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Abstract—Distributed Online Social Networks (DOSNs) have
been proposed to shift the control over user data from a unique
entity, the online social network provider, to the users of the
DOSN themselves. In this paper we focus on the problem of
preserving the privacy of the contents shared to large groups
of users. In general, content privacy is enforced by encrypting
the content, having only authorized parties being able to decrypt
it. When efficiency has to be taken into account, new solutions
have to be devised that: i) minimize the re-encryption of the
contents published in a group when the composition of the group
changes; and, ii) enable a fast distribution of the cryptographic
keys to all the members (n) of a group, each time a set of users
is removed from or added to the group by the group owner.
Current solutions fall short in meeting the above criteria, while
our approach requires only O(d · logd(n)) encryption operations
when a user is removed from a group (where d is an input
parameter of the system), and O(2 · logd(n)) when a user joins
the group. The effectiveness of our approach is evaluated through
simulations based on a real online social network.

Index Terms—Information privacy, Key management, Decen-
tralized Online Social Networks, Group communication

I. INTRODUCTION

A Decentralized Online Social Network (DOSN) [1] is an
Online Social Network (OSN) implemented in a distributed
and decentralized way. Instead of being based on a single
service provider which manages the whole system by storing
all the users’ data, a DOSN consists of a (dynamic) set of
peers, such as a network of trusted servers or a P2P system,
which collaborate to implement the services needed to provide
users with a seamless social network experience. Therefore,
DOSNs shift the control over users’ data from the single OSN
provider to the peers that build up the DOSN (i.e., to the users
these peers belong to), thus solving some usual social network
management issues, such as scalability, operating costs, and
user privacy with respect to the single OSN provider [2], [3].
However, the decentralization of data management introduces
some new issues such as the need for guaranteeing the privacy
of the contents published by DOSNs users with respect to the
other users [4].

Most existing DOSNs (and OSNs in general) enable users
to organize their connections with other users in several
groups, for instance according to the type of relationship (e.g.,
colleagues or school mates) or to their preferences, such as

shared features (e.g., users’ interests or hobbies) [5]. Moreover,
users have the capability to create discussion groups aimed to
link together users who share similar interest on specific topics
(e.g., sport or photography). These groups are dynamic: new
members can be added to the group, and existing members can
be removed at any time by the group owner. Consequently, the
user privacy preferences are based on a group communication
model which requires content delivery from one user (sender)
to one of these (possibly large) groups of friends (receivers).
These privacy preferences must be properly enforced by the
DOSN in order to disclose these contents only to authorized
people. In particular, the peers of the DOSN hosting such
contents could belong to users not allowed to access them
according to the privacy preferences specified by the publish-
ers. For this reason, the solutions adopted by several existing
DOSNs [6]–[9] to guarantee the privacy of the contents are
based on encryption. However, these solutions are affected by
a serious drawback: they are not scalable because the number
of asymmetric encryption operations to be executed to remove
a user from a group is linear on the number of users belonging
to that group, and this could cause a relevant overhead in case
of large groups.

This paper addresses the previous issue by proposing an
enhanced approach for enforcing the user privacy preferences
in a DOSN. This approach improves the current encryption
based mechanisms by exploiting the strength of the Logical
Key Hierarchy model (LKH) [10] for managing the key
for contents encryption. In particular, the main advantage
introduced by the proposed approach is that it enables to
efficiently execute the redistribution of the group keys required
to manage efficiently the dynamism of DOSN user groups in
the case of user removal. An experimental campaign run over
a real data set extracted from Facebook do confirm the quality
and viability of our approach.

A. Motivation and Contribution

In order to enforce content privacy in group communication,
the solutions proposed by current DOSNs ( [6]–[9]) are based
on a scheme where each group is paired to a symmetric group
key which is encrypted with the asymmetric public key of each
member of the group. However, such an approach does not
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scale well for large groups of users due to the overhead intro-
duced by encryption mechanisms in terms of number of keys
that have to be exchanged, number of encryption/decryption
operations, and size of messages sent [11], [12]. Indeed,
whenever a user is removed from or added to a group of users
G, the symmetric group key KG must be changed, and the
new key K ′G must be redistributed to all the current members
of G in order to avoid either the disclosure of new contents to
the removed user or the disclosure of old contents to the added
user. In particular, in the case of removal of a user from G, the
new key K ′G must be encrypted with all the public keys of the
users remaining in G, which requires a number of asymmetric
encryption operation proportional to the group size n and one
message of size n · key size bits (or n messages each of size
key size bits). This is clearly a performance issue because n
can be large, and users can be removed from the group quite
often. For instance, we monitored a number of real Facebook
groups (see Sec. V), and we found out that these groups tend
to have a significantly large number of members (about 9000
members on average) and in some cases there is a high number
of users who leave or join the group simultaneously (e.g., 350
leave and 600 join operations per day).

Starting from the results of our previous work, [13], we
propose a new and more efficient approach based on the Log-
ical Key Hierarchy model (LKH) [10] for managing the group
encryption keys required to guarantee privacy of contents in
DOSNs. With respect to the other works concerning privacy
in DOSNs in the literature, each time a user is removed from a
group of size n, the LKH model based approach: i) reduces the
number of encryption operations from O(n) to O(d · logd(n));
and ii) requires a message of just d · logd(n) ·key size bit for
distributing a new symmetric group key (where d is an input
parameter of the system). Hence, the main contribution of this
paper is the application of the LKH model to preserve content
privacy in the DOSN scenario. The LKH model has been
previously and successfully adopted in other decentralized
scenarios to preserve content privacy, see for instance [14],
[15], and [16]. With respect to our previous work, [13], this
paper introduces several contributions. First of all, we discuss
in more detail the system architecture at the base of our
approach and the data structures used to implement the logical
key hierarchy model. Furthermore, we enhance the proposed
approach defining a strategy for the addition of multiple users
at the same time (see Sec. III) which considerably enhances
the performance of the system. What is more, in this paper
we extensively evaluate our approach using information about
groups taken from real OSNs. In particular, we implemented
a crawler application to retrieve information about different
Facebook groups (see Sec. V), and we studied the temporal
properties of these groups in terms of number of joining and
leaving users. Results obtained from our assessment (see Sec.
VI) clearly indicate that the proposed approach is particularly
suitable for the management of dynamic groups, even in
case of a high numbers of additions and removals of users
from/to the group, because it reduces the number of encryption
operations required to insert or remove a set of users from a
group. Finally, comparison against state of the art show that
our approach outperforms competing solutions.

Fig. 1. A reference architecture of a general-purpose DOSN platform.

B. Structure of the Paper

The rest of the paper is structured as follows. We recall
in Sec. II some background notions related to group-based
communication in existing OSNs, then we describe the general
architecture of a DOSN and the LKH model. In Sec. III
we introduce the core of the paper by describing in details
the approach we propose to efficiently manage group keys,
while we present in Sec. IV the security analysis of such
approach. In Sec. V we perform an analysis of a set of
groups of the Facebook OSN through the data set collected
exploiting the SocialCircles! Facebook application, while in
Sec. VI we exploit the data previously collected to evaluate
the effectiveness and the performance of our approach. In Sec.
VII compare our approach with the ones adopted in current
DOSNs. Finally, in Sec. VIII we conclude the paper and we
discuss some future works.

II. BACKGROUND

A. Group-based communication in OSNs: Use Cases

Most of the popular OSN services available on the Internet
allow their users to organize their friends in groups [17].
Facebook allows its users to create public or private groups
in order to facilitate contents sharing on specific topics and
enabling contents notification. Facebook groups are aimed
to link together users of the network who share particular
interests (such as hobbies, school, work). Public groups can be
joined (or left) by any user of the OSN and contents published
by group members can also be seen by any user, regardless
of whether they are members of the group. Indeed, private
Facebook groups guarantee that contents published in the
group will be disclosed only to the group members. Typically,
any user of the OSN can ask to the group administrator to
join a specific public or private group. The administrator of
the group can accept (or not) the group membership request.
Another popular OSN service is provided by Google Plus,
which allow its users to organize their friends in circles, i.e.,
private group of contacts [18]. One of the most important
source of information exploited by users of Google Plus in
order to define circles are types of relationship (colleagues,
family, acquaintances, etc.) and shared features (users’ inter-
ests or hobbies). In circles, contents can be seen only by the
group members and groups created by a user in his private
social profile do not affect the groups that can be created by
the other users involved in these groups. Private Facebook
groups and Google Plus circles well fit the requirements of
our approach because contents published in such groups can
be seen only by group members. Instead, for public Facebook
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TABLE I
TABLE OF NOTATION

Symbol Description
G Group of users

KT(d,h,G) Key-tree of a group G
d Max degree of a node
h Height of thes key tree
n Group size
m Number of contents in the group
w Number of users who join/leave a group
vhui

Leaf paired to the user ui ∈ G of the key tree
v0ui

Root of the key tree
v1,...,h−1
ui

Intermediate nodes of the key tree
idtui

node id of the node vtui
where t = 0, . . . , h

Kt
ui

symmetric key of the node vtui
where t = 0, . . . , h

KG symmetric group key
(Pu

+, Pu
−) Individual asymmetric key-pair of user u

[o]k encryption of data o with key k

groups, it does not make sense to ensure confidentiality of the
contents published by group members, since they can be seen
by all the OSN’s users.

B. A general DOSN reference architecture

A Decentralized Online Social Network is an OSN im-
plemented on a distributed platform relying on cooperation
among a number of independent parties who are also users of
the OSNs, such as a P2P network [1]. In contrast to centralized
OSNs where the service provider takes control of user data,
DOSNs are based on a decentralized architecture where the
set of users’ peers that are connected to the system participate
in processing, and memory intensive tasks. In recent years, re-
searchers and open source communities, have proposed several
DOSNs. However, some studies, [1], analysed current DOSNs
infrastructures by showing that the related architectures do not
change much among the different solutions.

Without limiting ourselves to a specific DOSN implemen-
tation, we describe our context by considering a simplified
version of the general DOSN reference architecture proposed
by Datta et al. [1]. Therefore, we design our solution so that it
can be hosted by any DOSN which complies with the reference
architecture. Figure 1 provides an overview of the different
layers which compose the proposed architecture. The DOSN
service layer implements higher-level functionalities that are
provided by contemporary online social networking services,
such as profile management, friendship management, group
administration and private communication.

The DOSN infrastructure layer provides the core function-
alities to support the services at the DOSN services layer.
One of the core mechanisms provided by this level is the
distributed storage. Indeed, users’ data are kept available in
some way, e.g., by exploiting external storage systems (such
as Diaspora [19]), structured P2P overlay (such as Pastry [20],
Kademlia [21], etc.), or unstructured P2P overlay (such as
Gnutella [22] and BitTorrent [23]). Since the most part of
the DOSNs organize their peers exploiting a Distributed Hash
Table [24] (DHT), we define our approach by focusing on
DHT-based DOSNs (such as [7], [8], [25]). A DHT supports
the standard get and put operations which allow to retrieve

Fig. 2. The general structure of a Key Tree KT (d, h, n).

and to store data by exploiting the Key-based Routing (KBR)
[26]. In KBR, a content is stored on (or retrieved from) peers
by using the identifier of the content (or content key). The
data availability mechanisms of the DHT [27], [28], which are
mainly based on replication, ensure that contents are always
stored on some peer.

Since users can disconnect from the network at any time, the
exchange of messages between them is supported by a mail
box service implemented exploiting the DHT. In particular,
each user u is paired to a private mailbox object which
supports an append operation and allows the other users
to append new (encrypted) messages (such as notifications
or private messages). The private mailbox object is stored
and kept available from the DHT, so that users can receive
messages even if they are disconnected from the system. Since
the contents published by users of the DOSNs are usually
intended for a specific group of users only, they must be
kept secure and confidential when stored by the allocation
mechanism. The typical solution adopted by current DOSNs
in order to protect the confidentiality of the published contents
is based on symmetric and/or asymmetric cryptography.

Finally, we assume that each user of the DOSN connects
to the system by using his peer and there is a one-to-one
mapping between users and peers (therefore we refer to them
interchangeably as peers or users). In addition, each user u of
the DOSN has an individual asymmetric key-pair (Pu

+, P
u
−),

and a certificate C including his public key Pu
+ released by a

trusted authority. Whenever a new friendship relation is estab-
lished between two users of the DOSN, these users exchange
their certificates including their individual asymmetric public
keys.

C. The Logical Key Hierarchy (LKH) model

The LKH model exploits the hierarchical properties of tree
data structures in order to reduce the number of rekeying
needed when a member is removed from a group. In the
LKH model [10], a group G of n users U = {u1, . . . , un}
is represented by a d-ary tree KT (d, h,G) (called Key-Tree)
where d is the maximum number of children that a node of
the tree can have, while h ≈ logd(n) is the current height of
the tree. Hence, we say that the root is on level 0, while leaves
are at the same level h.
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Fig. 3. Overview of the different data structures created by our group management approach for the creation of a group G with three initial members (U1,U2,
and U3), shown in Fig. 4. The leaves of the key tree KU1,KU2, and KU3 are delivered individually to each member Ui by exploiting the private mailbox
of Ui while other nodes are stored in the message list of the Group Descriptor.

We assume that the group size is less or equal to the maximum
number of leaves in the tree (i.e., n ≤ dh) and that each node
of the tree is defined by a pair (id, k), where id is the identifier
of the node in the tree and k is a symmetric encryption key
linked to the node. The symmetric key paired with the root of
the key-tree is named symmetric group key KG of the group G.
Furthermore, each user ui of the group G is paired with a leaf
vui of the key tree, such that vui = (idui ,Kui), where Kui is
called symmetric individual key of user ui. Since KT (d, h,G)
has the leaves paired to the users of the group at the same level
h of the tree, we use term vhui

= (idhui
,Kh

ui
) to refer each of

them. In a similar way, we indicate the nodes on the downward
path from the root of the key tree to the leaf of the user ui

with v0ui
, . . . , vh−1ui

, vhui
where v0ui

= (id0ui
,K0

ui
) is the root

of the tree (see Figure 2). It is worth noting that the root v0ui

of the key tree related to user ui, is the same for all the users
of G, i.e., id01 = · · · = id0n−1 = id0n and the symmetric group
key KG = K0

u1
= · · · = K0

un−1
= K0

un
. The symmetric keys

K1
ui
, . . . ,Kh−1

ui
paired with the intermediate nodes of the key

tree (i.e., v1ui
, . . . , vh−1ui

) are named symmetric intermediate
keys. Figure 2 shows the key tree generated for a group of n
users {u1, . . . , un}. In this example, leaf nodes corresponding
to users u1 and u2 are children of the same parent node having
symmetric intermediate key Kh−1

u1
= Kh−1

u2
. Indeed, sibling

nodes vhu1
and vhu2

at level h of the tree share the same path
to the root, i.e., vh−1u1

= vh−1u2
, vh−2u1

= vh−2u2
, · · ·, v0u1

= v0u2
.

We exploit the properties of LKH model in order to reduce
the overhead required during the group establishment.

III. PRIVACY-PRESERVING GROUP MANAGEMENT

As previously explained, most DOSNs preserve content
privacy by enabling their users to organize their social contacts
in groups and to choose which of these groups are allowed
to access each of the contents they publish. In this paper
we follow this approach, and the privacy preserving group
management we propose is based on the reference architecture
described in Sec. II-B. To keep track of the different groups in
the system, each group G created by a user o (referred as group
owner) is uniquely identified by a group id. For each content
he publishes, the user defines the related privacy setting, i.e.,
the user decides the groups of users which can access the con-
tents. These settings must be properly enforced by the DOSN
system by ensuring that: i) only group members can access
the contents published for that group, ii) new group members

cannot access the contents previously published for the group
(backward secrecy), and iii) members removed from the group
cannot access new contents that will be published for that
group (forward secrecy). Each group is paired with a Group
Descriptor object: a data structure that stores the information
about the group. In particular, the Group Descriptor contains
the group id, the group owner id, and a message list which is
used by the group owner for exchanging notification messages
with the group members. The Group Descriptor is stored and
kept available by the DHT and the unique group id is used
as DHT key in order to locate it. Each notification message
stored in the message list of the Group Descriptor is identified
by an incremental message id which is generated by the group
owner. The secure distribution of the new group keys to the
group members is implemented by exploiting both the message
list of the Group Descriptor and the private mailbox service
provided by the DOSN architecture. In particular, each user
is paired to a private Mail Box object which is used to notify
the user about new group memberships, while the message
list of the Group Descriptor provides him the data required to
retrieve the related symmetric group key(s), i.e., to join the
group.

A. Group creation
When a group G is created, the group owner selects the

initial set of n users who belong to G and creates the related
key-tree KT (d, h,G) of height h ≈ logd(n), where each
group member corresponds to a leaf (as defined in Sec. II-C).
The group owner generates i) an individual symmetric key Kh

ui

for each user ui of the group (i.e., for each leaf of the tree),
ii) a symmetric group key KG for the root of the tree, and
iii) an intermediate symmetric key K1

ui
, . . . ,Kh−1

ui
for each

internal node of KT (d, h,G). The group owner o selects a
unique identifier (group id) and creates a Group Descriptor
object for the group G. For example, a key-tree corresponding
to a group of three users {u1, u2, u3} is shown in Fig. 4
while the data structures and messages involved in the group
creation are shown in Fig. 3. The list of the identities of the
group members (member list), along with the key-tree of the
group G, are stored on the peer of the group owner o because
they are used by o to manage the group. The group owner
sends to each group member ui the id of the new group along
with the leaf vhui

= (idhui
,Kh

ui
) paired with ui, where idhui

represents the id paired with the leaf and Kh
ui

is the individual
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Fig. 4. Addition/removal of user U4 to/from the key tree KT (2, 2, G)

symmetric key paired with ui. In particular, the group owner
securely delivers the leaf vhui

individually to each member ui

by creating a private message < [group id, vhui
]Pui

+
> which

contains both the group id and the leaf node vhui
encrypted

with the public key Pui
+ of ui. Finally, o stores this message

on the private mail box of ui, which is implemented exploiting
the DHT as well. The remaining nodes of the key tree (i.e.,
the nodes that are not leaves) are delivered to all the users of
the groups by exploiting the Group Descriptor of G and the
key-tree structure. Hence, the group owner encrypts iteratively
each node vlui

of the key-tree with the symmetric keys paired
to its children nodes (at level l + 1). Specifically, the group
owner creates the pair < idl+1

ui
, [vlui

]Kl+1
ui

>, where idl+1
ui

is
the identifier of the node whose symmetric key Kl+1

ui
has been

used to encrypt the node vlui
, ∀l ∈ {h− 1, . . . , 1, 0}. In order

to deliver these pairs to the group members, the group owner
creates a Group Init Notification Message which contains all
the pairs previously defined, and this message is stored in the
Message List of the Group Descriptor.

In this way, each group member ui retrieves his own leaf
node vhui

from the private messages of his mail box on the
DHT, decrypts it with his private key Pui

− and obtains the id
of the new group G, and his individual symmetric key Kh

ui

for G. Finally, the user ui finds in the message list of the
Group Descriptor the nodes vh−1ui

, · · · , v1ui
, v0ui

and iteratively
decrypts each of them by using the symmetric key obtained
for nodes vhui

, · · · v2ui
, v1ui

, respectively. Each group member
stores a copy of these nodes (and of the related keys) on
his local peer. It is worth to note that each group member
uses the asymmetric schema only to obtain his individual
symmetric key paired to the leave while the remaining h keys
are decrypted by using a symmetric schema.

Integrity and authenticity of the messages exchanged by the
privacy preserving group management system can be ensured
by using a digital signature [8], [29]. The standard way to
provide integrity and authenticity for a user o on the message
m is to compute a message digest function h(m) on the
message m (such as SHA or MD5) and to sign the message
digest h(m) with the private key of P o

−. However, we do not
focus on these aspects in this paper.

B. Join

1) Adding one user to a group: Each time the group owner
o adds a new user a to the group G, o must change the group
key in order to secure past group communications from the
joining user (backward secrecy). The group owner o creates
a new leaf node vha for the new member a (along with the
individual symmetric key of a, K̂h

a ) and adds vha to the key
tree KT (d, h,G) stored on his local peer. Then, for each node
v0a, . . . , v

h−1
a on the path from the root to the joining node,

o creates a new symmetric key K̂l
a where 0 ≤ l < h. In

particular, o creates a new group key, K̂0
a , which is paired to

the root of KT (d, h,G). Fig. 4 shows the changes performed
by the group owner on the key tree in order to add the user u4

to the group. The new symmetric keys must be communicated
both to the joining user a and to the old group members. For
the joining user a, the group owner creates a private message
< [group id, vha ]Pa

+
, [v0a, . . . , v

h−1
a ]K̂h

a
> which contains both

the group id and the leaf node vha = (idha , K̂
h
a ) of user a

encrypted with its public key P a
+ and the new symmetric keys

along the path v0a, . . . , v
h−1
a encrypted with the symmetric

individual key K̂h
a of the new user. Finally, o stores this

message on the private mail box of the joining user a.
The group owner must notify the old members of the group

of the new symmetric keys K̂l
a which replaced the previous

ones on the nodes vla (where 0 ≤ l < h) on the path from the
root to the leaf representing a. To this aim, the group owner
creates a Group Join Notification Message, which, for each
node vla (where 0 ≤ l < h ), contains the pair < idla, [v

l
a]Kl

a
>,

where each [vla] includes also the new symmetric key K̂l
a and

it is encrypted with its old symmetric key Kl
a. The Group

Join Notification Message is stored in the Message List of the
Group Descriptor of G on the DHT.

The joining member a retrieves the leaf node paired to
him, vha , along with the nodes v0a, . . . , v

h−1
a from his private

mail box, decrypts vha with its private key P a
−, obtaining its

individual symmetric key K̂h
a . Then, he uses K̂h

a to decrypt
the nodes v0a, . . . , v

h−1
a . The old group members retrieve the

new join notification message from the Message List of the
Group Descriptor and they decrypt from this message the
nodes they need exploiting the old symmetric keys paired to
the same nodes. Finally, the old group members store the new
nodes (including the new keys) on their local peers. Note that
this rekeying strategy reduces the size of the join notification
messages, since they contain only the updated nodes for the
old members of the group.

Optionally, the backward secrecy can be disabled by allow-
ing new members to see past communications in the group. In
this case, the group key must not be changed because of the
join of a user and the rekeying procedure can be avoided.

2) Adding multiple users to a group: In some scenarios,
the group owner decides to add multiple users to a group at
the same time. To deal with these scenarios, we define an im-
proved strategy which strongly affects the system performance
by further reducing the number of encryption/decryption op-
erations performed by the group owner and by the other
members of the group. For instance, if we adopt the strategy
defined in Sec. III-B1 to add a set of w users to a group of size
n, the resulting number of encryption operations performed
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Fig. 5. Addition of users U5, U6, and U7 to the key tree KT (3, 2, G)

by the group owner is equal to (h+ 1) · w + (dh − 1) where
(h+1) ·w encryption operations are required to send the h+1
keys to the new w users while dh − 1 encryption operations
are necessary to notify the refreshed intermediate nodes of
the key tree to the existing users. Hence, in order to reduce
the number of encryption/decryption operations, we define an
insertion strategy that places the leaves of the joining users
as much as possible in the same subtree in order to reduce
the number of nodes of the key-tree that must be updated. In
particular, the proposed strategy performs a breadth-first search
by visiting the nodes vla at level l = 0, 1, ·h − 1 of the key
tree and tries to insert a subtree accommodating the maximum
number of joining users on each visited node. Initially, the
group owner o creates a leaf node vha for the each joining user
w (along with his individual symmetric key). The group owner
o inspects the nodes of the key tree on each level l, starting
from the node at level 0 (i.e., the root node) downward to
nodes at level h − 1 (i.e., the fathers of the leaves). On each
visited node the group owner inserts the maximum number
of leaves corresponding to the joining users. Note that each
visited node vla at level l on the key tree can accommodate
a maximum number of leaves equals to dl − s, where d is
the maximum degree of a node and s is the current number of
leaves that are on the subtree rooted in vla. Indeed, nodes at the
highest level of the tree are initially considered for the insertion
of new leaves corresponding to the joining users because they
can accommodate an higher number of leaves.

Fig. 5 shows the changes performed by the group owner on
the key tree KT (3, 2, G) in order to add the users u5, u6, and
u7 to a group G consisting of 4 users u1, u2, u3, and u4. The
root node is initially considered for insertion and, since it has
two children only, it can accommodate another child, the root
of a subtree consisting of three leaves, which can be used to
add the users u5, u6, and u7 to the key tree.

The group owner o creates a new symmetric key for each
node on the path from the root to the joining nodes. These
new symmetric keys must be communicated to the joining
users and to the old group members. For each new leaf, i.e.,
joining user a, the group owner creates a private message <
[group id, vha ]Pa

+
>, which contains both the group id and the

leaf node vha = (idha , K̂
h
a ) of user a encrypted with its public

key P a
+. Finally, o stores this message on the private mail box

of each joining user a. The group owner must notify the new
symmetric keys on the updated nodes as well as the new nodes
to all the members of the group. To this aim, the group owner

o creates a Group Join Notification Message, and inspect each
node vla (where 0 ≤ l < h ) of the key tree. In case of vla is a
new node of the tree, the group owner o encrypts vla with the
symmetric key of each children node vl+1

a at level l + 1 by
creating the pair < idl+1

a , [vla]Kl+1
a

>, where vla is encrypted
with the symmetric key Kl+1

a of the node identified by idl+1
a .

In case of vla is a old node of the tree that has been changed,
the group owner o encrypts vla both with the symmetric key
of each new children node a at level l + 1 by creating the
pair < idl+1

a , [vla]Kl+1
a

>, and also with its old symmetric
key Kl

a by creating the pair < idla, [v
l
a]Kl

a
>. The Group Join

Notification Message is stored in the message list of the Group
Descriptor of G on the DHT.

The joining member a retrieves the leaf node paired to him,
i.e., vha from his private mail box, decrypts vha with its private
key P a

−, obtaining its individual symmetric key K̂h
a . In turn,

it uses K̂h
a to decrypt, iteratively, each node along the path

toward the root v0a, . . . , v
h−1
a . Old members of the group are

able to retrieve decrypt the nodes stored in this notification
message with the old symmetric keys paired to the same nodes
which are stored on their peers. Finally, each old member
stores the new nodes (including the new keys) on his local
peer.

C. Eviction

1) Removing one user from a group: In order to remove a
member u from the group G, the group owner o deletes the
leaf node vhu corresponding to u from the key tree KT (d, h,G)
stored on his local peer and creates a new symmetric key K̂l

u

(where 0 ≤ l < h) for each node on the upwards path from the
father node of vhu to the root of the key tree, i.e., vh−1u , . . . , v0u.
These new symmetric keys (which also includes the new group
key) are notified to the users left in G by exploiting the Group
Descriptor. For instance, to remove the user u4 of the key tree
represented in Fig. 4, the group owner has to change all the
keys on the path from the root to the father of the removed leaf
(i.e., K34 and K1234). The old symmetric keys on this path
are no longer considered during the process, and they cannot
be exploited to encrypt the new symmetric keys because the
removed user knows them. Hence, for each node vlu (where
0 ≤ l < h) on the upwards path vh−1u , . . . , v0u (starting from
the father vh−1u of the removed leaf vhu up to the root of the
tree), the group owner encrypts vlu with the new symmetric
key of the updated child node vl+1

u and with the symmetric
keys of any of the other children node vl+1

a , a 6= u at level
l + 1. For each of the encrypted node vlu, the group owner
creates the pair < idl+1

a , [vlu]Kl+1
a

>, where vlu is encrypted
with the symmetric key Kl+1

a of the node identified by idl+1
a .

The group owner creates a Group Leave Notification Mes-
sage which contains the generated pairs and stores it in the
Message List of the Group Descriptor of G. Each member
u of G retrieves the new Group Leave Notification Message
from the Group Descriptor of G, and he uses the key cor-
responding to the node id to decrypt, individually, the nodes
[vh−1u ], . . . , [v0u], thus obtaining the new group key.

2) Removing multiple users from a group: For the case of
multiple users removal, we don’t define a dedicated rekeying
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strategy, because the leaves to be removed can be located at
arbitrary position of the key tree. As a result, the removal of
multiple users can be performed by deleting, one at a time,
each leaf of the key tree corresponding to a removed user.
Afterwards, the nodes of the key tree that have been updated
must be securely notified to the remaining members of the
group by means of a Leave Notification Message, as described
in Sec. III-C1. The key tree resulting after the removal of
multiple users could be not perfectly balanced and this could
lead to a degradation of the performance of the algorithm.
However, future additions of new users to the group can solve
this problem. Alternatively, a rebalancing of the key tree could
be performed.

D. Publishing and retrieving contents

When a user o publishes a content c, o selects the groups
Gj whose members can access the content c and creates a
new symmetric key Kc for c, which is used to encrypt the
content c. To allow authorized users of the groups Gj to get
the symmetric content key Kc, o encrypts the key Kc with the
current version of the group key, KGj , obtaining [Kc]KGj

.
As previously described, due to the addition or removal of
users from a group G, the symmetric group key KGj

changes
over time, and group members must be informed about which
version of the group key must be used to decrypt c. To solve
this problem, we pair each symmetric group key KGj with a
key version number VGj

. Whenever a user is added/removed
to/from the group, the group owner o refreshes the group key
K ′Gj

and generates a new key version V ′Gj
for it. The user o

stores the tuple < o,Gj , VGj
, [c]Kc

, [Kc]KGj
> on the DHT,

in the right place (i.e., by properly linking it to his profile).
Note that the content c is encrypted only once with a new
key Kc (insted of using KGj ), while the key Kc is encrypted
repeatedly with the group key KGj of each group Gj . This
allows to reduce the amount of data to be encrypted when
a content is shared to several groups because the size of the
content c is typically larger than the size of the key Kc. Users
who are interested to access these contents are able to retrieve
the encrypted content c, along with the key Kc encrypted with
the group key of the authorized group. Indeed, if a generic
user u belongs to one of these groups, say G, he/she has the
group key KG stored in his local memory (along with its key
version) and can obtain the symmetric key for the content c
by exploiting both the symmetric group key paired KG and
the related key version. Whenever a user’s peer u joins the
DOSN, it has to retrieve from the DHT its social contacts
along with the Group Descriptors of the groups created by u.
For each Group Descriptor GD, the group owner u decrypts
the encrypted fields using KG (and eventually, u can verify the
signature to ensure the integrity and authenticity of the object).
Finally, whenever a content c is modified by the content owner,
it must be re-encrypted only with the content key Kc so that
authorized users can access the new version of the content.

IV. SECURITY ANALYSIS

This section presents the security analysis of the approach
we proposed in Sec. III. This approach can be adopted to

improve the performance of existing DOSNs where the privacy
model is group based and the privacy preferences enforcement
is implemented exploiting encryption. Hence, since we rely
on an existing DOSN, we focus our security analysis on the
novelties introduced by the approach we proposed, and we
assume that all the other aspects are secure.

A. Security requirements

The proposed approach is aimed at protecting the data
published by DOSN users in their profiles, e.g., posts (text,
photo, etc.), user information (email address, interests, etc.)
and friend relationships. In particular, the proposed approach
must guarantee the following security requirements:
• Group confidentiality: only the members of a group must

able to access the contents published in such group;
• Backward secrecy: every time a new user is added to a

group G, the scheme must ensure that the new member
cannot access the contents previously posted in G;

• Forward secrecy: when an existing member is removed
from a group G, the scheme must prevent the leaving
member from accessing the new contents that will be
posted to G;

Other relevant security requirements of DOSNs are content
integrity and availability (e.g., protection against denial-of-
service attacks that might occur in DOSNs). However, in
this paper we don’t focus on those requirements, supposing
to adopt standard countermeasures to tackle with them, such
as the ones adopted by popular DOSNs, e.g., [6], [25], [29].
For instance, the integrity of the contents and messages in
the Message List of the Group Descriptor or in the private
Mailboxs of users are protected by using cryptographic hash
functions and the hash of the object (message or content) is
signed by the user who published it exploiting his private
key. Moreover, each message includes a proper physical or
logical timestamp (or nonce) to detect messages which has
been reordered, and copied from somewhere else [30].

B. Adversary Model

The adversaries we consider in our analysis can be either
internal or external. Internal adversaries are users registered
to the DOSN who belong to a group G, who have been
added to G, or who have been removed from G. Instead,
external adversaries are attackers who have never belonged
to G and they could belong or not to the DOSN. We assume
that adversaries are able to intercept and read any message
exchanged between any pair of peers. In addition, they can
modify or delete the messages exchanged among peers and
they can behave as active adversary by sending new messages
to the peers. Finally, we assume that they can read or modify
everything stored on the DHT, but they cannot read or modify
what is stored on the private nodes of the users, such as the
personal (asymmetric) key, and the local copies of the key
trees.

C. Security analysis

In this section we prove the security features provided by
the proposed scheme with respect to the security requirements
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outlined previously. Since we exploited cryptographic mech-
anisms to protect the contents, the security of the proposed
schema depends on the security properties of such asymmetric
and symmetric cryptographic mechanisms. For these reasons,
we assume to adopt proper encryption techniques and proper
configuration parameters to ensure a good security against
known attacks, such as differential cryptanalysis or brute force
techniques to recover plain text from ciphertext. We also
assume that DOSN users do not disclose their credentials
(such as Group symmetric keys, intermediate keys, asymmetric
personal keys, or other passwords). Traitor tracing schemes
could be adopted to discourage such illegitimate behaviors.

1) Communications: The approach we propose does not
perform explicit communications among the peers of the
DOSN. In fact, our approach exploits the DHT to implement
asynchronous data exchange among the peers of the DOSN.
The main advantage of this choice is that the data exchange
can be performed even when the receiver is not online. Hence,
the management of real communications over the network
is delegated to the DHT platform. We assume to adopt a
DHT which provides a proper security support to guarantee
communications confidentiality, integrity and authentication.

2) Contents: Any attacker (either internal or external) can
read the contents published by DOSN users, because they are
stored on the DHT. These contents are encrypted with the
symmetric group keys of the groups allowed to read them. Let
C be a content and G a group allowed to read it. The DOSN
users who belong to G when C was published hold the right
to access C, hence they cannot be considered as attackers.

a) Group Confidentiality: We discuss here the confi-
dentiality with respect to external attackers, while internal
attackers will be discussed in Sec. IV-C2b and IV-C2c. Since
we supposed that the attacker cannot break the ciphertext of
the content C, the attacker must obtain KG to decipher it and
obtain the plaintext of C. A copy of KG is stored on the private
nodes of the users belonging to G, but we supposed that the
attacker cannot access the private nodes of the users. Another
copy is stored in a message of the Group Descriptor of G
which, in turn, is stored on the DHT. This message could be
either a Group Init Notification Message, if C was encrypted
exploiting the first version of the symmetric group key, or
a user join/leave message, if C was encrypted exploiting a
subsequent version of the symmetric group key. In Sec. IV-C3
we show that the symmetric group key of a group cannot be
retrieved from the related Group Descriptor.

b) Backward Secrecy: As shown in Sec. III-B, a new user
a can be added to an existing group G when some contents,
e.g., C, have been already published for the users in G. The
confidentiality with respect to users who have been added to G
after the creation of C (thus being an internal attacker) is called
backward secrecy. Let Ki

G the i−th version of the symmetric
group key of group G produced when a was added to G. The
attacker can read C from the DHT, but C is encrypted with
a previous version of the symmetric group key, Kj

G, where
j < i. Consequently, the attacker cannot decrypt C exploiting
the group keys he holds, i.e., Ki

G and the subsequent ones.
Hence, the attacker should try to steal the previous version of
the key, Kj

G. A copy of Kj
G is stored on the private nodes

of the users who have the right to read C, but the attacker
cannot steal this copy because we supposed that he cannot
access the private nodes of DOSN users. Another copy of Kj

G

is embedded in the message stored in the Group Descriptor
where Kj

G was created, but the security analysis of the Group
descriptor shown in Sec. IV-C3 proves that this copy cannot
be retrieved by the attacker as well.

c) Forward Secrecy: Sec. III-C has shown that an user a
can be removed from an existing group G. The confidentiality
with respect to users who have been removed from G before
the creation of a content C is called forward secrecy. In this
case a could be an internal attacker, because he should not see
the contents that will be published for the remaining members
of G after his removal. Let Ki

G be the symmetric group key of
group G produced when a was removed from the group and
Kx

G,K
x+1
G , . . .Ki−1

G the versions of the symmetric group key
of G known by a. The attacker can read C from the DHT,
but he cannot decrypt it with the symmetric group keys he
knows because C is encrypted with a subsequent version of
the symmetric group key, Kz

G (where z > i), since C has been
published after the eviction of a from G. Hence, the attacker
should try to steal the new version of the key, Kz

G, which is
stored on the private nodes of the users who have the right to
read C and in the Group Descriptor. As previously explained
for the backward secrecy, we supposed that the attacker cannot
steal the copy of Kz

G stored in the private nodes of the other
DOSN users, and Sec.IV-C3 shows that he cannot disclose the
copy of Kz

G that is stored in the Group Descriptor.
3) Group Descriptor: Three kinds of messages are stored

in the Message List of the Group Descriptors: Group Init
Notification messages, Group Join Notification messages, and
Group Leave Notification messages. Any attacker can read
the group information and the messages stored in the Group
Descriptors, since they are on the DHT, but these messages
are encrypted. In particular, each message in the Message List
consists of a set of sub-messages (node update messages), each
of which represents a non-leaf node N of the key tree which
must be updated, including the root of the key tree which
embeds the new version of the group symmetric key. In the
following, we show that an attacker cannot steal any version
of the group symmetric key from the Group Descriptor.

a) Group Init Notification: The Group Init Notification
message is the first message concerning a group G. External
attackers do not hold any key allowing them to read any
message in the Message List. We recall that, within the Group
Init Notification message, the node update message which
contains the symmetric group key of G, K0

G, corresponds to
the root of the key tree, and it is encrypted with the symmetric
keys paired with all the children nodes of the root. Recursively,
each of these children nodes is embedded in a node update
message which is encrypted with the symmetric key paired
with each of its children nodes. The leaves of the key tree,
instead, are embedded in some messages stored in the private
mailboxes of the DOSN users. Hence, to steal K0

G, the external
attacker needs to violate at least one of the keys in the node
update messages concerning one of the node of the key tree.
However, we saw that each of these messages is encrypted,
and the attacker cannot get the corresponding key because
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TABLE II
SIZE AND NUMBER OF SOCIAL GROUPS INFERRED FROM FACEBOOK BY USING DIFFERENT INFORMATION

Friendship Music School Interaction
#alters number size number size number size number size
0-199 4.4 [±0.87] 41 [±6] 11 [±2.1] 18 [±1.7] 6 [±0.9] 11 [±1.5] 3.6 [±0.19] 11.8 [±2]

200-299 7.8 [±0.74] 66 [±6] 17 [±2.4] 25 [±1.6] 11 [±1] 12 [±1.1] 3.7 [±0.16] 21 [±2.8]
300-399 9.4 [±0.98] 88 [±8.1] 25 [±3] 32 [±2] 17 [±1 13 [±1.2] 3.7 [±0.17] 22.4 [±3.7]
400-499 11.4 [±1.19] 103 [±8.8] 31 [±2.9] 37 [±2.2] 22 [±1.9] 13 [±1.1] 3.8 [±0.16] 31.5 [±5.3]
500-699 11.4 [±1.4] 142 [±14] 31 [±4.1] 55 [±3.4] 28 [±2] 15 [±1.2] 3.8 [±0.15] 40.2 [±6.7]
700-899 15 [±2.7] 176 [±20] 43 [±6.8] 65 [±4.9] 40 [±4] 15 [±1.7] 3.7 [±0.17] 47.5 [±10.7]
900-2999 16.4 [±3] 343 [±42] 47 [±7.3] 133 [±10] 65 [±10] 15 [±1.6] 3.9 [±0.22] 70 [±15.6]

Avg 11 137 29 52 27 13 4 35
Max 21 461 55 322 40 167 5 166

it is encrypted too with the keys corresponding to the node
children. The only exception is for the leaves of the tree, which
embed the symmetric individual keys of the DOSN users, and
are stored in the Private Mailboxes of such users. However, in
Sec. IV-C4 we will show that the symmetric individual keys
of DOSN users cannot be retrieved from the related Private
Mailboxes as well. Internal attackers are those users who have
not been included in G at the moment of its creation, but
they have been added afterwards. An internal attacker can
try to steal K0

G, or one of the keys stored in the Group
Init Notification message, exploiting the keys on the nodes
of the key tree he received when he joined G, because this
scenario gives attacker the greatest advantage. However, when
the attacker joined G, the group owner updated the symmetric
group key and a proper set of nodes of the key tree as described
in Sec. III-B. Hence, the node keys received by the attacker
when he joined G do not allow him to decrypt any node of the
Group Init Notification message. Consequently, the internal
attacker does not hold any additional information to violate
K0

G with respect of the external attacker.
b) Group Join Notification: A Group Join Notification

message M contains the nodes of the key tree that have been
updated to add the new user u to the group. Each updated node
is embedded in a node update message which is encrypted
with the previous version of the symmetric key paired with the
same node (see Sec. III-B). Consequently, the new symmetric
group key of a group G, Ki

G, is encrypted with its previous
version, Ki−1

G . Hence, in order to steal the symmetric group
key paired with the message M , Ki

G, an attacker needs to
violate one of the previous version of the keys paired to the
updated nodes. This means that the attacker needs to violate
the previous messages in the Group Descriptor where the
previous keys of the nodes to be violated are defined. Let
us suppose that P is one of these messages to be violated.
For what concerns external attackers, if P is a Group Init
Notification message, then we have shown in IV-C3a that the
external attacker cannot violate it. If P is another join message,
the attacker should, recursively, try to attack the previous
message. Finally, P could be a Group Leave Notification
message; the security analysis of these messages is shown
in Sec. IV-C3c. Summarizing, an external attacker cannot get
Ki

G from a Group Join Notification message. An internal
attacker could be a user a who has been added to G after
u. However, when the internal attacker a joined the group, the
group owner updated the group key and the key tree inserting

another Group Join Notification message N in the Group
Descriptor before releasing the keys to a (see Sec. III-B). As a
result, a does not hold any key to access any of the messages
inserted in the message list before N (and M is one of these
messages), because he holds only the newer versions of the
keys paired with the nodes of the key tree on his path. Another
internal attacker could be a user a who was evicted from G
before the insertion of M in the Group Descriptor. However,
when the attacker a was removed from the group, the group
owner inserted in the message list a Group Leave Notification
message N in order to update the group key and all the other
keys known by a, using the procedure described in Sec. III-C.
Hence, all the subsequent Group Join Notification messages,
such as M , will be encrypted exploiting keys unknown to a.
Summarizing, internal attackers cannot get Ki

G from a Group
Join Notification message.

c) Group Leave Notification: A Group Leave Notifica-
tion Message M contains the nodes of the key tree that have
been updated after the removal of the leaf paired with the user
u evicted from the group. These nodes are updated in order
to prevent u from accessing any node of the new version of
the key tree. Each of the updated nodes t is represented by
d node update messages in M , each of which is encrypted
with the symmetric key paired to one of the children of t (see
Sec. III-C). We notice that one of these symmetric keys is
new (because it refers to a children which, being on the path
from the root to the leaf paired with u, has been updated as
well), while the others symmetric keys have not been updated
because they are not known to u.

In order to steal the new symmetric group key Ki
G from

M , an attacker a needs to violate one of the node update
messages included in M , i.e., he needs to steal one of the
keys used to encrypt such messages. An external attacker does
not hold any key of any node of any version of the key tree.
In order to violate a node update message encrypted with a
not updated version of intermediate symmetric key, a needs to
attack the previous message N in the Group Descriptor where
such key has been defined. If N is a Group Init Notification
message, then we have shown that the attacker cannot violate
it in Sec. IV-C3a, while if N is a Group Join Notification
message, the security analysis of is shown in Sec. III-B. If N
is again a Group Leave Notification message, then a needs
to recursively attack the previous message where this key has
been defined. The other possibility to violate a node update
message of M is to get the symmetric individual key of one
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of the nodes sharing the same parent node of the leaf u, which
are stored in their Private Mailboxes. However, in Sec. IV-C4
we will show that the symmetric individual keys of DOSN
users cannot be retrieved from the related Private Mailboxes
as well. Summarizing, external attackers cannot get Ki

G from a
Group Leave Notification message. An internal attacker could
be a user a who was added to G after the removal of u.
However, in order to add the attacker a to G, the group owner
inserted in the Group Descriptor a Group Join Notification
message N that properly updates the group key and the key
tree before giving to a his keys, as described in Sec. III-B.
Consequently, in the same way as shown in Sec. IV-C3a for the
Group Init Notification message, the keys hold by a does not
allow him to decrypt any message published before N , such
as M , because a holds only newer versions of the keys on his
path key tree. Another internal attacker could be a user a who
was evicted from G before u. However, when a was removed
from G, the group owner updated the key tree (as described
in Sec. III-C), and distributed the new nodes (i.e., keys) to
the remaining members through the Group Leave Notification
message N . As a result, the keys hold by a cannot be used for
decrypting the messages that have been inserted in the Group
Descriptor after N , and M is one of them, because all the
nodes that were encrypted with such keys have been replaced
by N . Summarizing, internal attackers cannot get Ki

G from a
Group Leave Notification message.

4) Private Mailboxes: The messages stored in the private
mailbox of a DOSN user u represent i) the leaf paired to u of
the key tree of group G, for each group G to which u belongs
to from the creation, and ii) the nodes of the key tree on the
path from the root to the leaf paired to u for all the groups
G to which u has been added after the group creation. In the
first case, each message includes the individual symmetric key
paired with u, encrypted with the public key of u. Since the
corresponding private key is kept secret on the private node
of u, and we supposed that the ciphertext cannot be broken,
any internal or external attacker cannot decipher any of these
messages. For what concerns the second kind of messages,
the individual symmetric key paired with u is encrypted with
the public key of u, as in the previous case, while the each
node of the key tree on the path from the root to the father
of the leaf paired to u is encrypted with the symmetric key
embedded in its child, in the same way as in the Group Init
Notification message. Hence, since private key is kept secret
on the user private node of u, any internal or external attackers
cannot decipher the individual symmetric key paired to u.
Consequently, they cannot decrypt the rest of the keys, because
the security analysis we made for the Group Init Notification
message is valid in this case too. Summarizing, for each of
the groups u belongs to, the attacker cannot violate any of the
keys stored in the Private Mailboxes.

V. ANALYSIS OF GROUPS IN FACEBOOK

A. The Facebook Dataset

Although recent studies improved the understanding of the
structural properties of OSNs (such as centrality, number of
interconnections, or diameter), the analysis of the features

TABLE III
OVERHEAD FOR THE CREATION OF A GROUP G OF SIZE n.

Group Owner
#Msg MsgSize #KeyInit #KeyEncS #KeyEncAS

n + 1 n · kS + kS

∑h
l=1 dl ∑h

l=0 dl ∑h
l=1 dl n

Other member
#Msg MsgSize #KeySaved #KeyDecS #KeyDecAS

2 kS + kSh h + 1 h 1

TABLE IV
OVERHEAD FOR JOINING ONE USER TO A GROUP G OF SIZE n.

Group Owner
#Msg MsgSize #KeyInit #KeyEncS #KeyEncAS

2 kS + 2hkS h + 1 2 · h 1

Other member
#Msg MsgSize #KeySaved #KeyDecS #KeyDecAS

1 hkS h h 0

Joining user
#Msg MsgSize #KeySaved #KeyDecS #KeyDecAS

1 kS + hkS h + 1 h 1

of the groups created by users has received little attention
from the research community. As a result, currently there
are no models that describe the structure and the features of
social groups. In this paper, to evaluate the performance of the
proposed approach, we are interested in measuring the size of
social groups, and the number of users that are added to or
removed from them over time. For this reason we implemented
a Facebook application, called SocialCircles!1, which exploits
the Facebook API to retrieve the following information:
• ego network of the registered users, which contains the

friends (known as alters) of the registered user (ego)
and includes information about the direct connections
between the alters.

• Profile information of registered users and their friends,
consisting of school information, work, interests, etc.

• Interaction information between registered users and their
friends, such as posts, comments, likes, tags and photo.
Due to technical reasons, we restrict the interaction
information to the last 6 months of users activities.

We retrieved the complete ego network of 328 users (213
males and 115 females) for a total of 144.481 users (ego
and their alters) with age range of 15-79 and with different
education, background and provenance. More details can be
found in [31].

B. Size of groups in Facebook

Since our Facebook dataset is a collection of ego networks,
we decided to split the whole dataset inspection by indepen-
dently analyzing each ego network. We used the dataset to
derive the possible social groups that could be defined by
registered users. In particular, we analyzed the size and the
number of social groups that could be derived from the ego
network of each registered user by exploiting: i) the friendship
relations between their friends, ii) the music interests, iii)
the school information, and iv) the amount of interactions

1www.facebook.com/SocialCircles-244719909045196
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(a) Group Size (b) Join (c) Leave

Fig. 6. Properties of groups based on Work & Education interests

(a) Group Size (b) Join (c) Leave

Fig. 7. Properties of groups based on News & Information interests

(a) Group Size (b) Join (c) Leave

Fig. 8. Properties of groups based on Entertainment interest

TABLE V
CHARACTERISTICS OF THE MONITORED GROUPS

Group Group name Size Type
group 1 National Research Council 443 Work & Education
group 2 University of Pisa 8441 Work & Education
group 3 AIRI-Industrial Research Association 8855 Work & Education
group 4 C/ C++/ Java/ PHP/ HTML/ Web 795 Work & Education
group 5 R Programming 6071 Work & Education
group 6 Ruby Programming Language 2151 Work & Education
group 1 News Master 2151 News & Information
group 2 AngularJS - News 2106 News & Information
group 3 Italian Programmers 3275 News & Information
group 4 Sport News and Talk 299 News & Information
group 5 Sport Live (News/Stream/Highlight) 2123 News & Information
group 6 Sports Magazine 6864 News & Information
group 1 Shots & Light 2056 Entertainment
group 2 Hyperfocal Photography 1580 Entertainment
group 3 Italian Photo School 5519 Entertainment
group 4 WildClick 1992 Entertainment
group 5 Acquariopedia 5758 Entertainment
group 6 Extreme gaming Network 5566 Entertainment

occurred among users and their friends. The friendship so-
cial groups have been identified by using a classical label
propagation algorithm [32] for community discovery. Instead,
the social groups based on Music, School and Interactions
have been identified by using cluster analysis. We exploited
the Echonest2 service to derive information about the music
preferences of each user. For Music and School we used
the cosine similarity between the two attribute vectors which
contain the music interests or the school information of two
users. For social group based on interactions, we defined a

2Available at http://the.echonest.com/

similarity measure which considers both direction and amount
of interactions occurred from registered users to their friends
(tie strength) [31]. By computing tie strength, we are able to
estimate the importance of the relationship between ego and
alters. Table II shows the number of groups (columns labeled
number) and the average groups size (column labeled size)
obtained by considering ego network composed of different
number of friends (column labeled #alters) and information
of a different nature (namely friendships, music preferences,
school information and interactions). Furthermore, 95% Confi-
dence Interval (C.I.) is shown in square brackets. Our findings
suggest that these ego networks are composed of several social
groups and such groups can be considered quite similar to the
possible groups that real users of a DOSN may define in their
profile. Our analysis clearly indicates that groups in social
network platforms are very heterogeneous, and reveals that
the number of groups defined by a user ranges from 4 to 29
while their size is roughly between 11 and 137 members.

C. Groups leave and join in Facebook

We investigated the dynamism of Facebook groups in order
to understand the amount of users that is added to a group or
removed from a group. As detailed in Sec. II-A, we focused
only on private Facebook groups because they well fit the
requirements of our approach. We estimated the number of
users that join and leave a set of real Facebook groups of
different nature. Table V shows the characteristics of the
monitored groups as well as their initial size. The approach
we implemented to retrieve the information about Facebook
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groups is based on HTTP-crawler that bypasses Facebook
API and directly interacts with the Facebook groups pages
by using the web browser. Our crawler is an application
based on Selenium automates browsers library3 which, given
a Facebook group G, retrieves the public information about
the group members of G by exploiting the member list of the
group. The member list of a group contains, for each user of
the group whose profile is visible, the following information:
i) the identifier of the user, ii) the joining time, and iii) the
administrator who has added the user. The proposed crawler
is used to explore periodically the members of the group,
thus permitting us to obtain information about the number of
users who join or leave the different groups over time. The
dataset obtained from the HTTP-crawler contains 18 private
Facebook groups of three different types: work & education,
news & information, and entertainment. Since our dataset is
a collection of groups, we decided to split the whole dataset
inspection in many independent analysis of each group. After
collecting data of each group for 50 days, we perform a
detailed analysis of the average number of join and leave
operations, as well as on the number of users of each group.
The distribution of these measures for groups of type Work &
Education is shown in Fig. 6. For each bar of the histograms,
the thin line indicates the 95% confidence interval. The average
size of the most part of groups ranges between 2000 and
4000 members, although there are group 6 and group 4 which
expose an average number of members equals to 7000 and
400, respectively (see Fig. 6(a)). The average daily number
of users added to each group ranges between 3 and 400. The
high values for the C.I. suggest strong heterogeneity of the
number of joining users and clearly indicate the presence of
some peaks of demands (see Fig. 6(b)). The same trend also
applies to the average daily number of users removed from
each group (see Fig. 6(c)).

The average daily number of join and leave operations, as
well as the number of users for the groups of category News
& Information, are shown in Fig. 7, while Fig. 8 shows the
results we obtained for the groups of Entertainment category.
The analysis of graphs depicts the presence of some peaks at
certain times: on average, most of the groups receive a regular
number of join/leave operations, but in some cases there is a
peak demand resulting from a high number of users who want
to join or leave the group. Furthermore, we observe that about
40% of operations performed by the group owner correspond
to leave operations.

VI. EXPERIMENTAL RESULTS

This section provides a quantitative evaluation of the pro-
posed approach. To this aim, we developed a realistic sim-
ulation by using the P2P Peersim simulator4. The simulation
dataset is the Facebook one described in Sec. V-A. To conduct
our tests, we leveraged information about users’ groups shown
in Sec. V and we created a number of different groups whose
size ranges between 1 and 10000 members. In particular, for
social groups defined starting from users’ ego networks (see

3http://www.seleniumhq.org/
4Available at www.peersim.com
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Sec. V-B) the number of initial members does not exceed 500
individuals, while the private Facebook groups we examined
have maximum number of initial members equal to 10000 (see
Sec. V-C). For this reason, in our simulation, each user creates
three different groups: small group (Gs), large group (Gl), and
big group (Gb). A small group Gs and large group Gl consist,
respectively, of 1 and 500 members and they aim to represent
the social groups created by a user in his ego network. A big
group Gb consists of 10000 members and it aims to represent
private groups with a very high number of participants.
To test the join operation of a single user, we randomly select
a user f who does not belong to Gs, Gl, and Gb and we
perform the join operation on such groups. Similarly, for the
leave operation, we remove a member from Gs, Gl, and Gb.
To test the join operation for multiple users, we select w users
not belonging to Gs, Gl, and Gb, and we add them to these
groups. As DHT support we use the MSPastry implementation,
which is provided as a plugin of the simulator. For each
operation, we summarize its cost for the group owner, for
the joining/leaving users, and for the other members of the
group in terms of: number of messages created (#Msg), size
of the messages in terms of the length of the symmetric key
(MsgSize), number of symmetric keys created/saved (#KeyInit
/ #KeySaved), number of nodes encrypted/decrypted by using
a symmetric schema (#KeyEncS / #KeyDecS), and number of
tree nodes encrypted/decrypted using an asymmetric schema
(#KeyEncAS / #KeyDecAS). Since the messages involved in
our approach include symmetric keys, we measure the message
size as a function of the length of the symmetric key.

A. Group Creation

The analytic evaluation of the costs introduced by our ap-
proach for creating a group G of n members is shown in Table
III. The group owner creates at most dl symmetric keys for
each level l = 0, . . . , h of the key tree (#KeyInit), while each
member ui receives only h+1 symmetric keys: the ones on the
path from the root to the leaf representing ui (#KeySaved). The
group owner creates n private messages (one for each member
of the group) and a Group Init Notification Message that is
saved in the Group Descriptor, for a total of n+ 1 messages
(#Msg). Each private message delivered to the Private Mail
Box of the group member ui has constant size O(1) and
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Fig. 10. The graphs (a), (b), (d), and (e) show the number and the size (in bits) of the messages created by the group owner (y-axis) for the join of a variable
number of users (x-axis) to the groups Gs, Gl and Gb, using both the one by one and the all at once insertion strategies. The graphs (c) and (f) show the
number of nodes encrypted by using an asymmetric schema (y-axis) by the group owner for the join of a variable number of users (x-axis) to the groups Gs,
Gl and Gb, using both the one by one and the all at once insertion strategies.

it takes only 1 asymmetric encryption/decryption operation,
for securing the individual symmetric key Kh

ui
. Indeed, the

total number of keys secured by the group owner by using
asymmetric encryption (#KeyEncAS) is n, while each member
of the group decrypts only 1 key with an asymmetric schema
(#KeyDecAS). It is worth noting that, if the user ui belongs
to several groups created by o, say G and H , the individual
symmetric key Kh

ui
assigned to ui in the group G is the same

as the symmetric key of ui in the group H. The Group Init
Notification Message contains all the nodes of the key tree,
except for the leaves, each of which is individually encrypted
with the symmetric key of each of its children nodes. The size
of the message is O(

∑h
l=1 d

l), i.e., the total number of nodes
in the key tree, except for the root node. Hence, the number
of encryption operations with symmetric schema executed by
the group owner (#KeyEncS) is equal to the total number of
the nodes in each level of the key tree (except for the level 0
of the root, because the key of the root is not used to encrypt
any other node). Each member has to retrieve a total of two
messages (the private message and the Group Descriptor) and
decrypts a total number of h+1 symmetric keys (#KeySaved):
h keys by using symmetric decryption and 1 key by using an
asymmetric schema.

B. Group Join

1) Single user: The cost of the single user join operation
for adding one user to a group G of size n as described in
Sec. III-B1, is shown in Table IV. The group owner sends a
total of 2 messages: a Group Join Notification Message for
the Group Descriptor and a private message for the joining
user, a. The private message sent by the group owner to

the joining user contains the symmetric individual key of a
encrypted with an asymmetric schema (i.e., with the public
key P a

+ of the user a) and h keys of KT (d, h,G) encrypted
with the individual symmetric key of a (for a total size of
O(h+1)). As a result, the private message involves O(h) keys
encrypted/decrypted with a symmetric schema. The Group
Join Notification Message involves the group owner and the
other members of the group and it contains h keys refreshed
along the path of the joining user, each encrypted with the old
symmetric key (for a total size of O(h)).

For the Group Join Notification Message, the number of
keys encrypted by the group owner with a symmetric schema
is O(h), while a member of the group has to decrypt only
the involved keys along its path (i.e., at most h keys in the
case it is located on the same sub-tree of the joining node).
Hence, the group owner encrypts a number of keys equal to
2h with a symmetric schema. Instead, the total number of keys
encrypted/decrypted with an asymmetric schema as result of
the join of a user to a group G of size n is equal to 1, both for
the group owner and for the joining user, while it is 0 for the

TABLE VI
OVERHEAD FOR THE JOIN OF w USERS TO AN EMPTY GROUP G.

Group Owner
#Msg MsgSize #KeyInit #KeyEncS #KeyEncAS

w + 1 wkS + hdwkS w · (h + 1) d · h · w w

Other member
#Msg MsgSize #KeySaved #KeyDecS #KeyDecAS

1 hkS h h 0

Joining user
#Msg MsgSize #KeySaved #KeyDecS #KeyDecAS

2 kS + hkS h + 1 h 1
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Fig. 11. Number of nodes decrypted by using a symmetric (graph (a) and (d)) and asymmetric (graph (b) and (e)) schema (y-axis) by the joining users
(x-axis) to the groups Gs, Gl and Gb, by using both one by one and all at once insertion strategy. Graphs (c) and (f) show the number of nodes encrypted
by using a symmetric/asymmetric schema (y-axis) by the group owner for the join of different number of users (x-axis) to the groups Gs, Gl and Gb, by
using both one by one and all at once insertion strategy.

other members of the group. Fig. 9 shows the number of keys
encrypted with the symmetric schema by the group owner, the
number of keys decrypted with the symmetric schema by the
joining user, and the average number of keys decrypted with
the symmetric schema by an old member of the group when a
new member is added to a group, varying the size of the group.
Note that, with respect to the creation of the group (see Sec.
VI-A), adding a user a to a key tree KT (d, h,G) requires 2 ·h
symmetric encryption operations instead of d ·h because each
node via on the path from the root of KT (d, h,G) to the father
of the leaves corresponding to user a (i.e., v0a, v

1
a, · · · , vh−1a )

is encrypted only with two simmetric keys (the one on the
parent node vi−1a and the old symmetric key of the node itsel
K̂i

a. For the joining user, the number of decryption operations
is proportional to the height of the tree while the group owner
takes a number of encryption operations equal to twice the
height of the tree. Even if the number of keys decrypted by
an other member of a group with a symmetric schema is at
most O(h), results show that the most part of them decrypt
on average a number of keys equal to 1, i.e., the key paired
to the root node.

2) Multiple users: We evaluated the cost of adding multiple
users to a group G with the approach described in Sec. III-B2
and by exploiting the results obtained from the analysis of the
real Facebook data set (see Sec. V). After the creation of the
groups Gs, Gl, Gb, we randomly select w users to be added
to the group. The number of joining users w may belong to
the following categories: i) normal join number, if w ranges
between [1 . . . 500], and ii) high join number, if w ranges
between [1000 . . . 10000]. Table VI shows the cost introduced
by our approach for the join of multiple users. The group

owner creates and sends a total of w + 1 messages: a Group
Join Notification Message for the Group Descriptor and w
private messages for each of the w joining users. Each private
message involves only the group owner and a joining user and
it contains the symmetric individual key of the joining user
encrypted with an asymmetric schema. As a result, the total
number of key encrypted with an asymmetric schema by the
group owner is equal to the number of joining users w while
each joining user performs only 1 asymmetric decryption. The
Group Join Notification Message involves the group owner
and all the members of the group and it contains all the new
nodes or refreshed nodes of the key tree along the path of
each joining user. In particular, the h nodes on the path of a
joining user must be encrypted with both their old symmetric
keys and the symmetric key of each new child node (at most
d). As a result, the maximum number of nodes encrypted with
a symmetric schema is equal to d·h·w for all the joining users
w. The group owner creates at most w ·(h+1) symmetric keys
in order to join w users. The number of nodes decrypted with
a symmetric schema by each joining user as well as by other
member is equal to h, i.e., all the involved nodes along the path
from the father of the leaf to the root of the key tree. To show
the advantage of using the multiple join insertion approach,
in the experiments we conducted the w users are added by
adopting two different strategies: i) all at once, where all the
w users are added to the group at the same time and then the
resulting key tree is notified to the members (as described in
Sec. III-B2), and ii) one by one, where the w users are added
one at a time to the group and after each insertion the resulting
key tree is notified to the current members.
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TABLE VII
OVERHEAD FOR THE LEAVE OF ONE USER FROM A GROUP G OF SIZE n.

Group Owner
#Msg MsgSize #KeyInit #KeyEncS #KeyEncAS

1 dhkS h d · h 0

Other member
#Msg MsgSize #KeySaved #KeyDecS #KeyDecAS

1 hkS h h 0

Leaving user
#Msg MsgSize #KeySaved #KeyDecS #KeyDecAS

0 0 0 0 0

Group owner: We focus on the traffic generated by our
approach by measuring the number of messages created and
the size of data sent by the group owner (see Fig. 10). Fig.
10(a) and Fig. 10(d) show that the number of messages sent
does not depend on the number of initial members of the
group (Gs, Gl, and Gb) and the all at once strategy allows
to considerably reduce the number of messages sent by the
group owner. In fact, the three curves related to the one
by one strategy are overlapped, as well as the three curves
representing the all at one strategy. Fig. 10(b) and Fig. 10(e),
instead, show that for the one by one insertion strategy, the
amount of data sent by the group owner is highly affected
by the initial members of the group. In contrast, the amount
of data sent by the all at once insertion strategy does not
change with the number of initial members of the group.
In fact, the three curves related to the one by one strategy
depends on the initial group size (Gs, Gl, and Gg) while the
curves representing the all at once strategy are overlapped,
independently from the initial group size.

We focus now on the cost of joining multiple users in
terms of number of tree nodes encrypted from the group
owner by using both symmetric (SymCrypt) and asymmetric
(AsymCrypt) schema. As shown by Fig. 11(c) and Fig. 11(f),
adding multiple users with the all at once strategy significantly
decreases the number of nodes encrypted by the group owner
with respect to adding the same users using the one by one
strategy. Moreover, for the all at one strategy, the number of
initial group members does not impact on the number of nodes
encrypted by the group owner since the curves for the groups
Gs, Gl and Gb are similar. The number of nodes encrypted
by using asymmetric schema is equal to the number of users
to be added (see Fig. 10(c) and Fig. 10(f)) and it does not
depend on both the initial group size and the adopted insertion
strategy. For this reason, the number of asymmetric encryption
operations remains the same between groups of different size
(Gs, Gl, and Gb) and Fig. 10(c) and Fig. 10(f) only show the
curves related to a large group Gb.

Joining users: We measured the cost of joining multiple
users from the point of view of the joining users by counting
both the number of nodes decrypted by using either symmetric
(SymCrypt) or asymmetric (AsymCrypt) schema (see Fig. 11).
As shown by Fig. 11(a) and Fig. 11(d), the number of nodes
decrypted by the whole joining users w is almost the same
for all the strategies and it only depends on the height of the
key tree. Indeed, each joining user has to decrypt the nodes on
the path from the root to his leaf. The number of asymmetric
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Fig. 12. Number of nodes decrypted using a symmetric schema (y-axis) by
the other members of the group for the join of a variable number of users
(x-axis) to the groups Gs, Gl and Gb, by using both one by one and all at
once insertion strategy.

decryption performed by the joining users (see Fig. 11(b) and
Fig. 11(e)) remains the same, independently from both the
adopted insertion strategy and the initial size of the group.
For these reasons, Fig. 11(b) and Fig. 11(e) only show data
related to the group Gb with both strategies.

Other members: Finally, we focused on the cost of join
multiple users from the point of view of the other members of
the group, by measuring the number of nodes decrypted by us-
ing either symmetric (SymCrypt) or asymmetric (AsymCrypt)
schema. As shown by Fig. 12, the number of nodes decrypted
by the other members already in the group significantly
increases if the users to be joined are added one at a time.
Indeed, each time a user i (where 1 6 i 6 w) on the
w joining users is added to a group of size n, the old n
members of the group and i − 1 users already added has to
decrypt the affected nodes on the key tree (which include the
root and all the refreshed nodes). In contrast, the number of
decryption operations performed by other members, for the
case of multiple joins with all at once strategy, is quite low. As
shown by Fig. 12(a) and 12(b) the number of nodes decrypted
does not increase linearly with the number of users to join
(x-axes). Indeed, the number of nodes decrypted by other
members only depends on the height of the key tree (i.e.,
the size of the group). For the case of all at once strategy,
more decryptions of nodes are required by other members for
the big group Gb because it consists of 10000 members while
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Fig. 13. Number of nodes encrypted/decrypted by using a symmetric schema
(y-axis) by the group owner, and the other member for the leave of a user to
groups of different sizes (x-axis).

group Gs consists of only 1 member. Instead, other members
do not perform any asymmetric decryption as a result of the
join of multiple users.

C. Group Leave

1) Single user: We focus on the costs of the leave operation
on groups of users having different size n, which is performed
by using the procedure described in Sec. III-C1. Table VII
shows the cost introduced by our approach for the removal of
a single user. In this case, the group owner selects a member
a of the group and sends only one message: a Group Leave
Notification Message for the Group Descriptor which involves
the group owner and the members remained in the group. The
Group Leave Notification Message contains, for each of the
refreshed node vla at level l of the key tree (resulting from a
leave operation), where 0 ≤ l < h, the symmetric key of vla
encrypted with the symmetric node key of its children. As a
result, for the group owner, it takes O(d ·h) space and O(d ·h)
encryption operations over symmetric keys, while a member u
of the group has to decrypt only the new symmetric node keys
on its path. Fig. 13 shows the number of keys encrypted with a
symmetric schema by the group owner along with the average
number of keys decrypted with a symmetric schema by an old
member of the group. As regards the size of messages sent by
the group owner, it can be trivially derived from the number
of symmetric keys encrypted during the join or leave of a user
from the group (see curves related to the group owner on Fig.
13 and Fig. 9). Indeed, all the keys encrypted during these
phases are stored in the message list of the Group Descriptor.
Table VII summarizes the analytical cost of the leave operation
for the group owner, for the leaving user, and for the other
members of the group, independently from the group size. As
proven by the experimental results, the removal of a user only
affects the group owner and the remaining members of the
group and it does not require the use of asymmetric encryption
operation (#KeyEncAS , #KeyDecAS).

2) Multiple users: For the case of removal of multiple
users, described in Sec. III-C2, the costs evaluation can be
derived from the analytical model of Table VII by multiplying
each cost of the group owner by the number of users w to
be removed. Indeed, the removal of w users is performed by
removing individually each leaf corresponding to a removed

TABLE VIII
COST OF ENCRYPTIONS ALGORITHMS ON INTEL CORE I7 2.2E+09 HZ.

Algorithm Throughput
(Byte/ms)

Cycles/
Byte

Setup Key
(ms)

Setup Key
(cycles)

AES/CTR (256-bit key) 2496000 0.8 0.000278 611

Operations Milliseconds/Operation Megacycles/Operation
RSA 2048 Encryption 0.16 0.29
RSA 2048 Decryption 6.08 11.12

user with the procedure described in Sec. III-C1, but the Group
Leave Notification Message is unique. However, we notice
that this is a rough estimate of the cost of the leave operation
because for a large number of users to be removed any leaf to
be removed would share parts of its upward path with some
of the other leaves to be removed (i.e., they are in the same
subtree). As a result, the cost taken for the group owner to
remove w users from a group does not exceed the number
of nodes in the key tree. Each other member remaining in the
group has to support the same cost as for the case of the single
leave operation, because he has to decrypt at most all the nodes
on the path from the root to his leaf (i.e., the maximum height
h of the tree).

D. Performance evaluation

The analysis we conducted in the previous sections ab-
stract from the encryption scheme, cryptographic library, or
computer platform used by peers of the DOSN because we
focused only on the parameters that directly impact on the
performance of the proposed group management protocol.
To help the reader in the evaluation of the proposed ap-
proach we have measured the performance of our approach
by considering RSA-2048bit for public-key cryptography and
AES/CTR (256-bit key) for asymmetric encryption. Indeed, as
shown in Sec. VII, they are two popular ciphers adopted by
current DOSNs. In addition, the size of ciphertext produced
by the block ciphers considered by our approach depends
primarily on the size of the plain text while the type of
encryption algorithm introduces only a small constant size
overhead. The implementations of the ciphers used to con-
duct our experiments are taken from Crypto++5, a widely
used open-source cryptographic library. Table VIII shows the
performance measures of AES in terms of number of Bytes
encrypted/decrypted per millisecond (Throughput), number of
cycles-per-byte required by encryption/decryption and number
of milliseconds and cycles required for key setup. For RSA,
we measured the number of milliseconds taken by encryption
and decryption operations and the number of megacycles per
operation.

Table IX shows the computation time and the size of
messages (i.e., the amount of MB sent by a user) for different
operations taken by i) the group owner; ii) the joining/leaving
member; iii) the other members of the group. We focus on
a big group Gb (with initial size of 500 members) and we
consider a key tree KT (d, h,Gb) with degree d equals to 4
and maximum height h equals to 8. The number of users

5https://www.cryptopp.com/



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2729553, IEEE
Transactions on Dependable and Secure Computing

17

TABLE IX
COMPUTATION TIME AND MESSAGES SIZE.

Time (ms)
Operation Group owner Joining/leaving member Other member

Create 106.53 0 6.08
Join 816.61 6.08 0.00021

Leave 16.61 0 0.00021
Publish 0.04 0 0.04

Message size (MB)
Operation Group owner Joining/leaving member Other member

Create 0.119 0 0.071
Join 1.898 1.130 1.130

Leave 0.164 0 0.164
Publish 0.100 0 0.100

added to Gb is equal to 8000, thus obtaining a group of
8500 users. Afterwards, we remove from the resulting group
8000 randomly chosen users. Finally, for the publish operation
we consider a content of 100KB, since it is the maximum
image size that Facebook recommended in order to avoid
compression during the upload6.

The results clearly show that the computational cost required
by each operation is negligible for both the group owner, the
joining/leaving member, and the other members of the group.
In particular, the most part of the time taken by the group
owner is spent for asymmetric encryption. Also the size of
the messages is quite low and, in the case of the multiple join
operations, it is linear in the number of joining users. However,
for a very large number of joining users it is possible to split
the users in subgroups so as to maintain the length of the
messages below a specified threshold.

VII. RELATED WORK & COMPARISON

To enforce the privacy preferences of their users, current
DOSNs adopt distributed approaches which combines different
encryption techniques, namely asymmetric encryption (AS),
Attribute Based Encryption (ABE), broadcast encryption (B)
or symmetric encryption (S). Table X summarizes the over-
head of such approaches in terms of number of encryp-
tion/decryption operations, where EAS denotes an asymmetric
operation, ES a symmetric operation, EABE an ABE opera-
tion, and EB denotes a broadcast encryption operation.

In Diaspora7, users organize their contacts into aspects
(i.e., groups of contacts). Users can define access policies
for each content by selecting the aspects that can access it.
Each user registered to the DOSN generates an asymmetric
key pair (RSA-SHA256) that is used for signing messages.
Each content published for the aspect is encrypted with a
new symmetric key SK (AES-256-CBC) and, in turn, SK is
encrypted with the n public keys of the authorized members.
In addition, the join operation does not ensure the backward
secrecy and the SK keys used to encrypt the m contents of
the aspect must be encrypted with the public key of the new
user.

In Safebook [6] the contents are modeled by a tree data
structure where nodes contain the data encrypted with a sym-
metric resource key, while edges list is maintained encrypted

6https://www.facebook.com/help/266520536764594/
7https://joindiaspora.com/

with a different symmetric access key (AES-256 bit). The
access and resource keys, as well as the mappings between
them, are shared with the members of the group using a shared
symmetric key exchanged during the friendship request. When
an empty group is initialized, the shared access key for the
group is created. When a user join a group, the corresponding
access key and the mapping between access key and resource
keys of the m contents are securely distributed to the new
member. When user’s access right is revoked, the access key
is changed and the affected m artifacts published in the profile
hierarchy are re-encrypted with the new access key. Finally,
the new access key is distributed to the n members left in
the group. The removed members can no longer access the
affected artifacts, but still they have access to the correspond-
ing resources because they remain encrypted with the same
resource keys.

In LotusNet [25] access control is achieved using signed
grant certificates which are produced by a user for each of his
social contacts and it consists of the identities of the owner
and of the granted user, an expiration time, and a regular
expression that is a compressed list of all the allowed content
types. When the access control policies change, the relative
grant certificates of the added/removed user is replaced. Since
certificates do not hide the published content from the nodes
that store it, each content is encrypted with a new symmetric
key which is shared on the fly with the current n authorized
contacts by using their (RSA) public keys.

Cachet [8] encrypts each content with a randomly chosen
symmetric key SK. In addition, SK is encrypted with ABE
secret key (CP-ABE). Users who satisfy the ABE access policy
can decrypt SK and use it to read c. Grant access to a new
user requires the creation of an ABE key that satisfy the access
policy which is shared among the authorized users. In order
to revoke other people’s rights to access the contents from a
group of n users, the ABE key is changed so as to meet the
new access policy. In addition, the key SK used to encrypt the
m contents is refreshed and distributed to the new members
to avoid unauthorized access from a removed user.

LifeSocial.KOM [7] identifies its users with an asymmetric
key pair (RSA-1028bit). Each content c is encrypted with a
symmetric content key SK (AES-128bit). Granting access to c
requires the encryption of the key SK with the public keys of
the k authorized users and the encrypted key list is attached to
the contents. When access to a group is revoked, the affected
user is removed from the access control list and the m contents
will be encrypted with a new symmetric key which is securely
distributed to the n current users of the group by using their
public keys.

Authors of [33] propose POSN: a DOSN exploiting the
resources of the users’ mobile devices and the storage clouds.
Every user has an individual (RSA) public key, which is
exchanged at the time of friendship establishment through the
cloud service. For each group a symmetric (AES) group key is
created, and it is encrypted with the public key of each member
and it is stored on the cloud repository. The symmetric group
key must be updated, as a result of the addition or removal
of a user to/from the group. For the join of a user the old
symmetric group key and the public key of the joining users
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TABLE X
OVERHEAD OF THE SECURITY MECHANISMS PROVIDED BY DOSNS

DOSN Join Leave Publish

Our approach 2 · (h − 1) · ES d · (h − 1) · ES 2ES

Diaspora m · EAS 0 ES + nEAS

Safebook [6] 2 · m · ES m(ES + n · ES) 2 · ES + nES

LotusNet [25] EAS EAS ES + nEAS

Cachet [8] KeyABE m(ES + EABE) ES + EABE

LifeSocial [7] 0 m(ES + n · EAS) ES + nEAS

POSN [33] EAS + ES nEAS 2ES

Vegas [34] 0 m(ES + nEAS) ES + nEAS

DIBBE [11] mEB m(ES + EB) ES + EB

DECLKH [35] 2(s + (b + 1))ES (2a−1 + d(b − 1))ES 2ES

a = log2s; b = log2n/s

can be exploited. Indeed, when a user is removed from the
group, the public keys of the n members left in the group
must be used in order to distribute the new symmetric group
key.
In contrast to classical DOSN approaches, the authors of [34]

propose Vegas, a DOSN where each user maintains a unique
asymmetric key pair for each of his friend. As result, a user
with f friends has to manage 2f public keys and f private
keys. A content for a group of n members is encrypted with
a new symmetric key SK which, in turn, it is encrypted with
the n public keys of the group members. When a user join
a group, the SK keys of the m contents are encrypted with
the individual public key of the new user and sent to him.
When the composition of a group of size n changes as a
result of leave, the public key of the affected user will no
longer considered. In addition, the m contents published in
the group are re-encrypted with new symmetric keys.

Authors of [11] investigate the Dynamic Identity-based
Broadcast Encryption (DIBBE), which allows to distribute
encrypted contents to a dynamic set of users, based on their
identities. Each content intended for a set of n users is
encrypted with a symmetric key SK. The key SK is encrypted
for the set of receivers by using broadcast encryption and
attached to the encrypted content. When a user joins the group,
the symmetric keys of the old m contents must be re-encrypted
with the proper broadcast header. When a user is removed from
a group, the affected m contents must be re-encrypted with
new keys and each key SK is encrypted for the set of new
users, by using broadcast scheme.

Finally, [35] proposes a scheme which combines the LKH
and the Tree-based Group Key Agreement (TGDH) scheme. In
particular, a group of n users is divided into s subgroups, each
with n/s members. Each subgroup is managed by a individual
LKH scheme while TGDH is employed for inter-subgroup
key management. Every node of the TGDH is paired with a
symmetric secret key and a blinded key. The join or remove of
a user requires the use of the LKH scheme on the subgroup of
size n/s. In addition, the affected group updates the secret and
blinded keys on the TGDH tree and broadcast the blinded keys
to the other subgroups in the group, which have to compute
the updated secret keys.

Another promising approach for secure group communica-
tions is based on Dynamic Group Key Agreement (GKA) [36],
where a one-round distributed algorithm is used to establish
a common secret key between group members without the

need of synchronization. However, GKA is mainly designed
to support small or medium size groups and it is not used, in
practice, in case of large groups [37].

The authors of [15] provide an overview of possible crypto-
graphic solutions and evaluate their suitability to the DOSNs
infrastructure. Compared to the similar works proposed in the
state of the art, such as [35], the approach we propose in this
paper has been designed to consider the case of multiple join
operations on groups of different size and provided solutions
that allow to manages the volume of operations to perform on
group in order to accommodate the corresponding load.

Finally, other approaches that have been proposed to im-
plement a group communication model are those based on
the Hierarchical Key Assignment [38], [39] where users can
define hierarchy formed by a certain number of disjoint groups
and each group have more or less access rights compared to
another. The proposed scheme allows to assign some private
information and encryption keys to the set of groups, in such a
way that the private information of a higher class can be used
to derive the keys of all groups lower down in the hierarchy.
However, it relies on central trusted authority and it does not
fit our scenario.
Besides these security mechanisms offered by the current
popular DOSNs there are also some works ( [14], [16]) that
seek to exploit the LKH model in other specific scenarios,
such as mobile and wireless sensor networks. However, the
proposed approaches have been designed to consider specific
requirements and constraints of the corresponding scenarios
and the nature of groups defined in such scenarios can differ
from those resulting from the OSNs, in terms of both size and
dynamism of the groups.

In Table XI, we measure the time taken by each approach
in order to perform the operations of Join, Leave, and Publish.
The measures are obtained by considering the cryptographic
schemes used in Sec. VI-D. We can see that Diaspora and
PSON have the highest cost of user addition as it depends from
asymmetric encryption scheme. Indeed, asymmetric cryptog-
raphy uses exponential operations while symmetric encryption
performs simple symmetric operations and the processor load
of broadcast scheme system can be up to 1000 times less than
the public-key [40]. The cost of user addition is the lowest
for LifeSocial and Vegas because they only have to modify
the users list of the group by adding the corresponding public
key. The DECLKH has a cost that is logarithmic with respect
the number of users but introduces an additional cost because
the s leaves corresponding to the subgroups are managed by
using the TGDH scheme, which employs 2 symmetric keys
on each node and broadcast operations linear are with respect
the number s of subgroups. In contrast, our approach has a
number of encryption operation, which is upper-bounded by
the height of the LKH tree (h) and each node has only one
symmetric key. Cachet employs encryption scheme based on
ABE, where encryption/decryption cost is quite expensive with
respect standard symmetric encryption and depends on the
number of attributes [41]. Results of Table XI clearly show
that the overhead introduced by our approach for the join is
negligible and it is among the fastest ones.

The cost of user removal from a group is higher for
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TABLE XI
TIME TAKEN BY SECURITY MECHANISMS PROVIDED BY DOSNS

DOSN Join (ms) Leave (ms) Publish (ms)
Our approach 0.00574 0.01148 0.00082

Diaspora 0.16 0 160.0004
Safebook [6] 0.00082 0.41066 0.41107
LotusNet [25] 0.16 0.16 160.0004

Cachet [8] 155 87 87
LifeSocial [7] 0 160.0004 160.0004

POSN [33] 0.16041 160 0.00082
Vegas [34] 0 160.0004 160.0004

DECLKH [35] 0.085595 0.02432 0.00082

LifeSocial.KOM, PSON, and Vegas because they encrypt and
distribute the new key to the current n members of the group
using asymmetric encryption. Safebook reduces the encryption
cost for a leave exploiting a symmetric secret key established
in advance with each friend. Diaspora and our approach have
the lowest cost for a leave. Indeed, Diaspora only needs to
update the list of the group members on the local nodes while
our approach requires a very short execution time.

The cost for content publishing is the highest for Diaspora,
LotusNet, LifeSocial, and Vegas because they perform a
number of asymmetric encryption equal to the size of the
group. Safebook avoids asymmetric encryption by exploiting
a symmetric shared key shared with each friend. PSON, DE-
CLKH and our approach take the same number of symmetric
encryption operations. Unfortunately, we have not been able
to find working implementations of the scheme in [11] based
on broadcast encryption. However, pure broadcast encryption
(BE) schemes are mainly intended for static group and require
to fix the maximum number of users group in the setup phase.
In order to overcome these limitations, Dynamic Broadcast
Encryption (DBE) schemes have been proposed where the cost
of computation is linear with the size of receivers and not effi-
cient for large group [42]. Identity-based broadcast encryption
scheme (IBBE) introduces a cost for decryption/encryption
which is linear with the size of the group while Dynamic
Identity-based broadcast encryption scheme (DIBBE) [11] has
the same cost only in the case of decryption, so they are not
very suitable for this scenario.

VIII. CONCLUSION

In this paper, we proposed a new decentralized approach for
Distributed Online Social Networks (DOSNs) which enables
an efficient management of dynamic groups by exploiting the
Logical Key Hierarchical (LKH) model and a DHT made up of
users’ peers of the DOSN. Indeed our analysis, conducted on
the ego networks of Facebook users and on private Facebook
groups, reveal that social groups of users are heterogeneous
in size (from 1 to 10000 members) and removal of users
from the groups can occur very frequently (about 350 group
members removed per day for groups of size greater than
2000 users). Our approach optimizes the overhead incurred by
current DOSNs for guaranteeing privacy of managed contents
by exploiting the strength of the Logical Key Hierarchy Model.
In particular, compared to current approaches, the proposed
method allows to remove a set of w users from a group
by taking at most O(d · logd(n)) encryption operations per

user, and only one message for distributing the new symmetric
keys. The provided comprehensive assessment, based on both
simulations and real data, has shown the feasibility of our
approach and its advantage compared to the current groups
communication implementation provided by real DOSNs.
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