to each other at
the beginning. A peer becomes an acquaintance of another
peer after providing a service, e.g., uploading a file. If a peer
has no acquaintance, it chooses to trust strangers. An
acquaintance is always preferred over a stranger if they are
equally trustworthy. Using a service of a peer is an
interaction, which is evaluated based on weight (importance)
and recentness of the interaction, and satisfaction of the
requester. An acquaintance’s feedback about a peer, recom-
mendation, is evaluated based on recommender’s trust-
worthiness. It contains the recommender’s own experience
about the peer, information collected from the recommen-
der’s acquaintances, and the recommender’s level of con-
fidence in the recommendation. If the level of confidence is
low, the recommendation has a low value in evaluation and
affects less the trustworthiness of the recommender.

A peer may be a good service provider but a bad
recommender or vice versa. Thus, SORT considers provid-
ing services and giving recommendations as different tasks
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and defines two contexts of trust: service and recommendation
contexts. Information about past interactions and recom-
mendations are stored in separate histories to assess
competence and integrity of acquaintances in these contexts.

SORT defines three trust metrics. Reputation metric is
calculated based on recommendations. It is important
when deciding about strangers and new acquaintances.
Reputation loses its importance as experience with an
acquaintance increases. Service trust and recommendation
trust are primary metrics to measure trustworthiness in the
service and recommendation contexts, respectively. The
service trust metric is used when selecting service
providers. The recommendation trust metric is important
when requesting recommendations. When calculating the
reputation metric, recommendations are evaluated based
on the recommendation trust metric.

We implemented a P2P file sharing simulation tool and
conducted experiments to understand impact of SORT in
mitigating attacks. Parameters related to peer capabilities
(bandwidth, number of shared files), peer behavior (online/
offline periods, waiting time for sessions), and resource
distribution (file sizes, popularity of files) are approximated
to several empirical results [8], [9], [10]. This enabled us to
make more realistic observations on evolution of trust
relationships. We studied 16 types of malicious peer
behaviors, which perform both service and recommenda-
tion-based attacks. SORT mitigated service-based attacks in
all cases. Recommendation-based attacks were contained
except when malicious peers are in large numbers, e.g.,
50 percent of all peers. Experiments on SORT show that
good peers can defend themselves against malicious peers
without having global trust information. SORT’s trust
metrics let a peer assess trustworthiness of other peers
based on local information. Service and recommendation
contexts enable better measurement of trustworthiness in
providing services and giving recommendations.

Outline of the paper is as follows: Section 2 discusses the
related research. Section 3 explains the computational
model of SORT. Section 4 presents the simulation experi-
ments and results. Section 5 summarizes the results and
possible future work directions.

2 RELATED WORK

Marsh [11] defines a formal trust model based on socio-
logical foundations. An agent uses own experiences to build
trust relations and does not consider information of other
agents. Abdul-rahman and Hailes [12] evaluate trust in a
discrete domain as an aggregation of direct experience and
recommendations of other parties. They define a semantic
distance measure to test accuracy of recommendations. Yu
and Singh’s model [13] propagates trust information
through referral chains. Referrals are primary method of
developing trust in others. Mui et al. [14] propose a
statistical model based on trust, reputation, and reciprocity
concepts. Reputation is propagated through multiple re-
ferral chains. Jøsang et al. [15] discuss that referrals based on
indirect trust relations may cause incorrect trust derivation.
Thus, trust topologies should be carefully evaluated before
propagating trust information. Terzi et al. [16] introduce an
algorithm to classify users and assign them roles based on

trust relationships. Zhong [17] proposes a dynamic trust
concept based on McKnight’s social trust model [18]. When
building trust relationships, uncertain evidences are eval-
uated using second-order probability and Dempster-Shafer-
ian framework.

In e-commerce platforms, reputation systems are widely
used as a method of building trust , e.g., eBay, Amazon, and
Epinions. A central authority collects feedbacks of past
customers, which are used by future customers in shopping
decisions. Resnick et al. [19] discuss that ensuring long-lived
relationships, forcing feedbacks, checking honesty of recom-
mendations are some difficulties in reputation systems.
Despotovic and Aberer [20] point out that trust-aware
exchanges can increase economic activity since some ex-
changes may not happen without trust. Jsang et al. [21]
indicate that reputation systems are vulnerable to incorrect
and bogus feedback attacks. Thus feedback ratings must be
based on objective criteria to be useful. Dellarocas [22]
proposes controlled anonymity and cluster filtering methods
as countermeasures to unfairly high/low ratings and
discriminatory seller behavior attacks. Yu and Singh [23]
present a weighted majority algorithm against three attacks
on reputation: complementary, exaggerated positive/nega-
tive feedbacks. Guha et al. [24] use trust and distrust concepts
in a discrete domain. Their results on Epinions web site’s data
show that distrust is helpful to measure trustworthiness
accurately. Reputation systems are vulnerable to sybil attacks
[25], where a malicious entity can disseminate bogus feed-
backs by creating multiple fake entities. To defend against
sybil attacks, Yu et al. [26] and Tran et al. [27] propose
techniques based on the observation that fake entities
generally have many trust relationships among each other
but they rarely have relationships with real users.

Trust models on P2P systems have extra challenges
comparing to e-commerce platforms. Malicious peers have
more attack opportunities in P2P trust models due to lack of
a central authority. Hoffman et al. [28] discuss five common
attacks in P2P trust models: self-promoting, white-washing,
slandering, orchestrated, and denial of service attacks. They
point out that defense techniques in trust models are
dependent to P2P system architecture.

On a structured P2P system, a DHT structure can
provide decentralized and efficient access to trust informa-
tion. In Aberer and Despotovic’s trust model [1], peers
report their complaints by using P-Grid [29]. A peer is
assumed as trustworthy unless there are complaints about
it. However, preexistence of trust among peers does not
distinguish a newcomer and an untrustworthy one. Eigen-
trust [3] uses transitivity of trust to calculate global trust
values stored on CAN [30]. Trusted peers are used to
leverage building trust among regular peers and mitigate
some collaborative attacks. PeerTrust [4] defines transaction
and community context parameters to make trust calcula-
tion adaptive on P-Grid. While transaction context para-
meter addresses application dependent factors, community
context parameter addresses P2P community related issues
such as creating incentives to force feedbacks. Both
Eigentrust and Peertrust evaluate a recommendation based
on trustworthiness of the recommender. Song et al. [31]
propose a fuzzy-logic-based trust model on Chord [32],
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which performs similar results to Eigentrust with lower
message overhead. PowerTrust [33] constructs an overlay
network based on the Power law distribution of peer
feedbacks. By using a random-walk strategy and utilizing
power nodes, feedback aggregation speed, and global
reputation accuracy are improved.

Solutions on a structured network rely on a DHT
structure to store trust information. Each peer becomes a
trust holder of another peer, which is assumed to provide
authentic global trust information. However, a trust holder
might be malicious and provide inauthentic information. In
SORT, instead of considering a particular trust holder’s
feedback as authentic, public opinion from all acquain-
tances is considered as a more credible information. Instead
of considering global trust information, local trust informa-
tion is enough to make decisions as peers develop their
own trust networks.

On unstructured P2P systems, trust queries are generally
flooded to the whole network. Cornelli et al. [34] flood trust
queries in Gnutella network [9]. A detailed computational
trust model is not defined. Peers make decisions based on
collected feedbacks to mitigate inauthentic file downloads.
Selcuk et al. [5] present a vector-based trust metric relying on
both interactions and recommendations. A reputation query
is sent to neighbors if there are enough neighbors. Otherwise,
the query is flooded to network. Although five types of
malicious peers are studied, recommendation-based attacks
are not considered in the experiments. Yu et al. [35] store a
history of interactions and consider ratings and recentness of
interactions when evaluating trust. Number of interactions
with a peer is a measure of confidence about the peer.
GossipTrust [6] defines a randomized gossiping [36] protocol
for efficient aggregation of trust values. A query is randomly
forwarded to some neighbors instead of all neighbors.
Comparing to flooding approach, gossiping reduces reputa-
tion query traffic. In SORT, peers send reputation queries
only to peers interacted in the past, which reduces network
traffic comparing to flooding-based approaches. Further-
more, each peer expands its trust network with time and can
obtain more credible recommendations from acquaintances.

Some trust models use signed credentials to store trust
information. Ooi et al. [37] propose that each peer stores its
own reputation using signed certificates. When a peer needs
to know about a stranger, it requests certificates of the
stranger. NICE [38] uses signed cookies as a proof of good
behavior. Peers dynamically form trust groups to protect
each other. Peers in the same group have a higher trust in
each other. Trust-based pricing and trading policies help to
protect integrity of groups. Using signed credentials elim-
inates the need for reputation queries but ensuring validity of
trust information in credentials is a problem. If a peer
misbehaves after collecting good credentials, it is hard to
revoke credentials without using a central authority.
Furthermore, a public-key infrastructure is generally needed.

How to evaluate interactions and how to define trust
metrics are important problems in trust models. Wang and
Vassileva [39] propose a Bayesian network model which
uses different aspects of interactions on a P2P file sharing
application. Victor et al. [40] define trust and distrust
metrics. A nonzero distrust value lets an agent to distinguish
an untrusted user from a new user. A lattice structure with

trust and knowledge axis is used to model various trusting
conditions. Swamynathan et al. [41] decouple trust metrics
on service and recommendation contexts to assess trust-
worthiness better. Creating contexts of trust can be helpful
to address issues in various domains. Gupta et al. [42] use
reputation as a currency. A central agent issues money to
peers in return for their services to others. This money can be
used to get better quality of service. Bhargava et al. [43]
discusses trading privacy to gain more trust in pervasive
systems. In another interesting study, Virendra et al. [44] use
trust concept in mobile ad-hoc networks to establish keys
among nodes and group nodes into domains. Trustworthi-
ness is measured according to lost and misrouted packets.
Trust establishment phases are defined for starting up new
nodes, maintaining trust of old peers, and reestablishing
trust in malicious nodes.

In SORT, to evaluate interactions and recommendations
better, importance, recentness, and peer satisfaction para-
meters are considered. Recommender’s trustworthiness and
confidence about recommendation are considered when
evaluating recommendations. Additionally, service and
recommendation contexts are separated. This enabled us
to measure trustworthiness in a wide variety of attack
scenarios. Most trust models do not consider how interac-
tions are rated and assume that a rating mechanism exists.
In this study, we suggest an interaction rating mechanism
on a file sharing application and consider many real-life
parameters to make simulations more realistic.

3 THE COMPUTATIONAL MODEL OF SORT

We make the following assumptions. Peers are equal in
computational power and responsibility. There are no
privileged, centralized, or trusted peers to manage trust
relationships. Peers occasionally leave and join the network.
A peer provides services and uses services of others. For
simplicity of discussion, one type of interaction is con-
sidered in the service context, i.e., file download.

3.1 Preliminary Notations

pi denotes the ith peer. When pi uses a service of another
peer, it is an interaction for pi. Interactions are unidirectional.
For example, if pi downloads a file from pj, it is an
interaction for pi and no information is stored on pj.

If pi had at least one interaction with pj, pj is an
acquaintance of pi. Otherwise, pj is a stranger to pi. Ai denotes
pi’s set of acquaintances. A peer stores a separate history of
interactions for each acquaintance. SHij denotes pi’s service
history with pj where shij denotes the current size of the
history. shmax denotes the upper bound for service history
size. Since new interactions are appended to the history,
SHij is a time ordered list.

Parameters of an interaction. After finishing an interac-
tion, pi evaluates quality of service and assigns a satisfaction
value for the interaction. Let 0 � skij � 1 denote pi’s
satisfaction about kth interaction with pj. If an interaction
is not completed, skij ¼ 0. An interaction’s importance is
measured with a weight value. Let 0 � wkij � 1 denote the
weight of kth interaction of pi with pj.

Semantics to calculate skij and wkij values depend on the
application. In a file sharing application, authenticity of a
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file, average download speed, average delay, retransmis-
sion rate of packets and online/offline periods of the service
provider might be some parameters to calculate skij. Size and
popularity of a file might be some parameters to calculate
wkij. In Section 4, we suggest equations to calculate these
values in a file sharing application.

Importance of an old interaction should decrease as new
interactions happen. The fading effect parameter addresses
this issue and forces peers to stay consistent in future
interactions. Old interactions lose their importance so a peer
cannot easily misbehave by relying on its good history. Let
0 � fkij � 1 denote the fading effect of kth interaction of pi
with pj. It is calculated as follows:

fkij ¼
k

shij
; 1 � k � shij: ð1Þ

After adding (or deleting) an interaction to SHij, pi
recalculates fkij values. The fading effect can be defined as
a function of time but it has to be recalculated whenever its
value is needed. Furthermore, interactions continually lose
value with time causing all peers to lose reputation even
though no bad interaction happens.

Let SHij ¼ f�1
ij; �

2
ij; . . . ; �

shij
ij g, where �kij ¼ ðskij; wkijÞ is a

tuple representing the information about kth interaction.
When adding a new interaction, �1

ij is deleted if shij ¼ shmax.
An interaction is deleted from the history after an expiration
period, which should be determined according to shmax and
happening rate of interactions.

Trust metrics. Let 0 � rij � 1 denote pi’s reputation
value about pj. Similarly, 0 � stij; rtij � 1 denote pi’s
service and recommendation trust values about pj, respec-
tively. When pj is a stranger to pi, we define that rij ¼
stij ¼ rtij ¼ 0. This is a protection against pseudonym
changing of malicious peers [45] since such peers lose
reputation and cannot gain advantage by appearing with
new identities. The following sections explain calculation
of these metrics. For easy reading of these sections, Table 1
lists some notations related to trust metrics.

3.2 Service Trust Metric (stij)

When evaluating an acquaintance’s trustworthiness in the
service context, a peer first calculates competence and
integrity belief values using the information in its service
history. Competence belief represents how well an acquain-
tance satisfied the needs of past interactions [18], [17], [46].
Let cbij denote the competence belief of pi about pj in the
service context. Average behavior in the past interactions is
a measure of the competence belief. When evaluating

competence, interactions should be considered in propor-
tion to their weight and recentness. Then, pi calculates cbij
as follows:

cbij ¼
1

�cb

Xshij
k¼1

�
skij � wkij � fkij

�
: ð2Þ

�cb ¼
Pshij

k¼1 ðwkij � fkijÞ is the normalization coefficient. If pj
completes all interactions perfectly (skij ¼ 1 for all k), the
coefficient �cb ensures that cbij ¼ 1. Since 0 � skij; wkij; fkij � 1
by definition, cbij always take a value between 0 and 1.

A peer can be competent but may present erratic
behavior. Consistency is as important as competence. Level
of confidence in predictability of future interactions is called
integrity belief [18], [17], [46]. Let ibij denote the integrity
belief of pi about pj in the service context. Deviation from
average behavior (cbij) is a measure of the integrity belief.
Therefore, ibij is calculated as an approximation to the
standard deviation of interaction parameters

ibij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

shij

Xshij
k¼1

�
skij � w

�
ij � f

�
ij � cbij

�2

vuut : ð3Þ

A small value of ibij means more predictable behavior of pj
in the future interactions. w�ij and f�ij are the mean of wkij and
fkij values in SHij, respectively. Since the weight and fading
effect parameters are independent from the satisfaction
parameter and we are interested in the average behavior
(satisfaction), these parameters are eliminated in calculation
by using w�ij and f�ij values for all interactions. We can
approximate f�ij as follows:

f�ij ¼
1

shij

Xshij
k¼1

fkij ¼
shij þ 1

2shij
� 1

2
: ð4Þ

Based on the past interactions with pj, pi has an
expectation about future interactions. pi wants to maintain
a level of satisfaction according to this expectation. If the
satisfaction parameter is assumed to follow a normal
distribution, cbij and ibij can be considered as approxima-
tions of mean (�) and standard deviation (�) of the
satisfaction parameter, respectively. According to the
cumulative distribution function of normal distribution, an
interaction’s satisfaction is less than cbij with a �ð0Þ ¼ 0:5
probability. If pi sets stij ¼ cbij, half of the future interactions
will likely to have a satisfaction value less than cbij. Thus,
stij ¼ cbij is an overestimate for pj’s trustworthiness. A
lower estimate makes pi more confident about pj since there
will be less future interactions that have a lower satisfaction
value than stij value. pi may calculate stij as follows:

stij ¼ cbij � ibij=2: ð5Þ

In this case, a future interaction’s satisfaction is less than stij
with �ð�0:5Þ ¼ 0:3185 probability. Adding ibij into calcula-
tion forces pj to behave more consistently since erratic
behavior increases ibij value. Selection of �ð�0:5Þ comes
from our experimental results. In real life, the satisfaction
parameter may follow a different distribution. Each peer can
use statistical analysis to determine a more precise distribu-
tion based on its past interactions and change (5) accord-
ingly. This analysis can be extended for each acquaintance
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so a peer can determine a specialized distribution for each

acquaintance and customize its trust calculation according

to its acquaintances.
Equation (5) is not complete since reputation of pj is not

considered. Reputation is especially important in the early
phases of a trust relationship. When there are no (or few)
interactions with an acquaintance, a peer needs to rely on
the reputation metric. As more interactions happen, the
competence and integrity belief values gain more impor-
tance. Therefore, pi calculates stij as follows:

stij ¼
shij
shmax

ðcbij � ibij=2Þ þ 1� shij
shmax

� �
rij: ð6Þ

Equation (6) balances effects of interactions and the

reputation value on stij value. When pj is a stranger to pi,

shij ¼ 0, and stij ¼ rij. As more interactions happen with pj,

shij gets larger and rij becomes less important. When

shij ¼ shmax, rij has no effect on stij.

3.3 Reputation Metric (rij)

The reputation metric measures a stranger’s trustworthiness

based on recommendations. In the following two sections,

we assume that pj is a stranger to pi and pk is an acquaintance

of pi. If pi wants to calculate rij value, it starts a reputation

query to collect recommendations from its acquaintances.
Algorithm 1 shows how pi selects trustworthy acquain-

tances and requests their recommendations. Let �max denote
the maximum number of recommendations that can be
collected in a reputation query and jSj denote the size of a
set S. In the algorithm, pi sets a high threshold for
recommendation trust values and requests recommenda-
tions from highly trusted acquaintances first. Then, it
decreases the threshold and repeats the same operations.
To prevent excessive network traffic, the algorithm stops
when �max recommendations are collected or the threshold
drops under ð�rt � �rtÞ value.

Algorithm 1. GETRECOMMENDATIONS(pj)

1: �rt ( 1
jAij
P

pk2Ai
rtik

2: �rt ( 1
jAij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
pk2Ai
ðrtik � �rtÞ2

q
3: thhigh ( 1

4: thlow ( �rt þ �rt
5: rset( ;
6: while �rt � �rt � thlow and jrsetj < �max do

7: for all pk 2 Ai do

8: if thlow � rtik � thhigh then

9: rec( RequestRecommendation(pk,pj)

10: rset( rset [ frecg
11: end if

12: end for

13: thhigh ( thlow
14: thlow ( thlow � �rt=2
15: end while

16: return rset

Let Ti ¼ fp1; p2; . . . ptig be the set of trustworthy peers

selected by Algorithm 1 and ti be the number of peers in

this set. If pk 2 Ai had at least one interaction with pj, it

replies the following information as a recommendation:

. cbkj; ibkj. These values are a summary of pk’s
interaction history with pj.

. shkj. The history size with pj is a measure of pk’s
confidence in cbkj and ibkj values. If pk had many
interactions, cbkj and ibkj values are more credible.

. rkj. If pk had any interaction with pj, it should already
have calculated rkj value, which is a summary of
recommendations of pk’s acquaintances. pi can make
a better approximation to global reputation of pj by
aggregating rkj values.

. �kj. �kj denotes the number of pk’s acquaintances
which provided a recommendation during the
calculation of rkj. This value is a measure of pk’s
confidence in rkj value. If �kj value is close to �max, rkj
value is credible since more peers agree on rkj value.

Including shkj and �kj values in the recommendation
protects pk’s credibility in the view of pi. If pk’s knowledge
about pj is insufficient, pi figures this out by examining
shkj and �kj values. Thus, pi does not judge pk harshly if
cbkj; ibkj; rkj values are inaccurate comparing to recommen-
dations of other peers.

A recommendation is evaluated according to recommen-
dation trust value of the recommender. In particular, pi
evaluates pk’s recommendation based on rtik value. The
calculation of rtik value is explained in Section 3.4. If pi has
never received a recommendation from pk, we set rtik ¼ rik.

After collecting all recommendations, pi calculates an
estimation about reputation of pj by aggregating rkj values
in all recommendations. Let erij denote pi’s estimation
about reputation of pj. In this calculation, rkj values are
considered with respect to �kj as shown:

erij ¼
1

�er

X
pk2Ti

�
rtik � �kj � rkj

�
: ð7Þ

If pk is trustworthy and collected many recommenda-
tions when calculating rkj value, rtik and �kj values will be
larger and rkj will affect the result more. �er ¼

P
pk2Tiðrtik �

�kjÞ is the normalization coefficient.
Then, pi calculates estimations about competence and

integrity beliefs of pj denoted by ecbij and eibij, respectively.
These values are calculated using cbkj and ibkj values in all
recommendations. Additionally, cbkj and ibkj are evaluated
based on shkj values. Equations (8) and (9) show calculation
of ecbij and eibij, where �ecb ¼

P
pk2Tiðrtik � shkjÞ is the

normalization coefficient.

ecbij ¼
1

�ecb

X
pk2Ti

�
rtik � shkj � cbkj

�
; ð8Þ

eibij ¼
1

�ecb

X
pk2Ti

�
rtik � shkj � ibkj

�
: ð9Þ

While erij represents the information collected from
acquaintances of pi’s acquaintances, ecbij and eibij represent
own experiences of pi’s acquaintances with pj.
pi calculates the average of history sizes in all recommen-

dations, �sh ¼
P

pk2TiðshkjÞ=ti value. If �sh is close to shmax
value, pi’s acquaintances had a high level of own experience
with pj and ecbij; eibij values should be given more
importance than erij value. Otherwise, erij value is more
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important. With these observations, rij is calculated as
follows:

rij ¼
b�shc
shmax

ðecbij � eibij=2Þ þ 1� b�shc
shmax

� �
erij: ð10Þ

In (10), if �sh is close to shmax, own experiences of
acquaintances (ecbij and eibij values) will be more important
than estimation to the reputation (erij).

3.4 Recommendation Trust Metric (rtik)

After calculating rij value, pi updates recommendation
trust values of recommenders based on accuracy of their
recommendations. This section explains how pi updates rtik
according to pk’s recommendation.

Similar to interactions, three parameters are calculated
about recommendations. Let 0 � rszik; rwzik, rfzik � 1 denote
the satisfaction, weight, and fading effect of pi’s
zth recommendation from pk, respectively. Let �zik ¼
ðrszik; rwzikÞ be a tuple representing the information about
zth recommendation and RHik ¼ f�1

ik; �
2
ik . . . �rhikik g be the

recommendation history of pi with pk. Then, rhik is the
size of RHik and rhmax denotes the upper bound of
recommendation history size.

To calculate the satisfaction parameter, pi compares
rkj; cbkj; ibkj values with erij; ecbij; eibij values, respectively.
If these values are close, pk’s recommendation is good and a
high value should be assigned to the satisfaction parameter.
Then, the calculation of rszik is as follows:

rszik ¼ 1� jrkj � erijj
erij

� �
þ 1� jcbkj � ecbijj

ecbij

� ��

þ 1� jibkj � eibijj
eibij

� ���
3:

ð11Þ

From (7)-(9), we know that pk’s recommendation affects
rij in proportion to shkj and �kj values. The effect of these
values on rij is also proportional to b�shc due to (10). Thus,
the weight of a recommendation should be calculated with
respect to shkj; �kj; b�shc values. pi calculates rwzik as follows:

rwzik ¼
b�shc
shmax

shkj
shmax

þ 1� b�shc
shmax

� �
�kj
�max

: ð12Þ

If shkj and �kj values are large, rwzik will have a value close
to 1. This is the desired result based on our observations in
(7)-(9). b�shc value balances the effects of shkj and �kj values
on rwzik value. If pi’s acquaintances had many interactions
with pj, the value of b�shc will be large and shkj will have
more effect on rwzik. When b�shc is small, �kj is more
important.

Let rcbik and ribik denote pi’s competence and integrity
beliefs about pk in the recommendation context, respec-
tively. pi calculates rtik in a similar way to stik

rcbik ¼
1

�rcb

Xrhik
z¼1

�
rszik � rwzik � rfzik

�
; ð13Þ

ribik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rhik

Xrhik
z¼1

�
rszik � rw

�
ik � rf

�
ik � rcbik

�2

vuut ; ð14Þ

rtik ¼
rhik
rhmax

ðrcbik � ribik=2Þ þ rhmax � rhik
rhmax

rik: ð15Þ

�rcb ¼
Prhik

z¼1 ðrwzik � rfzikÞ is the normalization coefficient. rw�ij
and rf�ij are the mean of rwkij and rfkij values in RHij,
respectively. If pi had no recommendation from pk, we set
rtik ¼ rik according to (15).

Fig. 1 explains all scenario briefly. Assume that pi wants
to get a particular service. pj is a stranger to pi and a
probable service provider. To learn pj’s reputation, pi
requests recommendations from its acquaintances. Assume
that pk sends back a recommendation to pi. After collecting
all recommendations, pi calculates rij. Then, pi evaluates
pk’s recommendation, stores results in RHik, and updates
rtik. Assuming pj is trustworthy enough, pi gets the service
from pj. Then, pi evaluates this interaction and stores the
results in SHij, and updates stij.

3.5 Selecting Service Providers

When pi searches for a particular service, it gets a list of
service providers. Considering a file sharing application, pi
may download a file from either one or multiple uploaders.
With multiple uploaders, checking integrity is a problem
since any file part downloaded from an uploader might
be inauthentic. Some complex methods utilizing Merkel
hashes, secure hashes, and cryptography [47], [48] can be
used to do online integrity checking with multiple uploa-
ders. Since this issue is beyond the scope of this paper, the
next sections assume one uploader scenario.

Service provider selection is done based on service trust
metric, service history size, competence belief, and integ-
rity belief values. When pi wants to download a file, it
selects an uploader with the highest service trust value. If
service trust values are equal, the peer with a larger service
history size (sh) is selected to prioritize the one with more
direct experience. If these values are equal, the one with a
larger cb� ib=2 value is chosen. If cb� ib=2 values are
equal, the one with larger competence belief value is
selected. If these values are equal, upload bandwidths are
compared. If the tie cannot be broken, one of the equal
peers is randomly selected.
pi might select a stranger due to its high reputation. For

example, if pm is a stranger, pi sets stim ¼ rim according to
(6). If pm is more trustworthy than all acquaintances, pi
selects pm as the service provider.
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Fig. 1. Operations when receiving a recommendation and having an
interaction.



Selecting best service providers may overload some peers
while others are idle. A selection algorithm should consider
load balancing to utilize all resources of peers. In our
simulations, a peer’s number of simultaneous download/
upload operations are limited to a maximum. If a peer
reaches its maximum number of uploads, it rejects incoming
requests so the requester can get services from others. This
simple load balancing mechanism does not consider the
whole system state to balance loads. Thus, this issue needs
more investigation in a future work.

4 EXPERIMENTS AND ANALYSIS

A file sharing simulation program is implemented in Java to
observe results of using SORT in a P2P environment. Some
questions studied in the experiments are as follows: how
SORT handles attacks, how much attacks can be mitigated,
how much recommendations are (not) helpful in correctly
identifying malicious peers, and what type of attackers are
the most harmful.

4.1 Method

The simulation runs as cycles. Each cycle represents a period
of time. Downloading a file is an interaction. A peer sharing
files is called an uploader. A peer downloading a file is called a
downloader. The set of peers who downloaded a file from a
peer are called downloaders of the peer. An ongoing down-
load/upload operation is called a session. Simulation para-
meters are generated based on results of several empirical
studies [8], [9], [10] to make observations realistic. More
details can be found in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TDSC.2012.74 and in [49].

A file search request reaches up to 40 percent of the
network and returns online uploaders only. A file is
downloaded from one uploader to simplify integrity
checking. All peers are assumed to have antivirus software
so they can detect infected files. Four different cases are
studied to understand effects of trust calculation methods
under attack conditions:

. No trust. Trust information is not used for uploader
selection. An uploader is selected according to its
bandwidth. This method is the base case to under-
stand if trust is helpful to mitigate attacks.

. No reputation query. An uploader is selected based
on trust information but peers do not request
recommendations from other peers. Trust calcula-
tion is done based on SORT equations but reputa-
tion (r) value is always zero for a peer. This method
will help us to assess if recommendations are
helpful.

. SORT. All SORT equations are used as in Section 3.

. Flood reputation query. SORT equations are used but a
reputation query is flooded to the whole network.
This method will help us to understand if getting
more recommendations is helpful to mitigate at-
tacks. A peer may request a recommendation from
strangers. In this case, a peer assigns a recommenda-
tion trust value to the stranger as rtstranger ¼ �rt � �rt,
where �rt and �rt are the mean and standard

deviation of recommendation trust values of all
acquaintances. If a peer does not have any acquain-
tances, rtstranger ¼ 0:1.

Before starting a session, a downloader makes a
bandwidth agrement with the uploader, which declares
the amount of bandwidth it can devote. Parameters of each
finished session are recorded as an interaction. The satisfac-
tion parameter is calculated based on following variables:

. Bandwidth. The ratio of average bandwidth (AveBw)
and agreed bandwidth (AgrBw) is a measure of
reliability of an uploader in terms of bandwidth.

. Online period. The ratio of online (OnP) and offline
(OffP) periods represents availability of an uploader.

pi calculates the satisfaction of kth interaction with pj as
follows:

skij ¼

AveBw

AgrBw
þ OnP

OnP þOffP

� ��
2 if AveBw < AgrBw;

1þ OnP

OnP þOffP

� ��
2 otherwise:

8>><
>>:

ð16Þ

Calculation of the satisfaction parameter may include
more variables such as, delay, jitter, and retransmission of
dropped packets [39], [44]. These variables are not included
in the equation since they are not simulated.

The weight of an interaction is calculated based on two
variables:

. File size. A large file is more important than a small
one due to bandwidth consumption. However,
importance is not directly related to the file size. We
assume that files over 100 MB have the same
importance.

. Popularity. Popular files are more important than
unpopular ones. We assume that number of uploa-
ders of a file is an indication of its popularity.

Let Uploadermax be the number of uploaders of the most
popular file. size and #Uploaders denote the file size and
the number of uploaders, respectively. pi calculates the
weight parameter of kth interaction with pj as follows:

wkij ¼

size

100MB
þ #Uploaders

Uploadermax

� ��
2 if size < 100MB;

1þ #Uploaders

Uploadermax

� ��
2 otherwise:

8>><
>>:

ð17Þ

Sometimes rarely shared files might be important but
this case is discarded for simplicity.

4.2 Attacker Model

Attackers can perform service-based and recommendation-
based attacks. Uploading a virus infected or an inauthentic
file is a service-based attack. Giving a misleading recommen-
dation intentionally is a recommendation-based attack. There
are two types of misleading recommendations [22]:

. Unfairly high. Giving a positively-biased trust value
about a peer where r ¼ cb ¼ ib ¼ 1 and sh ¼ shmax.

. Unfairly low. Giving a negatively-biased trust value
about a peer where r ¼ cb ¼ ib ¼ 0 and sh ¼ shmax.
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Setting sh ¼ shmax maximizes the effect of a misleading
recommendation. A fair recommendation is the recommen-
der’s unbiased trust information about a peer. A service-
based attack can be detected immediately since a virus
infected or an inauthentic file can be recognized after the
download. However, it is hard for a peer to determine a
recommendation-based attack if the peer’s own experience
conflicts with a recommendation. Since a recommender
might be cheated by attackers, there is no evidence to prove
that a recommendation is intentionally given as misleading.

A good peer uploads authentic files and gives fair
recommendations. A malicious peer (attacker) performs both
service and recommendation-based attacks. Four different
attack behaviors are studied for malicious peers: naive,
discriminatory, hypocritical, and oscillatory behaviors. A
nonmalicious network consists of only good peers. A malicious
network contains both good and malicious peers. If mal-
icious peers do not know about each other and perform
attacks independently, they are called as individual attackers.
Individual attackers may attack each other. For individual
attackers, attack behaviors are as follows:

1. Naive. The attacker always uploads infected/
inauthentic files and gives unfairly low recommen-
dations about others [22].

2. Discriminatory. The attacker selects a group of victims
and always uploads infected/inauthentic files to
them [22], [5]. It gives unfairly low recommendations
about victims. For other peers, it behaves as a good
peer.

3. Hypocritical. The attacker uploads infected/iauthen-
tic files and gives unfairly low recommendations
with x percent probability [3], [5]. In the other times,
it behaves as a good peer.

4. Oscillatory. The attacker builds a high reputation by
being good for a long time period. Then, it behaves
as a naive attacker for a short period of time. After
the malicious period, it becomes a good peer again.

If malicious peers know each other and coordinate
when launching attacks, they are called as collaborators.
Collaborators always upload authentic files and provide
fair recommendations to each other. Collaborators give
unfairly high recommendations about each other when
recommendations are requested by good peers (to pro-
mote reputation of collaborators). All collaborators behave
same for these situations. In the other situations, they
behave according to the attack behavior described below.

1. Naive. Collaborators always upload infected/in-
authentic files to good peers and give unfairly low
recommendations about them.

2. Discriminatory. Collaborators select a group of peers
as victims. They upload infected/inauthentic files to
the victims and give unfairly low recommendations
about them. They upload authentic files to nonvictim
peers. They also give fair recommendations about
nonvictim peers.

3. Hypocritical. Collaborators upload infected or in-
authentic files to good peers or give unfairly low
recommendations about them with x percent prob-
ability. In the other cases, they behave as good peers.

4. Oscillatory. Collaborators behave as good peers for
a long time period. Then, they do service-based
and recommendation-based attacks in the naive
collaborator mode for a short period of time.
Good/malicious periods are synchronized among
all collaborators.

Another type of attackers are pseudospoofers, who change
their pseudonym to escape from being identified [45], [5]. In
addition to above attacker behaviors, we studied individual
attackers and collaborators in the pseudonym changing
mode. In the experiments, an individual attacker change its
pseudonym periodically. Collaborators are assumed to use
a special protocol to achieve synchronization during
pseudonym change so they can keep coordination.

4.3 Analysis on Individual Attackers

This section explains the results of experiments on indivi-
dual attackers. For each type of individual attacker, two
separate network topologies are created: one with 10 percent
malicious and one with 50 percent malicious. Each network
topology is tested with four trust calculation methods. In the
experiments, a hypocritical attacker behaves malicious in
20 percent of all interactions. A discriminatory attacker
selects 10 percent of all peers as victims. An oscillatory
attacker behaves good for 1,000 cycles and malicious for
100 cycles.

Service-based attacks. Table 2 shows the percentage of
service-based attacks prevented by each trust calculation
method. When a malicious peer uploads an infected/
inauthentic file, it is recorded as a service-based attack.
Number of attacks in No Trust method is considered as the
base case to understand how many attacks can happen
without using trust information. Then, number of attacks
observed for each trust calculation method is compared
with the base case to determine the percentage of attacks
prevented. In the table, NoRQ and FloodRQ denote “No
reputation query” and “Flood reputation query” methods,
respectively.

In a 10 percent malicious network, all methods can
prevent more than 60 percent of attacks of naive attackers.
NoRQ method’s performance is close to other methods
since a good peer identifies a naive attacker after having the
first interaction. Thus, recommendations are not very
helpful in the naive case. For discriminatory attackers, the
situation is similar since their naive attacks easily reveal
their identity to victims. For the hypocritical and oscillatory
attackers, a good peer may not identify an attacker in the
first interaction. Therefore, recommendations in SORT and
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Percentage of Service-Based Attacks
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FloodRQ methods can be helpful to identify some attackers
before an attack happens.

In a 50 percent malicious network, the prevention ratio
can be maintained over 60 percent for naive and discrimi-
natory behaviors since attackers are identified quickly.
NoRQ method can perform close to SORT and FloodRQ
methods. In hypocritical and oscillatory behaviors, SORT can
prevent nearly 40 percent of all attacks, which is still good
considering the extreme number of attackers. Although
attack prevention ratio is higher in the naive behavior,
number of attacks is 4-8 times higher than other attacker
types. Thus, naive attackers can be considered more
successful than other type of individual attackers.

In SORT, a peer interacts less with strangers as its set of
acquaintances grows. Therefore, rate of service-based attacks
decreases with time. In all cases, SORT’s prevention ratio for
service-based attacks is close to FloodRQ method. However,
FloodRQ method causes 7-10 times more recommendation
traffic than SORT. The difference in misleading recommen-
dations is much higher as explained below. Thus, SORT has
a better performance tradeoff than FloodRQ method.

Recommendation-based attacks. In the simulations,
when a malicious peer gives a misleading recommendation,
it is recorded as a recommendation-based attack. Fig. 2 shows
the rate of recommendation-based attacks in the 10 percent
malicious network. When SORT is used, peers form their
own trust network with time and do not request recommen-
dations from untrustworthy peers. Therefore, SORT can
effectively mitigate recommendation-based attacks with
time. In FloodRQ method, peers collect more recommenda-
tions from both acquaintances and strangers. Therefore,
attackers find opportunity to disseminate more misleading

recommendations as strangers. In FloodRQ method, number
of recommendation-based attacks are roughly 10 to 30 times
more than SORT in discriminatory, hypocritical, and
oscillatory behaviors. Naive attackers cannot disseminate
misleading recommendations with SORT since they are
identified after the first interaction. In FloodRQ method, if a
peer is not interacted with a naive attacker before, it can
request recommendations from the attacker as a stranger.
Therefore, naive attackers can disseminate more misleading
recommendations than other attacker types in FloodRQ
method. This observation shows that instead of considering
public opinion, collecting recommendations from acquain-
tances provides more reliable information.

In 50 percent malicious network, recommendation trust
values of attackers are close to good peers so attackers can
disseminate more misleading recommendations. However,
SORT still mitigates misleading recommendations 5-10
times more than FloodRQ method.

Distribution of trust metrics. Peers with higher capabil-
ities (network bandwidth, online period, and number of
shared files) can finish more interactions successfully. Thus,
they generally have better reputation and service trust
values. Recommendation trust values are not directly related
to peer capabilities since giving a recommendation does not
require high capabilities.

Fig. 3 shows average reputation values of peers at the end
of simulation in 10 percent network with SORT. In our
experiments, some peers had 500-600 downloaders. Naive
attackers are not shown in the figure. They have zero
reputation values since they attack in all interactions.
Discriminatory attackers only attack to victims so they can
build up some reputation among nonvictim peers. Oscillatory
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Fig. 2. Recommendation-based attacks of individual attackers with respect to the time.

Fig. 3. Reputation values in individual attacker experiments (with SORT).



attackers gain the highest reputation since their attack period
is 10 percent of their good period. Hypocritical attackers have
lower reputation value than oscillatory ones since they attack
in 20 percent of all interactions. In 50 percent malicious
network, average reputation values of good peers drops due
to large number of misleading recommendations. However,
attackers have lower reputation values than good peers in all
experiments.

Generally, a peer performs few interactions with an
acquaintance but may request many recommendations
from the acquaintance before each download operation.
Thus, reputation values have a strong correlation with
service trust values but not with recommendation trust
values. Giving many recommendations increases the chance
of giving inaccurate information, especially in hypocritical
and oscillatory attackers. Furthermore, having a large set of
downloaders might have a negative effect on recommenda-
tion trust values. A peer with many downloaders gets more
recommendation requests and its average recommendation
trust value drops. Naive attackers have zero recommenda-
tion trust values since their reputation is zero. In the other
behaviors, attackers have less recommendation trust values
than good peers so recommendations of good peers are
more credible.

4.4 Analysis on Individual Pseudospoofers

This section explains the results of experiments on
individual pseudospoofers. Pseudospoofers change their
pseudonyms after every 1,000 cycles. For other parameters,
attackers behave as described in Section 4.3.

Service-based attacks. Table 3 shows the attack preven-
tion ratio for individual pseudospoofers. The values
obtained by comparing the base case with each trust
calculation method. After every pseudonym change, attack-
ers become strangers to others. This behavior has two effects:
1) Pseudospoofers clear their bad history. Hence a good peer
may interact with them when it cannot find more reliable
uploaders, which increases attacks. 2) Pseudospoofers be-
come more isolated from good peers. They lose their ability
to attract good peers with time, which decreases attacks.

In all experiments, NoRQ method performs 20-40 percent
worse than other trust calculation methods. Since no
recommendation is collected in NoRQ method, chance of
selecting an attacker again is higher after every pseudonym
change. Therefore, SORT and FloodRQ methods have better
results in the experiments. Recommendations increase the
chance of finding good peers among strangers.

When SORT or FloodRQ methods are used, the preven-
tion ratio of naive pseudospoofers is less than other type of

attackers. This is a result of the first effect. Naive
pseudospoofers attack in all interactions and clean their
bad history after every pseudonym change. Thus, naive
pseudospoofers can perform 40 percent more attacks than
naive individual attackers. In the other types of pseudos-
poofers, the second effect gains importance and attackers
become more isolated. Therefore, attack prevention ratio
does not decrease as much as naive pseudospoofers, even
increases in some cases.

Recommendation-based attacks. Comparing to non-
pseudonym changing individual attackers, recommenda-
tion-based attacks decrease due to the second effect.
Attackers become more isolated from good peers after every
pseudonym change and get less recommendation requests.
Therefore, their recommendation-based attacks sharply
decrease after every pseudonym change in a 10 percent
malicious network. This situation is slightly different in a
50 percent malicious network. The good peers need to
interact with more strangers since they can hardly find each
other. Hence attackers can distribute more misleading
recommendations. However, recommendation-based attack
rates of individual pseudospoofers are still 70-80 times less
than individual attackers explained in Section 4.3.

Distribution of trust metrics. Since pseudospoofers clear
their old history in every 1,000 cycles, they cannot gain a
high reputation among good peers. This situation is same
for service trust and recommendation trust metrics.
Average reputation, service trust, and recommendation
trust values of pseudospoofers remain under 0.1 value in
most simulations.

4.5 Analysis on Collaborators

Collaboration of attackers generally makes attack preven-
tion harder. This section presents experimental results on
collaborators. Collaborators form teams of size 50 and
launch attacks as teams. We first tried teams of size 10 but
this was not enough to benefit from collaboration and
results were close to individual attackers. Hence team size
is increased to observe effects of collaboration better. Attack
probability of hypocritical collaborators is set to 0.2.
Oscillatory collaborators behave good for 1,000 cycles and
malicious for 100 cycles. Discriminatory collaborators attack
to the same group of victims, which are 10 percent of all
peers. In other words, different teams are attacking the
same victims and stay honest with others.

Service-based attacks. Table 4 shows the percentage of
attacks prevented by each method. Attacks of naive
collaborators can be prevented by 60 percent or more.
Naive collaborators are identified by good peers after the
first interaction so they are not asked for recommendations.
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Thus, they cannot praise each other with unfairly high
recommendations and cannot take advantage of collabora-
tion. Discriminatory collaborators naively attack to victims
so they are quickly identified by the victims. Their
collaboration does not help to launch more attacks than
individual discriminatory attackers. Hypocritical and oscil-
latory collaborators can take advantage of collaboration.
They attract more good peers than individual attackers by
praising each other. They are not quickly identified since
they perform attacks occasionally. Especially in a 50 percent
malicious network, SORT performs worst than NoRQ
method for hypocritical and oscillatory behaviors. In such
an extreme environment, misleading recommendations of
collaborators cause a pollution in the recommendation pool
and affect decisions of peers negatively. In such extremely
malicious environments, some trusted peers might help
good peers for finding each other.

Recommendation-based attacks. Fig. 4 shows recom-
mendation-based attack rate with SORT. In a 10 percent
malicious network, attacks can be contained. However,

collaboration enables to disseminate more misleading
recommendations than individual attack scenarios.

In a 50 percent malicious network, attacks of hypocritical
and oscillatory collaborators can be contained on a level but
cannot be decreased to an acceptable level. They can
continue to disseminate misleading recommendations due
to their large number. Discriminatory collaborators can
disseminate more misleading recommendations than others
since they are trusted by 90 percent of all peers. Discrimi-
natory collaborators constitute 50 percent of all peer
population while victims are 10 percent of all population.
Therefore, they can deceive other good peers with their
misleading recommendations. Although they can continue
to propagate misleading recommendations about victims,
they cannot launch more service-based attacks since they
are identified by victims.

Distribution of trust metrics. Fig. 5 shows reputation
values of collaborators. Naive collaborators are not shown
in the figure since they are quickly identified by good peers
and have zero reputation values.
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Fig. 4. Recommendation-based attacks of collaborators with respect to the time.

Fig. 5. Reputation values in collaborative attack experiments (with SORT).



In a 10 percent malicious network, misleading recom-
mendations of discriminatory collaborators slightly de-
crease the reputation of victims as shown in Fig. 5a. This is
not observed in the individual discriminatory behavior since
each attacker selects a different set of victims and misleading
recommendations are evenly distributed among all peers.
Discriminatory collaborators attack to only 10 percent of
peers so impact of misleading recommendations is concen-
trated on a small group. Since they do not attack nonvictim
peers and give unfairly high recommendations about each
other, they can maintain a high reputation. This situation is
more clear with the 50 percent malicious network as shown
in Fig. 5d. Victims has a very low reputation since 50 percent
of all peers give misleading recommendations about them.
Reputation of nonvictim good peers does not change much
since they are not attacked.

As shown in Fig. 5b, good peers can maintain higher
reputation than hypocritical collaborators in the 10 percent
malicious network. In 50 percent malicious network setup,
collaborators gain higher reputation values and decrease
reputation of good peers as shown in Fig. 5e. However, they
still have lower repuation values than good peers. Oscilla-
tory collaborators have a similar distribution to hypocritical
collaborators. They have a higher reputation average since
their attack frequency is less than hypocritical collaborators.

Distributions of service trust and recommendation trust
values are similar to reputation values. Thus, we will not
discuss distributions of these metrics further.

4.6 Analysis on Collaborating Pdesudospoofers

This section presents the results of experiments on
collaborating pseudospoofers. Collaborating pseudospoo-
fers are assumed to change their pseudonyms in every 1,000
cycles using an external synchronization method. For the
other parameters, they behave like collaborators.

Service-based attacks. Table 5 shows the percentage of
attacks prevented by each trust calculation method. The
results verify our observations in Section 4.4. In naive and
discriminatory behaviors, changing pseudonym causes the
first effect: collaborators clear bad history and get more
attack opportunities. Therefore, attack prevention ratio
drops for these collaborators. In hypocritical and oscillatory
behaviors, the second effect becomes more important. After
every pseudonym change, collaborators become more
isolated from good peers and lose their attack opportunities.
Therefore, attack rate slightly drops and attack prevention
ratio increases.

SORT’s performance is the best in all test cases. SORT
enables peers to establish stronger trust relationships than
NoRQ and FloodRQ methods. In NoRQ, a good peer cannot
learn experience of others through recommendations and
pseudonym changing lets attackers to launch more attacks.
In FloodRQ, collecting recommendations of strangers
enables collaborators to disseminate more misleading
recommendations. Since SORT collects recommendations
only from acquaintances, reputation queries return more
reliable information than FloodRQ method.

Recommendation-based attacks. As in individual pseu-
dospoofers, collaborating pseudospoofers are isolated more
from good peers after every pseudonym change. They get
less recommendation requests and thus they can do nearly
zero recommendation-based attacks in 10 percent malicious
network. In 50 percent malicious network, collaborating
pseudospoofers can distribute more misleading recommen-
dations since good peers need to interact with more strangers
to find each other. However, these misleading recommenda-
tions are still in a negligible level.

Trust metrics. Like individual pseudospoofers, collabor-
ating pseudospoofers cannot gain high reputation, service
trust, or recommendation trust values since they lose
reputation after every pseudonym change. Due to their low
recommendation trust values, collaborators are not asked
for recommendations by good peers. Therefore, they can
distribute small number of misleading recommendations.

5 CONCLUSION

A trust model for P2P networks is presented, in which a peer
can develop a trust network in its proximity. A peer can
isolate malicious peers around itself as it develops trust
relationships with good peers. Two context of trust, service
and recommendation contexts, are defined to measure
capabilities of peers in providing services and giving
recommendations. Interactions and recommendations are
considered with satisfaction, weight, and fading effect
parameters. A recommendation contains the recommender’s
own experience, information from its acquaintances, and
level of confidence in the recommendation. These para-
meters provided us a better assessment of trustworthiness.

Individual, collaborative, and pseudonym changing at-
tackers are studied in the experiments. Damage of collabora-
tion and pseudospoofing is dependent to attack behavior.
Although recommendations are important in hypocritical
and oscillatory attackers, pseudospoofers, and collaborators,
they are less useful in naive and discriminatory attackers.
SORT mitigated both service and recommendation-based
attacks in most experiments. However, in extremely mal-
icious environments such as a 50 percent malicious network,
collaborators can continue to disseminate large amount of
misleading recommendations. Another issue about SORT is
maintaining trust all over the network. If a peer changes its
point of attachment to the network, it might lose a part of its
trust network. These issues might be studied as a future work
to extend the trust model.

Using trust information does not solve all security
problems in P2P systems but can enhance security and
effectiveness of systems. If interactions are modeled
correctly, SORT can be adapted to various P2P applications,
e.g., CPU sharing, storage networks, and P2P gaming.
Defining application specific context of trust and related
metrics can help to assess trustworthiness in various tasks.
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TABLE 5
Percentage of Service-Based Attacks

Prevented for Collaborating Pseudospoofers



REFERENCES

[1] K. Aberer and Z. Despotovic, “Managing Trust in a Peer-2-Peer
Information System,” Proc. 10th Int’l Conf. Information and Knowl-
edge Management (CIKM), 2001.

[2] F. Cornelli, E. Damiani, S.D.C. di Vimercati, S. Paraboschi, and P.
Samarati, “Choosing Reputable Servents in a P2P Network,” Proc.
11th World Wide Web Conf. (WWW), 2002.

[3] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The (Eigentrust)
Algorithm for Reputation Management in P2P Networks,” Proc.
12th World Wide Web Conf. (WWW), 2003.

[4] L. Xiong and L. Liu, “Peertrust: Supporting Reputation-Based
Trust for Peer-to-Peer Ecommerce Communities,” IEEE Trans.
Knowledge and Data Eng., vol. 16, no. 7, pp. 843-857, July 2004.

[5] A.A. Selcuk, E. Uzun, and M.R. Pariente, “A Reputation-Based
Trust Management System for P2P Networks,” Proc. IEEE/ACM
Fourth Int’l Symp. Cluster Computing and the Grid (CCGRID), 2004.

[6] R. Zhou, K. Hwang, and M. Cai, “Gossiptrust for Fast Reputation
Aggregation in Peer-to-Peer Networks,” IEEE Trans. Knowledge
and Data Eng., vol. 20, no. 9, pp. 1282-1295, Sept. 2008.

[7] J. Kleinberg, “The Small-World Phenomenon: An Algorithmic
Perspective,” Proc. 32nd ACM Symp. Theory of Computing, 2000.

[8] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” Proc. Multimedia Computing
and Networking, 2002.

[9] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella
Network: Properties of Large-Scale Peer-to-Peer Systems and
Implications for System Design,” IEEE Internet Computing, vol. 6,
no. 1, pp. 50-57, Jan. 2002.

[10] S. Saroiu, K. Gummadi, R. Dunn, S.D. Gribble, and H.M. Levy,
“An Analysis of Internet Content Delivery Systems,” Proc. Fifth
USENIX Symp. Operating Systems Design and Implementation
(OSDI), 2002.

[11] S. Marsh, “Formalising Trust as a Computational Concept,” PhD
thesis, Dept. of Math. and Computer Science, Univ. of Stirling,
1994.

[12] A. Abdul-Rahman and S. Hailes, “Supporting Trust in Virtual
Communities,” Proc. 33rd Hawaii Int’l Conf. System Sciences
(HICSS), 2000.

[13] B. Yu and M. Singh, “A Social Mechanism of Reputation
Management in Electronic Communities,” Proc. Cooperative In-
formation Agents (CIA), 2000.

[14] L. Mui, M. Mohtashemi, and A. Halberstadt, “A Computational
Model of Trust and Reputation for E-Businesses,” Proc. 35th
Hawaii Int’l Conf. System Sciences (HICSS), 2002.

[15] A. Jøsang, E. Gray, and M. Kinateder, “Analysing Topologies of
Transitive Trust,” Proc. First Int’l Workshop Formal Aspects in
Security and Trust (FAST), 2003.

[16] E. Terzi, Y. Zhong, B. Bhargava, Pankaj, and S. Madria, “An
Algorithm for Building User-Role Profiles in a Trust Environ-
ment,” Proc. Fourth Int’l Conf. Data Warehousing and Knowledge
Discovery (DaWaK), vol. 2454, 2002.

[17] Y. Zhong, “Formalization of Dynamic Trust and Uncertain
Evidence for User Authorization,” PhD thesis, Dept. of Computer
Science, Purdue Univ., 2004.

[18] D.H. McKnight, “Conceptualizing Trust: A Typology and
E-Commerce Customer Relationships Model,” Proc. 34th Ann.
Hawaii Int’l Conf. System Sciences (HICSS), 2001.

[19] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman,
“Reputation Systems,” Comm. ACM, vol. 43, no. 12, pp. 45-48,
2000.

[20] Z. Despotovic and K. Aberer, “Trust-Aware Delivery of Compo-
site Goods,” Proc. First Int’l Conf. Agents and Peer-to-Peer Comput-
ing, 2002.

[21] A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust and
Reputation Systems for Online Service Provision,” Decision
Support Systems, vol. 43, no. 2, pp. 618-644, 2007.

[22] C. Dellarocas, “Immunizing Online Reputation Reporting Systems
Against Unfair Ratings and Discriminatory Behavior,” Proc.
Second ACM Conf. Electronic Commerce (EC), 2000.

[23] B. Yu and M.P. Singh, “Detecting Deception in Reputation
Management,” Proc. Second Int’l Joint Conf. Autonomous Agents
and Multiagent Systems, 2003.

[24] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation
of Trust and Distrust,” Proc. 13th Int’l Conf. World Wide Web
(WWW), 2004.

[25] J. Douceur, “The Sybil Attack,” Proc. First Int’l Workshop Peer-to-
Peer Systems (IPTPS), 2002.

[26] H. Yu, M. Kaminsky, P.B. Gibbons, and A. Flaxman, “Sybilguard:
Defending against Sybil Attacks via Social Networks,” ACM
SIGCOMM Computer Comm. Rev., vol. 36, no. 4, pp. 267-278, 2006.

[27] N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-Resilient Online
Content Voting,” Proc. Sixth USENIX Symp. Networked Systems
Design and Implementation (NSDI), 2009.

[28] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A Survey of Attack
and Defense Techniques for Reputation Systems,” ACM Comput-
ing Surveys, vol. 42, no. 1, pp. 1:1-1:31, 2009.

[29] K. Aberer, A. Datta, and M. Hauswirth, “P-Grid: Dynamics of Self-
Organization Processes in Structured P2P Systems,” Peer-to-Peer
Systems and Applications, vol. 3845, 2005.

[30] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” ACM SIGCOMM Com-
puter Comm. Rev., vol. 31, no. 4, pp. 161-172, 2001.

[31] S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok, “Trusted P2P
Transactions with Fuzzy Reputation Aggregation,” IEEE Internet
Computing, vol. 9, no. 6, pp. 24-34, Nov.-Dec. 2005.

[32] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” ACM SIGCOMM Computer Comm. Rev., vol. 31,
no. 4, pp. 149-160, 2001.

[33] R. Zhou and K. Hwang, “Powertrust: A Robust and Scalable
Reputation System for Trusted Peer-to-Peer Computing,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 4, pp. 460-473,
Apr. 2007.

[34] F. Cornelli, E. Damiani, S.D.C. di Vimercati, S. Paraboschi, and P.
Samarati, “Implementing a Reputation-Aware Gnutella Servent,”
Proc. Networking 2002 Workshops Web Eng. and Peer-to-Peer
Computing, 2002.

[35] B. Yu, M.P. Singh, and K. Sycara, “Developing Trust in Large-
Scale Peer-to-Peer Systems,” Proc. IEEE First Symp. Multi-Agent
Security and Survivability, 2004.

[36] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized
Gossip Algorithms,” IEEE/ACM Trans. Networking, vol. 52, no. 6,
pp. 2508-2530, June 2006.

[37] B. Ooi, C. Liau, and K. Tan, “Managing Trust in Peer-to-Peer
Systems Using Reputation-Based Techniques,” Proc. Fourth Int’l
Conf. Web Age Information Management, 2003.

[38] R. Sherwood, S. Lee, and B. Bhattacharjee, “Cooperative Peer
Groups in Nice,” Computer Networks, vol. 50, no. 4, pp. 523-544,
2006.

[39] Y. Wang and J. Vassileva, “Bayesian Network Trust Model in
Peer-to-Peer Networks,” Proc. Second Workshop Agents and Peer-to-
Peer Computing at the Autonomous Agents and Multi Agent Systems
Conf. (AAMAS), 2003.

[40] P. Victor, C. Cornelis, M. De Cock, and P. Pinheiro da Silva,
“Gradual Trust and Distrust in Recommender Systems,” Fuzzy
Sets Systems, vol. 160, no. 10, pp. 1367-1382, 2009.

[41] G. Swamynathan, B.Y. Zhao, and K.C. Almeroth, “Decoupling
Service and Feedback Trust in a Peer-to-Peer Reputation System,”
Proc. Int’l Conf. Parallel and Distributed Processing and Applications
(ISPA), 2005.

[42] M. Gupta, P. Judge, and M. Ammar, “A Reputation System for
Peer-to-Peer Networks,” Proc. 13th Int’l Workshop Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
2003.

[43] S. Staab, B. Bhargava, L. Lilien, A. Rosenthal, M. Winslett, M.
Sloman, T. Dillon, E. Chang, F.K. Hussain, W. Nejdl, D. Olmedilla,
and V. Kashyap, “The Pudding of Trust,” IEEE Intelligent Systems,
vol. 19, no. 5, pp. 74-88, 2004.

[44] M. Virendra, M. Jadliwala, M. Chandrasekaran, and S. Upad-
hyaya, “Quantifying Trust in Mobile Ad-Hoc Networks,” Proc.
IEEE Int’l Conf. Integration of Knowledge Intensive Multi-Agent
Systems (KIMAS), 2005.

[45] E.J. Friedman and P. Resnick, “The Social Cost of Cheap
Pseudonyms,” J. Economics and Management Strategy, vol. 10,
no. 2, pp. 173-199, 2001.

[46] S. Xiao and I. Benbasat, “The Formation of Trust and Distrust in
Recommendation Agents in Repeated Interactions: A Process-
Tracing Analysis,” Proc. Fifth ACM Conf. Electronic Commerce (EC),
2003.

[47] A. Habib, D. Xu, M. Atallah, B. Bhargava, and J. Chuang, “A Tree-
Based Forward Digest Protocol to Verify Data Integrity in
Distributed Media Streaming,” IEEE Trans. Knowledge and Data
Eng., vol. 17, no. 7, pp. 1010-1014, July 2005.

26 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 1, JANUARY/FEBRUARY 2013



[48] G. Caronni and M. Waldvogel, “Establishing Trust in Distributed
Storage Providers,” Proc. IEEE Third Conf. Peer-to-Peer Computing
(P2P), 2003.

[49] A.B. Can, “Trust and Anonymity in Peer-to-Peer Systems,”
PhD thesis, Dept. of Computer Science, Purdue Univ., 2007.

Ahmet Burak Can received the BS and MS
degrees in computer science and engineering
from Hacettepe University and the PhD degree
in computer science from Purdue University,
West Lafayette. Currently, he is affiliated with the
Department of Computer Science and Engineer-
ing at Hacettepe University, Turkey. His main
research areas include computer networks,
distributed systems, and network security. His
current research activities focus on trust and

reputation management, anonymity protection, and incentive mechan-
isms in peer-to-peer systems. He is a member of the IEEE.

Bharat Bhargava is a professor of the Depart-
ment of Computer Science at Purdue University.
He is conducting research in security and
privacy issues in distributed systems. He serves
on seven editorial boards of international jour-
nals. He also serves the IEEE Computer Society
on technical achievement award and fellow
committees. He is the founder of the IEEE
Symposium on Reliable and Distributed Sys-
tems, IEEE conference in the Digital Library, and

the ACM Conference on Information and Knowledge Management. He
has been awarded the charter Gold Core Member distinction by the
IEEE Computer Society for his distinguished service. He is a fellow of
the IEEE and IETE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CAN AND BHARGAVA: SORT: A SELF-ORGANIZING TRUST MODEL FOR PEER-TO-PEER SYSTEMS 27



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


