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MADAM: Effective and Efficient Behavior-based
Android Malware Detection and Prevention

Andrea Saracino, Daniele Sgandurra, Gianluca Dini and Fabio Martinelli

Abstract—Android users are constantly threatened by an increasing number of malicious applications (apps), generically called
malware. Malware constitutes a serious threat to user privacy, money, device and file integrity. In this paper we note that, by studying
their actions, we can classify malware into a small number of behavioral classes, each of which performs a limited set of misbehaviors
that characterize them. These misbehaviors can be defined by monitoring features belonging to different Android levels. In this paper
we present MADAM, a novel host-based malware detection system for Android devices which simultaneously analyzes and correlates
features at four levels: kernel, application, user and package, to detect and stop malicious behaviors. MADAM has been specifically
designed to take into account those behaviors that are characteristics of almost every real malware which can be found in the wild.
MADAM detects and effectively blocks more than 96% of malicious apps, which come from three large datasets with about 2,800 apps,
by exploiting the cooperation of two parallel classifiers and a behavioral signature-based detector. Extensive experiments, which also
includes the analysis of a testbed of 9,804 genuine apps, have been conducted to show the low false alarm rate, the negligible
performance overhead and limited battery consumption.
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1 INTRODUCTION

Smartphones and tablets have become extremely popular in
the last years. At the end of 2014, the number of active mo-
bile devices worldwide was almost 7 billions, and in devel-
oped nations the ratio between mobile devices and people is
estimated as 120.8% [1]. Given their large distribution, and
also their capabilities, in the last two years mobile devices
have became the main target for attackers [2]. Android, the
open source operative system (OS) introduced by Google,
has currently the largest market share [1], which is greater
than 80%. Due to the openness and popularity, Android is
the main target of attacks against mobile devices (98.5%),
with more than 1 million of malicious apps currently avail-
able in the wild [3].

Malicious apps (generically called malware) constitute the
main vector for security attacks against mobile devices.
Disguised as normal and useful apps, they hide treacherous
code which performs actions in the background that threat-
ens the user privacy, the device integrity, or even user’s
credit. Some common examples of attacks performed by An-
droid malicious apps are stealing contacts, login credentials,
text messages, or maliciously subscribing the user to costly
premium services. Furthermore, all these misbehaviors can
be performed on Android devices without the user noticing

• Dr A. Saracino and Dr F. Martinelli are with the Instituto di Informatica
e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy.
Dr Daniele Sgandurra is with the Department of Computing, Imperial
College of London, United Kingdom.
Prof. Gianluca Dini is with the Department of Ingegneria
dell’Informazione, Università di Pisa, Italy.
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them (or when it is too late). It has been recently reported1

that almost 60% of existing malware send stealthy premium-
rate SMS messages. Most of these behaviors are exhibited
by a category of apps called Trojanized that can be found
in online marketplaces not controlled by Google. However,
also Google Play, the official market for Android apps, has
hosted apps which have been found to be malicious2.

Along with the vast increase of Android malware, sev-
eral security solutions have been proposed by the research
community, spanning from static or dynamic analysis of
apps [4], to applying security policies enforcing data secu-
rity [5] [6], to run-time enforcement [7] [8]. However, these
solutions still present significant drawbacks. In particular,
they are attack-specific, i.e. they usually focus on and tackle
a single kind of security attack, e.g. privacy leaking [7]
[8], or privilege escalation (jail-breaking) [5] [9]. Moreover,
these frameworks generally require a custom OS [8]. Apart
from these ad hoc security solutions, in an attempt to limit
the set of (dangerous) operations that an app can perform,
Android has introduced its native security mechanisms
in the form of permissions and apps isolation. These two
mechanisms, respectively, enforce access control to security
critical resources and operations, and avoid that an app
can interfere with the execution of another one. However,
both permissions and isolation mechanisms have shown
weaknesses [10].

In this paper we present a novel multi-level and behavior-
based, malware detector for Android devices called MADAM
(Multi-Level Anomaly Detector for Android Malware). In
particular, to detect app misbehaviors, MADAM moni-

1. http://usa.kaspersky.com/about-us/press-center/press-
releases/kaspersky-lab-and-interpol-survey-reports-60-percent-
android-at

2. http://www.symantec.com/connect/blogs/yet-another-bunch-
malicious-apps-found-google-play
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tors the device actions, its interaction with the user and
the running apps, by retrieving five groups of features
at four different levels of abstraction, namely the kernel-
level, application-level, user-level and package-level. For
some groups of features MADAM applies an anomaly-
based approach, for other groups it implements a signature-
based approach that considers behavioral patterns that we
have derived from known malware misbehaviors. In fact,
MADAM has been designed to detect malicious behavioral-
patterns extracted from several categories of malware. This
multi-level behavioral analysis allows MADAM to detect
misbehaviors typical of almost all malware which can be
found in the wild. MADAM also has shown efficient de-
tection capabilities as it introduces an 1.4% performance
overhead and a 4% battery depletion. Finally, MADAM is
usable because it both requires little-to-none user interaction
and does not impact the user experience due to its efficiency.

MADAM achieves the above goals as follows: (i) it
monitors five groups of Android features, among which
system calls (type and amount) globally issued on the de-
vice, the security relevant API calls, and the user activity, to
detect unusual user and device behavioral patterns; to this
end, it exploits two cooperating proximity-based classifiers
to detect and alert anomalies; (ii) it intercepts and blocks
dangerous actions by detecting specific behavioral patterns
which take into account a set of known security hazard
for the user and the device; (iii) every time a new app is
installed, MADAM assesses its security risk by analyzing
the requested permissions and reputation metadata, such as
user scores and download number, and it inserts the app in
a suspicious list if evaluated as risky.

1.1 Paper Contributions
The contributions of this paper are the following:

• We discuss in detail MADAM, a behavior-based and
multi-level malware detection systems for Android
devices. MADAM detects misbehaviors of Android
apps, stops them and prevents further malicious
actions by removing the responsible app. MADAM
combines several classes of features, from distinct
Android levels, and applies both anomaly-based and
signature based mechanisms.

• We have evaluated the effectiveness of MADAM
against three datasets of malicious apps, namely the
Genome [11], Contagio-Mobile [12], and VirusShare
datasets. Experiments reported a detection accuracy
of 96.9% on a testbed of 2,784 malicious apps, di-
vided in 125 families, spanning from 2010 to 2015.
Results have been compared with the VirusTotal [13]
tool, showing comparable accuracy. MADAM has
also been able to detect 9 malware families which
evade VirusTotal checks, in particular the zero-day
attack Poder [14].

• Extensive tests have been run to assess the false
alarm rate in different real usage conditions. In par-
ticular, MADAM shows a False Positive Rate (FPR)
of 2.8 · 10−5 in normal usage conditions, on a week
of normal device usage. Additional usability tests,
aimed at evaluating the MADAM FPR, have been
performed through the analysis of a set of 9,804

genuine apps. Only 22 apps (0.2%) have been consid-
ered a potential threat at install-time, none of which
was considered harmful during run-time detection.
We have also measured the performance overhead
of MADAM, to estimate the impact on the user
experience and on the battery duration. Experiments
conducted through standard software tools reported
a global performance overhead of 1.4% and of 4% on
the battery duration.

• Furthermore, we propose a behavior-based taxon-
omy of existing Android pieces of malware into
seven classes, used to derive the common patterns
of misbehaviors across the same class.

The main novelty of MADAM is its cross-layer approach,
and a novel integration of techniques (some of which al-
ready existing) that provides high efficacy with low over-
head. MADAM has been conceived to prove that a multi-
level approach makes it possible to dynamically detect
most of current Android malware, right on the device with
limited overhead. To verify that such approach is indeed
viable, a large extensive set of tests have been performed to
prove empirically its efficacy.

The rest of the paper is organized as follows. In Section 2
we propose a new malware classification, which is used
by MADAM to help the detection of known and anoma-
lous behaviors. We also describe the multi-level approach
of MADAM and the Android features that are relevant
to detect misbehaviors from each specific class. In Sect. 3
we thoroughly describe all the components of MADAM
architecture, while in Sect. 4 we detail the algorithm to
detect malware by correlating features with misbehaviors.
Section 5 discusses the detection results on three datasets
including about 2,800 real malicious apps, by also present-
ing the experimental results on false alarm rate and perfor-
mance overhead. Section 6 describes the relevant works in
related field, which are compared with MADAM. Finally,
Section 7 concludes the paper.

2 MADAM APPROACH TO MALWARE DETECTION

In this section we propose a taxonomy of Android malware,
which is used by MADAM to detect, identify and stop
generic classes of misbehaviors.

2.1 MADAM Malware Behavioral Classes
The amount of malicious Android apps and malware fam-
ilies is continuously increasing. In fact, according to [3],
more than ten millions of malicious apps for Android were
available at the end of 2013. More recently, a report for the
first half of 2014 [15] presents an increase consisting of 20
new malware families. Notwithstanding the huge number
of malicious apps and threats, Android malware can be
grouped into a more limited and manageable number of
classes, representative of a specific (malicious) behavior.
For these reasons, we propose the following behavior-based
malware taxonomy (behavioral classes of malware)3:

1) Botnet: malware that open a backdoor on the de-
vice, waiting for commands which can arrive from
an external server or an SMS message.

3. Research proof-of-concepts are not considered in this classification.
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2) Rootkit: malware that perform buffer overflow to
get super user (root) privileges on the device.

3) SMS Trojan: malware that: (i) send SMS messages
stealthily and without the user consent, generally
to subscribe the user to a premium services, or send
spam messages to all of the user contacts; (ii) exploit
authentication mechanism of some bank institutes,
based on SMS messages, to authorize unwanted
transactions (Banking Trojan).

4) Spyware: malware that take pieces of private data
from the mobile device, such as IMEI and IMSI,
contacts, messages or social network account cre-
dentials; an important sub-class is the malware that
take pieces of data from location interfaces and send
them to an external server without the user consent.

5) Installer: malware that install apps with new autho-
rizations to increase the capability of harming the
system.

6) Ransomware: malware that prevent the user from
interacting with the device, by continuously show-
ing a web page asking the user to pay a ransom to
remove the malware, or that encrypt personal files
asking a ransom to retrieve the decryption key.

7) Trojan: any malware whose behavior is not con-
sidered by the previous classes, such as those that
modify or delete data from the device without the
user consent or that infect personal computers when
the device is connected via USB.

Note that some malicious apps may fall in more than one of
these classes. For example, some apps include Rootkits and
also Botnet functionality, or have the ability to install new
apps and to send SMS messages. These eight classes have
been introduced to allow MADAM to categorize different
malware misbehaviors effectively. In fact, each malware
class performs a set of misbehaviors that can be identified
by correlating the analysis of specific features coming from
different levels. This approach is detailed in the following.

2.2 Multi-Level Behavior-Based Feature Analysis
As we have previously underlined, MADAM needs to ana-
lyze different kinds of features, at different levels, to detect
the misbehaviors of the malware behavioral classes. For
this reason, MADAM monitors the Android system at four
levels, and retrieves five groups of features (four at run-time
and one statically).

An exhaustive list of the monitored features is reported
in Table 1. The table reports, for each feature, the cor-
responding Android level, the group of features, its de-
scription, and the misbehavior(s) for which the feature is
used. In particular, at the first level (level I, kernel-level),
MADAM monitors the issued system calls, which describe
the device behavior at the lowest level. In fact, any ac-
tion performed by apps, or by the Android framework,
is eventually translated into a sequence of system calls.
Hence, MADAM intercepts system calls that are considered
critical from the point of view of security, in particular
those related to file operations. The rationale behind this
approach is that MADAM, using these features, detects
misbehaviors related to sudden increase of the system call
occurrences, especially if not motivated by the user activity.

Level Group Feature Description Targeted Misbehavior

Kernel Sys Calls open, read, . . . System calls concerning file and
inter-component communication

Sudden and unmotivated
activity increase

Application SMS Number of SMS
(SMS Num)

Amount and recipient of
outgoing SMS Unsolicited outgoing messages

Application SMS Suspicious SMS
(SMS Susp)

Amount of SMS sent to
recipients not in contacts

Spyware or registration to
premium services

Application Critical API Administrator App Verify if an app attempts
to get admin privileges

Apps which attempt to
take control of the device

Application Critical API New App Installation Verify if an app attempts
to install a new one Unauthorized app installations

Application Critical API Process List Verify if an app generates
high number of processes Buffer overflow (Rootkit) attacks

Application Critical API Critical SysCalls Amount of critical system calls
generated by an app

Apps that access files
and resources in backround

(Spyware, Botnet and Trojan)

Application Critical API SMS Default App Check default
SMS manager Unsolicited outgoing SMS

Application Critical API Foreground App Check which app is
interacting with user

Unsolicited SMS and preventing
user from interacting with
the device (Ransomware)

User User Activity User Presence If the user is interacting
with the device

Unsolicited activities of Spyware,
Botnet, Installer and Rootkit

User User Activity On Call Verify if a phone
call is ongoing

Unsolicited activities of Spyware,
Botnet, Installer and Rootkit

User User Activity Screen On Verify if the device
screen is on

Unsolicited activities of Spyware,
Botnet, Installer and Rootkit

Package App Metadata Permissions requested
(manifest.xml) Riskiness of app Suspicious requests of

dangerous permissions

Package App Metadata Market Info
(User scores, . . .) Popularity of app Trojan

Table 1
MADAM Levels of Analysis and Features

These misbehavior are relevant to detect Rootkits attempting
to perform a buffer overflow attack, and Trojans accessing
user files. MADAM also monitors security relevant critical
API (level II, application-level) which are invoked by the
framework or apps, to perform operations which might be
critical on the security side. Namely, the monitored actions
are: (i) installing a new app, (ii) requesting administrator
privileges (used by malware to acquire a greater control
on device and avoid removal), (iii) generating too many
processes, (iv) constant monitoring on the app that is in
foreground (i.e., the app that is actively interacting with the
user)Monitoring these critical API calls is relevant for detect-
ing misbehaviors related to Ransomware, Spyware, Botnet and
Installer malware. Another relevant group of features at this
level monitored by MADAM is the SMS. In fact, more than
90% of the pieces of malware found in the wild [3] is related
to an improper usage of the SMS functionality, which also
imposes a direct financial cost to the user. The user contact
list is also monitored, to detect behavioral patterns (detailed
in Sect. 3.3) of SMS Trojans.

By monitoring the user activity (level III, user-level)
MADAM is able to understand when the user is (or is not)
interacting with the device, relating these two behavioral
profiles (active or idle) with the device activity. In fact,
when the user is interacting with the phone, the number
of events (both at kernel and application-level) monitored
on the device is generally higher than when the user is not
interacting. This group of features is directly correlated with
the user activity and SMS features to detect misbehaviors
related to Spyware and Botnet, i.e. messages sent when the
user is not active, and Installers, i.e. malware installing apps
being without user interaction. Finally, regarding the static
analysis, MADAM analyzes static app metadata (level IV,
package-level), namely the permissions declared by apps
and reputation metadata, such as rating, marketplace and
download number. These features are used by MADAM
for performing a preliminary risk assessment of the app at
deploy-time. This first evaluation of an app will then be
used by the run-time MADAM framework to determine
which apps need to be monitored for known patterns of
misbehaviors. Note that MADAM, as detailed in Sect. 3.2,
performs also a global monitoring of the Android system
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Figure 1. Architecture of MADAM

which considers the actions executed by all apps.
By correlating through the classifiers a subset of these

features, MADAM is able to discern between normal and
anomalous device behavior and to find the malicious ac-
tions performed by apps. On the other hand, a further
subset of features is exploited by MADAM to detect known
patterns of misbehaviors. The detection algorithm will be
described in Sect. 4. Instead, in the next section, we detail the
MADAM architecture, its components, their interaction and
how MADAM collects, analyzes and correlates the features
at four levels

3 MADAM ARCHITECTURE

To derive the features at the four system levels, and to
detect and prevent a misbehavior, MADAM can be logically
decomposed into four main architectural blocks, which are
depicted in Fig. 1 (in particular, see “Madam Architecture”).
The first one is the App Risk Assessment, which includes
the App Evaluator that implements an analysis of metadata
of an app package (apk) (permission and market data),
before the app is installed on the device. This evaluation
computes the app’s risk score, i.e. the likelihood that the app
is a malware. Based on this risk evaluation, this component
populates a set of suspicious apps (App Suspicious List),
which will be monitored at run-time. The second block is
the Global Monitor, which monitors the device and OS
features at three levels, i.e. kernel (SysCall Monitor), user
(User Activity Monitor) and application (Message Monitor).
These features are monitored regardless of the specific app
or system components generating them, and are used to
shape the current behavior of the device itself. Then, these
behaviors are classified as genuine (normal) or malicious
(anomalous) by the Classifier component. The third block
is the Per-App Monitor, which implements a set of known
behavioral patterns to monitor the actions performed by the
set of suspicious apps (App Suspicious List), generated by the
App Risk Assessment, through the Signature-Based Detector.
Finally, the User Interface & Prevention component in-
cludes the Prevention module, which stops malicious actions
and, in case a malware is found, handles the procedure
for removing malicious apps using the User Interface (UI).

The UI handles notifications to device user, in particular: (i)
the evaluation of the risk score of newly-downloaded apps
by the App Evaluation, (ii) the reporting of malicious app
(Notify) and (iii) to ask the user whether to remove them
(Remove Malicious App). We now describe each architectural
block in detail.

3.1 App Risk Assessment

When a new app is installed on the device (deploy-time),
the App Evaluator component intercepts and hijacks the
installation event. This component analyzes the metadata
of the new app to assess its risk, by retrieving features
from the app package, related to critical operations, and
from the market, related to app reputation. In detail, these
features are: (i) the permissions declared in the manifest, (ii)
the market of provenance, (iii) the total number of downloads,
(iv) the developer reputation and (v) the user rating. The five
parameters are analyzed through a hierarchical algorithm
which returns a decision on the riskiness of the app clas-
sifying it as safe or risky4. Based on this decision, the user
can choose whether to continue the installation (or not) of
the new app. If the user chooses to install a risky app, its
package name is recorded in the MADAM App Suspicious
List and is continuously monitored looking for the known
behavioral patterns. Note that MADAM extracts all these
pieces of information in a process which is totally transpar-
ent to the user. The user can, however, decide whether she
prefers to receive a notification of the decision of the App
Evaluator, or to keep the process invisible. In the following,
we assume that the user chooses the transparent approach
(i.e., new apps are always installed, but inserted into the
App Suspicious List if risky), as to allow MADAM to enforce
security policies on the device. It is worth noting that the
App Evaluator is not a detector of malicious apps. Instead, the
App Evaluator aims at finding apps which are risky, which
should be monitored at run-time by MADAM, improving
the overall performance.

4. We refer the reader to [16] for the full description of the algorithm,
which we have implemented in MADAM with the App Evaluator.
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3.2 Global Monitor
The Global Monitor is at the core of the MADAM framework,
since it is responsible of collecting the run-time device be-
haviors and classifying them as “genuine” or “malicious”. In
MADAM, a behavior is represented through a vector of fea-
tures. For each of them, MADAM records how many times a
specific feature has been used in a period of time Tk. The fea-
tures are extracted from different kinds of dynamic events
(refer to Figure 1, “Features”): User Activity, Critical API
(in particular, SMS, i.e. text messages) and System Call (Sys
Calls). The Actions Logger is the component that records all
these features into a vector, which is then fed to the Classifier.
This component is trained to recognize genuine behaviors
related to normal device usage, and malicious behavioral
patterns deviating from the genuine ones, derived from the
seven classes of malware. The classifier correlates features
from the three monitored levels, and detects misbehaviors
which could pass unnoticed if monitored separately on the
single levels. As we will detail in Sect. 5, the Global Monitor
is effective in detecting malicious behaviors, especially for
SMS Trojan, Rootkit, Installers and Ransomware. For other
behavioral classes of malware, MADAM exploits a set of
known malicious behavioral patterns, discussed in Sect. 3.3.
We now describe each component of the Global Monitor in
detail.

3.2.1 System Call Monitor
The System Call Monitor is used by the Global Monitor to
intercept the system calls reported in Table 2 (first eleven
columns). These system calls are related to file operations
and network access. We have chosen to intercept these
calls because we have observed that the greatest amount
of operations issued on Android, and consequently by
malware, are translated as operations on files at low-level.
To intercept system calls on Android, MADAM exploits
a kernel module to hook the critical system calls through
system call table overriding. The kernel module is loaded
through the insmod command and interacts with the rest
of the MADAM framework through a shared buffer.

3.2.2 User Activity and Message Monitor
The User Activity and Message Monitor allow MADAM to
intercept calls to security relevant API functions, namely
related to SMS messages and user activity. As we have
previously recalled, these features are critical from a security
point of view to detect SMS sent to premium-numbers
and/or without the user knowledge. MADAM hijacks se-
curity relevant methods, by monitoring their actual pa-
rameters and controlling the final outcome of the action.
In particular, MADAM hijacks the SendTextMessage()
and SendDataMessage() methods to control the events of
outgoing SMS messages5. Furthermore, using standard An-
droid APIs, MADAM also verifies (i) if the user is interacting
with the device, (ii) if the device screen is on/off and (iii) if
a phone call is ongoing. These elements are used to assess
when the user is active. In particular, we can categorize the
status of the user as being in one of two possible states (active
or idle), which are strongly dependent on the activity of the
phone itself. In the first user activity state (active) either (i)

5. MADAM exploits the XPosed Framework [17].

the user is actively interacting with the phone and the screen
is on, or (ii) the screen is off but a phone call is ongoing.
In fact, when the user is active, the phone has to show
interactive contents on the screen and receives inputs from
the user, or handles the elements involved in a phone call.
Otherwise, in the second user activity state (idle), the phone
is not active. As far as concerns the monitored features by
MADAM, we note that in the active state a large amount of
system calls is generated. On the contrary, in the idle state, a
low number of system call is generated.

3.2.3 Action Logger and Classifier
Among all the features that MADAM collects, the Action
Logger retrieves 14 features from three classes at three
distinct levels (kernel, application, user). In detail, the
first eleven features concern the system calls related to
file modification and inter-component communication (i.e.,
open, ioctl, brk, read, write, exit, close, sendto,
sendmsg, recvfrom, and recvmsg). To this end, MADAM
implements a time-based representation of the bag of system
calls model [18], in which the monitored system calls are
represented through a vector [f1, . . . , f11], and where each
fj is the number of occurrences of system call fj globally
issued on the device during each interval Tk. The 12-th
feature represents the user activity (idleness), being 1 if
the user is active and 0 otherwise. The feature f13 records
the amount of outgoing SMS messages sent every Tk sec.
Finally, the feature f14 (SMS Susp) represents the amount of
text messages sent to a recipient which is not in the device
contact list. These features are then used to create the vectors
for the two classifiers. As a clarifying example, we have
reported in Table 2 two behavior vectors taking into account
the two user profiles (active and idle).

The feature vector is then fed to two parallel classifier.
The first instance is a short-term classifier with a period
Tk = Tshort sec, whereas the second one constitutes a long-
term monitor with a period Tk = Tlong sec (both values
are configurable at run-time). The cooperation of these
two instances detects different types of misbehaviors, i.e.
different classes of malware. In particular, the short-term
monitor is more effective in detecting “spiky” misbehaviors,
i.e. with sudden, brief and sharp increase of the system call
occurrences (typical of some Rootkits, for instance). On the
other hand, the long-term monitor is aimed at detecting
misbehaviors that distribute their actions constantly in a
long period of time, such as Spyware, i.e. whose effect is
not immediate.

Both classifiers have been trained to recognize a list
(white-list) of real genuine behaviors collected on a real de-
vice (Samsung Galaxy Nexus with Android 4.3) not infected
by any malware. These components act as an anomaly-
based intrusion detection system (IDS) that, by definition,
alerts as anomalies the behaviors which appreciably differs
from the known ones. However, if a classifier is only trained
to recognize genuine behaviors, it will never report any
alert. For this reason, the MADAM classifiers have also been
trained with a set of synthetic (malicious) behaviors which
are appreciably different from the set of genuine ones, but
are not related to a specific malware. The approach allows
MADAM to detect also those classes of malware that are not
associated with a specific signature.
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open ioctl brk read write exit close sendto sendmsg recvfrom recvmsg Idleness SMS Num SMS Susp

6 19 18 1 4 0 7 16 2 2 0 0 0 0
147 652 192 711 4 282 229 7 15 7 13 1 0 0

Table 2
Comparison of Behavior Vectors: User Idle (Top) vs User Active (Bottom)

The usage of computational intelligence (classifiers) and
statistical techniques for intrusion detection is a well-known
approach already exploited on other OSes and for network
analysis [19], [20]. In fact, regardless of the specific environ-
ment, intrusion detection can be modeled as a problem of
binary classification. The binary classification problem for in-
trusion detection can be formally defined as follows. Let us
consider the set of classes Ω = {ω0, ω1}where ω0 is the class
of good behaviors and ω1 is the class of malicious behaviors.
Then, given a behavior B ∈ Rm, B = {f1, . . . , fm}, where
m is the total number of features describing the behavior,
the goal of the classifier is to assign to B the correct class in
Ω, through a function D : Rm → Ω named classifier.

Several classifiers can be used to solve the specific
MADAM classification problem, in which each behavior
vector Bi is composed of m = 14 features (reported in
the heading row of Table 2). Among the classifiers, the K-
NN (K-Nearest Neighbor) [21] is the one that best meets
the MADAM needs for the following reasons: (i) all the m
features describing a behavior in MADAM are numerical;
(ii) since the rationale of MADAM’s classification process is
that an intrusion represents a consistent deviation from the
device normal behavior, then by using numerical features it
is possible to geometrically represent this difference. The
K-NN classifier exploits this geometric representation to
classify behaviors closer to genuine ones as belonging to
class ω0 and the behaviors closer to the malicious ones as
belonging to class ω1. Both the long-term and the short-
term classifier are realized through a K-NN (K-Nearest
Neighbor) classifier, which is a similarity-based classifier, i.e.
it classifies two similar elements as belonging to the same
class. The similarity measure used by the K-NN classifier is
the euclidean distance measured in the features space, i.e.
two elements are considered similar if geometrically close
in the features space [21], [22]. This is computed as:

Similarity(x, y) = −

√√√√ m∑
i=1

(xi − yi)2

where xi and yi are the features of the vectors x and y. If
K = 1, then the case is simply assigned to the class of its
nearest neighbor (the one with the largest similarity).

The similarity-based approach of the K-NN classifier is
well suited with the rationale of the classification problem
of MADAM. In fact, MADAM is trained with known be-
haviors, representing genuine device activities (white list),
and artificially generated malicious behaviors, which are
strongly different (distant) from the known ones. New
behaviors that are similar to the known genuine behav-
iors are considered benign as well. On the other hand,
new behaviors which are closer to the artificial behaviors,
are classified as malicious. To further justify our classi-
fier selection, we have considered other classifiers used

for numerical (quantitative) features, namely Linear Dis-
criminant Classifier (LDC), Quadratic Discriminant Classi-
fier (QDC), Multi-Layer-Perceptron with back-propagation
(MLP), Parzen Classifier (PARZC) and Radial Basis Function
(RBF). All the classifiers have been trained with the same
datasets and the same validation technique. The K-NN
classifier gives the best classification results among all other
classifiers, achieving the max accuracy when k = 1.

3.3 Per-App Monitor
The Per-App Monitor component is complementary to the
Global Monitor since it is aimed at detecting additional,
signature-based, known misbehaviors. The Per-App monitor
is based on a set of known malicious behavioral patterns
which considers the Suspicious App List created by the App
Risk Assessment module, the alerts raised by the classifiers
and a set of features at application-level not considered by
the classifier. The Per-App monitors exploits behavioral pat-
terns which represent suspicious behaviors that have been
inferred by analyzing the behavioral classes of malware at
API level and kernel level. To consider these behavioral pat-
terns, Per-App Monitor constantly monitors three features,
namely: (i) the list of apps with administrator privileges
(Admin Apps in Fig. 1), which are those apps that can access
a specific set of dangerous security relevant API and that
cannot be removed unless the privileges are revoked, (ii) the
SMS default app, which is the app that by default handles the
operations related to text messages and that can be changed
by the user, (iii) the app in foreground, which is the app
currently interacting with the user.

3.3.1 Malicious Behavioral Patterns
We have defined seven malicious behavioral patterns, which
are detected by the Per-App Monitor:

1) “Text messages sent by a non-default message app”. This
pattern aims to detect malware that stealthily send
SMSs (i.e., SMS Trojans, Botnet, Spyware). MADAM
considers as malicious any SMS sent by an app
which is not the default messaging app.

2) “Text messages sent to numbers not in the user contact
list”. This behavioral pattern tackles malware that
attempt to maliciously register to premium services
via SMS (SMS Trojan), or send text to an hardcoded
external number (Spyware, Botnet). When an app,
different from the default messaging app, attempts
to send a text message, MADAM hijacks the action
and verifies if the recipient of the message is in the
contact list. If the recipient is not in the contact list,
the action is considered a misbehavior.

3) “High number of outgoing message per period of time”.
This behavioral pattern aims to detect SMS Tro-
jans which send unsolicited messages to user con-
tacts, e.g. for spam purpose or to drain the user
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credit. Outgoing messages are allowed till the ratio
message per period does not reach a configurable
threshold (default: 5 messages per minute). For
higher values of this ratio, a misbehavior is detected.

4) “High number of process per app”. This behavioral
pattern targets malware that attempt to acquire
root privileges, e.g. through buffer overflow (i.e.,
Rootkit). If the number of processes generated by an
app is higher than a configurable threshold (default:
10 processes per app), the misbehavior is detected.

5) “Excessive foreground time for non interacting and
administrator app”. This behavioral pattern targets
malware which attempt to take exclusive control of
the device (i.e., Ransomware). If an app remains in
foreground for a time longer than a threshold (de-
fault: 30 seconds), without user interaction (user not
present), and the app owns administrator privileges,
the misbehavior is detected.

6) “Unauthorized installation of new apps”. This behav-
ioral pattern tackles malware which attempt to in-
stall other apps on the device without the user
authorization (i.e., Installers).

7) “Unsolicited kernel level activity of background app”.
This behavioral pattern is typical of Botnet, Spyware
and some generic Trojans. If a suspicious app gener-
ates an open, write or sendmsg system call when
is not in foreground, a misbehavior is detected.

Thresholds defined in the behavioral patterns are currently
manually configured, though adding adaptive algorithm for
self-tuning of these thresholds is scheduled as future work.

3.4 User Interface & Prevention
The User Interface & Prevention includes the Prevention mod-
ule that acts as a security enforcement mechanism by block-
ing the detected misbehaviors related to behavioral patterns,
e.g. a SMS being sent without the user authorization. In
such a case, the User Interface (UI) module handles the
process for removing the responsible app. The UI conveys to
the user all the events which require an active interaction,
such as for removing malicious apps, and is also used by
the user to select which behaviors should be blocked or
allowed. Finally, the UI is exploited by the App Evaluator
to communicate to the user the risk score of a new app at
deploy-time. In this case, the user can then decide whether
to continue the installation (or not) of the app.

3.5 Deployment
MADAM comes as a package which contains the MADAM
apk, implementing the User Interface and Prevention Modules,
the App Evaluator, the Per-App Monitor, and Global Monitor.
The MADAM package also contains the Superuser6 apk, for
handling attempts of accessing root privileges (see details
in Section 5), and the X-posed Installer apk, for hooking
and handling events relevant to the Per-App Monitor. When
installed, MADAM deploys a kernel monitoring module,
by issuing the insmod command. This command, and
the X-posed Installer, require root access. For this reason,

6. http://play.google.com/store/apps/details?id=com.noshufou.
android.su

MADAM only runs on rooted devices with a kernel having
module support. Due to these limitations, MADAM has not
been conceived for distribution in the mass market. Rather,
MADAM has been conceived to prove that a multi-level
approach makes it possible to dynamically detect most of
current Android malware, right on the device with limited
overhead. These may constitute incentives for the OS man-
ufacturer to integrate MADAM into the smartphone OS.

4 MADAM DETECTION ALGORITHM

In this section we detail how MADAM exploits the cooper-
ation of the architectural components and the retrieved fea-
tures to detect a misbehavior. In particular, the Per-App Mon-
itor and Global Monitor exploit two distinct sets of features
to detect different misbehaviors, i.e. known (mis)behavioral
patterns and anomalies. Moreover, they also cooperate to
identify more complex misbehaviors whose detection needs
the analysis of features from both components (i.e. Ran-
somware). Once the misbehavior has been detected, security
is enforced by the User Interface & Prevention module, which
stops the misbehavior, notifies the user and removes the
malicious app. Moreover the App Evaluator reduces the like-
lihood of false alarms, focusing the attention of MADAM on
only those apps which effectively bring a risk.

When MADAM starts, the App Evaluator is launched in
background waiting for new apps to be installed, assessing
their risk at deploy-time to populate the App Suspicious List7.
Afterward, the Global Monitor is launched in background,
to retrieve the 14 features and classify the behaviors. This
component either generates an alert or remains silent. In
parallel, the Per-App Monitor is launched to monitor kernel
and API features to detect and stop known behavioral
patterns. To this end, two sets of behavioral patterns are
checked continuously in background by the Signature-based
Detector. The Per-App Monitor blocks the misbehavior by
locating the responsible app in the Suspicious List. The User
Interface & Prevention module kills the app deemed as re-
sponsible, proposing the user to remove it. The User Interface
& Prevention considers as parameters the app suspicious list
generated by the App Evaluator, the alarms generated by
the Global Monitor and Per-App monitor. Before removal, the
misbehaving app and the class of malware are communi-
cated to the user, who takes the final decision on the app
removal.

4.1 Correlating Features and Misbehaviors

We now detail how MADAM correlates the extracted fea-
tures by the App Classifier, Per-App Monitor and Global Mon-
itor to detect and tackle misbehaviors for each malware
behavioral classes. Figure 2 schematically summarizes the
relations between the proposed malware behavioral classes
and the groups of features used by MADAM to detect their
misbehaviors. In detail, Ransomware are detected (i) by
the App Evaluator by monitoring the requested dangerous
permissions needed to take control of the device and (ii)
by the Global Monitor by analyzing the anomalous increase

7. No analysis is performed by the App Evaluator on those apps
installed on the device before installing MADAM.
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in the occurrences of system calls that they cause to pre-
vent the user-device interaction. Moreover, the Ransomware
match the foreground behavioral pattern (the fifth pattern
described in Sec. 3.3.1) verified by the Per-App Monitor. If
the detection conditions are met, the Ransomware is removed
by the User Interface & Prevention Module by deleting app
files and executable (odex). SMS Trojans are pre-filtered by
the App Evaluator due to the SMS-related permissions they
require. If the SMS Trojan is installed, the Global Monitor
detects the anomalous behavior of messages sent when the
user is not active. In addition, the Per-App Monitor exploits
the first three behavioral patterns (Sec. 3.3.1), typical of
SMS Trojans. Also in this case, if the detection conditions
are verified, the SMS is blocked the app is deemed as
malicious and proposed for removal. Furthermore, the UI
alerts the user of messages matching the behavioral patters
even if no alerts have been raised by the Global Monitor.
Most recent Android versions (starting from Android 4.4)
include the possibility to set a default messaging app, which
has the exclusive access to SMS providers, responsible for
writing and reading the Outbox and Inbox message folders.
While such a feature is able to mitigate the action of several
spyware, aimed at reading the messages, it is not effective
against the majority of SMS Trojans, which can send text
messages without leaving traces on the Outbox folder [23].

Rootkits are detected by the cooperation of the Global
Monitor, which notifies sudden increase in the system calls
amount, and the Per-App Monitor, which detects the app
which matches the fourth known behavioral pattern (num-
ber of generated processes). If the Global Monitor raises an
alert, and no app is matching the behavioral pattern, the
alert is ignored. On the other hand, if no alert is raised by the
Global Monitor, even if an app is generating a high number
of process, MADAM can prevent the app from generating
new processes. This decision is given to the user through
the UI. Installer malware are detected through the Per-App
Monitor which considers the unauthorized app installation
as a malicious known behavioral pattern. An app is con-
sidered as not installed by the user when a new package
is added (package added intent) without receiving the user
manual authorization. The action is blocked and notified to
the user who can decide whether to continue the installation
or remove the app deemed as malicious. The misbehaviors
of Installer malware also affect system calls usage and raise
an alert of the Global Monitor. Spyware apps have different
misbehaviors depending on the specific implementation,
which may affect all of the monitored features, spanning
from suspicious permissions to activities (critical API or sys-
tem calls) not related to user activity. Spyware are considered
as risky by the App Evaluator since they include unmotivated
requests of the networking and messaging permissions.
Furthermore, the activity of sending information outside is
detected by the Per-App Monitor through the seventh known
behavioral pattern, and by detecting the activity change not
related to user activity.

Using the same behavioral patterns used to detect Spy-
ware, the Per-App Monitor also detects some Botnet and some
Trojan malware. In particular the Trojan Moghava, which
modifies the user pictures stored on SD Card, is detected by
the Global Monitor due to the periodic system call activity,
not related to user activity. On the other hand Botnet sending

SMS with personal information, sent when they receive
a command from the botmaster, are detected through the
Per-App Monitor through the SMS-related known behavioral
patterns. Moreover, the Global Monitor detects the event of
outgoing message when the user is not active.

Figure 2. Relevant features for the Detection of the Seven Malware
Behavioral Classes

5 RESULTS

This section presents and discusses the extensive set of
experimental tests performed on the MADAM framework.
A first set of experiments evaluates the accuracy of MADAM
in real usage contexts. We report the detection results
performed on two dataset of malicious apps, accounting
more than 1,300 apps and 50 malware families. Note that
when defining the malware behavioral classes, we did not
consider these two datasets. Hence, the apps coming from
these datasets were unknown to MADAM, and can be con-
sidered as zero-day malware. A further set of experiments
has been conducted to assess the amount of false alarms
generated in three different usage contexts. Finally, the im-
pact of MADAM on performance and energy consumption
(see Appendix) has also been evaluated through standard
benchmarking apps.

5.1 Malware Detection Results

To verify the effectiveness of MADAM in detecting mal-
ware, we have extensively tested the framework against
malware coming from four datasets. The whole testbed
accounts about 2,800 applications coming from 125 different
families. Namely the tested database are the following:

• Genome: Genome [11] is a collection of 1,242 mali-
cious Android apps collected in 2010 and 2011. The
apps are divided in 49 malware families that include
almost all malware categories discussed in Sect. 2.2,
namely Botnet, Rootkit, SMS Trojans, Spyware, Installer
and Trojan. The vast majority of genome apps come
from Chinese unofficial marketplaces.

• Contagio Mobile: Contagio Mobile is a blog-like web-
site that collects malware for several mobile OSes.
Differently from Genome, which has several sam-
ples for different pieces of malware, Contagio only
presents few samples (generally one) for each mal-
ware family. Contagio collects malware since 2012,
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including also malicious apps found on Google
Play, which may affect any kind of Android de-
vice, regardless of the nationality. We have tested
MADAM against 18 malware families from the Con-
tagio database.

• VirusShare: VirusShare is a website hosting a database
of malware for several OSes, which also includes
a good share of Android malware. The database
is continuously updated and it is also possible to
retrieve some of the latest threats discovered. We
have used a set of 1,923 malicious apps divided in 90
families, with malware spanning from 2012 to 2015.

Experiments have all been performed on a jailbroken
Samsung Galaxy Nexus running Android stock Jelly
Bean (version 4.3). MADAM’s detection results are reported
in Table 3 and Table 4. The two tables report, starting from
the left column, the name of the analyzed malware families,
the corresponding behavioral class discussed in the previ-
ous sections, the year of first retrieval according to different
sources, e.g. [2] [12] [3], the number of analyzed samples
for each family, and the number of samples detected re-
spectively by MADAM8 and by VirusTotal. VirusTotal [13]
is a web-service for malware static analysis of files and
URLs. When a file is submitted to VirusTotal, the web-
service submits the file to be analyzed by 50-60 well known
anti-virus software, and returns the results of the analysis
for each anti-virus, i.e. either “clean” or the name of the
threat/malware found. The cached mode of VirusTotal has
been used for these experiments, i.e. only the hash of each
app has been submitted. For the sake of representation,
Table 3 and Table 4 reports the VirusTotal majority voting
for each sample, i.e. an app is considered as malicious if the
majority of reports considers the app as a malware.

Malware belonging to the Rootkit category is detected by
the Global Monitor. In fact, we have observed that they cause
strong fluctuations in the number of issued system calls, not
coherent with the current user activity, both if the user is
actively interacting with the device or not. Furthermore, all
Rootkits using the so called “Rage Against The Cage” [24]
technique to perform buffer overflow are detected by the
Per-App Monitor, which observes a large number of forked
processes, belonging to the app. Other rooting attacks,
which attempt to re-write the file system of the sys folder,
and to install the BusyBox tool, are also detected through
system call analysis by the Global and Per-App Monitors.
In fact, the attempt to perform the rewriting and mount
of the sys folder generates a high amount of system call.
Note that some specific rootkits firstly check if the device
has been already rooted. In this case, to tackle this attack,
MADAM includes a third-party utility named Superuser,
which intercepts and blocks any request of accessing to root
privileges. Finally, some rooting malware exploit specific
kernel or OS vulnerabilities, such as the GingerBreak attack,
to gain root privileges. These attacks are effective only
against specific versions of Android, often working only on
a specific device, and are generally fixed through patches
and new system releases. Since these attacks are not general,
MADAM needs to be trained specifically on each device to

8. The MADAM column specifies if the application has been detected
at run-time.

be able to tackle them. Installer malware are blocked as soon
as they try to install a new application. The App Evaluator
intercepts this event regardless of the source, i.e. even if the
installation is requested from a malicious app.

MADAM has been proved totally effective against SMS
Trojans correctly identifying 40 families of malware. We
underline that, normally, Android does not allow the moni-
toring of the event of outgoing text messages sent by an app,
unless the app developer explicitly declares the notification
intent. However, through exploiting an X-Posed module,
MADAM intercepts, controls (extracts text and recipient)
and even blocks outgoing messages if deemed as malicious.
We have analyzed 41 Spyware families. All of them have
been correctly identified as suspicious by the App Evaluator.
However, only 23 families (56% of accuracy on spyware
families) have been detected by MADAM at runtime. We
point out that actions of some Spyware are hard to detect
at run-time, as once they receive the correct authorizations
they perform operations which are legal from a behavioral
point of view and can evade MADAM detection. Moreover,
some non trojanized Spyware apps can be found also on mar-
ketplaces, distributed with the specific purpose of sending
device information to an external server. To this end, the App
Evaluator is able to discern between a trojanized and genuine
app, complementing the capabilities of Global Monitor.

An important class of tested malware is the Ransomware
class, which is a type of malware that became popular in
the last years, especially in Europe [25], where MADAM
has successfully identified the two families in the dataset.
As an example, Koler.c is a Ransomware which, after
installation, asks the user the administrator rights to control
the action of “screen-lock”. Afterward, the Ransomware uses
a background service (watch-dog) to spam every 5 ms a web
page as top activity (current user interface). Therefore, the
user can only interact with the malicious interface, which
also asks the user to pay an amount of money as a ransom
for removing the malware. Moreover, since the app has the
right of device administrator, it is not possible to remove it
programmatically. However, MADAM is able to effectively
contrast the Koler.C malware. At first, the App Evaluator
correctly recognizes the app as suspicious, due to declared
permissions necessary to control the device top activity. If
the user installs the app, the app name is then inserted in
the Suspicious List. Then, MADAM detects a misbehavior at
kernel-level, caused by the high activity of the watch-dog
service. Afterward, MADAM verifies, through the Per-App
Monitor, if the malicious app detains administrator privi-
leges and, in case, removes it, by deleting the corresponding
apk and odex (executable) files. Then, MADAM forces a
reboot of the device, to prevent the user from making the
mistake of paying the ransom. At reboot, the app is not
active anymore and the user is notified of the app removal.

Globally, MADAM has correctly detected 2,700 app sam-
ples out of 2,784, showing an accuracy of 96.9%, which is in
line with the accuracy of VirusTotal, able to identify 2,709
samples (using the majority voting approach). However, it
is worth noting that MADAM has been able to detect 9
malware families which evade VirusTotal checks (shown in
Italic in Tables 3 and 4). In particular, Poder is a recent
malware (SMS Trojan) known to be able to evade most
anti-virus [14], and VirusTotal does not detect it. In these
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Table 3
Detection Results and Comparisons (Part. 1)

Malware Class Year Samples MADAM VirusTotal
Lemon Botnet 2012 6 0 6
MmarketPay Botnet 2012 1 0 1
Basebridge Installer 2011 330 330 330
CrWind Installer 2015 1 1 1
FakeFlash Installer 2012 3 3 3
Gamex Installer 2012 7 7 7
Gapev Installer 2012 7 7 7
Gappusin Installer 2012 58 58 0
Ansca Trojan 2011 1 0 1
Antares Trojan 2012 2 0 2
Faketimer Trojan 2012 16 16 16
Fujacks Trojan 2013 1 0 0
Moghava Trojan 2012 3 3 3
Copycat Ransomware 2014 10 10 10
FoCober Ransomware 2015 13 13 13
Koler.C Ransowmare 2014 7 7 7
AsRoot Rootkit 2011 8 8 8
Coogos Rootkit 2014 8 8 8
Droidrooter Rootkit 2011 3 3 3
DroidCoupon Rootkit 2011 1 1 1
DroidKungFu Rootkit 2011 402 402 402
ExploitLinuxLootor Rootkit 2012 70 70 70
ExploitRageCage Rootkit 2012 1 1 0
Oldboot.b Rootkit 2012 1 1 1
Placms Rootkit 2012 12 12 12
RATC Rootkit 2012 1 1 0
Spyhasb Rootkit 2012 13 13 13
Stiniter Rootkit 2012 1 1 1
YZHC Rootkit 2011 22 22 22
Adsms SMS Trojan 2011 3 3 3
BaseBridge SMS Trojan 2011 122 122 122
BgServ SMS Trojan 2011 9 9 0
BeanBot SMS Trojan 2011 8 8 8
DogoWars SMS Trojan 2011 7 7 7
Dialer SMS Trojan 2012 1 1 1
FakeInstaller SMS Trojan 2013 925 925 925
FakeLogo SMS Trojan 2012 20 20 20
FakeMart SMS Trojan 2013 1 1 1
FakeNotify.B SMS Trojan 2013 1 1 1
FakePlayer SMS Trojan 2010 17 17 17
FakeRegSMS.B SMS Trojan 2013 41 41 37
Foncy SMS Trojan 2012 2 2 2
GGTrack SMS Trojan 2013 5 5 5
GoldenEagle SMS Trojan 2011 1 1 1
Hispo SMS Trojan 2014 3 3 3
Jifake SMS Trojan 2012 29 29 29
Jsmshider SMS Trojan 2012 2 2 2
Mania SMS Trojan 2012 6 6 6
Opfake SMS Trojan 2012 14 14 14
Poder SMS Trojan 2015 1 1 0
Qiscom SMS Trojan 2012 1 1 1
Raden SMS Trojan 2012 10 10 10
Saiva SMS Trojan 2014 2 2 2
Samsapo SMS Trojan 2013 1 1 1
Scavir SMS Trojan 2012 1 1 1
Seaweth SMS Trojan 2012 6 6 6
Selfmite.B SMS Trojan 2013 1 1 1
SerBG SMS Trojan 2013 14 14 14
SingaporeSMSWorm SMS Trojan 2014 1 1 1
SmsSend SMS Trojan 2013 1 1 1
Ssmsp Sms Trojan 2014 1 1 1
Stealer SMS Trojan 2014 14 14 14
TrojanSMS.BoxerAQ SMS Trojan 2012 1 1 1
TrojanSMS.Denofow SMS Trojan 2011 5 5 0
TrojanSMS.Hippo SMS Trojan 2012 13 13 3
TrojanSMS.Stealer SMS Trojan 2014 1 1 1
Updtbot SMS Trojan 2012 1 1 1
Vidro SMS Trojan 2014 5 5 5
XXShenqi SMS Trojan 2014 1 1 1
Zsone SMS Trojan 2011 12 12 12

cases, MADAM detects and stops the misbehavior of the
outgoing SMS message, typical of SMS Trojan. These results
shows how the MADAM approach is a valid and effective
alternative to static signature-based approaches, which are
more accurate against low profile malware whose signature

Table 4
Detection Results and Comparisons (Part 2)

Malware Class Year Samples MADAM VirusTotal
ACNetDoor Spyware 2015 1 0 1
Aks Spyware 2012 5 5 5
Arspam Spyware 2011 1 1 1
Booster Spyware 2014 1 1 1
Cellshark Spyware 2011 1 0 1
Dougalek Spyware 2012 9 0 9
DynSrc Spyware 2013 1 1 0
Fidall Spyware 2012 1 0 1
Flexispy Spyware 2011 2 2 2
GamblerSms Spyware 2011 1 0 1
Gone60 Spyware 2011 9 9 9
GPSSMSSpy Spyware 2011 6 0 6
Kidlogger Spyware 2011 6 6 6
Kmin Spyware 2011 52 52 52
Kiser Spyware 2013 9 9 0
Maistealer Spyware 2012 1 1 1
MobileSpy Spyware 2012 14 0 14
Mobinauten Spyware 2011 8 8 8
Mtracker Spyware 2014 1 1 0
Netisend Spyware 2011 1 0 1
NickySpy Spyware 2011 2 0 2
Plankton Spyware 2011 11 0 11
SndApps Spyware 2011 10 10 10
Spitmo Spyware 2011 11 11 11
Tapsnake Spyware 2011 2 0 2
SMS Replicator Spyware 2013 4 4 4
Sheridroid Spyware 2012 2 0 2
SmForw Spyware 2011 2 2 2
SmsSpy Spyware 2013 1 1 1
SmsZombie Spyware 2012 10 0 10
Spybubble Spyware 2011 3 0 3
Spy.Imlog Spyware 2012 1 1 1
Spyoo Spyware 2012 3 3 3
Tesbo Spyware 2012 1 0 1
Trackplus Spyware 2014 6 0 6
Typstu Spyware 2011 14 14 14
Vdloader Spyware 2011 16 16 16
Walkiwat Spyware 2011 1 1 1
Ycchar Spyware 2012 2 0 2
Ksapp Spyware + Installer 2012 6 6 6
DroidDream Spyware + Rootkit 2011 16 16 16
Gmuse Spyware + Rootkit 2014 3 3 3
zHash Spyware + Rootkit 2011 11 11 11
Dabom SMS Trojan + Installer 2014 2 2 2
Updtkiller SMS Trojan + Installer 2012 1 1 1
Bosm.C SMS Trojan + Installer 2015 1 1 1
Boxer SMS Trojan + Installer 2011 27 27 27
Cawitt SMS Trojan + Spyware 2012 1 1 1
Cosha SMS Trojan + Spyware 2012 10 10 10
Fjcon SMS Trojan + Spyware 2012 4 4 4
MobileTx SMS Trojan + Spyware 2012 69 69 69
Nandrobox SMS Trojan + Spyware 2012 13 13 13
Geinimi SMS Trojan + Botnet 2011 69 69 69
Total - - 2,784 2,700 2,709
Accuracy - - - 96.9% 97.3%

is known, such as those spyware not detected by MADAM.

5.1.1 Evasion and Detection Limitations
First, we note that any behavior-based detection is subject
to poisoning attacks. In the MADAM case, however, an
adversary cannot poison the dataset to confuse the detector,
since it only considers behavioral-classes defined in terms
of malware’s goals. On the other hand, in theory, it is
possible for a smart adversary to execute mimicry attacks
by inserting malicious code into a bening app to evade
MADAM’s detection. We believe that this is a general limit
of any behavior-based intrusion detection system: the goal
of MADAM is more focused in being effective at detecting
real attacks, rather than generic attacks. In fact, existing
evasion attacks, such as mimicry attacks, are more proof-of-
concepts attacks rather than real attacks. Furthermore, we
also note that evading detections is not a trivial task [26],
since the attacker must be able to build a malware whose
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behavior both reaches the goal and does not matches the
MADAM behavioral-class (which is built taking into con-
sideration the goal). In particular, automating such evasion
is not an easy task. However, this is an interesting research
topic that deserves consideration. Finally, note that any mal-
ware, in particular those of the Botnet class, which waits for
external commands is not discovered by MADAM at run-
time until a command is received, i.e. until a misbehaviour
is triggered. Similarly, some samples of malware are not
clearly malware nor potentially-unwanted-programs (PUP),
such as Spyware (an example being the “FarMap” sample),
and also AV companies strive to classify them in one class or
the other. However, in most of the cases, MADAM App Risk
Assessment component signals these apps as “dangerous”.

5.2 Usability Analysis

In this section we analyze the impact of MADAM on user
experience and performance of the device.

5.2.1 False Positives
False positives do not have a direct effect on the security
of the device. However, they are not desirable since alarms
require interaction with the user and become bothersome
if not real. Keeping their number low is thus of capital
importance to ensure usability. We have measured the real
amount of false positives generated with three different
patterns of real device usage. As detailed in the following,
the generated number of false positives, with a normal
device usage, amounts on the average to one per day.

Usability experiments have been conducted on three
devices with three users and different configurations. In the
first experiment, called Light Usage, we tested a Samsung
Galaxy S2 with Android Jelly Bean version 4.2. The device
only installed the native apps except for MADAM. The
user has been instructed to keep the smartphone mainly
in standby, except for performing/receiving phone calls
and/or sending/receiving text messages from the default
messaging app. In the second experiment, called Medium
Usage, we used a Samsung Galaxy Nexus with Android Jelly
Bean version 4.3. The device installed 54 legitimate apps,
including the native ones and MADAM. The user has been
instructed to use the device normally. The user accessed the
Internet on a daily basis, using three instant messaging apps
and two social network apps. He also played daily with a 2D
graphic videogame (Angry Birds Space) and a 3D one
(Temple Run 2), and took several daily pictures with the
smartphone camera. No new apps have been installed by
this user on the device. In the third experiment, called Heavy
Usage, we tested a LG Nexus 4 equipped with Android Kit-
Kat version 4.4. At the beginning of the experiment the de-
vice equipped 52 apps, including MADAM and super-user
manager. The user has been instructed to keep the device
always active (screen always on), interacting with it as much
as possible. The user installed during the experiment 91
new legitimate apps and used gaming apps, camera to take
pictures and record video, in addition to instant messaging,
SMS and phone calls. The experiments lasted for one week,
every day from approximately 10:00 to 21:00, to avoid the
reduction of activity normally caused by the night. Results
are shown in Table 5, which reports the total number of false

positives issued during the three experiments by the two K-
NN classifiers, and the average number per day. The FPR
computed on the amount of monitored events by the two
K-NN classifiers (60 × 60 × 11 × 7 for the short-term and
60× 11× 7 for the long-term).

Table 5
False Alarms Experimental Results

Test FPs FPR FPs/day

Light 3 1 · 10−5 0.5
Medium 8 2.8 · 10−5 1.1
Heavy 75 2.6 · 10−4 10.7

It is worth noting that the number of FP per day no-
ticeably raises with a heavy usage. In particular, a large
number of false positives have been issued contemporary to
the installation of new apps (the user installed 91 legitimate
apps during the week). The event of installation of new
apps is, in fact, computationally heavy and causes a sharp
increase in the amount of issued system calls. However,
the installation of a new app is handled by the package
installer, which is a component of the OS. Hence, MADAM
will only notify a (global) anomaly, without deeming any
app as responsible for the misbehavior. Moreover, MADAM
offers the possibility to handle false positives, allowing the
users to re-train the classifiers, adding the false positives to
the training set, as genuine events. Using this functionality,
the user can train MADAM to learn her own behavior, likely
reducing the amount of issued false positives. As a further
experiments, we have retrained the classifiers adding 5 FPs
from the heavy-usage experiment to the training set and
then we have used the device in the same conditions of the
same experiment. In this test, the average FPs per day have
been reduced to 3. To further reduce the amount of issued
FPs, the user can switch MADAM to the “Training Mode”
using the UI. In this mode, the user will not be notified
of any alarm, and the behaviors deemed as malicious are
immediately added to the classifier training set. Note that
for the K-NN classifier, this operation of adding a new
element to the training set can be done without training
it again from scratch. This feature further motivates our
decision in using the K-NN. However, “Training Mode”
should be used carefully, i.e. the user should be sure that
her device is not infected when activating this mode, to
avoid the risk of training the classifier with malicious be-
havior considered as genuine. Moreover, over-training the
classifier may cause over-fitting with a consequent detection
performance degradation.

An additional set of experiments has been performed by
analyzing a set of 9,804 genuine apps extracted from Google
Play, hence already analyzed and considered genuine by
VirusTotal. This test is aimed at showing that genuine apps
do not affect the FPR, thus the device usability. In this set, 22
out of 9,804 (0.2%) apps have been classified as suspicious
by the App Classifier and inserted in the Suspicious List. After
installation of these apps, no considerable deviation of the
FPR have been observed during this analysis. We have made
available online9 the full list of analyzed good apps with the

9. http://www.android-security.it/madam/goodware app list.xlsx
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features relevant for the App Classifier, and the classification
results.

5.2.2 Performance Overhead
The performance overhead of MADAM has been measured
through a standard benchmark tool, i.e. the Quadrant
Standard Edition app, which is distributed through
Google Play10. Performance tests have been performed on
the same device used for malware detection experiments:
Samsung Galaxy Nexus, CPU dual-core 1.2 GHz Cortex-
A9, RAM 1GB, GPU PowerVR SGX540. The device runs
Android 4.3 Jelly Bean, stock version. Apart from the native
apps, the only apps installed were the super user manager
and the MADAM application.

Table 6 reports the benchmark for the system when
MADAM was running (third column from left, “MADAM”)
and when it was not (second column left, “Vanilla”). The
last column reports the overhead computed as a percentage
overhead between the two performances. Benchmarks are
provided as indexes, where a highest value means a better
performance. Benchmarks reported have been computed
as the average of five experiments, both in “Vanilla” and
“MADAM” configuration. The overhead of MADAM is
caused by both the kernel module, which hijacks system
calls, and a Global Monitor service that runs in background
when the system is active. As shown, the performance
impact of MADAM is acceptable; in fact, the overall per-
formance impact (Total) is 1.4%. It is worth noting that the
stronger impact is on memory (9.4%). This is mainly due
to the chosen classifier. In fact, the K-NN classifier does not
cause heavy load on the CPU. However, the K-NN requires
to continuously keep in memory the whole training set,
which may require a noticeable amount of space [22]. On
the other hand, we note that MADAM has no impact on
2D/3D performances. This was expected, since MADAM
functionalities does not influence the GPU. Furthermore,
the 4% performance degradation on I/O is not perceived
by user, whose experience is not altered [27]. Additional
overhead to be considered is the one introduced by the
App-Evaluator when a new app is installed. This overhead
only affects the user experience once, i.e. when installing a
new app, where the user is already prepared to wait some
seconds for the app to be installed. On three devices, we
measured that on average the App-Evaluator increases by 3
to 7 seconds the app installation phase.

Table 6
Benchmark Tests

Test Vanilla MADAM Overhead

Total 2911 2868 1,4%
CPU 5509 5459 0,9%
Memory 2660 2409 9,4%
I/O 3860 3705 4%
2D 327 327 0%
3D 2250 2250 0 %

5.2.3 Energy Consumption
We have evaluated the battery consumption of MADAM
monitoring the battery depletion over two periods of 24

10. http://play.google.com/store/apps/details?id=com.
aurorasoftworks.quadrant.ui.standard

hours. Results reported an overhead of 4%, which is in
line with the overhead of current antivirus software [28].
Details on this evaluation are reported in Appendix. Finally,
in Tab. 7 we compare the results of MADAM with existing
security framework for Android. In particular, we compare
the overhead, the detection rate, the kind of attacks detected,
if rooting is required, and the kind of performed analysis.

Table 7
Comparison of MADAM Results with Existing Frameworks

System Dynamic/Static Rooting Detection Rate Overhead Attack

MADAM Both Yes 96.9% 1.4% Several Classes of Attacks
TaintDroid [29] Dynamic Custom-ROM N.A. 14% Privacy Leak
Patronus [30] Dynamic Yes 87% 7.1% SMS - Spyware
DroidAnalyzer [31] Static Offline N.A. N.A. Rootkits
DroidSIFT [32] Static Offline (Server) 93% N.A. General
AlterDroid [33] Static Offline 97% N.A. Obfuscated Malware
ASF [34] Dynamic Custom ROM N.A. 2-3 % Access Control

6 RELATED WORK

We can partition the related work in two classes: (i) run-time
monitoring of the events, (ii) static analysis of the code, or
of the medatada, to detect know patterns of misbehaviors.

Run-Time Detection: TaintDroid [29] is a security
framework for Android devices which tracks information
flow to avoid malicious stealing of sensitive information.
Differently from MADAM TaintDroid targets a very specific
class of attacks. Moreover, TaintDroid requires a custom
ROM of the Android system, to implement the information
flow mechanisms. In [30] the authors present Patronus, a
HIPS for Android that can prevent mobile malware intru-
sions and detect malware at run-time. Patronus implements
API hijacking to the binder at client and server side, to
overcome the bypassing of the client-based hooking. The
authors report a total overhead of their tool of 7.1%, while
MADAM is 1.4%. A behavioral analysis of Android apps
at the system call level is presented in [35]. The authors
propose a framework called CopperDroid that discerns good
behaviors from bad ones, by automatically stimulating ma-
licious apps to misbehave through instrumentation. The
analysis of behaviors is automatic, which means that the
behavior of the stimulated app by user interaction is not
considered as in MADAM. Android Security Framework
(ASF) [34] is a generic and extensible security framework for
Android that provides security API to facilitate the inclusion
of security extensions in Android. This approach is orthog-
onal to MADAM: the goal of MADAM is to detect malware,
i.e. anomalies, while ASF is more oriented to the enforce-
ment of policies. The authors of [31] presents a system
which aim at detecting rootkit hidden in trojanized apps.
This framework, DroidAnalyzer, identifies the features which
are typical of rootkits and then looks for them statically in
the code of apps, performing the analysis on an external
server. On the contrary, MADAM performs the analysis
on the mobile device, and is focused on several classes
of malware. MOSES [36] is a policy-based framework that
enforces software isolation of apps (and data) on Android.
MADAM is more focused on malware detection, even if it
allows users to define some high-level policies for apps.

Static Analysis: Alterdroid [33] is a tool that compares
the differences in behavior between an original app and
automatically generated version that contain modifications
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(faults) to detect hidden malware, such as in pictures. Dif-
ferently from MADAM, Alterdroid performs static analysis
and does not target general malware, being not able to
detect pieces of malware that do not hide malicious code
in static resources. [37] proposes a method for malware
detection based on embeddings of function call graphs
in a vector space capturing structural relationship. This
representation is used to detect Android malware using
machine learning techniques by achieving a good accuracy.
Similarly, [32] classifies Android malware via dependency
graphs by extracting a weighted contextual API depen-
dency graph as program semantics to construct feature sets.
These approaches implement a static detection of Android
malware while MADAM implements both static and run-
time analysis. [38] statically analyzes app to derive a set
of features for malware detection at application-level and
evaluates several classifiers for Android apps. MADAM
also analyzes system calls and user activities and classifies
the activities at run-time. Similarly, DREBIN [39] performs
static analysis of Android apps to gather features that are
embedded in a joint vector space, such that typical patterns
indicative for malware can be automatically identified and
used for explaining the decision. An approach similar to
the App Classifier of MADAM is presented in [40], which
proposes to communicate an index assessing the risk level
of an Android application. However, the proposed index
is mainly intended for a comparison between similar apps,
pushing the user to choose the less risky. MADAM, on the
other hand, is specifically targeted at detecting malicious
apps and conveys the risk score to the user to reduce the
chance of installing malware.

Note that this paper largely extends the work presented
in [41]. In particular, the completely novel additions are: (i)
the original Global Monitor has been extended with a module
for static app classification (App Risk Assessment), and a Per-
App Monitor which analyzes and handles the behavior of
specific apps; (ii) we have defined a malware classification
in behavioral classes with feature correlation; (iii) we have
performed a much more extensive experiments for both
detection capability and device usability, also providing a
performance analysis for user experience and for battery
leakage. These updates have allowed us to improve the
detection rate from 93% to 96%, and to reduce the CPU
performance overhead from 7% to 1.4%.

7 CONCLUSION

This paper proposes MADAM, a multi-level host-based
malware detector for Android devices. By analyzing and
correlating several features at four different Android levels,
MADAM is able to detect misbehaviors from malware be-
havioral classes that consider 125 existing malware families,
which encompass most of the known malware. To the best
of our knowledge, MADAM is the first system which aims
at detecting and stopping at run-time any kind of mal-
ware, without focusing on a specific security threat, using
a behavior-based and multi-level approach.
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