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Abstract—In large organizations, access control policies are managed by multiple users (administrators). An administrative policy

specifies how each user in an enterprise may change the policy. Fully understanding the consequences of an administrative policy in

an enterprise system can be difficult, because of the scale and complexity of the access control policy and the administrative policy,

and because sequences of changes by different users may interact in unexpected ways. Administrative policy analysis helps by

answering questions such as user-permission reachability, which asks whether specified users can together change the policy in a way

that achieves a specified goal, namely, granting a specified permission to a specified user. This paper presents a rule-based access

control policy language, a rule-based administrative policy model that controls addition and removal of facts and rules, and an

abductive analysis algorithm for user-permission reachability. Abductive analysis means that the algorithm can analyze policy rules

even if the facts initially in the policy (e.g., information about users) are unavailable. The algorithm does this by computing minimal sets

of facts that, if present in the initial policy, imply reachability of the goal.

Index Terms—Security policy, attribute-based access control, policy administration, rule-based policy, policy verification
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1 INTRODUCTION

THE increasingly complex security policies required by
applications in large organizations are more concise

and easier to administer when expressed in higher-level
policy languages. Recently, frameworks with rule-based
policy languages, which provide flexible support for high-
level attribute-based policies, have attracted considerable
attention.

In large organizations, access control policies are man-
aged by multiple users (administrators). An administra-
tive framework (also called administrative model) is used to
express policies that specify how each user may change
the access control policy. For example, several adminis-
trative frameworks have been proposed for role-based
access control (RBAC) [1], starting with the classic
ARBAC97 model [2].

Fully understanding the implications of an adminis-
trative policy in an enterprise system can be difficult,
because of the scale and complexity of the access control
policy and the administrative policy, and because
sequences of changes by different users may interact in
unexpected ways. Administrative policy analysis helps
by answering questions such as user-permission reach-
ability, which asks whether specified users can together
change the policy in a way that achieves a specified
goal, namely, granting a specified permission to a speci-
fied user. Several analysis algorithms for user-permission
reachability for ARBAC97 and variants thereof have
been developed, e.g., [3], [4], [5], [6]. There is some work

on administrative frameworks for rule-based access con-
trol and analysis algorithms for such frameworks [7], [8],
[9], but it considers only addition and removal of facts,
not rules. Analysis algorithms for ARBAC also consider,
in effect, only addition and removal of facts, not rules,
because the administrative operations in ARBAC corre-
spond to addition and removal of facts.

This paper defines Access Control and Administration
using Rules (ACAR), a rule-based access control policy
language with a rule-based administrative framework
that controls addition and removal of facts and rules.
ACAR allows policies to be expressed concisely and at a
desirable level of abstraction. Nevertheless, fully under-
standing the implications of an administrative policy in
ACAR might be more difficult, in some ways, than fully
understanding the implications of an ARBAC policy,
because in addition to considering interactions between
interleaved sequences of changes by different administra-
tors, one must also consider chains of inferences using
the facts and rules in each intermediate policy.

This paper presents a symbolic analysis algorithm for
answering atom-reachability queries for ACAR policies,
i.e., for determining whether changes by specified
administrators can lead to a policy in which some
instance of a specified atom (an atom is like a fact except
that it may contain variables), called the goal, is deriv-
able. To the best of our knowledge, this is the first analy-
sis algorithm for a rule-based policy framework that
considers changes to the rules in the policy as well as
changes to the facts in the policy. Atom reachability can
express a variety of interesting properties, including
user-permission reachability.

Our algorithm translates a policy analysis problem
that involves changes to rules and facts into a problem
that involves changes only to facts. We consider this
approach to be a contribution of our work; we have not
seen it in prior work. This approach can be adapted to
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other settings, but not universally. In our setting, this
approach works well because it is possible to simulate a
rule granting permission to add rules using one rule
granting permission to add facts and one auxiliary rule,
as described in Section 4.1. This is a consequence of the
design of ACAR. With other administrative frameworks,
simulating addition of rules using addition of facts
might be difficult or inefficient.

It is often desirable to be able to analyze rule-based poli-
cies with incomplete knowledge of the facts in the initial
policy; for example, a database containing those facts might
not exist yet, or it might be unavailable to the policy engi-
neer. Even if a database of facts exists and is available, more
general analysis results that hold under limited assump-
tions about the initial facts are often preferable to results
that hold for only one given set of initial facts. For example,
consider the policy that a clinician at a given hospital may
treat a patient if he is a member of a hospital workgroup
that is treating that patient. A policy auditor might want to
analyze the rules in the hospital policy to compute all
sequences of administrative actions (or “plans”) that may
allow a user to be a treating clinician for a patient,
independent of data about specific patients, workgroups,
etc. Even if such data exists and is available, it is transient,
and the analysis is more thorough if it considers more gen-
eral scenarios.

There are two approaches to solve such an analysis
problem. In the deductive approach, the user specifies con-
straints (expressing assumptions) about the initial facts,
and the analysis determines whether the goal is reach-
able under those constraints. However, formulating
appropriate constraints might be difficult. We adopt an
abductive approach, in which the analysis determines con-
ditions on the set of facts in the initial policy under
which the goal is reachable. More specifically, our
abductive analysis determines minimal set of atoms that,
if present in the initial policy, imply reachability of the
goal. This approach is inspired by Becker et al.’s abduc-
tive policy analysis for rule-based policy languages [10],
[11], and our algorithm builds on their tabling-based pol-
icy evaluation algorithm.

This paper is a revised and extended version of [12].
The major changes are replacement of the tabling algo-
rithm in [10] with the tabling algorithm in [11] in phase 3
of our algorithm, addition of wildcards to the policy lan-
guage, extension of the algorithm to produce plans, and
addition of details, examples, and (in the supplemental
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2013.42) correctness proofs.

2 THE ACAR FRAMEWORK

This section defines the Access Control and Administration
using Rules (ACAR) framework.

2.1 Policy Language and Administrative Framework

The policy language is a Prolog-like rule-based language
with constructors and negation. Predicates are classified as
intensional or extensional. Intensional predicates are
defined by rules. Extensional predicates are defined by facts.

Constructors are used to construct terms representing
operations, rules (being added or removed), parameterized
roles, etc. The language is parameterized by the sets of
predicates, variables, and constructors. The grammar
appears in Fig. 1. pin, pex, c, and v range over intensional
predicates, extensional predicates, constructors, and varia-
bles, respectively. t, a, and lit are mnemonic for term, atom,
and literal, respectively. Predicates and constructors start
with a lowercase letter; variables start with an uppercase
letter. Negation is denoted by “!”. Constants are repre-
sented as constructors with arity zero; the empty parenthe-
ses are elided. t� denotes a comma-separated sequence of
zero or more instances of non-terminal t. A term or atom is
ground if it does not contain any variables. A policy is a set
of rules and facts.

Negation and Wildcard. The grammar ensures that nega-
tion is applied only to extensional predicates. Our experi-
ence with case studies suggests that this restriction is
acceptable for many typical policies. For example, in our
healthcare network case study, membership in work-
groups is recorded in an extensional predicate, and a nega-
tive premise involving that predicate ensures that a
manager u cannot appoint the head of a workgroup of
which u is a member.

To increase the expressiveness, the language allows the
special symbol “_”, called wildcard, to be used as an argu-
ment of an extensional predicate (but not as an argument
of a constructor) in a negative literal. Using a wildcard as
an argument in a negative premise represents a universal
quantification over the value of that argument. For exam-
ple, in the policy of the substance abuse facility gcSAF in
our healthcare network case study, a clinician treating a
patient can create a new encounter with a patient by add-
ing a fact to the encounter predicate. The predicate
encounter(EncID, Pat, Wkgp, Fac, Type) means
there exists a patient encounter with unique identifier
EncID for patient Pat at facility Fac of type Type and is
handled by workgroup Wkgp. The following rule uses
negation and wildcard to ensure that the identifier for the
new encounter is fresh:

permitðCli; addFactðencounterðEncID; Pat;
Wkgp; gcSAF; TypeÞÞÞ

: �memberOfðCli; trCliðPat; gcSAFÞÞ;
!encounterðEncID; ; ; ; Þ

Permissions and administrative operations. The intensional
predicate permit(user,operation) specifies permissions,
including permissions for administrative operations.
The administrative operations are addRule(rule),
removeRule(rule), addFact(aex), and removeFact(aex).
Let AdminOp ¼ faddRule, removeRule, addFact,
removeFactg. addRule and addFact have the same
effect as assert in Prolog. removeRule and

Fig. 1. Grammar for ACAR policy language.
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removeFact have the same effect as retract in Prolog.
We use separate administrative operations for facts and
rules to improve readability.

The framework defines how permissions to perform
administrative operations are controlled. These permissions
are expressed using the permit predicate but given a special
interpretation, as specified below in the semantics of admin-
istrative policies.

For an operation op, an op permission rule is a rule whose
conclusion has the form permit(...,op(...)). An
administrative permission rule is an op permission rule with
op 2 AdminOp.

2.2 Representation of Role-Based Access Control

Role-based access control can be expressed in our frame-
work in a straightforward way. This section describes how
some core features of RBAC are modeled in the running
example introduced in Section 2.3 and in the healthcare net-
work case study described in Section 5.

Role membership. Role membership is represented by
the intensional predicate memberOf(User, Role). The
extensional predicate directMemberOf(User, Role)

is the direct (i.e., not including inheritance) user-role
assignment. Thus, users are assigned to roles by adding
facts to the directMemberOf predicate. The following
rule expresses that a user u is a member of role R if u is
directly assigned to R.

memberOfðUser; RoleÞ
: � directMemberOfðUser; RoleÞ ð2:1Þ

Role hierarchy is represented by recursive rules defining
memberOf. For example, the rule memberOf(User, r1)

:- memberOf(User, r2) expresses that role r1 is senior
to role r2.

Role activation. A member of a role must activate the role
to use the permissions granted to that role [1]. Activation of
role Role for user User is expressed by adding the fact
hasAct(User, Role) to the extensional relation hasAct.
The following rules express that a user can activate a role of
which he is a member, and that a user can deactivate any of
his activated roles:

permitðUser; addFactðhasActðUser; RoleÞÞÞ
: � memberOfðUser; RoleÞ ð2:2Þ
permitðUser; removeFactðhasActðUser; RoleÞÞÞ
: � hasActðUser; RoleÞ ð2:3Þ

2.3 Running Example

As a running example, we use a fragment of the healthcare
network case study described in Section 5. The running
example focuses on the policy for appointing a user as a
treating clinician for a patient at gwHosp (“get well hospi-
tal”), a hospital in the healthcare network. The policy officer
at gwHosp can add rules that define membership in the
trCli role. We refer to the policy officer at gwHosp as the
HPO, mnemonic for Hospital Policy Officer.

Predicatesusedinthisexample includeconsentTT(Pat,
Cli,Fac),whichmeansclinicianClihaspatientPat’scon-
sent to treat him at facility Fac, and encounter(EncID,

Pat, Wkgp, Fac, Type), which means there is a patient
encounter with unique identifier EncID for patient Pat

at facilityFacof typeType and being handled by workgroup
Wkgp.

Roles used in this example include the following.
Members of trCli(Pat, Fac) are treating clinicians
for patient Pat at facility Fac. Members of pOfc(Fac)
are policy officers at facility Fac. Members of cli(Fac,
Spcty) are clinicians at facility Fac under specialty
Spcty. Members of wkgp(W, Fac, Spcty, WT) are
members of the workgroup W, which is of type WT (mne-
monic for “Workgroup Type”), under specialty Spcty at
facility Fac. Members of patient are patients. Members
of agent(Pat) are agents of patient Pat.

The running example policy appears in Fig. 2. It allows
HPO to define the trCli role using the following two kinds
of rules: if the user has at least explicit consent to treatment
for a patient, then he can be a treating clinician for that
patient; if the user is at least a member of a workgroup that
is treating the patient, then that user can be a treating
clinician for that patient. Rules (2.4) and (2.5) allow the
HPO to add these two kinds of rules, respectively. In this
description, “at least” indicates that the stated requirement

Fig. 2. Running example.
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is the minimal one; the HPO may impose additional
requirements, by including additional premises in added
rules, as discussed in Section 2.4.

Rules (2.6) and (2.8) allow HPO to add rules that allow
patients and their agents, respectively, to grant consent to
treatment. Rules (2.7) and (2.9) allow HPO to add rules that
allow patients and their agents, respectively, to revoke con-
sent to treatment.

To help express queries, we also include in the policy
a few facts about prototypical users, stating that cli1 is a
surgeon at gwHosp, pat1 is a patient, and hpo1 is a gwHosp
policy officer. These facts appear at the bottom of Fig. 2.

2.4 Semantics

A rule is safe if it satisfies the following conditions.
1) Every variable that appears in the conclusion outside
the arguments of addRule and removeRule also appears
in a positive premise. 2) Every variable that appears in a
negative premise also appears in a positive premise.
3) In every occurrence of permit, the second argument is
a constructor term, not a variable. 4) Every occurrence of
addRule or removeRule is in the second argument of
permit in the conclusion of a rule. A policy is safe if all
rules in the policy are safe. Note that condition (1) is
essentially the conventional notion of safety in logic pro-
grams, which, for languages like ours that do not con-
tain equality premises, requires that every variable that
appears in the conclusion also appears in a positive
premise.

A policy P is well-formed if 1) P is safe, 2) the argument to
each occurrence of addFact and removeFact in P is an
extensional atom (not necessarily ground), and 3) for each
extensional predicate p, if a wildcard is used as an argument
to p in any rule in P , then P does not contain removeFact

permission rules for p (Section 4.4 explains the reason for
this requirement).

Intuitively, the semantics P½ �½ � of a policy P contains all
atoms deducible from P . Formally, the semantics P½ �½ � of a
policy P is the least fixed-point of FP , defined by

FP ðIÞ ¼ fau j fða : �a1; . . . ; am; !b1; . . . ; !bnÞ 2 P
^ ð8i 2 ½1::m� : aiu 2 IÞ
^ ð8i 2 ½1::n� : biu 62 IÞg:

To simplify notation, this definition assumes that the posi-
tive premises appear before the negative premises; this does
not affect the semantics. We sometimes write P ‘ a (read
“P derives a”) to mean a 2 P½ �½ �. In the definition of FP , if bi
contains wildcards, bi 62 I holds if I contains no terms that
match bi, where a wildcard matches any term.

Fixed administrative policy. Our goal in this work is to
analyze a changing access control policy subject to a
fixed administrative policy. Therefore, we consider poli-
cies that satisfy the fixed administrative policy requirement,
which says that administrative permission rules cannot
be added or removed, except that addFact administrative
permission rules can be added. This exception is useful
in practice and can be accommodated easily in the reach-
ability analysis.

We formalize this requirement as follows. A higher-order
administrative permission rule is an administrative per-
mission rule whose conclusion has the form permitð. . . ;
opðpermitð. . . ; op0ð. . .ÞÞÞ with op 2 AdminOp and op0 2
AdminOp. A rule satisfies the fixed administrative policy
requirement if either it is not a higher-order administra-
tive permission rule or it is an administrative permission
rule having the above form with op ¼ addRule and
op0 ¼ addFact. A policy satisfies the fixed administrative
policy requirement if all of the rules in it do.

Even in a policy with no higher-order administrative per-
mission rules, the available administrative permissions may
vary, because addition and removal of other rules and facts
may change the truth values of the premises of administra-
tive permission rules.

Administrative policy semantics. The above semantics is
for a fixed policy. We specify the semantics of administra-
tive operations and administrative permissions by defin-
ing a transition relation T between policies, such that
hP; u : op; P 0i 2 T iff policy P permits user u to perform
administrative operation op thereby changing the policy
from P to P 0. We refer to u : op as an administrative action.

Rule R is at least as strict as rule R0 if 1) R and R0 have
the same conclusion, and 2) the set of premises of R is a
superset of the set of premises of R0. Comparison of
rules ignores renaming of variables (in other words, it is
based on a-equality).
hP; u :addRuleðRÞ; P [ fRgi 2 T if there exists a rule R0

such that 1) R is at least as strict as R0, 2) P ‘ permitðu;
addRuleðR0ÞÞ, 3) R 62 P , 4) R satisfies the fixed administra-
tive policy requirement, and 5) R satisfies the safe policy
requirement. Note that R0 may be a partially or completely
instantiated version of the argument of addRule in the
addRule permission rule used to satisfy condition (2); this
follows from the definition of ‘. Thus, an administrator
adding a rule may specialize the “rule pattern” in the
argument of addRule by instantiating some of the varia-
bles in it and by adding premises to it; the motivation for
this is illustrated below. We call the argument of addRule
or removeRule a “rule pattern”, even though it is gener-
ated by the same grammar as rules, to emphasize that it
can be specialized in these ways.
hP; u :removeRuleðRÞ; P n fRgi 2 T if there exists a rule

R0 such that R is as least as strict as R0, P ‘ permitðu;
removeRuleðR0ÞÞ, and R 2 P .
hðP; u :addFactðaÞ; P [ fagi 2 T if P ‘ permitðu; addFact

ðaÞÞ and a 62 P .
hðP; u :removeFactðaÞ; P n fagi 2 T if P ‘ permitðu;

removeFactðaÞÞanda 2 P .
Discussion of Semantics of addRule. Our semantics for

addRule permission rules allows addition of rules that are
stricter than the specified rule patterns. This greatly
increases flexibility for administrators to customize rules
being added, while not allowing them to add rules that vio-
late desired safety properties. For example, the healthcare
network’s policy might contain the following rule, which
allows a facility’s policy officer to add rules allowing the
facility’s human resource (HR) manager to appoint users
who have federal certification for medical practice as clini-
cians at that facility by making them direct members of the
clinician role.
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permitðPO;
addRuleðpermitðHR;

addFactðdirectMemberOfðCli;
cliðFacility; SpctyÞÞÞÞ

: � memberOfðHR; hrManagerðFacilityÞÞ;
fedCertCliðCliÞÞÞ

: � hasActðPO; pOfcðFacilityÞÞ

Using this administrative rule, a gwHosp policy officer
is permitted to add a rule with additional premises that
restrict the human resources manager to appoint only
clinicians who are also certified by the state. For example,
pOfc(gwHosp) might add the following rule to gwHosp

policy:

permitðHR; addFactðdirectMemberOfðCli;
cliðFacility; SpctyÞÞÞÞ

: � memberOfðHR; hrManagerðFacilityÞÞ;
fedCertCliðCliÞ; stateCertCliðCliÞ

3 ABDUCTIVE REACHABILITY

This section defines abductive atom-reachability queries,
solutions to such queries, and comprehensive solutions to
such queries. A solution describes one initial state from
which the goal in the query is reachable; a comprehensive
solution describes all such initial states.

Let a and b denote atoms, L denote a literal, and L
!

denote a sequence of literals. An atom a is subsumed by an
atom b, denoted a � b, iff there exists a substitution u such
that a ¼ bu. For an atom a and a set A of atoms, let
a½ �½ � ¼ fa0 j a0 � ag and A½ �½ � ¼

S
a2A a½ �½ �.

A specification of abducible atoms is a pair A ¼ hAb; nAbi,
where Ab and nAb are sets of extensional atoms. Instances
of atoms in Ab are abducible, except instances of atoms in
nAb are not abducible. More formally, an atom a is abduci-
ble with respect to hAb; nAbi if a 2 hAb; nAbi½ �½ �, where
hAb; nAbi½ �½ � ¼ Ab½ �½ � n nAb½ �½ �.

Given an initial policy P0, a set U0 of users (the active
administrators), and a transition relation t on policies, the
state graph for P0, U0, and t, denoted SGðP0; U0; tÞ, contains
policies reachable from P0 by actions of users in U0 accord-
ing to transition relation t. Specifically, SGðP0; U0Þ is the
least graph hN;Ei such that 1) P0 2 N and 2) hP; u : op;
P 0i 2 E and P 0 2 N if P 2 N ^ u 2 U0 ^ hP; u : op; P 0i 2 t.
Note that the parameter t in this definition may be instanti-
ated with the transition relation T defined in Section 2.4 or
restricted versions of T defined later.

An abductive atom-reachability query is a tuple
hP0; U0; A;G0i, where P0 is a policy (the initial policy), U0 is
a set of users (the users trying to reach the goal), A is a spec-
ification of abducible atoms, and G0 is an atom called the
goal. Informally, P0 contains rules and facts that are defi-
nitely present in the initial state, and A½ �½ � contains facts that
might be present in the initial state. Other facts are definitely
not present in the initial state and, since we make the closed
world assumption, are considered to be false.

A ground solution to an abductive atom-reachability
query hP0; U0; A;G0i is a tuple hG;D;pi such that G is a
ground instance of G0, D is a ground subset of A½ �½ � called the
residue, and p is a path in SGðP0 [ D; U0; T Þ from P0 to a pol-
icy P such that P ‘ G. Informally, a ground solution
hD; G;pi indicates that a policy P in which G holds is reach-
able from P0 [ D through the sequence of administrative
actions by users in U0 that appears on the edges of p. We
sometimes refer to p as a plan.

A minimal-residue ground solution to a query is a ground
solution hG;D;pi such that, for all D0 � D, there does not
exist p0 such that hG;D0;p0i is a ground solution to the
query.

Let GndSolnðQÞ and MinGndSolnðQÞ denote the set of
ground solutions and minimal-residue ground solutions,
respectively, for an abductive reachability query Q.

A tuple disequality has the form ht1 . . . ; tni 6¼ ht01; . . . ; t0ni,
where the ti and t0i are terms.

A substitution u is ground, denoted groundðuÞ, if it maps
variables to ground terms. Let GndSubst denote the set of
ground substitutions.

A comprehensive solution to an abductive atom-
reachability query Q ¼ hP0; U0; A;G0i is a set S of tuples of
the form hG;D;p; Di, where G is an atom (not necessarily
ground), D is a set of atoms (not necessarily ground), p is
a path (i.e., an alternating sequence of policies and admin-
istrative actions, not necessarily ground, starting and end-
ing with a policy), and D is a set (interpreted as a
conjunction) of tuple disequalities over the variables in D

and G, such that

Soundness: S represents only ground solutions to the
query, i.e., 8hG;D;p; Di 2 S: 8u 2 GndSubst: Du ¼
true) hGu;Du; pui 2 GndSolnðQÞ.

Comprehensiveness: S represents all minimal-residue
ground solutions to the query, i.e., 8hG0;D0;p0i 2
MinGndSolnðQÞ: 9hG; D; p; Di 2 S: 9u 2
GndSubst:Du ¼ true ^G0 ¼ Gu ^ D0 ¼Du.

A variety of interesting properties can be expressed as
atom reachability. User-permission reachability can be
expressed as atom reachability, by taking the goal to be
an appropriate instance of permit. For role-based poli-
cies, user-role reachability can be expressed as atom
reachability, by taking the goal to be an appropriate
instance of memberOf. Atom reachability queries can
specify that a permission or role should be reachable
only under certain conditions, e.g., that a role is reachable
only if a user associated with that role has granted con-
sent, as in the running example below. Separation of duty
properties can be expressed as atom reachability. For
example, atom reachability can be used to check whether
a user can be the purchasing agent and accounting agent
for a transaction, by adding a rule such as goal() :-

memberOf(U, PurchasingAgent(Trans)), member-

Of(U, AccountingAgent(Trans)).

3.1 Running Example

We illustrate abductive atom-reachability queries using the
running example in Section 2.3. Our sample query asks
whether a clinician may be a treating clinician without
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having the patient’s consent to treatment. To express this,
we add the following rule to the initial policy:

treatingWithoutConsentðPat; CliÞ
: � memberOfðCli; trClinðPat; gwHospÞÞ;

!consentToTreatmentðPat; Cli; gwHospÞ:

The initial policy P0 contains the rules and facts in Sec-
tion 2.3 and this rule. The set U0 of active administrators is
fhpo1; pat1g. The specification of abducible atoms is
h{memberOf(User, wkgp(W, gwHosp, Spcty, WT)),

encounter(EncID, Pat, W, gwHosp, Type)}, ;i. The
goal G0 is treatingWithoutConsent(pat1, cli1).

3.2 Undecidability

The abductive atom-reachability problem is undecidable.
We prove this by reduction from the user-role reachability
problem for PARBAC without role hierarchy, which is
known to be undecidable [6]. The reduction is straightfor-
ward and is described in Section 8 in the supplemental
material, available online.

4 ANALYSIS ALGORITHM

The algorithm has four phases. Phase 1 transforms the pol-
icy to simulate addRule and removeRule (in other words,
the effects of adding and removing rules are simulated
without actually adding and removing rules). Phase 2 trans-
forms the policy to simulate addFact and removeFact.
Phase 3 is a modified version of Becker et al.’s algorithm for
tabled evaluation with abduction; it produces candidate sol-
utions. The policy transformations and algorithm modifica-
tions are necessary because the original version of the
algorithm is designed to derive a goal from a fixed policy.
The transformations and modifications together enable
the modified algorithm to compute sets of policy updates
(i.e., administrative operations) needed to derive the goal.
However, Phase 3 does not consider the order in which
these administrative operations should be performed. Phase
4 checks all conditions that depend on the order in which
administrative operations are performed. These conditions
relate to negation, because in the absence of negation,
removals are unnecessary, and additions can be done in any
order consistent with the logical dependencies that the
tabling algorithm already takes into account.

4.1 Phase 1: Simulate addRule Transitions,
Eliminate removeRule Transitions

This phase transforms the given policy P0 into a policy
simAddRuleðP0Þ that is used instead of P0 in subsequent
phases of the algorithm. P0 and simAddRuleðP0Þ are not
equivalent. Informally, the relationship between them is
that simAddRuleðP0Þ contains additional rules that simulate
the effects of addRule transitions using addFact transitions;
adding rules to simulate removeRule transitions is unneces-
sary, as discussed below. This relationship between P0 and
simAddRuleðP0Þ is captured by the similarity relation. Poli-
cies P and P 0 are similar, denoted P ’ P 0, if P and P 0 con-
tain the same rules and facts with two exceptions: 1) P
contains no rules involving auxiliary predicates, and the set

of rules in P 0 that involve auxiliary predicates is exactly the
set of rules obtained by transforming the addRule permis-
sion rules in P using the simAddRule transformation; and 2)
P contains no facts involving auxiliary predicates, and the
set of facts in P 0 that involve auxiliary predicates are exactly
those needed to simulate rules that have been added to P
using addRule permission rules (a precise definition
appears in Section 9 in the supplemental material, available
online). Similarity implies that policies are equivalent with
respect to derivability of atoms: if P and P 0 are similar, then
for each atom a for a predicate other than an auxiliary predi-
cate, a 2 P½ �½ � iff a 2 P 0½ �½ �.

The no-addRule, no-removeRule transition relation
T�aR;�rR is defined the same way as the transition relation
T in Section 2.4 except addRule transitions and
removeRule transitions are eliminated. An atom is reach-
able in a state graph iff the state graph contains a policy in
which that atom is derivable. The policy simAddRuleðP0Þ
produced by this phase is designed so that, for every
policy P in the state graph SGðP0; U0; T Þ, the state graph
SGðsimAddRuleðP0Þ; U0; T�aR;�rRÞ contains a policy similar
to P . This implies the same atoms are reachable in these
state graphs.

Eliminate removeRule transitions. To see why it is safe to
simply eliminate removeRule transitions, without includ-
ing rules that simulate them in P 0, note that such transi-
tions remove only rules defining intensional predicates,
and hence the effect of such transitions is to make inten-
sional predicates smaller. Since negation cannot be
applied to intensional predicates, making intensional
predicates smaller never makes more facts (including
instances of the goal) derivable. Therefore, every instance
of the goal that is derivable in some policy in SGðP0; U0; T Þ
is derivable in some policy in SGðP0; U0; T#aR;�rRÞ, where
the no-removeRule transition relation T#aR;�rR is defined the
same way as the transition relation T in Section 2.4 except
removeRule transitions are eliminated. Conversely, since
SGðP0; U0; T#aR;�rRÞ is a subgraph of SGðP0; U0; T Þ, every
instance of the goal that is derivable in some policy
in SGðP0; U0; T#aR;�rRÞ, is derivable in some policy in
SGðP0; U0; T Þ. Therefore, elimination of removeRule

transitions does not affect the answer to abductive atom-
reachability queries.

Simulate addRule transitions. We add rules that use
addFact to simulate the effect of addRule. Specifically, the
policy simAddRuleðP Þ is obtained from P as follows. Let R
be an addRule permission rule permitðU; addRuleðL :-

L
!

1ÞÞ :- L
!

2 in P . Two rules are added to simulate R. One
rule is the rule pattern in the argument of addRule,
extended with an additional premise using a fresh exten-
sional predicate auxR that is unique to the rule:
L :- L

!
1; auxRðX

!Þ, where the vector of variables X
!

is
X
!¼ varsðL :- L

!
1Þ \ ðvarsðfUgÞ [ varsðL!2ÞÞ. The other is

an addFact permission rule that allows the user to add facts
to this new predicate: permitðU; addFactðauxRðX

!ÞÞÞ :- L
!

2.
The auxiliary predicate auxR keeps track of which instances
of the rule pattern have been added. Recall from Section 2.1
that users are permitted to instantiate variables in the rule
pattern when adding a rule. Note that users must instantiate
variables that appear in the rest of the addRule permission
rule, i.e., in varsðfUgÞ [ varsðL!2Þ, because if those variables
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are not grounded, the permit fact necessary to add the rule
will not be derivable using rule R. Therefore, each fact in
auxR records the values of those variables. In other words,
an addRule transition t in SGðP0; U0; T Þ in which the user
adds an instance of the rule pattern in the argument
of addRule in R with X

!
instantiated with c! is “simulated”

in SGðsimAddRuleðP0Þ; U0; T�aR;�rRÞ by an addFact transi-
tion t that adds auxRð c!Þ.

SGðP0; U0; T Þ also contains transitions t0 that are similar
to t except that the user performs additional specialization
of the rule pattern by instantiating additional variables in
the rule pattern or by adding premises to it. Those transi-
tions are eliminated by this transformation, i.e., there are
no corresponding transitions in SGðsimAddRuleðP0Þ; U0;
T�aR;�rRÞ. This is sound, because those transitions lead to
policies in which the intensional predicate p that appears
in literal L (i.e., L is pð. . .Þ) is smaller, and as argued
above, since negation cannot be applied to intensional

predicates, eliminating transitions that lead to smaller
intensional predicates does not affect the answer to
abductive atom-reachability queries. This is the technical
meaning of the informal statement in Section 2 that allow-
ing administrators to add stricter rules does not enable
them to violate safety requirements.

Example. Fig. 3 presents the rules added to P0 by the
simAddRule transformation for the running example
introduced in Sections Sections 2.3 and 3.1. Recall that
the initial policy P0 consists of all the rules and facts pre-
sented in those sections. Note that a nullary predicate
may be empty (i.e., contain no facts) or it may contain a
single fact represented by a 0-tuple.

4.2 Phase 2: Simulate addFact Transitions and
removeFact Transitions

The transformation in this phase adds rules that use
ordinary inference to simulate the effects of addFact

and removeFact transitions. For example, an addFact per-
mission rule that allows addition of a fact a is simulated
by a rule that makes a derivable in the current policy.
Similarly, an removeFact permission rule that allows
removal of a fact a is simulated by a rule that makes !a
derivable in the current policy.

Specifically, for each addFact permission rule
permitðU; addFactðaÞÞ :- L

!
, the transformation adds the

rule a :- L
!
; u0ðUÞ. The transformation also introduces a

new extensional predicate u0 and, for each u 2 U0, the fact
u0ðuÞ is added to the policy. For example, to simulate rule
(4.1) in Fig. 3, the transformation adds the rule:

consentToTreatmentðPat; Cli; gwHospÞ
: � hasActðPat; patientÞ; aux2:6ðÞ; u0ðPatÞ

The set of active administrators U0 ¼ {hpo1, pat1} is
represented as facts u0(hpo1), u0(pat1) in the trans-
formed policy. Similarly, for each removeFact permission
rule permitðU; removeFactðaÞÞ :- L

!
, the transformation

adds the rule !a :- L
!
; u0ðUÞ. Let simAddRmFactðP; U0Þ

denote the policy obtained by transforming policy P as
described above, with set U0 of active administrators.

The intention underlying the design of this transfor-
mation is that the set of atoms reachable in state graph
SGðsimAddRuleðP0Þ; U0; T�aR;�rRÞ equals the set of atoms
reachable in state graph SGðsimAddRmFactð
simAddRuleðP0Þ; U0Þ; U0; T�aR;�rR;�aF;�rFÞ, where T�aR;�rR;

�aF;�rF is the transition relation without addRule,
removeRule, addFact, or removeFact transitions. But then
all transitions have been removed, so this is equivalent
to the intention that the set of atoms reachable in
the state graph SGðsimAddRuleðP0Þ; U0; T�aR;�rRÞ equals
the set of atoms derivable in the policy
simAddRmFactðsimAddRuleðP0Þ; U0Þ. However, the trans-
formation does not quite achieve this goal—in other
words, this equality does not quite hold—because the
meaning of the original administrative permission rules
differ from the meaning of the inference rules used to
simulate them. For addFact, the original addFact permis-
sion rule means that a might (or might not) be added by
an administrator when L

!
holds, while the added rule

Fig. 3. Rules added to P0 by the simAddRule transformation for the run-
ning example.
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means that a necessarily holds (in the transformed pol-
icy) when L

!
holds. Similarly, for removeFact, the origi-

nal removeFact permission rule means that a might (or
might not) be removed by an administrator—causing !a
to hold—when L

!
holds, while the transformed rule

means that !a necessarily holds when L
!

holds. This
change in the meaning of the rules affects the results of
the tabling algorithm in phase 3, which is used to com-
pute the atoms derivable from the transformed policy
simAddRmFactðsimAddRuleðP0Þ; U0Þ. Specifically, because
phase 3 does not attempt to detect conflicts between neg-
ative subgoals and added facts or conflicts between posi-
tive subgoals and removed facts, it may produce
derivations of atoms that are not actually derivable due
to such conflicts (and are not reachable in
SGðsimAddRuleðP0Þ; U0; T�aR;�rRÞ). The overall algorithm
is still sound, because phase 4 detects such conflicts in
derivations of atoms and discards candidate solutions
that involve those atoms.

Example. Fig. 4 presents rules added to policy
simAddRuleðP0Þ by simAddRmFact transformation.

4.3 Phase 3: Tabled Policy Evaluation

Phase 3 is a modified version of Becker et al.’s algorithm
for tabled evaluation with abduction [11] with the exten-
sion for proof graph construction [10]. We first present the

original version of the algorithm and then describe our
modifications.

4.3.1 Becker et al.’s Algorithm

Becker et al.’s algorithm appears in Fig. 5. It uses resolution,
extended to perform abduction. During resolution, when an
attempt to prove a subgoal fails, if the subgoal is abducible,
then it is assumed to be true, in which case it is said to be

Fig. 4. Rules added to the policy simAddRuleðP0Þ by the simAddRmFact
transformation for the running example.

Fig. 5. Becker et al.’s algorithm for tabled policy evaluation with abduc-
tion and proof construction. ½ � is the empty list. x :: y is the list obtained
by prepending an item x to list y. match exp with pat matches the value
of expression exp with pattern pat and binds variables in pat accordingly.
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abduced, and the proof of the parent goal continues. The
algorithm keeps track of abductions: each goal is associated
with a set of abduced atoms on which it depends. The algo-
rithm constructs a forest of proof trees, each consisting of a
root node, intermediate goal nodes, and answer nodes as leaf
nodes, defined as follows.

A node is either a root node hGi, where G is an atom, or
a tuple of the form hG; Q

!
;S; c!;R; Di, where G is an atom

called the index (the goal whose derivation this node is
part of), Q

!
is a list of subgoals that remain to be solved in

the derivation of the goal, S is the partial answer (the
instance of G that can be derived using the derivation
that this node is part of), c! is the list of child nodes of
this node, R is the rule used to derive this node from its
children in the derivation of S, and D is the residue (the
set of atoms abduced in this derivation). Note that, in the
definition of resolveClause in Fig. 5, we use “abduction”
as the name of the rule used to derive an abduced fact. If
the list Q of subgoals is empty, the node is called an
answer node with answer S. Otherwise, it is called a goal
node, and the first atom in Q is its current subgoal.
Each answer node is the root of a proof tree; goal nodes
(representing queries) are not in proof trees. Selectors for
components of nodes are: for n ¼ hG; Q

!
;S; c!;R; Di,

indexðnÞ ¼ G; subgoalsðnÞ ¼ Q
!
; pAnsðnÞ ¼ S; childrenðnÞ ¼

c!; ruleðnÞ ¼ R, and residueðnÞ ¼ D.
Variable Ans contains the answer table, which is a par-

tial function from atoms to sets of answer nodes. AnsðGÞ
contains all answer nodes for goal G found so far. Vari-
able Wait contains the wait table, which is a partial func-
tion from atoms to sets of goal nodes. WaitðGÞ contains
all those nodes whose current subgoal is waiting for
answers from hGi. Whenever a new answer for hGi is
produced, the computation involving these waiting
nodes is resumed.

The auxiliary definitions in the lower part of Fig. 5 define
the subsumption relation � on nodes and the resolve
function. Intuitively, if n � n0 (read “n is subsumed by n0”),
then the answer node n provides no more information
about possible solutions than n0, so n can be discarded.
resolveðn; n0Þ takes a goal node n and an answer node n0 and
combines the current subgoal of n with the answer provided
by n0 to produce a new node with fewer subgoals.

Constructors are not considered in [10], [11], but the algo-
rithm can handle them, when the functions for matching
and unification are extended appropriately.

The algorithm takes as input a query G, which is an
atom, and the input policy Pol. The entry point is a call to
resolveClauseðhGiÞ. The resolveClause function resolves
clauses (i.e., rules) in the policy with the atom in a root node
passed as argument. Starting from a root node hP i, resolu-
tion with policy clauses produces goal nodes with index P .
As the subgoals Q

!
are processed one by one, new P -

indexed goal nodes are created with the remaining subgoals
and with increasingly instantiated variants of P as partial
answer. A proof branch ends when no subgoals remain, i.e.,
an answer node is generated.

4.3.2 Algorithm for Phase 3

This section describes our modified version of Becker et al.’s
algorithm.

The algorithm considers three ways to satisfy a positive
subgoal: through a fact or rule in the policy, through addi-
tion of a fact using a transformed addFact permission rule
(this does not require a separate case in the algorithm,
because these rules are handled in the same way as other
rules), and through abduction (i.e., by assumption that the
subgoal holds in the initial policy and still holds when the
rule containing it as a premise is evaluated). The algorithm
considers two ways to satisfy a negative subgoal: through
removal of a fact using a transformed removeFact permis-
sion rule (again, this does not require a separate case in the
algorithm) and through abduction (i.e., by assumption that
the negative subgoal holds in the initial policy and still
holds when the rule containing it as a premise is evaluated).

The algorithm can abduce a negative extensional literal
!a when this is consistent with the initial policy, in other
words, when a is not in P0. To enable this, in the definition
of resolveClause, we replace “P is abducible” with
“P 2 A½ �½ � _ ð9a 2 Atomex : a 62 P0 ^ P is !aÞ”, where Atomex

is the set of extensional atoms. If a is not ground, disequal-
ities in dinit in phase 4 will ensure that the solution includes
only instances of a that are not in P0.

The tabling algorithm treats the negation symbol “!” as
part of the predicate name; in other words, it treats p and !p
as unrelated predicates. Phase 4 interprets “!” as negation
and checks appropriate consistency conditions relating pos-
itive and negative facts.

Wildcards do not need special treatment in this phase. To
establish through abduction a negative premise that con-
tains wildcards, the negative literal is simply abduced (with
wildcards in it) into the residue. Recall from Section 2.1 that
wildcards can be used in a negative literal !pð. . .Þ only if
there are no removeFact permission rules for p. This implies
we do not need to consider how to establish negative literals
containing wildcards using removals of facts.

The definition of resolve in Fig. 5 checks whether
unifiableðQ;Q00Þ holds and, if so, computes the residue of
the resolve node n0 to be Du [ D00u. Since we, unlike Becker
et al., allow specification of a set nAb of not-abducible terms
(which might overlap with the set Ab), instantiating a term
in the residue can move it from Ab½ �½ � to nAb½ �½ �, causing it not
to be abducible. Therefore, in the definition of resolve, we
replace the condition unifiableðQ;Q00Þ with the condition
unifiableðQ;Q00Þ ^ ðDu [ D00u � A½ �½ �Þ. It suffices to consider
only instantiation with the most general unifier, because
nAb is closed under instantiation.

Becker et al.’s algorithm explores all derivations for a
goal except that the subsumption check in processAnswer
in Fig. 5 prevents use of the derivation represented by
answer node n from being added to the answer table and
thereby used as a sub-derivation of a larger derivation if the
partial answer in n is subsumed by the partial answer in an
answer node n0 that is already in the answer table. How-
ever, the larger derivation that uses n0 as a derivation of a
subgoal might turn out to be infeasible (i.e., have unsatisfi-
able ordering constraints) in phase 4, while the larger deri-
vation that uses n as a derivation of that subgoal might turn
out to be feasible. We adopt the simplest approach to over-
come this problem: we replace the subsumption relation �
in processAnswer method with the a-equality relation ¼a,
causing the tabling algorithm to explore all derivations of
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goals. a-equality is equality modulo renaming of variables
that do not appear in the query’s top-level goal G0.

An undesired side-effect of this change is that the algo-
rithm may get stuck in a cycle in which it repeatedly uses
some derivation of a goal as a sub-derivation of a larger der-
ivation of the same goal. Exploring such derivations is
unnecessary, because the algorithm is not required to find a
representation of all sequences of administrative actions
that reach the goal. Specifically, if the algorithm has already
constructed a node n, then it is unnecessary for the algo-
rithm to construct a node n0 that has the same index, partial
answer, and residue as n and a proof graph that contains n.
Therefore, we modify the definition of resolve as follows, so
that the algorithm does not generate a node n0 correspond-
ing to the latter derivation: we replace unifiableðQ;Q00Þ with
unifiableðQ;Q00Þ ^ noCyclicDerivðn0Þ, where

noCyclicDerivðn0Þ ¼6 9d 2 proofðn0Þ: isAnsðdÞ
^ hindexðdÞ; pAnsðdÞ; residueðdÞi
¼a hindexðn0Þ; pAnsðn0Þ; residueðn0Þi;

where the proof of a node n, denoted proofðnÞ, is the set of
nodes in the proof graph rooted at node n, i.e., proofðnÞ ¼
fng [

S
n02childrenðnÞ proofðn0Þ, and where isAnsðnÞ holds iff n

is an answer node. noCyclicDerivðn0Þ does not check
whether ruleðn0Þ ¼ ruleðdÞ or subgoalsðn0Þ ¼ subgoalsðdÞ,
because exploration of n0 is unnecessary, by the above argu-
ment, regardless of the values of ruleðn0Þ and subgoalsðn0Þ.

The partial answer substitution for a node n, denoted
upaðnÞ, is the substitution that, when applied to indexðnÞ,
produces pAnsðnÞ. We extend the algorithm to store
upaðnÞ in each node n, as follows. In the resolveClause
method, the upa component in both nodes passed to
resolve is the empty substitution. In the resolve function,
upaðn0Þ is u 	 ufr 	 upaðn1Þ, where ufr is the substitution that
performs the fresh renaming of Q0 and D0, n1 denotes the
first argument to resolve, and 	 denotes composition of
substitutions.

In summary, for an abductive atom-reachability query of
the form in Section 3, phase 3 applies the algorithm for
tabled policy evaluation with abduction and proof construc-
tion, modified as described above, to the policy
simAddRmFactðsimAddRuleðP0Þ; U0Þ with the given goal G0

and specification A of abducible atoms.

Example. Figs. 6 and 7 in Section 10 in the supplemental
material, available online, present proofs c1 and c2 gen-
erated for the example query in Section 3.1.

4.4 Phase 4: Ordering Constraints

Phase 4 considers constraints on the execution order of
administrative operations. An administrative node is a node n
such that ruleðnÞ is a transformed addFact or removeFact

permission rule. The ordering must ensure that, for each
administrative node or goal node n, 1) each administrative
operation n0 used to derive n occurs before n (this is a
dependence constraint) and its effect is not undone by a con-
flicting operation that occurs between n0 and n (this is an
interference-freedom constraint), and 2) each assumption about
the initial policy on which n relies is not undone by an oper-
ation that occurs before n (this is also an interference-freedom

constraint). When generating the ordering constraints in
item (1) for node n, administrative operations used to derive
n0 are not considered, because the derivation of n does not
(directly) depend on the effects of those operations; n
depends on those operations only via the fact that they per-
mit n0, and ordering constraints that ensure they permit n0

are generated when item (1) is considered for node n0. The
concept of interference freedom originated in work on
Hoare logics for concurrent programs, and dependence con-
straints are analogous to condition synchronization [13].

A straightforward but inefficient algorithm would enu-
merate each permutation of the set of administrative opera-
tions (corresponding to the administrative nodes) in each
proof graph from phase 3 and check whether it satisfies the
ordering constraints. We adopt a more efficient approach in
which the ordering constraints for each proof graph are
represented symbolically and tested for satisfiability. The
overall ordering constraint is represented as a Boolean com-
bination of labeled ordering edges. A labeled ordering edge
is a tuple hn; n0; Di, where the label D is a conjunction of
tuple disequalities or false, with the interpretation: n must
precede n0, unless D holds. If D holds, then n and n0 operate
on distinct atoms, so they commute, so the relative order of
n and n0 is unimportant.

Phase 4 iterates over the answer nodes from phase 3. For
each answer node, it generates a conjunction of dependence
constraints and interference-freedom constraints, puts the
resulting Boolean expression in DNF, and then checks, for
each disjunct c, whether the ordering constraints in c can be
satisfied, i.e., whether they are acyclic. If so, the disequalities
labeling the ordering constraints do not need to be included
in the solution. However, if the generated ordering con-
straints are cyclic, then the algorithm removes a minimal set
of ordering constraints to make the remaining ordering con-
straints acyclic (by computing the set of all cycles in the
ordering constraints in c and removing one edge from each
cycle), and includes the disequalities that label the removed
ordering constraints in the solution. After satisfiability of
the constraints has been checked (including the consistency
constraint that each abduced negative literal holds initially
and still holds when the rule containing it as a premise is
evaluated), negative literals are removed from the residue;
this is acceptable, because the problem definition asks for a
representation of only minimal-residue ground solutions,
not all ground solutions (negative literals provide informa-
tion about which sets of positive literals that are supersets
of the set of positive literals in the residue are also solutions
to the query). Pseudocode for phase 4 and example ordering
constraints are in Section 11 in the supplemental material,
available online.

Repeated administrative operations. The tabling algorithm
in phase 3 re-uses nodes, including administrative nodes.
This makes the analysis more efficient and avoids unneces-
sary repetition of administrative operations in plans. How-
ever, in some cases, administrative operations need to be
repeated; for example, it might be necessary to add a fact,
remove it, and then add it again, in order to reach a goal.
The version of our algorithm described above cannot gener-
ate plans with repeated administrative operations, but it
does identify when repeated operations might be neces-
sary, using the function mightNeedRepeatedOp, and returns
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a message indicating this. mightNeedRepeatedOpðng; cÞ
returns true iff some node n in c is a child of multiple nodes
in proofðngÞ; in such cases, it might be necessary to “split”
n—i.e., replace n with multiple nodes, one for each par-
ent—in order to satisfy ordering constraints. We sketch
here how to extend the algorithm to generate plans with
repeated administrative operations (the extension is not
needed for the running example or the case study in Section
5). A new variable Split stores the set of nodes that need to
be split. A node n in Split is identified by the contents of the
nodes on the path from the node to the root node ng (includ-
ing the contents of n and ng). Split is initialized to ;. If
mightNeedRepeatedOpðng; cÞ returns true, for each node n
in c that is a child of multiple nodes in proofðngÞ, each path
from n to ng is added to Split, and phase 3 is re-run. The
tabling algorithm in phase 3 is modified so that nodes in
Split are not re-used; specifically, in function processAnswer
ðndÞ in Fig. 5, if the path from nd to the root is in Split, then
nd is not added to the answer table in line 3. After phase 3 is
re-run, the algorithm continues as usual to phase 4. Phases
3 and 4 might be iterated multiple times, until all nodes that
caused mightNeedRepeatedOp to return true have been
split into multiple nodes.

4.5 Termination and Running Time

We consider the termination and running time of each
phase. Phases 1 and 2 are fast linear-time transformations of
the input. Phase 3 can diverge. The possibility of non-termi-
nation is inherited from Becker et al.’s algorithm. It is intrin-
sic to the problem, in the sense that there are abductive
queries involving recursive rules such that every compre-
hensive solution is an infinite set [10]. In the context of
access control, such recursive rules might arise in policies
that allow unbounded delegation chains. Becker et al. give a
static condition—absence of recursive rules with a certain
structure—that ensures termination. For policies not satisfy-
ing this condition, they give some pragmatic strategies for
ensuring termination, e.g., modifying the algorithm to
return only solutions containing at most a specified number
of abduced atoms.

Phase 4 has two potentially expensive steps: putting the
ordering constraint in DNF, and computing the set of all
cycles in the ordering constraints in a disjunct. Putting a for-
mula in DNF takes exponential time in the worst case. In
practice, the formulas involved are typically not large,
because typically most pairs of nodes in a proof graph do
not conflict. Computing the set of all cycles in a graph takes
at least factorial time in the worst case, because a complete
graph with n nodes contains more than ðn� 1Þ! cycles. The
algorithm we use for computing the set of cycles in a graph
[14] takes OððjV j þ jEjÞðcþ 1ÞÞ time, where V and E are the
sets of nodes and edges in the graph, respectively, and c is
the number of cycles in the graph. In practice, the number
of cycles in the ordering constraints in a disjunct is typically
small, so computing the set of cycles is not expensive.

4.6 Correctness

The algorithm is correct in the sense that, when it termi-
nates with a solution, it returns a comprehensive solution
to the given abductive atom-reachability query. A proof

of correctness appears in Section 9 in the supplemental
material, available online. The algorithm is incomplete,
because it might diverge, as discussed above. Incomplete-
ness is expected, because the abductive atom-reachability
problem is undecidable. Also, without the extension to
handle repeated administrative operations, the algorithm
might indicate that repeated administrative operations
might be needed, instead of returning a solution, as dis-
cussed in Section 4.4.

5 EXPERIENCE

To gain experience with the framework and analysis, we
wrote a policy for a healthcare network in ACAR, imple-
mented the analysis algorithm in OCaml, and used the
implementation to evaluate a few queries. A detailed pre-
sentation of the healthcare network policy appears in [15,
Chapter 3]. The policy controls permissions for registration
of users (patients, clinicians, etc.), workgroup management
(creating workgroups, and adding and removing members),
agent management (patients appointing agents), consent to
treatment (patients or their agents granting consent to treat-
ment by a specified clinician), encounter management (cre-
ating an encounter, in which a patient is treated by a
workgroup, and closing an encounter), and access to patient
health records. The policy consists of 22 rules. Healthcare
networks are interesting from the perspective of policy
administration, because they involve policies at several
organizational levels. Our case study involves policies at
the levels of the healthcare network itself, a prototypical
hospital (gwHosp) in the network, a prototypical substance
abuse facility (gcSAF) in the network, and workgroups in
those facilities. For example, users at the facility level can
modify the facility’s policy in ways consistent with the
administrative permissions provided by the healthcare
network’s policy. An example of how a facility policy officer
might specialize a facility’s policy for appointing clinicians
appears in Section 2.4. As another example, rules added by
the substance abuse facility’s policy officer impose stricter
conditions for access to patient health records than corre-
sponding rules added by the hospital’s policy officer; specif-
ically, the former rules allow a clinician to access a patient’s
health records only if the clinician has been individually
granted consent to treatment by the patient, while the latter
rules allow a clinician access to a patient’s health records if
the patient has granted consent to treatment by a work-
group of which the clinician is a member.

One sample query has initial policy P0 ¼ PHCN [ PU1,
where PHCN is the healthcare network policy and PU1 con-
tains a few facts about the prototypical users hpo1, a mem-
ber of pOfc(gwHosp), clin1, a clinician at gwHosp, and
user1, a user with no roles (the only fact about user1 in
PU1 is user(user1)). The other components of the query
are U0 ¼ fhpo1; user1g, Ab ¼ {memberOf(User,
wkgp(WG, gwHosp, Spcty, team))}, nAb ¼ fg,
A ¼ hAb; nAbi, and G0 ¼ workgroupHead(GoalUser,

cardioTeam, gwHosp). The analysis generates 1,493
nodes and returns five solutions. For example, one solution
has partial answer workgroupHead(GoalUser, cardi-
oTeam, gwHosp), residue {memberOf(GoalUser,
wkgp(cardioTeam, gwHosp, Spcty, team))}, and
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tuple disequality hGoalUseri 6¼ hhpo1i. The disequality
reflects that hpo1 can appoint himself to the hrMana-

ger(gwHosp) role, can then appoint himself and other
users as members of cardioTeam, and can then appoint
other users as team head, but cannot then appoint himself
as team head, because the rule that allows HR managers to
appoint workgroup heads contains a negative premise that
prohibits an HR manager from appointing a head for a
workgroup if that HR manager is a member of that
workgroup.

Another sample query has initial policy P0 ¼ PHCN [ PU2,
where PU2 contains a few facts about the prototypical users
hpo1, a member of pOfc(gwHosp), hhr, a member of
hrManager(gwHosp), cli1, a clinician at gwHosp, and
pat1, a patient at gwHosp. The other components of the
query are U0 ¼ {hpo1, hhr}, Ab ¼ fmemberOf(User,
wkgp(WG, gwHosp, Spcty, team)), encounter(En-

cID, pat1, Wkgp, gwHosp, Type)}, nAb ¼ fg,
A ¼ hAb; nAbi, and G0 ¼ memberOf(cli1, trCli(pat1,

gwHosp)). Informally, the query asks whether a clinician
can become the treating clinician for a patient at gwHosp
through actions of the policy officer and HR manager (with-
out actions of the patient or the clinician). The analysis gen-
erates 4,946 nodes and returns one solution with residue
{memberOf(cli1, wkgp(WG, gwHosp, Spcty, team),

encounter(EncID, pat1, WG, gwHosp, Type)}, which
indicates that this is possible if hhr makes cli1 a member
of a workgroup WG that is currently handling an encounter
EncID for pat1. This illustrates that the analysis can bring
non-obvious and possibly unanticipated scenarios to the
attention of policy auditors.

Running time. We ran the algorithm on a hp dc7900 with
3.0 GHz Intel Core2 Duo processor. The above examples
take 0.20 and 2.40 seconds, respectively, of user+system
time. We used the GNU profiler, gprof, with a sampling
period of 0.01 seconds, to help measure the cost of each
phase. Phases 1 and 2 are fast linear-time transformations of
the input, so phases 3 and 4 dominate the running time. For
the first example, phase 4 consumes 38 percent of the run-
ning time, and phase 3 consumes most of the remainder.
For the second example, phase 4 consumes less than 1 per-
cent of the running time, and phase 3 consumes most of the
running time. In both examples, the steps in phase 4 with
high worst-case asymptotic time complexity—putting a for-
mula in DNF and finding all cycles in a graph—take negligi-
ble time (gprof reports it as 0).

Multiple factors contribute to the algorithm’s speed.
Policy rules are relatively small compared to databases of
policy-related facts, so the input to our abductive analysis
algorithm is relatively small. Our algorithm is goal-directed,
so it avoids exploring irrelevant possibilities. Our algorithm
avoids exploring permutations of the administrative opera-
tions in a proof graph by constructing and checking satisfi-
ability of ordering constraints.

6 RELATED WORK

6.1 Administration of Rule-Based Policies

Our work is inspired by Becker et al.’s abductive policy
analysis for rule-based policy languages [10], [11]. The main
difference between their work and ours is that they do not

consider changes to the rules. Also, they do not consider
constructors and negation, while ACAR allows constructors
and allows negation applied to extensional predicates.
Becker and Nanz’s earlier work [9], [16] also considers
changes to the facts with fixed rules but does not consider
abductive analysis: it assumes the initial policy is known.

DynPAL is an administrative framework with a rule-
based access control policy language [7]. DynPAL allows
stratified negation of intensional predicates; ACAR does
not. DynPAL provides more complex administrative opera-
tions than ACAR for adding and removing facts. On the
other hand, DynPAL’s administrative framework considers
only addition and removal of facts, not addition or removal
of rules. Becker et al. also present two methods for reach-
ability analysis for DynPAL [7]. The first method, based on
AI planning, it requires the domain of constants in the lan-
guage to be finite and the policy to be tight, i.e., every rule
defining an intensional predicate can be finitely unfolded
down to extensional predicates. The second method, based
on theorem proving, does not require finite domains but
requires tightness. Both methods deal only with addition
and removal of facts and solve reachability from a given ini-
tial state. Our abductive analysis does not require the
domain of constants to be finite, or the policy to be tight,
and returns solutions that are more general in terms of the
facts in the initial policy.

Craven et al. present a rule-based policy language with
an administrative framework based on Event Calculus [8].
Their policy language is richer than ACAR in that it sup-
ports obligations, time constraints, and stratified negation.
They describe how to use abductive logic programming to
solve a variety of policy analysis problems. They do not con-
sider addition and removal of rules, and their analysis algo-
rithm restricts abduction to ground residues. In contrast, we
consider addition and removal of rules and facts, and our
analysis algorithm supports non-ground residues.

Barletta et al. [17] give a model checking algorithm for
bounded-length reachability for access control systems
(ACSs). In their work, the set of rules is fixed, and abductive
analysis is not considered.

6.2 Administration of RBAC

ARBAC97 is the first comprehensive administrative
framework for RBAC [2]. ACAR is more expressive than
ARBAC97 in many ways (rule (2.5) in Fig. 2 is a good
example of a policy that cannot be expressed in
ARBAC97) but is also less expressive in some ways, as
discussed in Section 12 in the supplemental material,
available online.

Analysis algorithms for user-permission reachability for
ARBAC97 and variants thereof have been developed, e.g.,
[3], [4], [5], [6]. Analysis of ARBAC considers, in effect, only
addition and removal of facts, not rules, because adminis-
trative operations in ARBAC (e.g., removing a user from a
role) correspond to addition and removal of facts. Work on
analysis of ARBAC generally does not consider abductive
analysis, with the exception of some works, such as [4], that
consider the weakest precondition problem for ARBAC97,
which asks for minimal sets of initial role memberships of
the target user that allow the target user to be eventually
assigned to given roles.

GUPTA ET AL.: ABDUCTIVE ANALYSIS OF ADMINISTRATIVE POLICIES IN RULE-BASED ACCESS CONTROL 423



7 CONCLUSION AND FUTURE WORK

This paper’s main contribution is the first analysis algo-
rithm for a rule-based policy framework with adminis-
trative policies that control changes to the rules as well
as the facts in the policy. Furthermore, through the use
of abduction, the analysis algorithm can analyze policies
even when only partial information about the facts in
the initial policy is available. Directions for future work
include relaxing the restrictions on use of wildcard and
negation, and developing an analysis algorithm based on
state-space exploration, instead of tabling, for the com-
prehensive abductive atom-reachability problem. The
main challenge for the latter is how to handle the lack of
complete information about the initial policy.
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