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Hiding in the Mobile Crowd:
Location Privacy through Collaboration

Reza Shokri, George Theodorakopoulos, Panos Papadimitratos, Ehsan Kazemi,

Jean-Pierre Hubaux, Fellow, IEEE

Abstract—Location-aware smartphones support various location-based services (LBSs): users query the LBS server and learn

on the fly about their surroundings. However, such queries give away private information, enabling the LBS to track users. We

address this problem by proposing the first user-collaborative privacy-preserving approach for LBSs. Our solution does not

require changing the LBS server architecture, and it does not assume third party servers; still, it significantly improves users’

location privacy. The gain stems from the collaboration of mobile devices: they keep their context information in a buffer and

pass it to others seeking such information. Thus, a user remains hidden from the server, unless all the collaborative peers in

the vicinity lack the sought information. We evaluate our scheme against Bayesian localization attacks, which allow for strong

adversaries who can incorporate prior knowledge in their attacks. We develop a novel epidemic model to capture the, possibly

time-dependent, dynamics of information propagation among users. Used in the Bayesian inference framework, this model helps

analyze the effects of various parameters, such as the users’ querying rate and the lifetime of context information, on users’

location privacy. The results show that our scheme hides a high fraction of location-based queries, thus significantly enhancing

users’ location privacy. Our simulations with real mobility traces corroborate our model-based findings. Finally, our implementation

on mobile platforms indicates that it is lightweight and the collaboration cost is negligible.

Index Terms—Mobile Networks, Location-based Services, Location Privacy, Bayesian Inference Attacks, Epidemic Models

✦

1 INTRODUCTION

Smartphones, among other increasingly powerful mo-
bile computing devices, offer various methods of lo-
calization. Integrated GPS receivers or positioning ser-
vices based on nearby communication infrastructure
(WiFi access points or base stations of cellular net-
works) enable users to position themselves fairly ac-
curately, which has led to a wide offering of Location-
Based Services (LBSs). Such services can be queried by
users to provide real-time information related to the
current position and surroundings of the device, e.g.
contextual data about points of interest such as petrol
stations, or more dynamic information such as traffic
conditions. The value of LBSs is exactly in obtaining
accurate and up-to-date information on the fly.

Convenient though LBSs may be, disclosing loca-
tion information can be dangerous. Each time an LBS
query is submitted, private information is revealed.
The user can be linked to her location, and multiple
pieces of such information can be linked together.
Users can then be profiled, leading to unsolicited
targeted advertisements or price discrimination.
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Even worse, from a person’s whereabouts one can
infer her habits, personal and private preferences,
religious beliefs, political affiliations, etc. That could
make her the target of blackmail or harassment. Fi-
nally, real-time location disclosure leaves a person
vulnerable to absence disclosure attacks: learning that
someone is away from her home could allow a house
break-in or blackmail [1]. Knowing the real-time loca-
tion of a person could lead to stalking.

All this information is collected by the LBS oper-
ators. So, they may be tempted to misuse the rich
data they collect by e.g. selling it to advertisers or
to private investigators. The mere existence of such
valuable data may invite attackers, who could break
into the LBS servers and obtain logs of user queries, or
governments that want to detect and suppress dissi-
dent behavior. The result in all cases is the same: user-
sensitive data fall in the hands of untrusted parties.

The difficulty of the problem lies in protecting user
privacy while continuing to reap the benefits of LBSs.
Therefore, solutions such as not using LBSs are not
acceptable. For instance, a user could download a
large volume of data and then search through it for
specific context information as the need arises. But
this would be cumbersome, if not impractical, and
it would be inefficient for obtaining information that
changes dynamically over time.

The need to enhance privacy for LBS users has
been understood and several solutions have been
proposed, falling roughly into two main categories:
centralized and user-centric.

gtheodor
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Centralized approaches introduce a third party in
the system that protects users’ privacy, operating be-
tween the user and the LBS. Such an intermediary
proxy server could anonymize (and obfuscate) queries
by removing any information that identifies the user
or her device. Alternatively, it could blend a user’s
query with those of other users, so that the LBS server
always sees a group of queries [2]. However, such
approaches only shift the problem: the threat of an
untrustworthy LBS server is addressed by the intro-
duction of a new third-party server. Why would the
new server be any more trustworthy? Additionally,
new proxy servers become as attractive for attackers
as centralized LBSs.

Other centralized approaches require the LBS to
change its operation by, for example, mandating that it
process modified queries (submitted in forms that are
different from actual user queries, possibly encrypted
using PIR techniques [3]), or that it store data dif-
ferently (e.g., encrypted or encoded, to allow private
access [4]). Centralized interventions or substantial
changes to the LBS operation would be hard to adopt,
simply because the LBS providers would have little
incentive to fundamentally change their operation.
Indeed, if a revenue stream is to be lost by not
collecting user data, not many LBS providers can be
expected to comply. Misaligned incentives have been
identified as the root of many security problems [5].

User-centric approaches operate on the device. Typ-
ically they aim to blur the location information by, for
example, having the user’s smartphone submit inac-
curate, noisy GPS coordinates to the LBS server. How-
ever, obfuscation approaches (e.g., spatial/temporal
cloaking) that protect user location-privacy can de-
grade the user experience if users need high privacy:
e.g., LBS responses would be inaccurate or untimely.
Obfuscation also is not effective against absence dis-
closure [6].

Our approach avoids the problems of these two
extremes by having users collaborate with each other
to jointly improve their privacy, without the need for a
trusted third-party (TTP). In effect, the mobile crowd
acts as a TTP, and the protection mechanism becomes
a distributed protocol among users. Mobile users
concerned about their location privacy are indeed
the most motivated entities to engage in protecting
themselves. We require no change of the LBS server
architecture and its normal operation, and we make
no assumption on the trustworthiness of the LBS or
any third-party server.

The key idea of our scheme, MobiCrowd, is that
users only contact the LBS server if they cannot
find the sought information among their peers, i.e.,
other nearby reachable user devices. Thus, users can
minimize their location information leakage by hiding
in the crowd. Clearly, MobiCrowd would be most
effective when there are many peers gathered at the
same location. Indeed, this clustering phenomenon

has been observed in human mobility studies [7].
Moreover, the places where people gather are points
of interest, where users are most likely to query an
LBS. Thus, MobiCrowd would be used exactly where
it is most effective.

We evaluate MobiCrowd through both an epidemic-
based differential equation model and a Bayesian frame-
work for location inference attacks. The epidemic model
is a novel approach to evaluating a distributed
location-privacy protocol. It helps us analyze how the
parameters of our scheme, combined with a time-
dependent model of the users’ mobility, could cause
a high or low degree privacy. We validate the model-
based results (on the probability of hiding a user
from the server) with simulations on real mobility
traces. We find that our epidemic model is a very
good approximation of the real protocol, reflecting
the precise hiding probability of a user, in various
settings.

Relying on hidden Markov models, the Bayesian
inference framework quantifies the correctness with
which an adversary can estimate the location of users
over time. The error of the adversary in this estima-
tion is exactly our privacy metric [8]. We evaluate
MobiCrowd on a real location dataset and we show
that it provides a high level of privacy for users with
different mobility patterns, against an adversary with
varying background knowledge.

Note that this joint epidemic/Bayesian evaluation
is necessary and, in fact, a significant component of
our approach, as MobiCrowd is a distributed proto-
col running on multiple collaborating devices, so its
performance depends on network characteristics (e.g.
time-dependent mobility), not just on what an indi-
vidual device does. The focus of the existing work in
the literature is more on privacy-preserving functions
(e.g., obfuscation functions run independently by each
user [9], [10]). To the best of our knowledge, this
is the first such evaluation, and it is significantly
more realistic than our own previous work [11] that
quantified privacy with just the fraction of queries
hidden from the server.

We have implemented our scheme on the Nokia
N800, N810 and N900 mobile devices, and demon-
strated it with the Maemo Mapper (a geographical
mapping software for points of interest) [12]. Our
approach can be ported to the upcoming technologies
that enable mobile devices to directly communicate
to each other via (more energy-efficient) Wi-Fi-based
technologies [13], [14] that aim at constructing a mo-
bile social network between mobile users.

The rest of the paper is organized as follows. We
survey the related work in Section 2. In Section 3, we
describe our assumptions for the Location-Based Ser-
vice, for the mobile users and the adversary, and we
state our design objectives. We present MobiCrowd in
Section 4, and then we develop an epidemic model of
its operation in Section 5. We present our Bayesian
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localization attacks in Section 6. We evaluate the
effectiveness of MobiCrowd in Section 7. We conclude
the paper in Section 8.

2 RELATED WORK

There are many collaborative schemes for mobile
networks. Mobile users, for example, can collectively
build a map of an area [15]. Collaboration is also
needed when sharing content or resources (e.g. In-
ternet access) with other mobile nodes [16].

Various threats associated with sharing location
information have been identified in the literature.
For example, users can be identified even if they
share their location sporadically [17]. Social relations
between users can help an adversary to better de-
anonymize their location traces [18]. Finally, location
sharing of a user does not only diminish her own
privacy, but also the privacy of others [19].

Techniques proposed to protect location privacy in
LBSs can be classified based on how they distort the
users’ queries before the queries reach the LBS server.
The queries can be anonymized (by removing users’
identities), pseudonymized (by replacing users’ real
names with temporal identifiers called pseudonyms),
or obfuscated (by generalizing or perturbing the spa-
tiotemporal information associated to the queries).
Queries can also be camouflaged by adding some
dummy queries, or be completely eliminated and hidden
from the LBS [10]. Combinations of these methods
have been employed in the existing (centralized or
distributed) mechanisms. We now discuss these ap-
proaches in more detail.

The mere anonymization of (especially the continu-
ous) queries does not protect users’ location privacy:
the queries of a user are correlated in space and
time; hence, the adversary can successfully link them
to each other by using target tracking algorithms
[20] or can successfully identify the real names of
the users [21]. Changing user pseudonyms while the
users are passing through pre-defined spots, called
mix zones [22], makes it difficult to track the users
along their trajectories. However, users must remain
silent inside the mix zones, which means that they
cannot use the LBS. To mitigate this problem, the size
of the mix zones is kept small, which in turn limits
the unlinkability of users’ queries. Even if the mix
zones are optimally placed, the adversary’s success is
relatively high [23].

Perturbing the query’s spatiotemporal content, in
addition to anonymization by a third party (central
anonymity server), has been proposed for obtaining a
higher level of privacy [2]. The main drawback is the
reliance on a centralized third party, limiting the prac-
ticality of this proposal. The considerable degradation
of the quality of service imposed by obfuscation meth-
ods is another deterrent for such solutions. In [24], for
example, the need to construct the cloaking regions

and also to receive the responses from the server
through other users can considerably degrade the
service. Many obfuscation-based techniques are based
on k-anonymity, which has been shown inadequate to
protect privacy [8], [25]. Perturbation techniques with
differential privacy guarantee, however, have been
shown effective against an adversary with arbitrary
knowledge [26].

Adding dummy queries to the user actual queries
might help to confuse the adversary about the actual
user location. But generating effective dummy queries
that divert the adversary is a difficult task [27], as
they need to look like actual queries over space and
time. An optimum algorithm for generating dummy
queries is an open problem.

In all the above-mentioned mechanisms, there is
always a trade-off between users’ privacy and the
quality of service they experience [28]. The tension is
maximized when it comes to hiding queries from the
LBS server. Hiding a query from the server minimizes
the revealed user information and thus maximizes her
privacy with respect to that query. Simply put, it is
more effective than the other three privacy protection
methods, and it protects users against both presence
and absence disclosure. This is what MobiCrowd
provides: Hiding from the server while receiving the
query responses from other peers.

There exist cryptographic approaches that redesign
the LBS: the service operator does not learn much
about the users’ queries, while it can still reply to
their queries [4], or it can obtain imprecise information
about user location [3]. The lack of incentives for LBS
operators to change their business model and imple-
ment these solutions, and their high computational
overhead have made them impractical so far.

A game-theoretic evaluation of our protocol run by
rational users is presented in [29].

3 PROBLEM STATEMENT

3.1 Mobile Users and LBS

We consider N users who move in an area split into M
discrete regions/locations. The mobility of each user u
is a discrete-time Markov chain on the set of regions:
The probability that user u, currently in region ri, will
next visit region rj is denoted by pu(rj |ri). Let πu(ri)
be the probability that user u is in region ri.

Each user possesses a location-aware wireless de-
vice, capable of ad hoc device-to-device communica-
tion and of connecting to the wireless infrastructure
(e.g., cellular and Wi-Fi networks). As users move be-
tween regions, they leverage the infrastructure to sub-
mit local-search queries to an LBS, at some frequency
that we term LBS access frequency. The frequency
at which users query the LBS varies depending on
the type of requested information, the dynamics of
information update in the LBS database, or the geo-
graphical region.
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The information that the LBS provides expires pe-
riodically, in the sense that it is no longer valid. Note
that information expiration is not equivalent to the
user accessing the LBS: A user accesses the LBS when
her information has expired and she wishes to receive
the most up-to-date version of it.

In addition, the information the LBS provides is
self-verifiable, i.e., users can verify the integrity and
authenticity of the server responses. This can be done
in different ways; in our system, the user device
verifies a digital signature of the LBS on each reply
using the LBS provider’s public key. As a result, a
compromised access point or mobile device cannot
degrade the experience of users by altering replies or
disseminating expired information.

3.2 Adversary Model and Privacy Metric

LBS servers concentrate location information from
all user queries. Thus, an untrusted service provider
could act as a “big brother,” that is, it could mon-
itor user whereabouts and activities over time. In
such a setting, the adversary can be categorized as
a passive global long-term observer [10]. We assume the
adversary has some background knowledge about the
users’ mobility patterns. This background knowledge
consists of each user’s mobility model, expressed as
a Markov chain, the users’ LBS access frequency, and
the information lifetime.

The adversary aims to perform inference attacks
against the locations of users. In other words, he uses
his background knowledge to estimate the locations
from which the users issue queries, but also the
locations they visit between successive queries that
are not directly disclosed to the LBS.

We quantify the location privacy of users as the
expected error of the adversary in estimating the
actual location of each user at each time instant [30].
The more queries the adversary observes, the more
successful he will be in reconstructing their actual
trajectories; so privacy is proportional to the distortion
of the reconstructed trajectories.

We do not address the threat of local observers
sniffing the wireless channel trying to infer users’
private information, as such a threat could exist with
or without MobiCrowd, and it can be alleviated by
frequently changing device identifiers (e.g., changing
MAC addresses for WiFi networks [31] similar to
changing TMSI for GSM networks [32]). More impor-
tantly, local observers, to be effective, would need to
be physically present next to any given victim user,
over long periods and across different locations. In
contrast, a centralized LBS can by default observe all
the queries of a user, which is why we focus on this
much greater threat in this paper.

Malicious users cannot mislead others into receiv-
ing fake information, because messages are digitally
signed by the LBS (as assumed in the previous sub-
section).

3.3 Design Objectives

Overall, we seek to design a practical and highly
effective location-privacy preserving mechanism for
LBSs: We should protect privacy with a minimal
compromise on LBS quality of service. The nature
of existing threats and the structure of stakeholder
incentives, outlined earlier, is the determining factor
of our design objectives.

Our first design objective is to not rely on archi-
tectural changes of the LBS; any such changes would
be impractical and highly unlikely to be adopted.
Relying on centralized trusted third parties (e.g., cen-
tral anonymity servers) to provide privacy enhancing
mechanisms can be as hard as having trusted LBS
operators. This leads to our second design objective:
no reliance on any third party server to provide privacy
protection. In fact, we would like to place the privacy
protection exactly where there is incentive and moti-
vation, that is, with the users themselves.

4 OUR SCHEME

Based on the stated design objectives, we propose
a novel location-privacy preserving mechanism for
LBSs. To take advantage of the high effectiveness of
hiding user queries from the server, which minimizes
the exposed information about the users’ location to
the server, we propose a mechanism in which a user
can hide in the mobile crowd while using the service.

The rationale behind our scheme is that users
who already have some location-specific information
(originally given by the service provider) can pass
it to other users who are seeking such information.
They can do so in a wireless peer-to-peer manner.
Simply put, information about a location can “re-
main” around the location it relates to and change
hands several times before it expires. Our proposed
collaborative scheme enables many users to get such
location-specific information from each other without
contacting the server, hence minimizing the disclosure
of their location information to the adversary.

4.1 Scheme Details

We build a mobile transparent proxy in each device that
maintains a buffer with location-specific information.
This buffer keeps the replies the user obtains from
the server or other peers. Each piece of information
associated with a given region has an expiration time
(which is attached to the information and protected
with the digital signature), after which the informa-
tion is no longer valid. Invalid information is removed
from the buffer.

Each user with valid information about a region is
termed informed user for that region. Users interested
in getting location-specific information about a region
are called information seekers of that region. A seeker,
essentially a user who does not have the sought
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information in her buffer, first broadcasts her query
to her neighbors through the wireless ad hoc interface
of the device. We term this a local query.

Any of the receivers of such a local query may
respond to it, by what we term a local reply, as long
as it has the information its peer seeks. However,
an informed device will not necessarily respond to
any received query: this will happen if the device
is not only informed, but also willing to collaborate.
We design our system with this option for its users;
the collaborative status may be set explicitly by the
user or automatically recommended or set by the
device. Simply put, having each user collaborate a
limited number of times (a fraction of the times she
receives a local query from her neighbors), or during
a randomly selected fraction of time, balances the
cost of collaboration with the benefit of helping other
peers. In practice, this is equivalent to the case where
only a fraction of users collaborate.

By obtaining a local reply, the seeker is now in-
formed while, more importantly, her query has re-
mained hidden from the service provider. No privacy-
sensitive information has been exposed to the server
and the user has obtained the sought service. Of
course, in case there is no informed user around the
seeker willing to assist her, she has no choice but
to contact the server directly. In essence, a subset of
users in every region have to contact the LBS to get
the updated information, and the rest of the users
benefit from the peer-to-peer collaboration. Intuitively,
the higher the proportion of hidden user queries, the
higher her location privacy will be.

5 EPIDEMIC MODEL FOR THE DYNAMICS OF

MOBICROWD

The performance of our system depends on various
parameters, such as the rate of contacts and the
level of collaboration between users, the rate of LBS
query generation, etc. We now describe a model for
MobiCrowd, with the help of which we can directly
evaluate the effect of various parameters on users’
location privacy. Observing the effect of the param-
eters also helps when designing a system and testing
“what-if” scenarios. For example, we can immediately
see the level of collaboration required to achieve a
desired privacy level or how the privacy level will
change if the users make queries more frequently or
less frequently.

We draw an analogy between our system and epi-
demic phenomena: location-context information spreads
as an infection from one user to another, depending
on the user state (seeking information, having valid
information, etc.). For example, a seeker becomes
“infected” when meeting an “infected” user, that is,
a user with valid information.

We want a model that describes transitions be-
tween, and keeps track of, the various states a user

is in as time progresses. However, it is prohibitively
complex to keep track of the state of each individ-
ual user. Therefore, we make use of the mean field
approximation [33], which focuses on the fraction of
users in each state; these fractions are collectively
called the network state. The approximation applies
when the number of users is large and each individual
interaction contributes a vanishingly small change
to the network state. The approximation requires a
random contact pattern among users, rather than a
spatially correlated pattern, and random contacts are
not far from reality when users are clustered in the
same region (recall that we partition the whole area
into regions).

The mean field approximation tells us that the
time evolution of the fraction of users in each state
can be described with increasing accuracy, as the
number of users grows, by a system of Ordinary
Differential Equations (ODEs). By studying the system
of ODEs, we find the steady state(s) to which the
network converges. Similar models have been used
in human virus epidemics [34], in worm propagation
in wireless networks [35], and in research on forward-
ing/gossiping protocols [36].

To keep the presentation simple we focus on one
type of context information, hence we consider a sin-
gle average information lifetime. No loss of generality
results from this, because, to model a complete system
with multiple types of information, we can merge
multiple versions of this model, one for each type.

5.1 Model States and System of ODEs

As mentioned earlier, users move in an area par-
titioned into multiple regions. The state of context
knowledge within a region intuitively corresponds to
the disease status in an epidemic. In general, a user’s
knowledge state would be multi-dimensional, because
a different piece of information is relevant for each
region. Thus, for each region we would have an as-
sociated epidemic model, with the same structure but
different parameters. However, the state of knowledge
about a region is unrelated to the knowledge about
other regions, so different regions can be analyzed
separately. We present our model for a single region,
with users entering and exiting it, and we describe
the states and the dynamics of our epidemic model
for that single region.

The collective mobility of users with respect to
a region is modeled using three parameters: β, the
average number of times a user makes a proximity
contact with other users per time unit within a region;
µ, the probability of an outsider user enters a region
within a time unit; and λ, the probability of an insider
user leaves a region within a time unit. We derive
these parameters from the Markov mobility models
of users, as follows. Let parameters λi and µi be
the probabilities of exiting and entering region ri,
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respectively. They correspond to the expected number
of users who exit/enter ri normalized by the expected
number of users who are inside/outside of ri.

λi =

∑

u,j 6=i πu(ri)pu(rj |ri)
∑

u πu(ri)
(1)

µi =

∑

u,j 6=i πu(rj)pu(ri|rj)
∑

u(1− πu(ri))
(2)

The contact rate βi between users in region ri corre-
sponds to the expected number of contacts of a device
within its communication range.

βi =

ni−1
∑

k=0

k

(

ni − 1

k

)

qk(1− q)ni−1−k (3)

where q is the fraction of region’s area that is within
the user’s communication range, and ni =

∑

u πu(ri)
is the expected number of users in region ri. Note
that the mobility parameters (λ, µ, and β) can also be
computed directly from sample location traces. The
list of all parameters of the epidemic model are listed
in Table 1.

Seeker: Users who are interested in obtaining infor-
mation (i.e., have requested the information but not yet
received it) are in the Seeker state. Once they have it,
they move into the Informed state. As long as a Seeker
user stays in the region that she seeks information
about, she is called an Insider Seeker. These users can
receive information from other Informed users in the
region, or from the server, the ultimate source of
information. A Seeker who leaves the region after
requesting information about that region is called an
Outsider Seeker. An Outsider Seeker can only receive
information from the server, as users need to be in
the same region in order to be able to propagate
information to each other.

Informed: Users who have information about the
region are in the Informed state. If they are inside the
region (called Insider Informed), they accept to spread
the information at each contact with a Seeker user
with probability φ. This is because the information
spreading process imposes some communication cost
on Informed users and, hence, they might not always
collaborate. If they are outside the region (called Out-
sider Informed), we assume they do not spread the
information. The information that the Informed users
have, whether they are inside or outside the region,
expires with rate δ and the users become Removed.

Removed: Users who do not have information and
are not currently interested in obtaining information are
in the Removed state. We distinguish between Insider
Removed and Outsider Removed users. An Insider
Removed user becomes a Seeker if the user becomes
interested in obtaining information about the region.
As LBS users usually query information about the
region they are in, we assume that outsiders have to
enter the region to become interested.

S(t) insider Seeker users at time t
S∗(t) outsider Seeker users at time t
I(t) insider Informed users at time t
I∗(t) outsider Informed users at time t
R(t) insider Removed users at time t
R∗(t) outsider Removed users at time t
λ probability of exiting the region within a time unit
µ probability of entering the region within a time unit
β contact rate per user per time unit
γ avg request rate per user per time unit

1/ω avg waiting time before contacting the server
1/δ information avg lifetime
φ avg collaboration probability

TABLE 1

List of the symbols used in the epidemic model

We denote by S(t), S∗(t), I(t), I∗(t), R(t), and R∗(t),
respectively, the fraction of Seeker Insider, Seeker Out-
sider, Informed Insider, Informed Outsider, Removed
Insider, and Removed Outsider users of a given region
at time t. The network state y(t) is the vector of
these values. The system of equations that models the
evolution of the network state is

S(t) + S∗(t) + I(t) + I∗(t) +R(t) +R∗(t) = 1 (4a)

d

dt
S(t) = µS∗(t)− (βφI(t) + ω + λ)S(t) + γR(t) (4b)

d

dt
S∗(t) = λS(t)− (ω + µ)S∗(t) (4c)

d

dt
I(t) = ωS(t) + (βφS(t)− δ − λ)I(t) + µI∗(t) (4d)

d

dt
I∗(t) = ωS∗(t) + λI(t)− (δ + µ)I∗(t) (4e)

d

dt
R(t) = δI(t)− (γ + λ)R(t) + µR∗(t) (4f)

d

dt
R∗(t) = δI∗(t) + λR(t)− µR∗(t) (4g)

0 ≤ S(t), S∗(t), I(t), I∗(t), R(t), R∗(t) ≤ 1. (4h)

5.1.1 Stationary Regime Analysis

We write system (4) succinctly as d
dt
y = F (y). We

study the stationary regime of the system, i.e., the
regime where, for t −→ ∞, the network state does
not change with time. In particular, we look for equi-
librium points, i.e., network states at which d

dt
y = 0.

Setting F (y) = 0 and solving for y, we reach the
following system of nonlinear equations.

S∗ = iS (5a)

I =
aS

bS + c
(5b)

I∗ = (
gS + e

bS + c
)S (5c)

R = (
−dgS + f

bS + c
+ h)S + d (5d)

R∗ = 1− (
g(1− d)S + a+ e+ f

bS + c
+ i+ h)S − d (5e)

jS2 + kS + cdγ = 0, (5f)
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where

a = −ωµ(λ+ µ+ ω + δ)− δω2 (6a)

b = βφ(µ(δ + µ+ 1) + δω) (6b)

c = −δ(µ+ ω)(δ + λ+ µ) (6c)

d = µ(λ+ µ+ γ)−1 (6d)

e = −ωλ(λ+ µ+ ω + δ) (6e)

f = ω(λ+ µ+ ω + δ)(λ+ µ− δ)d (6f)

g = ωλβφ (6g)

h = −d(λ+ µ+ ω) (6h)

i = λ(ω + µ)−1 (6i)

j = (hb− dg)γ − a(βφ)− b(ω + λ− iµ) (6j)

k = (f + hc+ bd)γ − c(ω + λ− iµ) (6k)

Having expressed all variables in terms of S, we
need to solve the quadratic equation (5f) for S,
keeping in mind that any solution S0 has to satisfy
0 ≤ S0 ≤ 1. The value of S0 can be found from the
quadratic formula:

S0 =
1

2j

(

−k ±
√

k2 − 4jcdγ
)

(7)

Then, we substitute S0 into (5a)-(5e) to find the
other values S∗

0 , I0, I
∗
0 , R0, R

∗
0.

So, we found the only admissible equilibrium point
of the network. We now give a sufficient condition
for this point to be locally asymptotically stable, that
is, all system trajectories starting near enough to the
equilibrium point will eventually converge to it with-
out wandering too far away in the meantime. This
condition is that the Jacobian matrix of the system,
evaluated at the equilibrium point, has eigenvalues
with strictly negative real parts. Note that, instead of
using the differential equation for R∗, we substitute
R∗ = 1−S−S∗−I−I∗−R and compute the Jacobian
of an equivalent system with only the 5 variables
S, S∗, I, I∗, R. The Jacobian J(S, I) is






−βφI − ω − λ µ −βφS 0 γ
λ −ω − µ 0 0 0

βφI + ω 0 βφS − δ − λ µ 0

0 ω λ −µ − δ 0

−µ −µ δ − µ −µ −γ − λ − µ







(8)

which, as we see, is only a function of S and I . The
eigenvalues of J(S, I) evaluated at the equilibrium
point can be found by solving the 5th order equation

|J(S0, I0)− xI5| = 0 (9)

for x, where I5 is the 5 × 5 unit matrix. As we
have mentioned, if all the solutions have a strictly
negative real part, then the equilibrium point is locally
asymptotically stable. Moreover, if all the solutions
have a strictly negative real part, the equilibrium
point persists under small perturbations of the system
parameters. That is, if v(y) is any smooth vector field
on R

5, then for sufficiently small ǫ the equation

d

dt
y = F (y) + ǫv(y) (10)

has an equilibrium point near the original one, and
the equilibrium point of the perturbed system is also
locally asymptotically stable.

In Section 7, we show that all the eigenvalues have
strictly negative real part for the range of system
parameters we consider; hence, the equilibrium point
is stable, and it persists under small perturbations of
the system parameters. The stability analysis justifies
using the equilibrium point to evaluate our system.
If it were unstable, then either the system would not
converge to it or the smallest disturbance would cause
the system to leave it.

5.1.2 Time-dependent mobility

So far, we have assumed that user mobility, expressed
through parameters µ, λ, and β, does not change
with time. But mobility is usually time-dependent
and periodic: users have different mobility pattern
in the morning than in the afternoon, but these pat-
terns repeat almost everyday. To address the time-
dependence of mobility, we can split time into time
periods and compute the mobility parameters for each
time period separately.

Making µ, λ, and β time-dependent in (4) means
that there is no longer an equilibrium point, because
the fraction of users in each state (e.g., Seeker, In-
formed, Removed) continuously changes over time.
We solve this system of nonlinear differential equa-
tions using numerical methods (as it is difficult to find
their closed-form solutions), which provide us with
the fraction of users at each time unit.

5.2 Baseline MobiCrowd: Buffer Only

To be able to isolate the effect of collaboration, we
study the case where there is no collaboration among
users and MobiCrowd relies only on its buffer to
protect users’ privacy: A user who becomes interested
checks her buffer, and if the content is not there, she
immediately contacts the server. Thus, there are no
Seeker (S and S∗) users in the model for this case:

I(t) + I∗(t) +R(t) +R∗(t) = 1 (11a)

d

dt
I(t) = γR(t) + µI∗(t)− (λ+ δ)I(t) (11b)

d

dt
I∗(t) = λI(t)− (µ+ δ)I∗(t) (11c)

d

dt
R(t) = δI(t) + µR∗(t)− (λ+ γ)R(t) (11d)

d

dt
R∗(t) = δI∗(t) + λR(t)− µR∗(t) (11e)

0 ≤ I(t), I∗(t), R(t), R∗(t) ≤ 1. (11f)

For the stationary regime analysis, we compute the
equilibrium point of the system, and study its stability
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as before.

I∗ = zI (12a)

R = −
1

γ
(zµ− λ− δ)I (12b)

R∗ = 1− I

(

1−
1

γ
(zµ− λ− δ) + z

)

(12c)

I = µ

(

δ

γ
(λ+ γ + µ)(1 + z)− δ + µ(1 + z)

)−1

(12d)

where z = λ(µ+ δ)−1.

To compute the stability of this point, we compute
the Jacobian for an equivalent system which arises
after substituting R∗ = 1− I − I∗ −R. In this case the
system is linear, so if the eigenvalues are negative,
then the equilibrium point is globally asymptotically
stable, that is, the system converges to it for any initial
condition. The Jacobian is

J =





−λ− δ µ γ
λ −µ− δ 0

δ − µ −µ −µ− λ− γ.



 (13)

The equation to solve for the eigenvalues is, simi-
larly as before, |J−xI3| = 0. We will show the stability
of the equilibrium point in the next section.

For time-dependent mobility parameters, as before,
we analyze the system numerically.

6 QUANTITATIVE ANALYSIS

The direct objective of MobiCrowd is to hide user
queries from the server. We quantify this objective,
as our first evaluation metric, through the hiding
probability: the probability that a user’s query becomes
hidden from the server due to MobiCrowd proto-
col. Under various user mobility and information
spreading dynamics, we compute this metric using
the results of the time-dependent epidemic model,
and we compare to the results of simulations on a
dataset of real mobility traces. In Section 7, we show
that the simulation results corroborate our model-
based findings about the hiding probability.

As our second evaluation metric, we quantify the
location privacy that Mobicrowd offers to users against
localization attacks. Specifically, we compute the ex-
pected error of an adversary who observes a user’s
trace and then forms a probabilistic estimate of her
location. This probabilistic estimate is based on a
Bayesian location inference approach [30] that enables
us to incorporate both the background knowledge and
observation of the adversary and to precisely quantify
the location privacy of users. We link this Bayesian
inference to our epidemic model, by computing the
observation probability of the adversary from the
hiding probability of MobiCrowd.

6.1 Probability of Hiding in the Mobile Crowd

The hiding probability in a given region is estimated
as the fraction of queries per time unit that are not
observed by the server. The higher this fraction, the
lower the adversary’s success in performing inference
attacks on the observed queries. Hiding some of the
users’ locations from the adversary has two benefits:
(1) Users become less traceable over space and time, as
observed queries from a user are sparser, hence harder
to correlate with each other and easier to be confused
with the queries of other users [20], [37], [8]. (2) The
set of a user’s observed queries becomes harder to
link to the user’s real name. The hiding probability
can show the reduction in the amount of information
the adversary obtains from the users’ queries compared
to the case where users directly contact the server for
each query.

In the case of no collaboration among users, i.e.,
in buffer-only MobiCrowd, the users can retrieve the
information either from their buffer or from the server.
Only the I users have the information in their buffers,
whereas the R users are forced to contact the server
when they become interested. The I users ask queries
at a total rate of γI , and the R users at a total rate of
γR. Therefore, the hiding probability in this case is

HP0 =
I

I +R
(14)

where I and R are computed from (11).

In the case of collaboration with probability φ > 0
among users, queries can also be answered by peers.
Only an insider user who is not already a Seeker,
i.e., Insider Informed and Insider Removed users, can
send a new query. So, we focus only on them and
we compute the hiding probability as the probability
that the user’s query, given that she is an Insider
Informed/Removed, is answered by buffer or a peer.

The user is Insider Informed with probability I
I+R

.
By definition, the query of an Insider Informed user
is immediately answered by the buffer. So, her hiding
probability is 1.

Turning to Insider Removed users, the probability
of being Insider Removed is R

I+R
. By definition, such

a user (who, right after sending the query, becomes an
Insider Seeker) needs to wait for an Insider Informed
peer to collaborate with her. If she cannot find one
before her waiting time expires, she has to expose
her location to the server. Which of the two happens
first can be modeled as a competition between two
exponential random processes: P with mean 1/βφI ,
representing the time to get the response from peers,
and S with mean 1/ω, representing the time to get the
response from the server. Then, the hiding probability
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is the probability that process P wins:

Pr{P < S} =

∫ ∞

−∞

fS(s)ds

∫

S−P>0

fP (p)dp =

=
βφI

βφI + ω
(15)

So, finally, we compute the hiding probability as

HPφ =
I

I +R
+

R

I +R
·

βφI

βφI + ω
(16)

where I and R are computed from (4). We can see
that if we set the collaboration probability φ to zero,
the hiding probability becomes equal to (14).

6.2 Location Privacy versus Inference Attacks

In a localization attack the adversary targets a specific
user at a specific time instant and computes the
probability distribution over the regions where the
user might be [38]. This distribution is computed
given the observed traces from the user. Formally, the
adversary computes Pr{At

u = r|ou} for user u at time
instant t for all regions r, where A

t
u is the random

variable for the actual location of user u at time t,
and ou is the observed trace from user u. In the case of
MobiCrowd users, the (server’s) observation at a time
t is either null or the true location of the user. From the
adversary’s localization probability distribution, we
quantify the location privacy of a user as the probability
of error of the adversary in guessing the user’s true location,
averaged over all times t.

We use Bayes’ rule to compute the localization
probability for the adversary.

Pr{At
u = r|ou} =

Pr{At
u = r,ou}

Pr{ou}
(17)

=
Pr{At

u = r,o1:t
u }Pr{ot+1:T

u |At
u = r}

Pr{ou}

where T is the length of the observed trace; note
also that we have used the conditional independence
of o

t+1:T
u and o

1:t
u given A

t
u = r. The probabilities

in the numerator can be computed recursively using
the forward-backward algorithm of Hidden Markov
Models (HMM). The normalizing factor Pr{ou} can
also be computed simply by summing the numerator
over all regions r [30].

To compute (17) we need, according to the theory
of HMM, two quantities: (1) the transition probability
between regions (i.e., pu(rj |ri), mobility model of
the user), and (2) the observation probability (i.e.,
Pr{Ot

u|A
t
u = r}, the probability of each possible

observation, given the true location of the user). We
compute the observation probability from the Mobi-
Crowd hiding probability (16) as

Pr{Ot
u = o|At

u = r} =











1− γ(1−HPφ) o = null

γ(1−HPφ) o = r

0 o.w.

(18)

Having specified the transition and observation prob-
abilities, we run the forward-backward algorithm (for
hidden Markov models) to compute the localization
probabilities for each time t. We then compute their
average value over all time units t to compute the
location privacy of users of our privacy-preserving
scheme for various system parameters.

7 EVALUATION

The location traces that we use belong to 509
randomly chosen mobile users (vehicles) from the
epfl/mobility dataset at CRAWDAD [39]. We set the
time unit of the simulation to 5 minutes and we
consider the users’ locations at integer multiples of
the time unit, hence synchronizing all the traces. We
group time units into three equal-size time periods:
morning, afternoon, evening. We divide the Bay Area
into 10× 25 equal-size regions. Two users in a region
are considered to be neighbors of each other if they are
within 100m of each other (using WiFi). We run our
simulation for 100 times on the traces and compute
the average of the results.

From the location traces, we construct the time-
dependent mobility model of each individual user,
in the format of transition probability matrices (one
matrix per time period). We also compute the average
mobility model, which reflects how the whole crowd
moves. For each region and time period we compute
the mobility parameters λ, µ, and β separately (see
Section 5).

We set the average waiting time before contacting
the server, 1/ω, to 1, in effect choosing it as the unit
by which the information lifetime and the request
rate will be measured. We evaluate the system for all
combinations of collaboration level φ = {0.5, 1}, in-
formation lifetime 1/δ = {1, 4, 10, 16, 22}, and request
rate γ = {0.05, 0.2, 0.4, 0.6, 0.8}. Information lifetimes
lower than 1, i.e. shorter than the waiting time, do not
make much sense. If information expires fast, the user
cannot be willing to wait a long time before getting
it, as it would be stale by the time it were received.
Similarly, request rates larger than one imply multiple
requests per time unit. But this cannot be compatible
with the user’s willingness to wait for one time unit.

7.1 Validation of Epidemic Model

In order to validate our model, we compare our
numerical computation of hiding probability with
simulation results.

The mobility parameters β, λ, µ and the ranges of
system parameters γ, δ, φ are plugged into the epi-
demic model of MobiCrowd in order to compute
numerically the solutions of (4) and (11) as functions
of time. In other words, we compute the fraction of
users in each state for each time unit. Note that this
is different from just computing the stationary regime
solutions. We then compute the hiding probability
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Fig. 1. Users’ hiding probability, due to MobiCrowd, for

the region under study (in downtown San Francisco).

The first row illustrates the hiding probability of users

when there is no collaboration, i.e. when users have

to contact the server if they do not find the sought

information in their buffer. The second and third rows

show the same metric for collaboration factors φ = 0.5
and φ = 1, respectively. The left column shows the

numerical results obtained from the epidemic model,

whereas the right column shows the difference be-

tween the model and the simulation results.

as a function of time from (14) and (16). Finally,
we simulate the MobiCrowd protocol on the location
traces, and for each region and each time unit, we
compute the users’ hiding probability using directly
its definition as the fraction of queries hidden from the
LBS server. We plot the results obtained in Figure 1.

Figure 1 illustrates the average users’ hiding prob-
ability using MobiCrowd with and without collabo-
ration (PGφ and PG0). As it is not possible to plot
the results for all the regions, we compute, as a
representative example, the hiding probability in one
region, located in downtown San Francisco. It has a
higher concentration of points of interest, and 90 users
are present in it on average, with a contact rate of
β = 51.89 per user per time unit. The results of the
numerical evaluation are displayed side by side with
their absolute difference with the simulation results.
This enable us to verify the validity of our epidemic
model. The qualitative and also quantitative match

between the simulation and the model enables us to
rely on our epidemic model to evaluate users’ location
privacy in a very computationally efficient way in
complex scenarios dealing with large networks.

All the plots confirm a general pattern of increasing
hiding probability as the information lifetime or the
request rate increases. With either kind of increase,
users retrieve with higher probability non-expired
information either from their own buffer or from their
peers; hence, a higher fraction of their queries will be
hidden from the LBS. Moreover, the hiding probability
of each query for long lifetimes and low request rate
values (i.e., long intervals between requests) appears
to be more or less the same as the hiding probability
for short lifetimes and high request rate values (i.e.,
short intervals between requests), as indicated by
the vaulted shape of the contours. Also, adding col-
laboration to the buffering technique in MobiCrowd
increases the fraction of hidden queries even for a
collaboration factor of φ = 0.5.

7.2 Evaluation of Privacy

We use Location-Privacy Meter [8] to quantify the
location privacy of users as the expected error of the
adversary in guessing their correct location, including
at times when they do not issue a query, i.e. between
two successive LBS queries. We are interested in ana-
lyzing the privacy effect of the following factors:

• The adversary’s background knowledge on user
mobility, which can be

– the mobility model of each individual user
(Individuals’ Mobility Model), or

– the average mobility model of the whole user
population (Average Mobility Model).

• The adversary’s method of attack, which can
consist of

– just observing exposed locations, i.e. not try
to guess a user’s locations between two
queries (Observation adversary), or

– perpetrating Bayesian localization attacks to
infer the whole location trace of each user
(Inference adversary).

We compute privacy for multiple combinations of
these factors, with and without our protection proto-
col. These are the concrete scenarios we study:

• Baseline: Inference without observations
• No Protection vs. Observation/Inference
• MobiCrowd vs. Observation/Inference

In the Baseline scenario, we compute privacy against
the inference attack, assuming that the adversary
ignores his LBS observations, relying only on his
background knowledge. This scenario quantifies the
extent to which the adversary’s knowledge is by itself
sufficient to predict the users’ locations over time. It
is a baseline scenario, in the sense that no privacy
mechanism can achieve better privacy than this.
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(a) Adversary’s Background Knowledge: Individuals’ Mobility
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Fig. 2. Average Location Privacy of MobiCrowd users against the Bayesian inference localization attack (top row

of each sub-figure), and the %-improvement that MobiCrowd achieves over no protection, when MobiCrowd is

not in place (bottom row of each sub-figure). The considered adversary’s background knowledge is the set of

mobility models of all individual users, in Sub-Fig. (a), and the average mobility model of all users, in Sub-Fig. (b).

In the No Protection scenario, users submit their
queries directly and immediately to the server with-
out using any protection mechanism. This scenario
reflects the risk of unprotected use of LBSs. We com-
pute privacy against the observation and against the
inference adversaries.

In the MobiCrowd scenarios, we again compute pri-
vacy against the observation/inference adversaries.
However, in this case, users make use of MobiCrowd,
hence their observed traces contain fewer number of
locations than in the no protection scenario.
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Fig. 3. Cumulative Fraction of users’ location privacy in different protection/attack scenarios. Users’ collaboration

level is 0.5, the request rate is 0.4, and the information lifetime is 10. The graphs show what fraction of users (on

the y-axis) have a privacy level up to a certain point (on the x-axis). Sub-figures (a) and (b) differ in terms of

the background knowledge of the adversary (used in the Bayesian inference attack). The Baseline (infr) graph

shows their location privacy against the Bayesian inference attack, if the adversary relies only on his background

knowledge. The No Protection (infr) graph shows users’ location privacy against the Bayesian inference attack, if

they do not use any protection mechanism and submit their queries to the server. The No Protection (obs) graph

shows location privacy of users in terms of the fraction of times their true location is not exposed to the server,

because they didn’t have any query. The MobiCrowd (infr) shows location privacy of MobiCrowd users against

the Bayesian inference attack. The MobiCrowd (obs) shows location privacy of MobiCrowd users in terms of the

fraction of times their true location is not exposed to the server, due to the protection or lack of a query.

7.2.1 Average Location Privacy

To see how our system performs across a range of pa-
rameters, we compute, for all combinations of system
parameters (request rate γ, information lifetime 1/δ,
and collaboration probability φ), the average location
privacy of users against the localization attack, as
explained in Sec. 6.2, for the MobiCrowd and No
Protection scenarios.

Fig. 2 shows the location privacy of MobiCrowd
users against the localization attack, as well as the
%-improvement of their privacy over having no pro-
tection (i.e. when they send all their queries to the
server). Fig. 2(a) and Fig. 2(b) illustrate the results for
the cases where the adversary’s knowledge is the mo-
bility model of all individual users, and their average
mobility model, respectively. Thus, the comparison
between Fig. 2(a) and Fig. 2(b) shows the effect of
the adversary’s background knowledge on the users’
location privacy.

MobiCrowd achieves the best %-improvement in
the high (> 0.6) request rate regime, especially if the
information lifetime is not too low. If the request rate
is low, few locations are exposed in the first place, so
location privacy is already high even without protec-
tion. Privacy is in danger at high request rates, where
MobiCrowd’s improvement is significant: It ranges
from 2x (100%) up to 6.5x (550%). This observation
holds true across all twelve cases in Fig. 2.

As expected, the adversary does considerably better
when using each user’s own mobility model in the
attack, rather than using the average mobility model
for everyone. More precisely, the success probability
of our Bayesian inference attack, in estimating a user’s
location between two successive observations, signif-
icantly increases if we provide the adversary with a
more precise mobility model. However, we see that
MobiCrowd here again helps when it is most needed,
and significantly improves (up to 550%) the users’
location privacy when the adversary is very powerful
due to his accurate background knowledge.

Finally, note that, although more collaboration is
definitely better, full collaboration φ = 1 is not nec-
essary to reap the benefits of MobiCrowd. Even at
φ = 0.5 there is a considerable privacy gain.

The only cases where MobiCrowd’s improvement
is below 100% is when privacy is already high, in
which case a further increase does not really matter,
or when information expires too fast, in which case
the users are forced to contact the server for most of
their queries.

7.2.2 Cumulative Distribution of Location Privacy

In order to better analyze the added value of the
adversary’s knowledge and his inference attack on
the one hand, and the effectiveness of MobiCrowd on
the other hand, we compute users’ location privacy
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for all the scenarios we enumerated in Sec. 7.2, but
for a single set of parameters (γ = 0.4, δ = 0.1, and
φ = 0.5). We plot the results in Figure 3, which shows
the cumulative distributions of users’ location privacy in
different scenarios. Plotting cumulative distributions
allows us to observe Mobicrowd’s improvements for
all desirable percentiles of users, instead of being
limited to the previously computed averages over all
users.

The baseline privacy in Fig. 3(a) and Fig. 3(b)
show how much information is embedded in the
background knowledge of the adversary, i.e., how
accurately he can predict users’ location, relying only
on their mobility model.

In each of the sub-figures, the Baseline (inference)
and No Protection (inference) scenarios reflect the risk
of using location-based services without any protec-
tion. Even an adversary with knowledge of the aver-
age mobility can significantly decrease users’ location
privacy, hence the extreme need to employ privacy
enhancing protocols such as MobiCrowd.

The difference, approximately 35%, between loca-
tion privacy in MobiCrowd (observation) and No
Protection (observation) shows the added value of
MobiCrowd with respect to an observer (e.g., a curi-
ous but not adversarial LBS operator). However, these
privacy values do not constitute a lower bound on
user privacy, as an inference adversary can estimate
the actual location of users more accurately.

We can see the additional damage caused by an
inference adversary, compared to an observer, by com-
paring corresponding (observation) and (inference)
scenarios. There is a difference of about 3x for the
Individuals’ Mobility Model, and a much smaller one,
15-30%, for the Average Mobility Model. This is to be
expected, as the quality of the inference depends a lot
on the quality of the background knowledge.

The added value of MobiCrowd against an infer-
ence adversary is about 50%, when the adversary’s
knowledge is Individual Mobility Model, and a bit
less than 50% when the knowledge is Average.

7.3 Implementation

We implement MobiCrowd on three different Nokia
mobile devices (N800, N810, and N900) by building
a mobile privacy proxy in each device. The proxy does
not require any modification of the supported appli-
cations and it is transparent to their operation. The
prototype works with the Maemo Mapper LBS and
MobiCrowd acts as an HTTP transparent proxy to
which the client traffic is redirected. Note that know-
ing the format of the LBS queries and the data format
of the server replies is enough to adapt MobiCrowd to
new LBS applications. Our implementation in Python
is 600 lines of code, including the proxy module,
ad-hoc networking module, and the server interface
module. Memory utilization does not exceed 3% of
the total device memory.

We perform measurements on a 5-device testbed to
estimate the delay to obtain a peer response. Three out
of the five are randomly chosen to collaborate each
time. Mobiles access the LBS server over a cellular
link (e.g., GSM), and communicate with each other
via the WiFi interface. Averaged over 100 queries,
the delay is 0.17sec. We also note that cryptographic
delays are (for a typical OpenSSL distribution) low:
the weakest of the three devices, the N800, can verify
more than 460 RSA signatures per second (1024 bit),
or 130 signature verification per second (for 2048
bit modulus); this implies that digitally signed LBS
response can be easily handled by the devices to
protect against malicious peers.

A popular technique that enhances privacy against
local eavesdroppers is to change the identifiers fre-
quently. Cellular network operators make use of
network-issued pseudonyms (TMSIs) to protect the
location-privacy of their users [32]. MobiCrowd-ready
mobile devices can also mimic this defense (as has
already been proposed for wireless networks, e.g.,
[31]). They can change their identifiers (e.g., the MAC
addresses) as often as desired, even while in a single
point-of-interest area. This would essentially root out
any threat by any curious local observer. Even in
the case of a stalker, it would not be possible to
link the successive identifiers of a device to that
device, as multiple users’ identifiers will be mixed
together. The only remaining option for the stalker
is to maintain visual contact with the target user, but
defending against this threat is clearly orthogonal to
our problem.

8 CONCLUSION

We propose a novel approach to enhance the privacy
of LBS users, aiming against service providers who
could extract information from their LBS queries and
misuse it. We develop and evaluate MobiCrowd, a
scheme that allows LBS users to hide in the crowd
and to reduce their exposure while they continue to
receive the location context information they need.
MobiCrowd achieves this by leveraging the collab-
oration between users, who have the incentive and
the capability to safeguard their privacy. We propose
a novel analytical framework to quantify location pri-
vacy of our distributed protocol. Our epidemic model
captures the hiding probability for user locations,
i.e. the fraction of times when, due to MobiCrowd,
the adversary does not observe user queries. By re-
lying on this model, our Bayesian inference attack
estimates the location of users when they hide. Our
extensive joint epidemic/Bayesian analysis shows a
significant improvement thanks to MobiCrowd, across
both the Individual and the Average Mobility back-
ground knowledge scenarios for the adversary. We
demonstrate the resource efficiency of MobiCrowd by
implementing it in portable devices.
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