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ABSTRACT
Encounter-based social networks and encounter-based systems link
users who share a location at the same time, as opposed to the tra-
ditional social network paradigm of linking users who have an of-
fline friendship. This new approach presents challenges that are
fundamentally different from those tackled by previous social net-
work designs. In this paper, we explore the functional and secu-
rity requirements for these new systems, such as availability, se-
curity, and privacy, and present several design options for building
secure encounter-based social networks. To highlight these chal-
lenges we examine one recently proposed encounter-based social
network design and compare it to a set of idealized security and
functionality requirements. We show that it is vulnerable to several
attacks, including impersonation, collusion, and privacy breaching,
even though it was designed specifically for security. Mindful of
the possible pitfalls, we construct a flexible framework for secure
encounter-based social networks, which can be used to construct
networks that offer different security, privacy, and availability guar-
antees. We describe two example constructions derived from this
framework, and consider each in terms of the ideal requirements.
Some of our new designs fulfill more requirements in terms of
system security, reliability, and privacy than previous work. We
also evaluate real-world performance of one of our designs by im-
plementing a proof-of-concept iPhone application called MeetUp.
Experiments highlight the potential of our system and hint at the
deployability of our designs on a large scale.

Keywords
Social networks, Location-based services, Privacy

1. INTRODUCTION
In the conventional model of social networks, users select their

contacts from a set of off-line acquaintances. Despite their utility,
these conventional networks support only a subset of social net-
working: two users will only be able to establish a relationship
in the social network if they know of, or are introduced to each
other. On the other hand, in an encounter-based social network,
the only requirement for establishing a connection is to be in the
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same place at the same time—similar to striking up a conversation
at a public place. Encounter-based social networks would provide
a computing infrastructure to allow for creation of varied services
such as a “missed connections” virtual bulletin board, on-the-fly
introductions (business card exchange), or real-time in-person key
distribution to bootstrap secure communication in other systems.

Although at first glance encounter-based systems appear very
similar to existing social networks, they present a dramatically dif-
ferent set of challenges, not the least of which are security and pri-
vacy of users and authenticity of the other party in a conversation.
Guarantees that are trivial in traditional social networks, such as au-
thenticity (ensuring one is communicating with the desired person),
become open problems in encounter-based networks. Addition-
ally, requirements like anonymity—a feature that is not needed in
most traditional online social networks based on prior face-to-face
contact—need to be considered in encounter-based networks. This
is desirable because users would expect information about people
they happen to meet to stay private. Furthermore, since people do
not automatically place their trust in others simply based on pres-
ence in the same location, it is also desirable to reveal the minimum
amount of information required for future secure communication.
Sharing detailed personal information is not the primary goal of
encounter-based networks, but can of course be easily implemented
if both users agree upon the successful verified encounter.

In this paper we consider fundamental requirements for encounter-
based social networks. We note that in addition to basic functional-
ity like high availability, scalability, and robustness to failure, these
systems should provide several security guarantees, including pri-
vacy in the form of unlinkability of users sharing an encounter, con-
fidentiality of data exchanged among encounter participants, and
authentication of both users in a two-party conversation. We show
that SMILE [24], a recent state-of-the-art design, fails to meet a
number of these requirements (even though it was built explicitly
with security in mind). We propose a generic design that can be
used to construct networks that provide different security guaran-
tees. We then describe individual designs and show the benefits and
trade-offs of specific security design decisions.

Unlike prior work, we provide fine-grained separation between
the encounter event and the eventual connection and communica-
tion: authentication and communication may happen immediately,
or may be delayed for an arbitrary period of time. The former
provides unlinkability between the two paired users (a third party
cannot determine that two users have made a connection), while
the latter increases convenience and flexibility at the cost of some-
what degraded unlinkability. However, both schemes guarantee
authentication—that once established, the connection is with the
desired user. Both of these designs consist of an “online phase,”
where the encounter takes place and encounter instance informa-



tion is exchanged, and an “offline” or delayed communication phase,
where encounter information is used for the two parties to recon-
nect and communicate privately. It is worth noting that we assume
that other users at the encounter time and location are potentially
malicious, and may collect information, collude with other parties,
and otherwise make it difficult for two people to establish a secure
private connection.We developed a prototype of our design, called
MeetUp1, that uses visual authentication for encounter information
exchange and verification. At the core of our system is a visual au-
thentication scheme that provides authenticity guarantees for users
involved in an encounter. Our authentication scheme capitalizes on
that people are good at remembering faces but worse at remem-
bering names Encounter-based networks with visual authentication
would play to people’s strengths, allowing anyone who remembers
a face to later connect with the “owner” of that face, without the
need to remember additional information. MeetUp uses Tor hidden
services [11] to provide an anonymous communication channel for
the second phase of our protocol. By performing preliminary real-
world experiments using plausible deployment settings, and con-
sidering user feedback, we highlight the end-user usability of our
system and its feasibility for deployment at larger scales.

While the main contribution of this paper is an encounter-based
social network design, our techniques can be employed for a wide
range of applications, such as a drop-in replacement for a face-
to-face key distribution service for future secure communication,
e.g. SPATE [20], or for privacy-preserving file sharing systems, e.g.
OneSwarm [17]. In OneSwarm, untrusted users get their keys from
an online key distribution center. Using our design, one may dis-
tribute keys to untrusted users based on some shared activity—an
encounter. Any application that requires key pre-distribution, such
as storage services, private file-sharing systems, private collabora-
tion groups, etc, would benefit from our design in the same way.
Another example is a scientific meeting, where some researchers
present their work, and others participate in discussions, and no
one has time to introduce themselves to everyone. We can employ
our encounter-based system for private on-the-fly name and busi-
ness card distribution—concerte examples are discussed in §7.4.

Our contributions in this work are as follows. (i) by first outlin-
ing security and functional requirements that are ideally desired for
encounter-based social network and arguing that these are minimal
requirements for many distributed system with reasonable security
and privacy guarantees, we examine the extent to which SMILE, a
recent state-of-the-art design of secure encounter-based social net-
work, meets these requirements, showing that it is vulnerable to
many attacks. (ii) we propose a new and generic architecture for
encounter-based social networking that greatly differs from the ar-
chitecture of previously proposed systems and suggest two possi-
ble implementations, each striking a balance between performance
and security. (iii) we show the feasibility of our designs by imple-
menting a proof-of-concept system—including an iPhone applica-
tion called MeetUp—conforming to our requirements and evalu-
ating its performance in real-world settings using mobile devices,
and by bringing further evidence on the usability of our design and
rationality of used assumptions based on several user studies.

The organization of this work is as follows. In §2 we describe
our attack and use models followed in §3 by idealized security
and functional requirements expected in encounter-based networks.
In §4 we discuss vulnerabilities of SMILE, and some of the re-
lated work in literature. In §5 we introduce the design of generic
encounter-based social network and discuss two specific designs.
In §6 we discuss the implementation of MeetUp, and details of

1http://www.cs.umn.edu/~foo/meetup/

some of the experiments that we performed to illustrate the usabil-
ity of our design. In §7 we highlight the main discussion points
followed by concluding remarks in §8.

2. THE ATTACKER AND USER MODELS
In this paper we assume a powerful but computationally-bounded

attacker, in the sense that an attacker cannot break common cryp-
tographic primitives such as collision-resistant hash functions, sig-
natures, and encryption. We further assume one or more attackers
present during the encounter, who intercept and record all publicly-
sent information.Further, we assume a centralized server (used in
some designs) that may attempt to unmask users or read their mes-
sages, either alone or by colluding with other users, but does not
prevent users from communicating. This is a reasonable assump-
tion in systems like encounter-based social networks where the
server exists to provide a commercial service.

We also assume that each user has a mobile device to assist in
building the social network by discovering other nearby devices.
Such a device is assumed to be capable of short-range wireless
communication such as Bluetooth [4] or Wi-Fi [16] with broad-
cast and unicast capabilities. Furthermore, we assume that these
devices have enough storage capacity to record encounter informa-
tion over some time. Finally, we assume that each user has a digital
certificate signed by a trusted authority, containing the user’s public
key and sufficient information to visually identify the user (e.g. a
medium-resolution photo). Note that this certificate may be broad-
cast with only limited privacy concerns—the only information a
potential adversary learns is a binding between a public key and
a photo, with the photos containing information that the adversary
can already observe in the encounter space.

3. REQUIREMENTS AND CHALLENGES
As we have mentioned in §1, many encounter-based designs do

not consider even basic security and privacy requirements along
with functionality and performance. Others fail to meet these re-
quirements even though they were created with the explicit goal
of satisfying them. Below, we explore some requirements for ide-
alized secure encounter-based social networks. While this list is
by no means complete, it can be used as a preliminary guide for
evaluating past and future designs.

3.1 Security Requirements
Here we outline some of the desired security features of encounter-

based social networks. Note that these requirements are generic in
the sense that they may apply to many distributed systems which
combine human interaction, sensitive private information, and net-
work communication. The security requirements we expect in these
systems are as follows. (i) privacy or unlinkability. The privacy
of two parties sharing an encounter must be protected, even from
others in the vicinity who may also participate in simultaneous en-
counters. In this case, privacy means that an external adversary
(even one taking part in the encounter or colluding with a “bulletin
board” or rendezvous server to be used in latter phase) who is not
one of the two users of interest should not be able to conclusively
determine that two users have made a connection. (ii) authenticity,
meaning that when two users decide to make a connection, they
should be assured that messages indeed originate from each other.
(iii) confidentiality, meaning that information exchanged between
two users should be accessible only to them.

3.2 Functional Requirements
The following are generic functional requirements in the con-

text of large-scale distributed systems that are also desirable for
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an encounter-based social network. (i) availability. As such, the
infrastructure to exchange encounter information should be acces-
sible most of the time. The unavailability of individual users should
not affect the availability of other users. Since the time at which
encounter parties check for potential encounters associated with
their activities could be arbitrary, the encounter-based social net-
work is more sensitive to availability than conventional social net-
works. (ii) scalability. With typical social networks being large in
size, any potential social network design, including those based on
encounters, should scale to support a large number of simultaneous
users. This requires minimizing dependence on a centralized entity
(our rendezvous server mentioned above).

4. BACKGROUND AND RELATED WORK
While it may appear that implementing the above requirements

would be straightforward, it is surprisingly challenging in practice.
Recently, Manweiler et al. devised SMILE [24], an attempt to im-
plement a subset of the above requirements. While they succeed
in meeting some of the functional requirements, their system does
not protect against a number of common security vulnerabilities,
such as the “man-in-the-middle” (or MitM) attack, which leads to
several other breaches as shown below.

Closely related to our work, as well as to SMILE, are GAnGS [7]
and SPATE [20], which are both systems built to facilitate secure
data exchange among groups in an authentic manner using simple
human factor techniques. GAnGS extends demonstrative identifi-
cation (DI) to a group setting. The original allows users to indicate
which two devices should communicate at a time, and is by na-
ture designed for pairwise grouping. The basic idea of GAnGS is
to use device pairing in an efficient manner for groups by using
auxiliary tools such as projectors for inputting information about
the group (GAnGS-P) or by depending on other users in the group
to perform tree-based pairing (GAnGS-T). Unlike our work, while
GAnGS can be used for encounter-based attestation, it is mainly de-
signed for collaborative data authentication. SPATE [20] improves
on GAnGS by streamlining cryptographic operations to make the
system more usable on mobile devices. Neither work considers
privacy or anonymity of participants, since authentication and col-
laboration are done at the same phase, and any potential attacker
can maintain participants in both designs easily by eavesdropping
on communication taking place between them.

Since location is one of the most frequently used pieces of in-
formation for encounter verification, location proofs are studied
in [28] and [18]. Some commercial platforms that utilize the idea
of short-range communication and location-based services include
Brightkite [5] and Loopt [21] while other similar ideas can be seen
in WhozThat [3], Serendipity [13], SocialAware [14], Veneta [29],
D-book [8], and Bump [6] (an application for contact information
exchange that provides no privacy guarantees against a compro-
mised central server), among many others.2 Most of these works
do not consider location privacy, despite of its importance.

Last system worth mentioning is MobiClique [26], which builds
an ad-hoc on-the-fly mobile social network by bootstrapping initial
contacts from online (static) social network. As in our work, users
in MobiClique use short-range Bluetooth communication and can
establish encounter-based social links. Most interestingly, Mobi-
Clique provides several measurements demonstrating the feasibil-
ity of such system in terms of power consumption on typical mobile
devices, as the one used in our design. However, unlike our system,
MobiClique does not guarantee user privacy.

2Note that some of these applications give the impression of short-
range communication but actually communicate over the Internet.

Overview of SMILE. The main work in the literature that is sim-
ilar to our work in goals and purpose is SMILE. SMILE extends
ideas from [23] to establish trust between individuals who shared
an encounter. It attempts to allow users equipped with mobile de-
vices to build such trust relationships while preserving their privacy
against potential attackers (e.g., the rendezvous server and other
users in the encounter settings). In SMILE, users who want to com-
municate with each other must prove that an encounter occurred be-
tween them. To do this, the first device in the encounter generates
and broadcasts the “encounter key” to other devices within its com-
munication range. The same device then posts a cryptographically-
secure hash of the encounter key, along with a message encrypted
using the encounter key to a centralized server. Due to the pre-
image resistance properties of the hash function, the centralized
server cannot recover the encounter key without help, and thus
cannot read the message. Other users of SMILE with the same
encounter key may claim the encounter by looking up the hash of
the key, which is used for indexing the encrypted message at the
centralized server. Only users with the correct key will be able to
decrypt the message left by the first encounter party at the server,
and every user with the correct key can derive the retrieval hash
value. The benefits of the basic design of SMILE as it is described
here is that it reduces the misuse in the encounter system: only peo-
ple who have been at the encounter place are those who know the
encounter credentials and are able to claim the encounter.

In addition to the basic design, SMILE tries to provide two fea-
tures: k-anonymity and decentralization. k-anonymity is achieved
by truncating the hash values of the keys so that a single user is
concealed amongst k other users with the same truncated value.
SMILE features a decentralized system that uses anonymizing net-
works of re-mailers for communication, claiming to provide k-
anonymity by requiring each user to have at least k identifiers.
Vulnerabilities of SMILE. We now examine which of our previously-
derived requirements SMILE meets. The system’s availability and
scalability are limited, since the system depends on a centralized
server that is easy to disrupt—a problem that is not unique to SMILE,
but rather any design that uses a centralized online entity. Ad-
ditionally, the claimed security guarantees might not meet the re-
quirements outlined above. While the confidentiality of encounter-
related information is safeguarded by encryption, the privacy of
users in SMILE can be breached.

First, SMILE is vulnerable to an impersonation attack performed
by a user present during the encounter. Since no authentication
is done during key agreement, any user can eavesdrop on the en-
counter information and later claim to be the party of interest. This
attack can further be extended to monitoring: if the adversary ex-
changes keys with the first user pretending to be the second, and
repeats this with the other user, the adversary can carry out a MitM
attack and monitor all messages passed between users.

Second, SMILE is vulnerable to user collusion, an attack that
was previously reported in social interactions [22]; a few malicious
users colluding with the rendezvous server may possess enough
information about activities of other honest users (such as times-
tamps, locations information, and encounter keys) for the server to
unmask users, determining the identities of communicating parties.

Finally, the k-anonymity in SMILE requires that each user know
the number of other nearby SMILE users in order to make sure
that there are enough people around to mask the activity of an
individual—that the user is indistinguishable from k others in a
given encounter setting. This, however, can be easily misrepre-
sented by a Sybil attack [12] where a single adversary pretends to
be k−1 other SMILE users, compromising honest user’s anonymity.



5. DESIGNS AND DESIGN OPTIONS
With requirements outlined earlier, we generalize the design of

previous systems. Special attention has been given to the security
and privacy requirements previous designs failed to achieve. We di-
vide the design into functional blocks and describe potential attacks
on various parts of the system. Then, we discuss two instantiations
of the generic design; each with different benefits and trade-offs.
5.1 Functional Components

The functional design of a typical encounter-based social net-
work consists of three major components located at three different
architectural layers, shown in Fig. 1: the user layer, the plug-in
layer, and the “cloud.” The latter may refer to a storage location
of the encounters and private messages (e.g. a central rendezvous
server or distributed “mini-servers”) which is used by different en-
counter parties in the post-encounter phase. However, the design
can be quite flexible, allowing storage components to be dynami-
cally chosen using a plug-in architecture: the system may support
centralized servers, distributed hash tables [25], or even Tor hid-
den services [11]. Notice that each of the different layers provides
functionalities used to realize one or more functional or security
requirement among these explained in §3. Furthermore, to estab-
lish a balance between the functional and security requirements, we
also discuss two specific designs in the next subsection. Below, we
elaborate on what requirements each designs meet.
On the Need for Strong Authentication. We have shown in sec-
tion 4 that simple unauthenticated key agreement during the en-
counter is vulnerable to a man-in-the-middle attack. Given that the
parties involved in the encounter are already aware of each other
visually, the only way to avoid this vulnerability is to enforce a vi-
sual authentication scheme where users can recognize that they are
communicating with the desired party simply by looking at a pic-
ture of that user. In other settings such as a professional conference,
a company logo and other information, which could be viewed as a
reduced digital version of a business card (though, in many cases,
the same scenario of using a personal photo on a personal busi-
ness card still applies). To provide user authentication, we assume
each user to have a digital certificate signed by a trusted authority
with sufficient information to identify users, including a photo of
the user. The signing authority’s public key would be known to
all other nodes who use our encounter-based social network. It is
not far-fetched to assume that future authentication tokens such as
passports and driver licenses will be issued digitally, since crypto-
graphic signatures make them more secure against malicious tam-
pering than their physical counterparts. Though, we don’t use such
certificate but a limited one (see details in below). With that as-
sumption, a user of an encounter-based system broadcasts a cer-
tificate with his or her picture and public key which is received by
other people in the encounter space including the intended destina-
tion. Such information is then used for reconnection according to
one of the design options explained in §5.2.

We note that facial recognition algorithms exist, which might
reduce the privacy of the user, when an attacker collects photos
from certificates being exchanged and compare them to photos as-
sociated with names and obtained from other sources such as other
online social networks. However, such attacks are computationally
expensive and considered out of scope for this work 3. Furthermore,
an attacker does not need to collect broadcast certificates, but may
simply take pictures of the encounter space for similar results.
Trusted Certification. In our design, we use the X.509 stan-
dard [9] for certification without any modification to the structure
3One possible remedy to this attack is to use cartoon version pho-
tos, like the widely accepted and used photos in StreetPass and Mii.
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Figure 1: Two specific designs. Fig. (a) illustrates the first
design using Tor hidden services as encounter storage place.
Fig. (b) illustrates the second design where users store en-
counter information on a public replica and gain anonymity
to their access using a normal Tor operation.

of the certificate, but we limit the attributes available in the cer-
tificate used for encounters (discussed below) in order to preserve
the privacy of our users. Indeed, the X.509 standard allows op-
tional attributes for biometric information such as photos, which
enables us to embed visual information into the certificate. The
trusted authority mentioned previously is responsible for ensuring
that the photo provided by user for certification is an actual repre-
sentative picture, and allows others to visually identify the user. So,
even when issuing a certificate that combines multiple pieces of pri-
vate information, such as the certificate owner name, address, etc.),
the authority will issue a separate, limited certificate with reduced
amounts of private information which fits our social encounters de-
sign (only user’s public key and photo). The ultimate signature by
the trusted authority will sign all embedded attributes in the certifi-
cate, including the photo.

Our certification and visual authentication schemes are very sim-
ple. First, a user Alice generates a pair of public and secret keys
(PK,SK), computes the hash value of her own image and other
relevant information, including a Tor hidden service URI, which is
a unique identifier that is used later by Bob to communicate with
Alice over Tor hidden service. Alice embeds her PK and other
metadata into a certificate request, and sends it to a signing author-
ity. Second, the signing authority checks the validity of the meta-
data hashes in the certificate request and verifies the validity of the
used attributes in relation with the previously mentioned extended
certificate. If the verification process is successful, the signing au-
thority signs the certificate using its own private key and sends it
back to Alice. If at any time through the verification process any of
the above conditions do not hold, the signing authority aborts and
refuses to sign. Notice that here we omit some critical details: the
authority only signs the certificate with the photo only if correct-
ness of the photo associated with the physical identity of Alice can
be established, e.g. by physical presence of Alice at the authority.

At the protocol’s run time, Alice broadcasts her certificate to ev-
eryone in the vicinity, along with the photo as credentials, which
will later allow anyone present in the encounter space claim an en-
counter with Alice and proceed to the next phase depending on the
protocol being used. In one of such design options — let Bob be
one of the people to overhear the broadcast, if the photo passes the
visual authentication by Bob, Bob tries to verify if the certificate
along with the photo are genuine, i.e. have a valid signature from a
trusted authority. Bob computes the hash of the photo and other in-
formation sent by Alice, comparing it to the value embedded in the
certificate. Assuming a match, Bob proceeds to verify the signature
on the certificate by using the public key of the signing authority.
If the signature is valid, then Bob admits Alice to be whoever she
claims. Otherwise, Bob aborts. Notice that this authentication pro-
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Figure 2: Sequence diagrams of our encounter-based social network design with two key exchange scenarios: (a) shows the immediate
key exchange with postponed authentication and encounter reconnection via the Tor network, while (b) shows delayed key exchange
and delayed rendezvous via Tor network (hidden service or direct Tor connections).

cess can be deferred to post-encounter phase, as it is the case in
delayed rendezvous.

5.2 Design Options
In the generic schemes outlined in §5.1 we face two potential

choices: do we require an immediate encounter key agreement be-
tween the two parties, or do we wait? Each approach has a benefit
and drawback. Immediate generation of an encounter key requires
manual selection of the target user while still at the encounter point.
Delayed generation, on the other hand, requires no immediate ac-
tion on the part of the user, but potentially erodes user privacy dur-
ing later communication. Both of these methods are discussed fur-
ther below. Note that these are not options to be selected within a
single system; this choice must be made before deployment to have
a consistent protocol among all users in the network.
Immediate Pairing. If a user is willing to manually select the pic-
ture of other users of interest while still at the encounter site, she
can compose an encounter key, encrypt it to the selected user’s pub-
lic key, and broadcast the resulting message. Each user in the vicin-
ity will detect the transmission and attempt to decrypt it. However,
only the target user will be able to decrypt the message correctly,
and thus recover the encounter key. This key will be used later to
exchange private messages at the rendezvous point. This method
prevents the rendezvous server and colluding adversaries from de-
termining which two users are communicating. We can go a step
further and use timed-release encryption [27] to hide the contents
of the message even from its intended recipient until the encounter
is over, ensuring that users do not inadvertently give themselves
away by using their devices at the same time. A sequence diagram
showing the operation of this key generation design is in Fig. 2(a).

While the advantage of this design option is enabling users to
make decisions while at the encounter space—while they remem-
ber well parties they encountered, enabling direct communication,
and utilization of the physical encounter, reasoning about some se-
curity guarantees in this scenario might not be as easy. Particularly,
unconventional attacker capable of measuring signal strength, and
associating that to users might be able to breach the privacy of users
by matching who meets whom by monitoring the encrypted traffic
between them, thus violating the unlinkability requirement.
Delayed Rendezvous. Devices will consistently broadcast their
certificates, but will not require others users to immediately review

the information. (As in the immediate pairing scheme, we can use
timed-release encryption [27] to enforce this constraint.) At a later
time, the device user can look at the list of collected identities (and
public keys) and select those with whom he wishes to communi-
cate. As before, we will use non-malleable encryption to compose
a message to the other user, but now the message must be stored
“in the cloud” in such a way that it is linkable to the public key
of the user for whom it is intended, and some encounter nonce
passed at the time of the encounter. This may not be a signifi-
cant problem, considering that only keys and faces are exposed,
and not more personal components of users’ identities. A sequence
diagram showing the operation of the two key generation design
options is shown in Fig. 2(b). While this scheme does not suffer
from the shortcomings in the immediate pairing scheme, the capa-
bility of reconnecting to encounter parties depends entirely on the
capability of encounter parties to recall such encounters. We be-
lieve remembering people is quite easy, given the limited number
of encounters per time window.
Decentralization and Anonymity. Our distributed design, one
that does not require a rendezvous server, is depicted in Fig. 1(a).
We use the generic design described in §5.1 combined with Tor hid-
den services [11] to provide communication anonymity. While Tor
provides users with anonymity, Tor hidden services enable servers
to conceal their identities as well. Each user runs his own Tor hid-
den service and uses it for two purposes: first, to hide his iden-
tity and gain anonymity as to his location and second, to serve
follow-up requests relating to previously encounters. The other
party must use the Tor client to access the hidden service, also gain-
ing anonymity and hiding her location from the server. This design
can easily scale to a large number of simultaneous users [19], and is
resilient to failure, since an attack on the entire social network built
using this distributed design would require attacking many indi-
vidual nodes simultaneously (i.e. the failure of one hidden service
would not affect other hidden services).
Centralized Design with Anonymity Guarantees. Our second
design is depicted in Fig. 1(b). Here we assume a public repository
to which users involved in the encounter can post the encounter in-
formation. Suppose that Alice shares a public space with Bob, and
therefore learns his public key from his certificate. At an arbitrary
time after Alice and Bob share a location, Alice can go through all



her collected identities, notice Bob’s picture, and decide to strike up
a conversation. She composes a message to Bob, encrypts it under
Bob’s public key, and posts the encrypted message on the central-
ized repository under Bob’s public key. To gain anonymity as to
her identity and location, Alice uses a Tor client, concealing her
IP address from the central server. This is more efficient than the
hidden services used in the previous protocol, which require one of
the encounter parties to be online all the time to serve other parties
involved in the encounter. In this design, on the other hand, Bob
can get the messages left for him at the central repository at any
time. He similarly accesses the repository through Tor to conceal
his identity, and downloads all messages addressed to him. To iden-
tify such messages, we suggest using nonces as part of the indexing
scheme. These random one-time values, generated and exchanged
at runtime of the encounter protocol, along with the public key of
the encounter party that initiates the encounter, are hashed and used
for indexing. By doing so, a malicious repository will not be able
to get any information about the identity of the person accessing
the repository unless at least one person at the encounter site is ma-
licious and colluding with the repository.

6. IMPLEMENTATION AND EXPERIMENTS
To validate our method and assess the practicality of our design,

we implemented the system on the iPhone platform and tested it on
multiple devices under ideal conditions, as well as conditions that
users are likely to encounter in urban settings. In our implemen-
tation, we used the delayed rendezvous scheme where the user’s
device can collect simulated broadcast information during encoun-
ters and then use the decentralized Tor hidden service architecture
for the second part of the encounter. Those require a hidden service
URI to be part of the user’s information and is thus linked with the
certificate as a bundle in sent the transmissions.

Notice that our design is generic. We are not limited to any spe-
cific platform like Apple’s iOS, which we chose for development,
in any of the our design ingredients. Our choice of development
platform for our proof-of-concept application is only due to avail-
ability and ease of use for quick prototyping. Other platforms, such
as Android, would work just as well. Consequently, any conclu-
sions on the usability of our design are independent of the platform,
as we only require a smart phone with basic wireless capabilities.

6.1 MeetUp: An iPhone Application
Our iPhone application, called “MeetUp,” allows users to find

other users of the system within Bluetooth range, decide with whom
they wish to communicate, and send and receive private messages.
Screenshots of typical usage scenarios are shown in Figures 3(a)
through 3(c). The user searches for other nearby users of our sys-
tem, and receives their identification information, including pho-
tographs and certificates signed by our trusted certificate authority.
Certification and Visual Authentication. The certificate author-
ity uses a scaled-down version of the architecture presented in sec-
tion 5. Certificates signed by the authority include hashes of photos
and Tor hidden service URI unique to the user. The file containing
the certificate, the photo, the hidden service URI, and the signature
are the deployed to each device in the system. The certificate au-
thority is responsible for verifying that only one instance of such
file is deployed per user. It is also responsible for verifying that
the photo matches the user. This is similar to machine-readable
biometric authentication used in modern passports [10]. A larger
deployment of our system could rely on an already-implemented
certificate infrastructures that use photographs, such as a driver’s
license records, as discussed in §5.1.

(a) Searching (b) Users found (c) User details

Figure 3: iPhone App implementation screenshots
Wireless Communication. Inter-device communication was im-
plemented using Bluetooth [4]. The limited range of Bluetooth de-
vices ensures that users are within close physical proximity to ex-
change certificates. This makes it more likely that users are within
visual range and can identify each other. For the delayed key ex-
change, we rely on that humans can easily recognize a face that has
been seen before [15] when we present multiple devices that have
been observed previously, along with photos relevant to the owners.

Our next step was to implement the broadcast protocol over Blue-
tooth. Unfortunately, the Bluetooth specification does not explicitly
support broadcast in the way we require. One broadcast scheme al-
lowed by the Bluetooth standard is one over a piconet [4] in which
a small number of devices within radio range can form a temporary
ad-hoc network. Broadcast communications then take place over
those small networks. Unfortunately, the Apple SDK does not sup-
port piconets in iOS 4.1 [2] at the time of writing of this paper. The
only option on the iPhone platform was to use Bluetooth peer com-
munication, using repeated unicast to emulate broadcast. It has a
major drawback since both parties in a peer session will have to ac-
knowledge each other’s devices before any information exchanges
can take place. This will obviously cause problems for the delayed
message setting, but in our case it was sufficient to obtain some
RF measurements data for our experiments. Fortunately, since we
strictly emulate broadcast, this forced implementation choice does
not violate our security guarantees. Bluetooth sniffers and strength
indicators might be able to help in localizing a transmitting device,
but that information is already assumed to be public. As for the re-
cipient, if a user connects to every other device in the vicinity one
by one in random order and exchanges equal amounts of data with
all of them, an adversary cannot determine the intended recipient.

6.2 Using MeetUp
The first step in using our application is for the user to start scan-

ning for devices within Bluetooth range. The applications on re-
mote phones have to be listening as well to start a Bluetooth peer
session. Once the session is established, the two devices can ex-
change certificates, photos, and signatures. With this method, how-
ever, the initiating device has to go through the list of nearby de-
vices and do an individual pairing with each remote device in turn
instead of doing a real broadcast, adding considerable overhead.

In the following measurements, we considered the time required
to transfer a 20KB bundle between two paired devices. We dis-
counted the pairing time since it was a step necessary only to our
emulated network. In a real broadcast, there will be no pairing
time. We did not have access to the proper equipment (such as a
spectrum analyzer) to actually measure the amount of traffic on the
2.4GHz band, so we chose locations with minimal RF interference
and densely populated areas around the university campus with a
heavily utilized 2.4GHz band for our urban setting.
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Figure 4: Delay as the time it takes to send encounter infor-
mation (about 20KB) and receive it by other encounter parties
with variable distance without obstacles.
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Figure 5: Delay with different locations of the encounter sender
and receiver, as determined by a radius r (in meters) and an
angle θ (0 to 325 with 45 degrees increment).

Effective Range. We used an open field in a sparsely populated
area to obtain ideal condition measurements. Such an environment
ensures minimal interference over the 2.4GHz Bluetooth commu-
nication band and minimal multi-path due to signal reflecting off
of objects around the communicating devices. Our experiments in-
dicate that under those conditions, the devices can discover each
other and exchange information at a range up to 24 meters. Trans-
fer times increased as we increased the distance between the two
devices, but all were faster than 400ms (shown in Figure 4). We
also looked at the directionality of the communication to determine
if users have to be pointing their devices in a particular direction
to ensure timely transfer of information. We measured the time re-
quired to transfer 20KB of data over our Bluetooth channel from a
user holding a device in a particular manner. Measurements were
taken at 45◦ increment by a querying device moving around a re-
sponding device. The experiment was repeated for radii of 1, 2, 3
and 4 meters around the responding device. We did not find any
significant transfer time differences for all of our measurements.
The median transfer time was approximately 250ms for the 20KB
payload (measurements are shown in Figure 5).
Effective Range with Obstacles. We consider the time taken to
transfer and receive encounter information between two encounter
devices under several conditions reflecting real-world deployment
settings, where obstacles around the encounter parties may cause
signal attenuation and multi-path interference. We consider five
communication scenarios of interest: (i) through a barrier (door),
(ii) in hallway—line of sight with a separation of 20 meters, (iii) com-
munication across multiple walls, (iv) while on different floors (2
floors separation), and (v) when one of the parties is in an elevator
and the other is outside it. For each scenario, ten measurements are
taken and the results are shown in Figure 6, where we plot the 5 rep-
resentative values of min, max, median, Q1 and Q3 (median of the
first and second halves of the measurements). While some scenar-
ios imposed far greater delay than others, the data generally shows
feasibility of MeetUp in several potential deployment settings.
Measurements in Urban Settings. We tested MeetUp in a densely-
populated urban setting, in a bus station populated by students equiped
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Figure 6: Delay with several scenarios representing different
potential deployment settings of MeetUp.
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Figure 7: Delay as the time it takes to send encounter informa-
tion (certificate and data in a 20KB bundle) and receive it by
other encounter parties in urban settings

with mobile phones, with this being as the only difference from the
range and obstacles experiments above. The data collected from
this experiment are shown in Figure 7. We observe that it takes
less than a second in all cases to do the encounter, and at average
it takes approximately 600 ms. While larger than an environment
free of obstacles, multi-path and interference, the transfers were
still completed in an acceptable time window, thus supporting the
practicality of our design.
Tor Hidden Service. Following the device encounter and data
transfer over the wireless network, we used a Tor hidden service
for the second phase of the anonymous encounter. We transfered a
40KB data bundle that only the intended recipient will be able to
decrypt. We established a new Tor circuit for each experiments, and
we ran multiple timing measurements per experiment. The timings
tend to be very consistent per circuit but very different between
circuits (ranging from 1.5 to about 8.5 seconds). Most circuits we
used showed an acceptable transfer delay of under 10 seconds.
Technical Issues. During our tests we noticed that a number of
users tend to use their real names as their device’s names due to
the default naming scheme used by the mobile device. The device
name (which in many cases contains the user’s name) is transmitted
to other devices during the Apple iOS Bluetooth pairing protocol.
Such a naming scheme would defeat the purpose of the anonymity
provided by the protocols outlined in this paper. In future imple-
mentations we intend to use the time of encounter as a selector,
instead of a device nickname. From a user’s point of view, the ap-
propriate photos will be displayed next to the time of encounter
allowing proper selection. The list can also be augmented with lo-
cations at which the encounter occurred.

In our implementation, we exported the certificate from the de-
vice to a desktop which then created a rendezvous point over Tor.
There is also an option to have the device itself connect to the Tor
network to set up a rendezvous point. At the time of writing this
paper, the iPhone Tor client required a jailbroken iPhone, limit-
ing its utility. Depending on the policies of the iTunes store, we



may be able to include a Tor client component within our applica-
tion, or rely on a connection to a desktop computer to establish the
rendezvous point and wait for incoming connections. Other future
implementations of MeetUp would consider other potential mobile
devices that already support Tor, e.g., Android platforms [1]. No-
tice that if we one is to consider the iPhone platform to serve as the
platform of MeetUp, one only needs to give up the option of run-
ning hidden services over the iPhone while other options are, in-
cluding running hidden services on a desktop, would be still avail-
able and are independent of the platform.

7. EVALUATION AND DISCUSSION

7.1 Privacy Evaluation
Privacy in the Encounter Phase. In the first phase of the en-
counter (when users are still in the same location), the first party—
referred to as the encounter source—uses a broadcast communica-
tion channel that makes the second party of the encounter—which
we refer to as the encounter destination—unlinkable to the source.
Information broadcast by the source is received by every other party
in the encounter space, and no destination information is revealed.
The only information revealed about the source is her public key
and photo. We discuss the privacy implications of this setup be-
low. However, it is clear that while an adversary present at the en-
counter can determine who else is present and using MeetUp, the
adversary cannot determine if any two users made a connection. In
the post-encounter phase and for the purpose of reconnecting with
users who were present during an encounter, the identity and loca-
tion of the person initiating the connection to the rendezvous server
or hidden service are obscured using the Tor network, or Tor hid-
den service, though in the latter case is immediately revealed to the
source of the encounter if verified.
Privacy in the Post-Encounter Phase. While it is easy to reason
about the second case where a user runs his own hidden service,
since the security of the communication is inherited from that of
the Tor network and computing entities under the full control of the
user, it is more difficult to determine whether unlinkability holds
when using a centralized rendezvous server. Since encounter infor-
mation is deposited on the central server by the destination and is
based on the source’s information (e.g. an index derived from his
public key), this information might be used to breach the privacy of
users — any entity may check the source’s mailbox to see if there
is a message. Note that the message is encrypted, and therefore still
confidential. The problem is alleviated using encounter-time ran-
dom nonces, which would be combined with the destination party
identity to derive the rendezvous key used by the encounter parties.

Only a malicious server colluding with a user in the encounter
space would be able to extract any information from the rendezvous
key — the server acting alone gets no useful information. Further-
more, the extracted information is limited to the time and place of
the encounter, and nothing else. The certificate of the source, if
the destination decides to repost it as an evidence of the encounter,
is encrypted under the source’s public key along with the message
left to the source at the central server. Such information about the
source cannot be linked to any other information, since the server
in our designs does not store such information, unlike the case of
SMILE. Notice that another reason for using per-encounter nonces
generated at encounter time is to optimize the communication over-
head when retrieving the encounter information. A fix for the col-
luding server and malicious users mentioned above is to make each
user who wants to retrieve encounter information posted to him on
the server to perform “dummy” queries to disguise his query.

Privacy Concerns due Visual Authentication. One may criticize
our design for using a personal photo associated with the encounter
information, which may be eavesdropped by all users in the en-
counter setting, including the attacker. While the photograph-to-
key binding may be abused to degrade the privacy of users, we
argue that this is a necessary piece of information, and a potential
attacker might learn it from several other sources, apart from this
application. We further argue that such information is already avail-
able to the attacker by physically co-locating with the encounter
party, and by seeing who is present at the same place in the same
location. However, we stress that this information cannot be used
to breach the privacy guarantees of the encounter, since the adver-
sary cannot read messages exchanged between users, nor does he
know the identity of the other party in the encounter. We finally
argue that users interested in maintaining unlinkability provided in
our design for their encounters are also willing to give this piece
of private information away, for the ultimate benefits gained. This
claim is further supported by the following user study.
User Study 1: Using Photos for Authentication. To understand
the potential of our design in real contexts, we perform a case study
on a random sample of 76 subjects and examined their willingness
to use their personal photos as part of an authentication method in
order to improve their privacy. Out of the 76 subjects, 4 subjects did
not respond (correspond to 5.26% of the sample size). Thirty six
(36 subjects) responded positively by agreeing to use their photos
(correspond to 50% of respondents and 47.37% of the overall sam-
ple size) while 22 responded negatively (correspond to 30.6% of
the respondents and 28.95% of the sample size) and 14 (18.42% of
the respondents and 19.4% of the sample size) selected to turn the
feature on at times. In total, 50 out of 74 respondents (correspond
to 69.4%) are likely to use the feature by providing their personal
photos for certification and authentication when using the service.

7.2 Overhead and scalability
The overhead required in MeetUp is in the form of communi-

cation, computation, and memory. Communication resources are
required for transferring and receiving encounter information, com-
putations are required for establishing Tor circuits, in normal and
hidden-service based operation, and memory is required for stor-
ing the encounter information in the mobile device and later on a
desktop machine that is used for running the hidden service. While
both are considered for the resources requirements, of interest to
our feasibility study is the mobile device used for carrying out the
encounter operations. Here, we verify the feasibility of MeetUp
and its reasonable consumption of resources.

As we have shown in the previous section, the time it takes to
exchange encounter information in our design is small, and in most
cases is less than 1 second on typical devices. Furthermore, in many
of the deployment environments that we have considered, this over-
head is even about 250 milliseconds, making it very feasible to use.

The memory required in our design, per encounter, and shown
earlier in §6, is about 20KB. While this is large in relation with pre-
vious memory consumption requirements for similar designs, such
as SMILE, we believe that this is reasonable for the provided guar-
antees, and given the amount of resources in many of the current
smart phones which are equipped with GBs of memory. For ex-
ample, with a 512MB allocated for the application, one may store
up to more than 25,000 encounters. Given that one has the choice
to decide to store the encounter or discard it right away, this space
of memory can be further utilized to store more useful encounters.
Also, given that the offline communication and reconnection is per-
formed through non-mobile machines, as suggested by our design,
this memory can be further utilized in a better way: the memory



required on the mobile phone is only for fresh encounters, which
are limited per days [24]. On a desktop machine, 1GB of memory
is enough for storing 50,000 encounters per user, far more than the
number of friends one can realistically have.

The computations in our design are mostly cheap to perform on
typical mobile devices. The only online computations required in
our design is a signature verification in order to verify the authentic-
ity of certificates issued by the certificate authority. This overhead
can be further minimized by considering verification for encoun-
ters that pass the visual authentication, or can be further moved to
non-platform in an offline phase. This decision, however, may or
may not be desirable based on the traseoff set by users between
computations and memory consumption (as one needs to store all
encounters, including undesirable ones, in order to perform verifi-
cation offline). In total, the computation required in our design is
reasonable and feasible for most mobile devices.

On the other hand, offline computations and communication re-
quired for our application are different from those required on the
mobile phone. While memory requirements are still same, in the
offline phase we use Tor, or Tor hidden services, to provide pri-
vacy. By measuring that for the same amount of communication
overhead (20KB), we found the time it takes to transfer such in-
formation over Tor (using previously established circuit) is about 3
seconds. This further supports the feasibility claims of our design.

One may argue against the usability MeetUp, given typical smart
phones limited batteries which may drain quickly due to the heavy
use of Bluetooth communication. However, we observe that even
when one keeps MeetUp running all time and scan for encoun-
ters every two minutes, typical smart phone battery would serve
for more than eight hours, as it is shown in [26] with MobiClique,
in which the overhead is comparable to the overhead in MeetUp.

7.3 Usability Issues
Our design assumes the availability of smart phones for users and

their willingness to use their phones to participate in the system. To
understand the density of smart phones and willingness of people
to use them in our application, we perform the following user study.
User Study 2: On Using Smart Phones. We examine the sur-
vey outcome on whether subjects are willing to use their smart
phones for applications such as MeetUp or not. In the same sample,
25% of the questioned subjects did not respond, implying the likeli-
hood of not having smart phones or not willing to use their phones
for social networks for such applications as MeetUp. However,
39.47% of the sample (52.6% of the respondents) answered pos-
itively, 28.95% (38.6% of the respondents) answered negatively,
and 6.58% (8.8% of respondents) answered with “maybe” for the
likelihood of using their smart phones to connect with people they
meet. Out of 57 respondents, 35 (correspond to 61.4%) are likely
to use smart phones for connecting to people they meet in MeetUp.
User Study 3: On the Density of Wireless Gadgets. The typical
use case for the MeetUp application is in a social setting where peo-
ple congregate. To this end, we chose a library on the campus of a
major North American university. Since MeetUp runs on the Apple
iOS platform, we designe an experiment to estimate the density of
devices capable of running our software in the chosen location.

Apple builds a service within their devices that help in zero con-
figuration situations. For this service, the devices use the name
assigned by the user for communication between devices on a lo-
cal network. By default, that name contains the type of device it
is. ‘The first step in this protocol is a Multicast DNS query on the
local network to check for name collisions. The devices run this
protocol by default upon first joining any Wi-Fi network.

We connected a laptop to the local Wi-Fi network at our chosen
location and listened for Multicast DNS messages. To ensure that
we were limited to the target location, we had a user with a known
device name connect to the same network, but at different location,
and verified our inability to observe his device’s DNS messages.
We estimated the area of the target location to be around 5000m2.

We collected messages heard on the Wi-Fi network for 5 hours,
and filtered the Multicast DNS queries. We then extracted the
unique IEEE MAC addresses of the querying device from those
messages, and eliminated any duplicates. We verified that all the
MAC addresses belong to the IEEE OUI prefixes assigned to Ap-
ple to filter out any devices with an iOS name, without being one.
Those default self-assigned names identifies the device type as “iPhone”,
“iPod” and “iPad”, allowing us to estimate the iOS device diversity.

To enable a social encounter with mobile devices, it is important
to for those devices to be at the same location at the same time.
Observing Multicast DNS messages tells us when an iOS device
joins the network, but we don’t know how long it stays. We can
make a rough estimate based on the physical properties of the lo-
cation. With the radius of our location being 35m and the average
human walking speed of 1.4m/s, we estimate that a user will stay in
the network for at least 25 seconds. Using the Multicast DNS mes-
sages, we can estimate a lower bound for the number of devices
coming online at the above time intervals. In our results shown
in figure 8, we counted the number of devices announcing on the
network within 25 second buckets. We filtered out duplicate DNS
requests, and replies originating from the querier within the reply
timeout window to avoid double counting devices. On average, we
observed about 9 devices joining the network every 25 seconds.
The measurement started around 1pm local time, which would ex-
plain the initial bump in devices, followed by a gradual decline into
what would be dinner time locally.

Limitations of our counting technique include the following. (i) the
iPhones have to be configured to connect to the university’s Wi-Fi
network. While not counting all devices, this is a plausible case
since the Wi-Fi data network is much faster than the 3G network on
campus, therefore users have an incentive to turn Wi-Fi on. (ii) the
names of the devices can be changed to remove the device type.
We don’t know the fraction of user who would do so, but we have
at least a lower bound on the number of Apple iOS devices

Time/mins

N
um

be
r 

of
 iO

S
 D

ev
ic

es

0 50 100 150 200 250

0
10

20
30

40
50

Figure 8: Apple iOS device density estimation

Even with those limitations, we were able to observe 448 unique
devices, including 257 iPhones, 129 iPods and 62 iPads on the net-
work within 5 hours in an area of 5000 m2. Measuring the Multi-
cast DNS messages indicated their presence on the network, pos-
sibly at different points in time as the device sleeps and wakes up
while staying in the same geographic location. This density of de-
vices provides us with some confidence that the MeetUpapplication



could be useful in augmenting a social network graph based on ge-
ographically proximate social encounters.

7.4 Additional Applications
Now we turn our attention to further applications. We elaborate

on applications—mentioned in §1—that may require anonymity for
shared encounters. Among many others, we discuss two examples.
Key Distribution. Key distribution is a challenging problem in
the context of distributed computing systems. One obstacle for key
distribution is the fact that it is hard to make an authority always on-
line to take care of the distribution of keys, as well as the scalability
issue of key distribution for larger networks. Our proposed design
can be utilized for key distribution, and can be used as a plug-and-
play service for this purpose. For example, consider the applica-
tion of OneSwarm in [17]. In OneSwarm, there are two classes
of users, trusted and untrusted users, and both are used for differ-
ent purposes and differ in the way they get keys and their function
in OneSwarm. While the trusted users get their keys from those
who trust them directly in an “offline” fashion, untrusted users get
their keys from a key distribution center, that should be online all
the time. Using our design, one may distribute keys to untrusted
users based on activity shared with them—such as an encounter.
One even may consider the scenario of establishing trust based on
the encounters [20]. Other key distribution applications that may
benefit from our design include storage services, file-sharing, etc.
On-the-fly Name Card Distribution. Consider the scenario of
scientific meeting, where some researchers present their work, some
others participate in discussions on the work, and none has time to
keep in touch and introduce himself to all researchers, due to the
time constraints. Our application can be brought in action for such
scenario for on-the-fly name or business card distribution. Again,
same as the main motivation of our application, people are good
at remembering faces of other encounter people rather than names,
and so it is easy to associate a digital name card associated with a
photo than that of remembering names.

8. CONCLUSION
In this work we show that existing designs for secure encounter-

based social networks fail to fulfill reasonable security guarantees.
We outline several requirements that ideal encounter-based social
networks need to satisfy, and introduce a generic framework for
constructing encounter-based social networks. We then use our
framework to showcase several designs, and demonstrate that our
designs fulfill more requirements than SMILE, the design the mo-
tivates our work. We show the feasibility of our work through a
demonstration of MeetUp, an iPhone application that uses our de-
sign. In the future, we will investigate further extensions to the cur-
rent framework, alternative designs options, and additional plug-
gable components. We will also investigate developing MeetUp on
other mobile platforms as well as a larger-scale deployment using
multiple wireless communication protocols.
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