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Abstract—In mobile networks, authentication is a required
primitive for most security protocols. Unfortunately, an adversary
can monitor pseudonyms used for authentication to track the
location of mobile nodes. A frequently proposed solution to
protect location privacy suggests that mobile nodes collectively
change their pseudonyms in regions called mix zones. This
approach is costly. Self-interested mobile nodes might thus decide
not to cooperate and jeopardize the achievable location privacy.
In this paper, we analyze non-cooperative behavior of mobile
nodes by using a game-theoretic model, where each player aims
at maximizing its location privacy at a minimum cost. We obtain
Nash equilibria in static n-player complete information games. As
in practice mobile nodes do not know their opponents’ payoffs,
we then consider static incomplete information games. We estab-
lish that symmetric Bayesian-Nash equilibria exist with simple
threshold strategies. By means of numerical results, we predict
behavior of selfish mobile nodes. We then investigate dynamic
games where players decide to change their pseudonym one after
the other and show how this affects strategies at equilibrium.
Finally, we design protocols - PseudoGame protocols - based
on the results of our analysis and simulate their performance in
vehicular network scenarios.

Index Terms—Security and Privacy Protection, Mobile Com-
puting, Network Protocols

I. INTRODUCTION

The growing popularity of Bluetooth, WiFi in ad hoc
mode [3] and other similar techniques is likely to fuel the
adoption of peer-to-peer wireless communications. Corpora-
tions are developing wireless peer-to-peer technologies such as
Nokia Instant Community [5] and Qualcomm FlashLinQ [29].
In addition to classic infrastructure-based communications,
mobile devices can communicate directly with each other in
an ad hoc wireless fashion. Such communications dramatically
increase mobile devices’ awareness of their environment,
enabling a new breed of context-aware applications.

The integration of peer-to-peer wireless communications
into mobile devices brings new security challenges, due to
their mobile and ad hoc nature. Wireless communications are
inherently dependent on geographic proximity: mobile devices
detect each other’s presence by periodically broadcasting bea-
con messages. These messages include pseudonyms such as
public keys in order to identify communicating parties, route
communications and secure communications. Much to the
detriment of privacy, external parties can monitor pseudonyms
in broadcasted messages in order to track the locations of
mobile devices, thus jeopardizing location privacy.

There are multiple solutions to anonymously authenticate
mobile devices. One of the most popular solutions is the
multiple pseudonym approach [7] suggested in the context of

Internet communications: it assigns a set of asymmetric key
pairs to every node that are used alternatively.

A change to pseudonym by an isolated device in a wireless
network can be trivially identified by an external party ob-
serving transmitted messages. Hence, a change of pseudonym
should be spatially and temporally coordinated among mobile
devices [4], i.e., a collective effort by neighboring devices. One
solution [6] consists in changing pseudonyms periodically,
at a pre-determined frequency. This works if at least two
mobile nodes change their pseudonyms in proximity, a rarely
met condition . Base stations can be used as coordinators
to synchronize pseudonym changes [20], but this solution
requires help from the infrastructure. The approach in [14]
enables mobile nodes to change their pseudonyms at specific
time instances (e.g., before associating with wireless base
stations). However, this solution achieves location privacy only
with respect to the infrastructure. Another approach [4], [11],
[12] coordinates pseudonym changes by forcing mobile nodes
to change their pseudonyms within pre-determined regions
called mix zones. This approach however lacks flexibility and
is prone to attacks because a central authority fixes mix zone
locations and must shared them with mobile nodes.

Several researchers advocate the use of a distributed ap-
proach [19], [20], [22], where mobile nodes coordinate pseu-
donym changes to dynamically obtain mix zones. To do this, a
mobile node simply broadcasts a pseudonym change request to
its neighbors. This solution is particularly appealing in mobile
ad hoc networks because it does not require infrastructure.

But pseudonym changes are costly, which can cause dis-
tributed approaches to fail. First, a pseudonym change causes
considerable overhead, reducing networking performance, e.g.,
routing algorithms must update their routing tables [26].
Second, given the cost of pseudonym generation and manage-
ment, pseudonyms can become a scarce resource if changed
frequently. Third, mix zones impose limits on the services
available to mobile users: in order to protect against spatial
correlation of location traces, nodes in the mix zone are
usually not allowed to communicate [19]. Finally, even if
the distributed solution synchronizes pseudonym changes, it
does not align incentives between mobile nodes: because the
achieved location privacy depends on both the node density
and the unpredictability of node movements in mix zones [4], a
selfish mobile node might decide to not change its pseudonym
in settings offering low location privacy guarantees.

In this paper, we investigate strategic aspects of location pri-
vacy in mobile networks. In contrast with existing approaches,
we consider rational mobile nodes that locally decide whether
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to change their pseudonyms. Although selfish behavior can
reduce the cost of location privacy, it can also jeopardize
the welfare achieved with a location privacy scheme. We
investigate whether the multiple pseudonym approach achieves
location privacy in non-cooperative scenarios. We propose a
user-centric location privacy model that captures the evolution
of the location privacy level of mobile nodes over time and
helps them determine when to change pseudonyms. We then
define a game-theoretic model - the pseudonym change game
- that models the decisions of mobile nodes in a mix zone.

We first analyze the static game with complete information
(i.e., every node knows the user-centric location privacy level
of other nodes) and obtain both pure and mixed Nash equi-
libria [23]. We show that nodes should either cooperate when
there is a sufficient number of neighbors with low privacy,
or defect. Then, because mobile nodes do not have good
knowledge about payoffs of other nodes, we study, using a
Bayesian approach [15], the incomplete information scenario.
We evaluate the strategic behavior of mobile nodes and derive
Bayesian Nash equilibria for a class of threshold strategies,
where nodes decide whether to change their pseudonyms based
on a comparison of their privacy level to a threshold value.
We find a symmetric equilibrium where all nodes cooperate
with the same probability. We then analyze a dynamic version
of the game and show that it copes better with uncertainty.
Finally, we design PseudoGame protocols that implement
pseudonym change strategies, and evaluate them.

II. SYSTEM AND THREAT MODEL

We focus on peer-to-peer communications between nodes
and do not consider communications with the infrastructure,
such as cellular networks or WLAN.

a) System Model: We study a network where mo-
bile nodes are autonomous entities equipped with WiFi or
Bluetooth-enabled devices and communicate with each other
upon coming in range. In other words, we describe a pervasive
communication system (a mobile ad hoc network) such as a
vehicular network [16], a delay tolerant network [10], or a
network of directly communicating hand-held devices [29].

As commonly assumed in such networks, we consider an
offline Certification Authority (CA) run by an independent
trusted third party that pre-establishes the credentials for
devices. In line with the multiple pseudonym approach, we
assume that prior to entering the network, every mobile node
i registers with the CA that preloads a set of M public/private
key pairs {Pubki , P rvki }Mk=1 to provide verification and signa-
ture functionalities, respectively. A public key Pubki serves as
the identifier of node i and is referred to as its pseudonym. The
private key Prvki enables node i to digitally sign messages,
and the digital certificate validates the signature authenticity.

We assume that mobile devices automatically exchange
information (unbeknownst to their users, such as beacon mes-
sages in VANETs) as soon as they are in communication range
of each other. Although our evaluation is independent from
the communication protocol, we make common assumptions
of pervasive communication systems: mobile nodes advertise
their presence by periodically broadcasting proximity beacons

(e.g., every 100ms over a range of 300m in vehicular net-
works) containing the node’s authenticating information (as
well as position and speed in vehicular networks). Due to
the broadcast nature of wireless communications, beacons
enable mobile nodes to discover their neighbors. When a
node i receives a beacon, it verifies the legitimacy of the
sender by checking the certificate of the public key of the
sender. After this, i verifies the signature of the beacon
message. Subsequently, if confidentiality is required, a security
association is established (e.g., with Diffie-Hellman).

b) Threat Model: We assume that an adversary A aims
to track the location of mobile nodes. We consider that
A can have the same credentials as mobile nodes and is
equipped to eavesdrop communications. In the worst case,
a global adversary A obtains complete coverage and tracks
nodes throughout the entire network, by placing eavesdropping
devices in the network.
A collects identifying information (i.e., pseudonyms) from

the network and obtains location traces that allow him to track
the location of mobile nodes. Hence, the problem we tackle
in this paper consists in protecting the location privacy of
mobile nodes, that is, in preventing other parties from learning
a node’s past and current location [4]. Finally, we assume
that the key-pair generation and distribution process cannot
be altered or controlled by the adversary.

III. USER-CENTRIC LOCATION PRIVACY

We evaluate the location privacy provided by multiple
pseudonyms and propose a user-centric model of location
privacy to capture achievable location privacy over time.

A. Location Privacy

There are several techniques to mitigate the tracking of
mobile nodes. We consider the use of multiple pseudonyms:
over time, mobile nodes change the pseudonym to sign
messages, thus reducing their long term linkability. To avoid
spatial correlation of their location, mobile nodes in proximity
coordinate pseudonym changes in regions called mix zones.
In order to thwart Sybil attacks, we assume that as soon as a
node changes pseudonyms, the old pseudonym expires and is
removed from the node’s memory. In other words, two nodes
cannot use the same pseudonyms at the same time.

Mix zones can also conceal the trajectory of mobile nodes
to protect against the spatial correlation of location traces, e.g.,
by using (i) silent/encrypted mix zones [11], [19], [22], (ii) a
mobile proxy [25], or (iii) regions where the adversary has
no coverage [6]. Without loss of generality, we assume silent
mix zones: mobile nodes turn off their transceivers and stop
sending messages for a certain period of time. If at least two
nodes change pseudonyms in a silent mix zone, a mixing
of their whereabouts occurs and the mix zone becomes a
confusion point for the adversary.

Consider a mobile network composed of N mobile nodes.
At time t, one node among a group of n(t) mobile nodes in
proximity can initiate the pseudonym change using the one-
round Swing protocol [22]: it broadcasts an initiation message
to start the pseudonym change. The n(t)− 1 mobile nodes in
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proximity receive the message and enter a silent period during
which they decide whether to change their pseudonyms or not.

The adversary A observes the set of n(T ) nodes changing
pseudonyms, where T is the time at which the pseudonym
change occurs. A compares the set B of pseudonyms before
the change with the set D of pseudonyms after the change
and, based on the mobility of the nodes, predicts the most
probable matching [4], [22]. Let pd|b = Pr(“Pseudonym d ∈
D corresponds to b ∈ B”), that is the probability that a new
pseudonym d ∈ D corresponds to an old pseudonym b ∈ B.
As is standard in the literature [27], the location privacy level
of node i involved in a successful pseudonym change at time
T is computed as the adversary’s uncertainty:

Ai(T ) = −
n(T )∑
d=1

pd|b log2(pd|b) (1)

The achievable location privacy depends on both the number of
nodes n(T ) and the unpredictability pd|b of their whereabouts
in the mix zone. If a node i is the only one to change its
pseudonym, then its identity is known to the adversary and
its location privacy level is defined to be Ai(T ) = 0. The
entropy is maximum for a uniform probability distribution
pd|b, which would provide node i with a location privacy level
of log2(n(T )). We denote T `i the time of the last successful
pseudonym change of node i, i.e. when at least one other node
changed its pseudonym.

The adversary could be physically present in mix zones
to visually observe mobile nodes and/or prevent mix zone
creation. We rule out this threat because of its high cost.
The adversary could also strategically place sniffing devices.
Previous work investigated this [21] and showed how mobile
nodes could strategically retaliate. Finally, the adversary could
physically follow mobile nodes across the network. Mix
zones (as any other privacy-preserving mechanism) are useless
against such a threat and we consider it out of scope.

B. User-Centric Model

The entropy measures the location privacy achieved in
specific mix zones at some point in time. However, location
privacy needs of individuals vary depending on time and
location. It is thus desirable to protect location privacy in
a user-centric manner, such that each user can decide when
and where to protect its location privacy. We consider a user-
centric model of location privacy, where each mobile node
locally monitors its location privacy over time [17], [18], [22].

A network-wide metric could evaluate the average entropy
in the network but might ignore that some nodes have a low
location privacy level and are traceable for long distances. As
a user-centric approach captures the evolution of location pri-
vacy of users over time, mobile nodes can evaluate the distance
over which they are potentially tracked by an adversary (i.e.,
the distance-to-confusion [17]) and can act upon it by deciding
whether and when to change its pseudonym.

With a user-centric model, mobile nodes can request a
pseudonym change from other nodes in proximity if their local
location privacy level is lower than a desired level. Nodes in
proximity will then choose to cooperate when their location

privacy level is low as well. The drawback of the user-centric
model is that nodes may have misaligned incentives (i.e.,
different privacy levels) and this can lead to failed attempts
to achieve location privacy.

The user-centric location privacy level of each mobile node
i is modeled via a location privacy loss function βi(t, T

`
i ) :

(R+,R+) → R+ where t is the current time and T `i ≤ t is
the time of the last successful pseudonym change of mobile i.
The maximum value of βi(t, T `i ) equals the level of location
privacy achieved at the last pseudonym change. The privacy
loss is initially zero and increases with time according to a
sensitivity parameter, 0 < λi < 1, which models the belief of
node i about the tracking power of the adversary. The higher
the value of λi, the faster the rate of privacy loss increase. For
simplicity, we consider that λi = λ, ∀i. For a given T `i :

βi(t, T
`
i ) =

{
λ · (t− T `i ) for T `i ≤ t < T fi
Ai(T

`
i ) for T fi ≤ t

(2)

where T fi =
Ai(T

`
i )

λ +T `i is the time when the function reaches
the maximal privacy loss (i.e., the user-centric location privacy
is null). Given this location privacy loss function, the user-
centric location privacy of node i at time t is:

Ai(t) = Ai(T
`
i )− βi(t, T `i ), t ≥ T `i (3)

Time T fi is the time at which node i’s location privacy will
be zero unless it is successful in changing its pseudonym at a
new confusion point. Based on the time of the last successful
pseudonym change T `i , mobile nodes rationally estimate when
next to change pseudonyms.1 Note that, in practice, nodes
cannot compute Ai(T

`
i ) precisely. Hence, we consider that

nodes use an approximation such as the upperbound log2(n).
In our model, a node’s location privacy does not accumulate

over time. Rather, it depends only on the number of nodes
that cooperate in the last successful pseudonym change. With
this modeling assumption, mobile nodes are given the ability
to control the length of path that is revealed to an adversary
before the next pseudonym change. If a mix zone is a strong
confusion point (i.e., Ai(T `i ) is large), then a node can choose
to reveal a longer distance before changing pseudonym again.
If a mix zone is a weak confusion point, a node can attempt
another pseudonym change as soon as possible.

C. Pseudonym Cost

Pseudonyms are costly to manage and to acquire because
they are a scarce resource and may require contacting a central
authority for refill. Similarly, routing [26] becomes difficult as
it requires frequent updates of routing tables. In addition, while
traversing silent mix zones, mobile nodes cannot communicate
and thus momentarily lose access to services. We take into
account the various costs involved in changing pseudonym
in parameter γ expressed as: γ = γacq + γrte + γsil, where
γacq is the cost of acquiring new pseudonyms, γrte is the cost
of updating routing tables, and γsil is the cost of remaining
silent. The cost can be seen as the minimum privacy gain that

1In user-centric models, users are not involved: devices take decisions on
their behalf.
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compensates for the effort of a pseudonym change. Hence, we
express the cost in privacy units (bits), causing a decrease in
the achieved privacy.

IV. PSEUDONYM CHANGE GAMES

We present the game-theoretic aspects of achieving location
privacy with multiple pseudonyms in a rational environment.
We refer to the game-theoretic model as the pseudonym change
game G. The key aspect of the game-theoretic analysis is to
consider costs and the potential location privacy gain when
making a pseudonym change decision.

Considering the cost of pseudonym and the available lo-
cation privacy gain (upperbounded by the density of nodes
and their locations unpredictability), the user-centric location
privacy level might encourage selfish mobile nodes to change
pseudonym and obtain a satisfactory location privacy level, as
long as other nodes are also changing.

Nodes may also delay their decision in order to try to find
the better conditions that maximize the effectiveness of pseu-
donym changes. Therefore, we investigate whether location
privacy can emerge in a non-cooperative system despite the
cost of changing pseudonym, differentiated privacy levels, and
the need for coordination to achieve a confusion point.

Game theory allows for modeling situations of conflict and
for predicting the behavior of participants. In our pseudonym
change game G, nodes must decide upon meeting in the
network whether to change pseudonym or not. We model
the pseudonym change game both as a static and dynamic
game depending on the constraints on the pseudonym change
protocol. The static version of the game captures protocols in
which nodes are unable to sense their wider environment when
deciding whether or not to change its pseudonym, e.g., during
the silent period, nodes cannot observe each other messages.
At the end of the silent period, it appears that all pseudonym
changes occur simultaneously. Mobile nodes must thus decide
to change pseudonyms without knowing the decision of other
nodes in proximity. The dynamic version of the game models
protocols in which nodes do not start/stop transmitting at the
same time, and may thus observe each others messages before
making their decision.

The game G is defined as a triplet (P,S,U), where P is
the set of players, S is the set of strategies and U is the set
of payoff functions. At any time t, several games are played
in parallel (but nodes participate in a single game at a time).

1) Players: The set of players P = {Pi}n(t)
i=1 corresponds

to the set of mobile nodes in transmission range of each other
at time t. For a valid game we require n(t) > 1. We assume
that each node knows the number of other nodes in the mix
zone. To achieve a consensus on this number, each node can
adopt a neighbor discovery protocol [28].

2) Strategy: Each player has two moves si: Cooperate (C)
or Defect (D). By cooperating, a mobile node changes its
pseudonym. The set of strategies of node i is thus Si = {C,D}
and the set of strategies in the game is S = {Si}n(t)

i=1 .
3) Payoff Function: We model the payoff function of every

node i as ui(t) = bi(t)−ci(t), where the benefit bi(t) depends
on the level of location privacy of node i at time t, whereas

the cost ci(t) depends on the privacy loss function and the
cost of changing pseudonym at time t. If at least two nodes
change pseudonyms, then each participating node improves
its location privacy for the cost of a pseudonym change γ.
If a node is alone in changing its pseudonym, then it still
pays the cost γ and, in addition, its location privacy continues
to decrease according to the location privacy loss function.
If a node defects, its location privacy continues to decrease
according to its location privacy loss function. Formally:
If (si = C) ∧ (nC(s−i) > 0),

T `i := t (4)

αi(t, T
`
i ) := 0 (5)

ui(t, T
`
i , C, si) := max (Ai(T

`
i )− γ, u−i − γ) (6)

If (si = C) ∧ (nC(s−i) = 0),

ui(t, T
`
i , C, si) := max (0, u−i − γ) (7)

αi(t, T
`
i ) := αi(t, T

`
i ) + 1 (8)

If (si = D),

ui(t, T
`
i , D, si) := max (0, u−i ) (9)

where u−i = Ai(T
`
i )−γ−βi(t, T `i )−γαi(t, T `i ) is the payoff

function at time t−, which is the time immediately prior to
t. s−i is the strategy of the other players, and nC(s−i) is
the number of cooperating nodes besides i, and αi(t, T

`
i ) is

the number of pseudonyms wasted by node i since its last
successful pseudonym change T `i . (Note that in contrast with
the equality sign =, the sign := refers to the assignment of a
new value to a variable.)

Fig. 1 (a) shows seven users moving in a network and
meeting in four mix zones. Fig. 1 (b) illustrates the evolution
of user centric location privacy of node 1. The payoff of node
1 increases twice after a successful pseudonym change (in mix
zones E1 and E3) and then decreases after a failed pseudonym
change (in mix zone E4) because of the penalty γ. Because we
analyze only a single strategic interaction between players, we
simplify notation and write in the following n = n(t), βi =
βi(t, T

`
i ), αi = αi(t, T

`
i ), and ui(si, s−i) = ui(t, T

`
i , si, s−i).

4) Type: In this paper we also deal with incomplete in-
formation games. For example, upon meeting other players,
the strategy of a player depends on its knowledge of its
opponent payoff function. As both the time of the last pseu-
donym change and the corresponding location privacy gain
are unknown to other players, each player has incomplete
information about its opponents payoffs. To solve the problem,
Harsanyi [13] suggests the introduction of a new player named
Nature that turns an incomplete information game into an
imperfect information game. To do so, Nature assigns a type
θi to every player i according to a probability density function
f(θi) known to all players, where θi belongs to space of types
Θ. The type of the players captures the private information of
the player, θi = u−i , where u−i is the payoff to player i at time
t− just prior to the current opportunity to change pseudonym.
Because γ is common and known to all nodes, this completely
defines the payoff of the node.



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

y

4

5 6

1
8E1 E2

E

E3

32
7 E4

E

x

E5

1 1 1 1( , , , )u t T s s1 1 1 1( , , , )−

2.0

1 5

1 1( ) 1.8A T γ− =
λ

1.0

1.5
1 1( ) 1.38A T γ− =

λ

0.5 0.2γ =

E2 5 :t1 :t 3 :t
4 :tE1 E4E3 E5

t
2 :t

(a) (b)

Fig. 1. Example of pseudonym change. (a) 7 nodes move on the plane (x, y). (b) Evolution of the payoff of node 1 over time. At t1 (event E1 in (a)),
nodes 2, 3, and 4 meet in a mix zone and cooperate with node 1. Their payoff ui and the time of the last successful pseudonym change are updated:
ui = Ai(T

`
i )−γ = log2(4)−γ = 1.8, and T `i := t1, i ∈ {1, 2, 3, 4}. The payoff of node 1 then decreases according to β1 with slope λ. At t2 (event E2),

node 1 defects. At t3 (event E3), node 1 cooperates with nodes 6 and 7. Consequently, the 3 nodes update their payoff and the time of the last successful
pseudonym change. At t4, (event E4) node 1 cooperates but node 8 does not. Hence, the payoff of node 1 decreases by γ. Finally, at T f1 = t5, the payoff
of node 1 reaches 0 (event E5).

5) Equilibrium Concepts: We introduce the game-theoretic
concepts that model the strategic behavior of mobile nodes.
In a complete information game, a pure-strategy for player i
is si ∈ Si, where Si = {C,D} is the pure-strategy space. A
strategy profile s = {si}ni=1 defines the set of strategies of the
players. Let us write bri(s−i), the best response of player i to
the opponent’s strategy s−i.

Definition 1: The best response bri(s−i) of player i to the
profile of strategies s−i is a strategy si such that:

bri(s−i) = arg max
si

ui(si, s−i) (10)

If two strategies are mutual best responses to each other, then
no player has the motivation to deviate from the given strategy
profile. This leads us to the concept of Nash Equilibrium [23].

Definition 2: A strategy profile s∗ is a Nash equilibrium
(NE) if, for each player i:

ui(s
∗
i , s
∗
−i) ≥ ui(si, s∗−i),∀si ∈ Si (11)

In other words, in a NE, none of the players can unilaterally
change his strategy to increase his payoff. A player can
also play each of his pure strategies with some probability
using mixed strategies. A mixed strategy xi of player i is a
probability distribution defined over the pure strategies si.

In an incomplete information game, a pure-strategy for
player i is a function s

¯i
: θi → Si where Si = {C,D}.

The pure-strategy space is denoted SΘ
i . A strategy profile

s
¯

= {s
¯i
}ni=1 is the set of strategies of the players. In

incomplete information games, the NE concept does not apply
as such because players are unaware of the payoff of their
opponents. Instead, we adopt the concept of Bayesian Nash
equilibrium [13], [15]. Consider that Nature assigns a type to
every player according to a common probability distribution
f(θi). Because the type of a player determines its payoff, every
player computes its best move based on its belief about the
type (and thus the strategy) of its opponents.

Definition 3: A strategy profile s
¯
∗ = {s

¯
∗
i }ni=1 is a pure-

strategy Bayesian Nash equilibrium (BNE) if, for each player
i:

s
¯
∗
i (θi) ∈ arg max

si∈Si

∑
θ−i

f(θ−i) · ui(si, s¯
∗
−i(θ−i)),∀θi (12)

V. ANALYSIS OF THE GAME

We study several types of pseudonym change games with
complete and incomplete information, and two type of strate-
gies static or dynamic.

A. Static Game with Complete Information

We call the complete information game C-game (C stands
for complete information). We assume that there exists only
one time step, i.e., players have only one move as a strategy.
In game-theoretic terms, this is called a single-stage or static
game. This is a realistic assumption because in mix zones,
nodes are unable to sense their environment. Hence, each
player with common knowledge about the type of all players
chooses a strategy simultaneously. For simplicity, we assume
that upon a pseudonym change, every node achieves the same
privacy and thus we consider the upperbound Ai = log2(k),
where k ≤ n is the number of cooperating nodes. Using
the upperbound is qualitatively similar to using other privacy
metrics as all are sublinear in the anonymity set size.

1) 2-player C-game: The strategic representation of the
two player C-game is shown in Table I. Two players P1

and P2, meeting in a mix zone at time t, take part in a
pseudonym change game. Each mobile node decides indepen-
dently whether to change its pseudonym without knowing the
decision of its opponent. The game is played once and the
two players make their moves simultaneously. Values in cells
represent the payoff of each player.

TABLE I
2-PLAYER STRATEGIC FORM C-GAME.

P1\P2 C D
C (1− γ, 1− γ) (u−

1 − γ, u
−
2 )

D (u−
1 , u

−
2 − γ) (u−

1 , u
−
2 )

We assume that u−i > γ for both players, so that u−i −γ > 0.
Since u−i is itself bounded from above by log2(2)−γ = 1−γ
in a 2-player game, we require γ < 1/2 to bound the cost.

Each player knows u−−i, i.e. the payoff of the other player
immediately before the game, which is sufficient to define



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

its payoff for different strategy profiles because the cost γ
is common knowledge. Theorem 1 identifies the potential
equilibrium strategies for the players.

Theorem 1: The 2-player pseudonym change C-game has
two pure-strategy Nash equilibria (C,C) and (D,D) and one
mixed-strategy Nash equilibrium (x1, x2) where xi = γ

1−u−
−i

is the probability of cooperation of Pi.
Proof: We first prove the existence of the pure-strategy

NE. (C,C) is a NE since 1− γ > u−i for i = 1, 2. Similarly
(D,D) is a NE because u−i > u−i − γ for i = 1, 2. For the
mixed strategy NE, let xi denote the probability of cooperation
of ui. The average payoff of player 1 is:

u1(x1, x2) = x1x2(1− γ) + x1(1− x2)(u−1 − γ)

+(1− x1)x2u
−
1 + (1− x1)(1− x2)u−1

= x1x2(1− u−1 )− γx1 + u−1

The payoff is maximized for:

∂

∂x1
u1(x1, x2) = x2(1− u−1 )− γ = 0

which gives x2 = γ

1−u−
1

and by symmetry x1 = γ

1−u−
2

.
We observe that the pseudonym change game is a coor-

dination game [9], because log2(2) − γ > u−i > u−i − γ.
Coordination games model situations in which all parties
can realize mutual gains, but only by making consistent
decisions. Coordination games have three NE, as obtained with
Theorem 1. (C,C) is the Pareto-optimal strategy and thus the
preferred equilibrium.

The complete information pseudonym change game is asym-
metric because the payoff of each player depends on its private
type. For example, the mixing probability is different for each
node (i.e., x1 6= x2).

2) n-player C-game: We extend the 2-player C-game by
considering a set of n ≤ N players meeting in a mix zone at
time t. Each player has complete information and knows the
payoff function u−i of its n− 1 opponents. Let Ck and Dn−k

denote the sets of k cooperating players and n− k defecting
players, respectively. Lemma 1 identifies the existence of an
All Defection NE.

Lemma 1: The All Defection strategy profile is a pure-
strategy Nash equilibrium for the n-player pseudonym change
C-game.

Proof: All Defection is a NE, because if any player Pi
unilaterally deviates from D and cooperates, then its payoff is
equal to u−i − γ, which is always smaller than its payoff of
defection u−i .

Lemma 2 identifies a condition for the existence of NE with
cooperation.

Lemma 2: There is at least one cooperative pure-strategy
Nash equilibrium (i.e., at least two players cooperate) for the
n-player pseudonym change C-game if there exists a set of
cooperating nodes Ck

∗
s.t. ∀Pi ∈ Ck

∗
, log2(|Ck∗ |) − γ >

u−i . The strategy profile is then s∗ = {s∗i |s∗i = C if Pi ∈
Ck

∗
, s∗i = D if Pi ∈ Dn−k∗}.
Proof: If any Pi ∈ Ck

∗
unilaterally deviates from

cooperation to defect, then its payoff ui = u−i is smaller than
log2(|Ck∗ |)−γ. Now let Dn−k∗ be the set of all nodes except

those in Ck
∗
. As Ck

∗
is the largest group of nodes where

log2(|Ck∗ |)−γ > u−i , no mobile node in Dn−k∗ can increase
its payoff by joining the set of nodes in Ck

∗
. Hence, none of

the nodes can unilaterally change its strategy to increase its
payoff and s∗ is a NE when |Ck∗ | > 1.

Lemma 3: There are at most bn2 c cooperative pure-strategy
Nash equilibria for the n-player pseudonym change C-game.

Proof: Assume that the minimal set of cooperating nodes
is Ck

∗
1 s.t. ∀Pi ∈ Ck

∗
1 , log2(|Ck∗1 |)−γ > u−i . This is the pure-

strategy NE with the lowest number of cooperative players. We
show by contradiction that if another set of cooperating nodes
Ck

∗
2 exists, then it must be a superset of Ck

∗
1 .

Consider Ck
∗
1 and Ck

∗
2 such that Ck

∗
1 ∩Ck∗2 = ∅ and ∀Pi ∈

Ck
∗
j , log2(|Ck

∗
j |)− γ > u−i for j = 1, 2. There always exists

a Ck
∗

= Ck
∗
1 ∪ Ck∗2 such that ∀Pi ∈ Ck

∗
, log2(|Ck∗1 | +

|Ck∗2 |)− γ > u−i because log2(|Ck∗1 |+ |Ck∗2 |) > log2(|Ck
∗
j |)

for j = 1, 2 and users will merge into the larger group Ck
∗

and create a new cooperative equilibrium. Thus if Ck
∗
2 exists,

it must be a superset of Ck
∗
1 .

Another set of cooperating players Ck
∗
2 exists if Ck

∗
1 ⊂ Ck∗2

and ∀Pi ∈ Ck
∗
2 \Ck∗1 , log2(|Ck∗2 |)−γ > u−i ≥ log2(|Ck∗1 |)−

γ. Indeed, with such condition, none of the players in Ck
∗
2 \

Ck
∗
1 can deviate from cooperation to unilaterally improve its

strategy. Thus, a superset of Ck
∗
1 can make another NE.

Finally, we observe that |Ck∗2 | − |Ck∗1 | ≥ 2 meaning that
at least two players must change their strategy to obtain a
new NE. Otherwise, one player could unilaterally deviate
to improve its strategy. Hence, the maximum number of
cooperative NE will depend on the number of pairs of players
that can exist, i.e., bn2 c.

Considering Lemma 1, 2 and 3, and as there are no NE in
which only one player cooperates, we immediately have the
following theorem.

Theorem 2: The n-player pseudonym change C-game has at
least one and at most bn2 c+ 1 pure-strategy Nash equilibria.

To illustrate the above results, we consider the set of all
possible strategy profiles in a 3-player C-game. Assume that
N = 10, the payoff of each Pi before playing the game is
in the interval [0, log2(10)− γ], depending on the number of
nodes that have cooperated with Pi in the past (at T `i ) as well
as the number of failed attempts and the rate of privacy loss.
The set of all strategy profiles of this 3-player C-game is:
s = {(s1, s2, s3)|si ∈ {C,D}}.

Lemma 1 proves that (D,D,D) is always a NE. From
Lemma 2, (C,D,D), (D,D,C), and (D,C,D) are not
NE, because |Ck∗ | must be strictly larger than 1 to satisfy
log2(|Ck∗ |)−γ > u−i . Among the remaining strategy profiles,
there might be b3/2c = 1 cooperative NE as defined by
Lemma 3. The existence of this equilibrium depends on the
payoff of each player. Assume that P3 cooperated with 6 nodes
at T `3 and its payoff is log2(7)− γ − β3 − γα3 that is bigger
than log2(2) − γ before playing the game. Consider that the
payoff of P1 and P2 is less than log2(2) − γ before playing
the game. Then, the only cooperative NE strategy profile is
(C,C,D), corresponding to |Ck∗ | = 2.
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B. Static Game with Incomplete Information

We call games of incomplete information I-games (I
stands for incomplete information): players do not know the
payoff type of their opponents. The incomplete information
assumption better models the knowledge of mobile nodes.

1) Threshold Equilibrium: In an I-game, players decide
their move based on their belief about their opponent’s type.
Recall that a player’s type is defined as θi = Ai−βi−γαi−γ;
this defines the payoff immediately before the game. We
establish an equilibrium in which each player adopts a strategy
based on a threshold: if the type of a player is above a
threshold θ̃i, it defects, otherwise it cooperates. Hence, the
space of types is divided into two regions. A player that
has 0 ≤ θi ≤ θ̃i always cooperates, whereas a player with
θ̃i < θi ≤ log2(n) − γ always defects. With this threshold
equilibrium, we define the probability of cooperation as:

F (θ̃i) = Pr(θi ≤ θ̃i) =

∫ θ̃i

0

f(θi)dθi (13)

and 1−F (θ̃i) is the probability of defection. The equilibrium
strategy at BNE of player i, denoted by s

¯
∗ = (θ̃∗1 ; ...; θ̃∗n),

depends only on the thresholds. In the next section, we obtain
the threshold equilibrium for the 2-player I-game.

2) 2-player I-Game: Each player predicts the type of its
opponent based on the probability distribution f(θi). To deter-
mine the threshold values that define a BNE, fix a threshold
strategy s

¯2 associated with threshold θ̃2 for player 2, and define
the average payoff to player 1 for C and D, given type θ1, as:

E[u1(C, s
¯2)|θ1] = F (θ̃2)(1− γ) + (1− F (θ̃2)) ·

max(0, (θ1 − γ)) (14)
E[u1(D, s

¯2)|θ1] = θ1, (15)

and similarly for player 2. For a threshold equilibrium, when
a player’s type is its threshold type, it must be indifferent
between C and D. This is by continuity of payoffs.

So, we can consider the effect of requiring that
E[ui(C, s¯−i

)|θ̃i] = E[ui(D, s¯−i
)|θ̃i] for each player i ∈

{1, 2}, directly imposing this condition on the threshold types.
This yields a system of two non-linear equations on the two
variables θ̃1 and θ̃2. The following lemma establishes that
solving for thresholds with this property defines a BNE for
the 2-player I-game.

Lemma 4: The threshold strategy profile s∗ = (θ̃∗1 , θ̃
∗
2) is

a pure-strategy Bayesian Nash equilibrium of the 2-player,
incomplete information pseudonym change I-game if:{

E[u1(C, s
¯
∗
2)|θ̃∗1 ] = E[u1(D, s

¯
∗
2)|θ̃∗1 ]

E[u2(C, s
¯
∗
1)|θ̃∗2 ] = E[u2(D, s

¯
∗
1)|θ̃∗2 ]

(16)

Proof: Fix player 2’s strategy to threshold θ̃∗2 and consider
player 1 with type θ1 < θ̃∗1 . We have E[u1(C, s

¯
∗
2)|θ̃∗1 ] =

E[u1(D, s
¯
∗
2)|θ̃∗1 ]. Now, E[u1(D, s

¯
∗
2)|θ̃∗1 ] − E[u1(D, s

¯
∗
2)|θ1] =

θ̃∗1 − θ1 ≥ (1 − F (θ̃∗2))(θ̃∗1 − θ1) ≥ E[u1(C, s
¯
∗
2)|θ̃∗1 ] −

E[u1(C, s
¯
∗
2)|θ1], where the first inequality follows because

F (θ̃∗2) ≥ 0. Therefore, the drop in payoff from D relative
to with type θ̃∗1 is at least that from C and a best-response

for the player is to play C. Now consider player 1 with type
θ1 > θ̃∗1 . By a similar argument, we have E[u1(D, s

¯
∗
2)|θ1] −

E[u1(D, s
¯
∗
2)|θ̃∗1 ] = θ1 − θ̃∗1 ≥ (1 − F (θ̃∗2))(θ1 − θ̃∗1) ≥

E[u1(C, s
¯
∗
2)|θ1]−E[u1(C, s

¯
∗
2)|θ̃∗1 ], and the increase in payoff

for D is greater than the increase in utility for C and the
player’s best response is to play D.

Theorem 3 guarantees the existence and symmetry of the
2-player I-game BNE. As before, we continue to require
γ < 1/2 to make the 2 player game interesting (so that a
player retains non-zero privacy value for more than one period
after a successful pseudonym change.) For stating the result
we assume continuous type distributions, so that probability
density f(θi) > 0 for all θi ∈ [0, 1− γ].

Theorem 3: The 2-player pseudonym change I-game has
All Cooperate and All Defect pure-strategy Bayesian-Nash
equilibrium, and every threshold equilibrium s∗ = (θ̃∗1 , θ̃

∗
2)

is symmetric for continuous type distributions.
Proof: To see that All Defection is a BNE with thresholds

θ̃∗1 = θ̃∗2 = 0, simply note that E[u1(C, s
¯
∗
2)|θ̃∗1 = 0] = 0 =

E[u1(D, s
¯
∗
2)|θ̃∗1 = 0] and appeal to Lemma 4. Similarly, to see

that All Cooperation is a BNE consider thresholds θ̃∗1 = θ̃∗2 =
1 − γ, for which F (θ̃∗1) = F (θ̃∗2) = 1 since θi ∈ [0, 1 − γ].
With this, we have E[u1(C, s

¯
∗
2)|θ̃∗1 = 1 − γ] = 1 − γ =

E[u1(D, s
¯
∗
2)|θ̃∗1 = 1− γ].

Second, we prove by contradiction the symmetry of any
threshold equilibrium. Assume without loss of generality that
there exists an asymmetric equilibrium s

¯
∗
2 = (θ̃1; θ̃2), such that

θ̃1 = θ̃2 + ε, where ε is a strictly positive number. Adopt short
hand F for F (θ̃∗2) and Fε for F (θ̃∗2 + ε). Then, for this to be
a BNE we require by Eq. (16) that

F · (1− γ) + (1− F ) max(0, θ̃∗2 + ε− γ)− θ̃∗2 − ε = 0
(17)

Fε · (1− γ) + (1− Fε) max(0, θ̃∗2 − γ)− θ̃∗2 = 0
(18)

Three cases can be identified considering θ̃2, ε, and γ.

(Case 1) θ̃∗2 ≤ γ − ε. By equating Eq. (17) and (18) and
simplification, we have

F (1− γ)− ε = Fε · (1− γ) (19)
⇒ ε = F · (1− γ)− Fε · (1− γ) < 0, (20)

since Fε > F because the type distribution is continuous with
f(θi) > 0 everywhere. This is a contradiction.

(Case 2) γ − ε < θ̃∗2 < γ. By equating Eq. (17) and (18)
and simplification, we have

F · (1− θ̃∗2)+θ̃∗2 − γ − Fε = Fε · (1− γ) (21)

⇒ ε =
F · (1− θ̃∗2)− Fε · (1− γ)− (γ − θ̃∗2)

F
(22)

Now, we have F · (1− θ̃∗2)− Fε · (1− γ) < F · (1− θ̃∗2)−
F · (1− γ) = F · (γ− θ̃∗2) < γ− θ̃∗2 , where the first inequality
follows because Fε > F and the second inequality because
θ̃∗2 < γ, by assumption of this case. From this it follows that
ε < 0 since F > 0, and a contradiction.
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Fig. 2. Probability distribution of user types f(θ), threshold θ̃∗i , and probability of cooperation F (θ̃∗i ) at the equilibrium as a function of γ for different
distributions of type: β(2, 5), β(2, 2), and β(5, 2). For each type distribution, there are three BNE: θ̃∗i,1 corresponds to All Defection, θ̃∗i,3 to All Cooperation,
and θ̃∗i,2 is an intermediate equilibrium. As the cost γ of changing pseudonyms increases, θ̃∗2 approaches θ̃∗1 , i.e., the probability of cooperation increases.

(Case 3) γ ≤ θ̃∗2 . By equating Eq. (17) and (18) and
simplification, we have

F · (1− θ̃∗2)− Fε = Fε · (1− θ̃∗2) (23)

⇒ ε =
F · (1− θ̃∗2)− Fε · (1− θ̃∗2)

F
< 0, (24)

where the inequality holds because F < Fε. This is a
contradiction.

With numerical evaluations, we find an intermediate, sym-
metric threshold equilibrium in almost all cases, where players
don’t simply always cooperate or always defect.2

To illustrate results of the theorem, we consider the fol-
lowing example. Consider that the distribution on types is
uniform, with θi ∼ U(0, 1 − γ), and cumulative probability
function F (θi) = θi/(1−γ). Looking for an equilibrium with
a threshold, θ̃∗i ≥ γ, so that the max(0, ·) term in defining
the payoff of the cooperation action can be dropped, we can
simplify Eq. (16) and obtain the system of equations:

θ̃∗i , 1− γ

F (θ̃∗−i)
, i = 1, 2 (25)

Imposing symmetry and solving, we obtain (θ̃∗i )2 − θ̃∗i +
γ(1− γ) = 0 for i ∈ {1, 2}, which leads to the solutions:

θ̃∗i ∈ {γ, 1− γ} (26)

2Previous works [8], [24] obtain similar results showing the existence and
symmetry of the BNE for this type of games (infinite games of incomplete
information).

Recall that we assume γ < 1/2, so that γ < 1 − γ.
The solution θ̃∗i = 1 − γ corresponds to an All Cooperation
BNE because θi ≤ 1 − γ in a two player game. Looking
at the intermediate equilibrium when θ̃∗i = γ, we see that
E[u1(C, s

¯
∗
2)|θ1] = F (θ̃∗2)(1− γ) + (1− F (θ̃∗2)) · 0 = θ̃∗2 = θ̃∗1

while E[u1(D, s
¯
∗
2)|θ1) = θ1, and can confirm that C is the best

response for θ1 < θ̃∗1 and D is the best response for θ1 > θ̃∗1 .
By further analysis of Eq. (16) for the case of θ̃∗i < γ, there
are a multiplicity of symmetric threshold equilibrium in this
problem, for any θ̃∗1 = θ̃∗2 < γ, including (s

¯
∗
1, s¯
∗
2) = (0, 0)

which is the All Defection BNE. These results are in line with
Theorem 3.

We numerically solve Eq. (16) to find symmetric threshold
equilibrium for three different probability distributions (using
fsolve() in Matlab). We consider the beta distribution B(a, b),
a family of continuous probability distributions defined on
the interval [0, 1] and parameterized by two positive shape
parameters a and b. We consider this distribution for illus-
tration purposes as in practice F (θ) would be obtained from
real measurements. The beta distribution is easily configurable
and thus allows for testing different scenarios corresponding
to various network conditions. If θ ∼ B(2, 5), nodes have a
small θ with a high probability, whereas with θ ∼ B(5, 2),
nodes have a large θ with a high probability. If θ ∼ B(2, 2),
θ is symmetric and centralized around 0.5. Fig. 2 shows the
BNE θ̃∗i and the related probability of cooperation F (θ̃∗i ) as
a function of the cost γ. For each distribution of type, we
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Fig. 3. Threshold θ̃∗i at the equilibrium as a function of n for different values of γ and distributions of type: β(2, 5), β(2, 2), and β(5, 2). For each type
distribution, the number of BNE changes depending on the cost γ.

obtain three BNE: θ̃∗i,1 is an All Defection equilibrium, θ̃∗i,2
is an intermediate equilibrium, and θ̃∗i,3 is an All Cooperation
equilibrium. With the BNE θ̃∗i,1 and θ̃∗i,3, nodes always play the
same strategy. With θ̃∗i,2, we observe that as γ increases, the
probability of cooperation F (θ̃∗i,2) increases as well, indicating
that players should cooperate more when the cost of changing
pseudonyms increases. In other words, with a high γ, users
care more about the coordination success with others. If γ
is small, the cooperation success becomes less important and
nodes become selfish.

The probability of cooperation also depends on the type
of Beta distribution. With a lower type distributions B(2, 5),
the probability of cooperation at equilibrium is smaller than
other distribution types. In other words, selfish nodes cooperate
less because whenever they must change pseudonym, they
know that the majority of their neighbors also needs to
change pseudonym. On the contrary, for B(5, 2), selfish nodes
cooperate more to maintain high privacy.

3) n-player I-Game: Assume n ≤ N players meet at time
t and take part in a pseudonym change I-game. Let Pr(K =
k) be the probability that k nodes cooperate. We can again
obtain the thresholds that define a BNE in the n-player game
by comparing the average payoff of cooperation with that of
defection, now defined as:

E[ui(C, s¯−i
)] =

n−1∑
k=0

Pr(K = k)ui(C, s¯−i
)

E[ui(D, s¯−i
)] = u−i

By a similar argument to that for the 2-player I-game
(Lemma 4), a BNE s

¯
∗ = (θ̃∗1 ; · · · ; θ̃∗n) can be obtained as

the solution to the following system of n non-linear equations
for the n variables θ̃i:

n−1∑
k=0

Pr(K = k)ui(C, s¯−i
) = u−i , i = 1, 2, · · · , n (27)

We denote the probability of cooperation qi = F (θ̃i).
Assume that the thresholds θ̃∗i are all equal: We obtain qi = q
and thus have a symmetric equilibrium. Consequently, the
probability that k nodes cooperate is Pr(K = k) =

(
n
k

)
qk(1−

q)n−k. For example, consider the limit values of q:

• If q → 0, then θ̃∗i = 0, Pr(K > 0) = 0 and Pr(K =
0) = 1. Thus, the All Defection equilibrium exists.

• If q → 1, then θ̃∗i = 1, Pr(K < n−1) = 0 and Pr(K =
n−1) = 1. Thus, the All Cooperation equilibrium occurs
when log2(n)− γ > u−i for all nodes i.

For intermediate values of q, we numerically derive the
thresholds θ̃∗i by solving Eq. (27) with Matlab (Fig. 3). For
γ = 0.3, we observe that with a higher density of nodes n, θ̃∗i,2
decreases, which means that players cooperate with a lower
probability. Similarly, θ̃∗i,3 disappears for large values of n,
which means that Always Cooperation is not a BNE anymore.
Yet in the case of β(5, 2), the All Cooperation equilibrium
θ̃∗i,4 persists. The reason is that with such a distribution of
types, selfish nodes need to cooperate more. For a larger value
γ = 0.7, we observe a similar behavior. Note that with β(5, 2)
an additional threshold equilibrium, denoted by θ̃∗i,3, appears in
which nodes cooperate more when n increases. Moreover, the
All Cooperation equilibrium survives longer when γ increases.

We observe that the game admits several equilibria θ̃∗i,−, and
thus different players may choose to play different equilibria.
Some equilibria can be ruled out: All Defect does not provide
privacy and All Cooperate incurs large cost. Intermediate
equilibria can exist. If only one intermediate equilibrium
exists, then NE selection is trivial. If multiple intermediate
equilibria exist (θ̃∗i,2 and θ̃∗i,3 with β(5, 2) and γ = 0.7), then
players pick the equilibrium with best outcome. As the game
is symmetric, the same intermediate equilibrium is best for all.
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Fig. 4. Extensive form of the Pseudonym Change Game. The game is
represented by a tree and node 1 plays the first action. The game has three
stages corresponding to the moves of the three players. The actions (cooperate
C and defect D) are represented on each branch of the tree. The leaves of the
tree represent the payoff of the game for all players.

C. Dynamic Game with Complete Information

Until now, we assumed that the players make their moves
simultaneously in mix zones without knowing what the other
players do. This is a reasonable assumption because in mix
zones, nodes are unable to sense their environment. Yet,
nodes could exchange messages in mix zones to advertise
their decision. In this case, players have several moves as a
strategy and can have sequential interactions: the move of one
player can be conditioned by the move of other players (i.e.,
the second player knows the move of the first player before
making his decision). These games are called dynamic games,
and we refer to dynamic pseudonym change games with
complete information as dynamic C-games. We can represent
dynamic games by their extensive form (Fig. 4), similar to a
tree where branches represent the strategies for a given player.
Each level of the tree represents a stage of the game.

For such dynamic scenarios to exist, nodes must be able to
observe the action of other nodes. There are several ways to
achieve this. A simple solution is that players broadcast their
decision to cooperate in a sequential manner [22]. Nonetheless,
this increases the communication overhead. Another solution
is that players observe the messages of other nodes exiting
a mix zone. For example, if a node decides to defect, then it
continues broadcasting messages that can be observed by other
nodes in the mix zone. In other words, nodes participating in
a mix zone can use defection as a signal to avoid the cost
of being silent. Any of these solutions can be used, but we
consider the latter because it requires less network resources.

1) Backward Induction: In dynamic game, we use the
concept of subgame-perfect equilibrium. The strategy profile
s is a subgame-perfect equilibrium of a finite extensive-form
game G if it is a Nash equilibrium of any subgame G′ of
the original game G [13]. We will check for the existence
of subgame-perfect equilibria by backward induction [13].
Backward induction works by eliminating sub-optimal actions,
beginning at the leaves of the extensive-form tree. The ob-
tained path (sequence of actions) in the game tree defines
the backward induction solution and any strategy profile that
realizes this solution is a subgame-perfect equilibrium. Note
that the above game belongs to a class of finite game, because
it should be played in a short amount of time.

2) n-player Dynamic C-Game: For any order of players,
the subgame-perfect Nash equilibrium can be derived by all
nodes with the following theorem.

Theorem 4: Let Ck
∗

be a maximal set of cooperating nodes
s.t. ∀Pi ∈ Ck

∗
, log2(|Ck∗ |) − γ > u−i . If there exist such

a Ck
∗
, then in the n-player dynamic pseudonym change C-

game, there is a strategy that results in a single subgame-
perfect equilibrium:

s∗i =

{
C if Pi ∈ Ck

∗

D else
(28)

If there does not exist such a Ck
∗
, then the subgame perfect

equilibrium is all defection.
Proof: Similar to the proof of Lemma 2, no player

Pi ∈ Ck
∗

has an incentive to unilaterally deviate from
cooperation to defection as its payoff u−i would be smaller
than log2(|Ck∗ |)−γ. The same is true for players that defect,
i.e., that are not in Ck

∗
. Hence, none of the nodes can

unilaterally change its strategy to increase its payoff and s∗

is an subgame-perfect equilibrium when |Ck∗ | > 1. If Ck
∗

is
empty, then the subgame-perfect equilibrium corresponds to an
All Defection. Because the actions of the players are dynamic,
a single subgame-perfect equilibrium will be selected.

We observe that the All Defection equilibrium does not
always exist as there is only one subgame-perfect equilibrium.
An advantage of the dynamic game is that the All Defection
equilibrium is often an incredible threat. Similarly, among
possible cooperative equilibria, the equilibrium with the largest
number of cooperating devices is selected. In other words,
coordination is simpler in dynamic games than in static games.

D. Dynamic Game with Incomplete Information
We call dynamic games of incomplete information dynamic

I-games. The concept of subgame-perfect Nash equilibrium
introduced in the previous section cannot be used to solve
games of incomplete information. Even if players observe one
another’s actions, the problem is that players do not know the
others’ types and cannot predict each others’ strategy.

Dynamic games of incomplete information can be solved
using the concept of perfect Bayesian equilibrium (PBE).
This solution concept results from the idea of combining
subgame perfection, Bayesian equilibrium and Bayesian infer-
ence. Strategies are required to yield a Bayesian equilibrium
in every subgame given the a posteriori beliefs of the players
about each others’ types. To do so, players update their beliefs
about their opponents’ types based on others’ actions using
Bayes’ rule. The resulting game is called a dynamic Bayesian
game where “dynamic” means that the game is sequential and
“Bayesian” refers to the probabilistic nature of the game. For
further details, we refer the interested reader to [13].

1) n-player Dynamic I-Game: Consider that a pseudonym
change game starts at time t0. Every player can decide to
cooperate or defect at each stage of the game. Hence, players
can delay their decision and enter the game at any time t ≥ t0.
The actions of players at time t is denoted at = (at1, ..., a

t
n)

and is cooperate C or defect D. The history of actions of the
game is ht = (a0, ..., at−1). The following theorem provides
a strategy that leads to a perfect Bayesian equilibrium.
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Theorem 5: In the n-player dynamic pseudonym change
I-game, the following strategy results in a unique perfect
Bayesian equilibrium:

s
¯
∗
i =

{
C if (nD(t) = 0) ∧ (u−i < log2(nr))
D else (29)

where nr < n is the number of nodes remaining in the game
(i.e., that did not defect) and nD(t) is the number of nodes
that defect at time t.

Proof: The strategy of players depends on their belief
about other players’ types. We define µi (θj |ht) as the belief
of a player i about the type of another player j given a history
of actions ht. In order to obtain a perfect Bayesian equilibrium,
Bayes’ rule is used to update beliefs from µi (θj |ht) to
µi
(
θj |ht+1

)
. Formally, for all i, j, ht and aj , we have:

µi
(
θj |
(
ht, at

))
=

µi (θj |ht)σj
(
atj |ht, θj

)
∑
θ̃j
µi

(
θ̃j |ht

)
σj

(
atj |ht, θ̃j

) (30)

where σj is the probability that a user j plays a certain
action aj . Assume that the number of remaining nodes in the
game is nr (i.e., the number of nodes that did not defect)
and that the initial belief function is: µi(θj) = f(θj). If at
time t1 > t player j defects, it indicates that the type of
player j is above the current threshold θ̃ = log2(nr). Hence,
the behavior strategy σj(a

t1
j |ht1 , θj) returns 0 if θj ≤ θ̃ and

1 otherwise. The denominator computes the belief about all
possible types of player j and thus normalizes µi(θj |ht1)
according the current threshold θ̃. Other players that observe
the action of player j can thus update their belief about the
type of player j and obtain: µi(θj > θ̃|ht1 , at1) = 1, i.e., they
know that player j had a type above the current threshold.
If at some time t2 > t1 no nodes defect (nD(t2) = 0), it
indicates that with probability one all remaining players have
types below the current threshold: µi(θj ≤ θ̃|ht2 , at2) = 1.
Hence, all these players will cooperate and θ̃∗ = log2(nr).

Compared to the static game, the threshold computation is
simpler as it only depends on the number of nodes remaining
in the game.

We numerically evaluate the perfect Bayesian equilibrium
using Matlab (Fig. 5). We compute the average number of
nodes that cooperate in dynamic games of incomplete infor-
mation given distributions of type and cost.

We observe that when the cost of cooperation γ increases,
the number of nodes that cooperate decreases. The reason
is that, in dynamic games, nodes have more information to
optimize their decision and will thus avoid cooperating unless
there is a large number of nodes in a game. The distribution
of types also affects the number of cooperating nodes. We
observe that a large population of nodes with high privacy
(e.g., β(5, 2)) cooperate less than nodes with low privacy
(e.g., β(2, 5)): nodes cooperate only if the privacy gain is
large. We also observe that a larger number of nodes in a
game, increases the probability of cooperation. In summary,
the dynamic version of the game copes well with uncertainty
by relying on the action of defecting nodes to improve the
estimation of the potential privacy gain.

VI. PROTOCOLS

We formally describe location privacy protocols, including
PseudoGame protocols and evaluate them using simulations.
Pseudonym change protocols can be usually modeled with two
parts: 1) an initiation phase, in which nodes request pseudo-
nym changes, and 2) a decision phase, in which nodes decide
upon receiving a request whether to change pseudonyms or
not. Pseudonym change games model the latter.

A. Initiation Protocols

The initiation phase aims at finding appropriate contexts
to request pseudonym changes from nearby nodes. A context
provides high location privacy if there is high node density
and mobility unpredictability.

1) NaiveInitiation Protocol: A simple solution consists in
issuing a pseudonym change request at every time step t when
there is at least another node nearby. The sender can choose a
silent period in the range [spmin, spmax] that it attaches to the
initiation message. We call this protocol the NaiveInitiation
protocol (Protocol 1).

Protocol 1 NaiveInitiation.
1: if (At least one neighbor) and (not in silent period) then
2: Broadcast initiation message to change pseudonym.

2) GainInitiation Protocol: In the GainInitiation protocol
(Protocol 2), any node can initiate a pseudonym change by
broadcasting an update message if a node has at least one
neighbor and if its current location privacy is lower than the
potential privacy gain. The sender can choose a silent period
in the range [spmin, spmax] that it attaches to the initiation
message. This is a protocol similar to that in [22].

Protocol 2 GainInitiation.
1: maxGain = log2(number of neighbors)
2: if (At least one neighbor) and (current location privacy <

maxGain) and (not in silent period) then
3: Broadcast initiation message to change pseudonym.

B. Decision Protocols

Mobile nodes receiving the initiation message must decide
whether to stop communicating for a silent period, as de-
fined in the initiation message, and change pseudonyms. The
decision phase aims at making the best pseudonym change
decision to maximize the level of privacy at a minimum
cost. Below we describe several decision protocols, including
protocols proposed in previous work and protocols resulting
from the aforementioned game-theoretic analysis.

1) Swing Protocol: In the Swing protocol (Protocol 3) [22],
the decision of mobile nodes to cooperate (or not) exclusively
depends on their user-centric level of location privacy com-
pared to a fixed threshold θ̃. The cost of changing pseudonyms
and the probability of cooperation of the neighbors are not
considered in the computation of the threshold. Hence, this is
a reactive model: users change pseudonyms only if their user-
centric level of location privacy goes below the threshold.



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

0 5 10 15 20 25 30
0

5

10

15

20

25

30
β (2, 5), γ = 0.3

n

E
[n

C
]

0 5 10 15 20 25 30
0

5

10

15

20

25

30
β (2, 2), γ = 0.3

n

E
[n

C
]

0 5 10 15 20 25 30
0

5

10

15

20

25

30
β (5, 2), γ = 0.3

n

E
[n

C
]

0 5 10 15 20 25 30
0

5

10

15

20

25

30
β (2, 5), γ = 0.7

n

E
[n

C
]

0 5 10 15 20 25 30
0

5

10

15

20

25

30
β (2, 2), γ = 0.7

n

E
[n

C
]

0 5 10 15 20 25 30
0

5

10

15

20

25

30
β (5, 2), γ = 0.7

n

E
[n

C
]

Fig. 5. Average number of nodes that cooperate in a game with respect to the number of nodes participating in the game for different values of γ and
distributions of types: β (2, 5) , β (2, 2) , β (5, 2).

Protocol 3 Swing.
Require: The current location privacy of node i is u−

i

1: if (Receive Initiation message) or (Initiated change) then
2: if u−

i < θ̃i then
3: Change pseudonym and comply with silent period spmax
4: else
5: Quit
6: else
7: Keep pseudonym

Protocol 4 Static PseudoGame.
Require: Node i knows the probability distribution f(θ)
Require: The current location privacy of node i is u−

i

1: if (Receive Initiation message) or (Initiated change) then
2: n⇐ estimate(n) //Number of neighbors
3: Calculate θ̃∗i as solution of∑n−1

k=0 Pr(K = k)ui(C, s
¯−i

)− u−
i = 0 wrt θ̃i,

where Pr(K = k)⇐
(
n
k

)
qk(1− q)n−k and

q ⇐
∫ θ̃i
0
f(θi)dθi

4: if u−
i ≤ θ̃

∗
i then

5: Play C
6: Comply with silent period spmax
7: else
8: Play D
9: else

10: Keep pseudonym

2) Static PseudoGame Protocol: Our game-theoretic evalu-
ation allows us to design PseudoGame protocols that extend
the Swing protocol to consider equilibrium strategies in a non-
cooperative environment. The static PseudoGame protocol is
based on our results for static n-player I-games.

All nodes receiving the initiation message use the Pseu-
doGame protocol to decide whether to change pseudonyms
based on the number of neighbors and the probability of

their cooperation (related to the distribution of user types
f(θi)). As described in Protocol 4 for any node i, the
PseudoGame protocol assists mobile nodes in selecting the
smallest intermediary BNE strategy (Please see Fig.3). Hence,
after receiving the initiation message, the nodes calculate
the equilibrium thresholds using their location privacy level,
the estimated number of neighbors, and their belief f(θi).
The PseudoGame protocol extends the Swing protocol by
computing the optimal threshold in a rational environment to
determine when to change pseudonym.

3) Dynamic PseudoGame Protocol: The dynamic version
of the PseudoGame protocol (Protocol 5) uses the action of
other nodes as a signal to improve its decision making strategy.

After receiving the initiation message, each player estimates
the number of players in the game. At each time step t,
players check whether their current utility u−i is superior to the
potential benefit log2(n) and if so, defect. Players then observe
the number of remaining players (that did not defect). If in a
round t no nodes defected, it means that all remaining nodes
are interested in changing pseudonym and thus cooperate.

4) All Cooperation Protocol: The AllCooperation protocol
(Protocol 6) is a straightforward method in which players
always cooperate when asked to change pseudonyms.

5) Random Decision Protocol: The Random protocol
(Protocol 7) is a straightforward method in which players
decide randomly whether to cooperate or not.

6) Evaluation: To evaluate the ability of these protocols
to mix pseudonyms, we simulate them in a mobile network.
We consider the following setup: mobility traces are generated
with Sumo [1] over a cropped map [2] of Manhattan of 9 km2

and include a total of 900 nodes injected in the map with
average speed of 6, 63 m/s and average distance of 12.5 km.
Each simulation lasts 5000 seconds; nodes have on average
116 encounters and the average nodes in encounter is 2.93.
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Protocol 5 Dynamic PseudoGame.
Require: Node i knows the probability distribution f(θ)
Require: The current location privacy of node i is u−

i

1: if (Receive Initiation message) or (Initiated change) then
2: n⇐ estimate(n) //Number of neighbors
3: lastN = n
4: for t = 0 to spmax do
5: if u−

i ≥ log2(n) then
6: Play D
7: Quit

n = number of remaining nodes
8: if n = lastN then
9: Play C

10: Comply with silent period spmax
lastN = n

11: else
12: Keep pseudonym

Protocol 6 AllCooperation.
1: if (Receive Initiation message) or (Initiated change) then
2: Change pseudonym and comply with silent period spmax
3: else
4: Keep pseudonym

Protocol 7 Random.
1: if (Receive Initiation message) or (Initiated change) then
2: Throw a coin
3: if Heads then
4: Change pseudonym and comply with silent period spmax
5: else
6: Keep pseudonym

For the game model, we consider an initial distribution of user
types β(2, 5), λ = 0.0005 and a cost of pseudonym change
γ = 0.3. The results are averaged across 5 simulations.

A numerical analysis is required to derive the BNE in
Protocol 4. In our experiments, we find the solution to the
system of equations using the Brent-Dekker algorithm and
systematically in a negligible time.

Fig. 6 shows the total number of games initiated by each ini-
tiation protocol. We observe that the NaiveInitiation protocol
generates a larger number of games than the GainInitiation
protocol. A large number of games will induce networking
costs because of all the initiation messages, but will also
provide more opportunities to change pseudonyms. Yet, the
quality of the contexts of the initiated games may be lower.

Fig. 7 shows the average utility obtained with the differ-
ent initiation and decision protocols. We observe that the
initiation protocols do not affect the achievable utility of
PseudoGame protocols, intuitively because PseudoGame
protocols avoid inefficient pseudonym changes. In contrast,
the NaiveInitiation protocol decreases the achievable utility of
the AllCooperation, Swing and Random protocols because
it increases the number of inefficient pseudonym changes.

In Fig. 7, we also observe the achievable privacy (utility)
of different decision protocols. The dynamic PseudoGame
achieves the highest utility among all protocols, showing that
even with rational behavior high coordination is possible. In
the case of the Swing protocol, with a large threshold, nodes
participate in many inefficient mix zones, whereas with a
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means the Swing protocol with a threshold θ̃ = 3.

small threshold, nodes have to wait long before changing
pseudonyms again. In this regard, θ̃ = 3 appears as an efficient
static threshold. Finally, the static PseudoGame performs
slightly worse than the Swing protocol, showing that rational
behavior negatively affects the achievable privacy in this case.
This can be notably observed in Fig. 8 that shows the average
cost associated with the different protocols. The cost is in
general larger with the NaiveInitiation protocol.

Comparing decision protocols, we observe that the dynamic
PseudoGame protocol dramatically reduces the cost com-
pared to other protocols. For the Swing protocol, the cost
increases with the threshold. The dynamic PseudoGame
protocol provides the best trade-off between privacy and
cost: it efficiently deals with the uncertainty of incomplete
information. In contrast, the static PseudoGame protocol
performs poorly: rationality does not always reduce cost.

VII. CONCLUSION

We have considered the problem of rationality in location
privacy schemes based on pseudonym changes. We introduced
a user-centric model of location privacy to measure the evolu-
tion of location privacy over time and evaluated the strategic
behavior of mobile nodes with a game-theoretic model, the
pseudonym change game. We analyzed the n-player scenario
with complete and incomplete information and derived the
equilibrium strategies for each node for both static and dy-
namic games. The obtained equilibria allow us to predict the
strategy of rational mobile nodes seeking to achieve location
privacy in a non-cooperative environment. This analysis results
in the design of new protocols, the PseudoGame protocols,
that coordinate pseudonym changes.

An intriguing result is that when uncertainty about others’
strategies is high (i.e., static games), rational nodes care



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

Dynamic	  
PseudoGame	  

Sta;c	  
PseudoGame	  

All	  Coopera;on	   Swing	  1	   Swing	  3	   Swing	  5	   Random	  

Av
er
ag
e	  
Co

st
	  

GainIni;a;on	   NaiveIni;a;on	  

Fig. 8. Average Cost with each decision and initiation protocols.

more about the successful unfolding of the game if the cost
of pseudonyms is also high. This result indicates that cost,
usually a negative parameter, can positively affect the game
by increasing the success of pseudonym change coordination.
By means of simulations, we showed that dynamic games
dramatically increase the coordination success of pseudonym
changes. The dynamic PseudoGame protocol coordinates
pseudonym changes better than other protocols and leads to
an efficient trade-off between privacy and cost.

In future work, novel game models may be considered to
include other strategic aspects, such as the evolution of user
strategies across several games. It would also be interesting to
consider how obtaining the distribution f(θ) in a distributed
and noisy fashion may affect results.
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