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Abstract—In distributed computing, many papers try to evaluate the message complexity of a distributed system as a function of the

number of nodes n. But what about the cost of building the distributed system itself? Assuming that we want to reliably connect n

nodes, how does the total number of nodes of the network evolve with n? Addressing such a question lies at the heart of achieving

scalability in cloud computing. In this paper, we give the explicit description of a distributed system of which any two of the n nodes, for

any n, remain connected (by a path of alive nodes and channels) with probability at least m, despite the very fact that (a) every other

node or channel has an independent probability � of failing, and (b) the number of channels connected to every node is physically

bounded by a constant. We show however that if we also require any two of the n nodes to maintain a balanced message throughput

with a constant probability, then Oðnlog 1þ�nÞ additional intermediary nodes are sufficient, where � > 0 is an arbitrarily small constant.

Index Terms—Scalability, reliability, degree, throughput, network

Ç

1 INTRODUCTION

THE growth of modern networks seems to be exceeding
Moore’s Law [2]. More and more computers are getting

connected in cloud computing centers handling massive
data storage [6], [8]. We talk for example about 60,000 cores
for the Blue Brain Project [5] and over 100,000 for the CERN
data center [1]. Companies like Google and Microsoft have
data centers with millions of servers [3]. Not surprisingly,
the problem of how to achieve scalability and effectively con-
nect a very large number of computers has been extensively
studied (see Related Works, Section 9). In particular, a lot of
attention has been devoted to maintaining a reasonable mes-
sage throughput (i.e., avoid traffic congestion), even when the
size of the network increases. A major difficulty that hinders
such scalability is the bounded (by a physical constant) capac-
ity of network components (computers and channels): there
is a maximal number of messages per second that a channel
can transmit, and a maximal number of channels that a node
(computer) can connect. A closer look at existing cloud con-
structions reveals in fact that, strictly speaking, traffic con-
gestion increases when the size of the network increases.
This is without even accounting for failures: when the size of
the network increases, the probability that several compo-
nents of the network fail also increases, making it even more
difficult tomaintain any stable throughput.

This paper asks the question of the theoretical price of
scalability. Assume that we want to reliably connect n nodes
while preserving a stable message throughput and a
bounded degree. The cost of such a network is the total
number of nodes required to build it (including the n nodes

we want to connect). We seek to determine how this cost
evolves with n.1

We consider the case of random failures. A natural
approach is to consider the probability that the subgraph of
correct nodes remains connected. However, when a graph
with a bounded degree D becomes very large, this probabil-
ity approaches zero. Indeed, as a node has at most D neigh-
bors, it has a fixed probability to be cut off from the rest of
the network. Over a large number of nodes, the probability
to have at least one node in this situation approaches zero.
We thus consider a more relaxed criteria: the minimal prob-
ability that two nodes (which can be any nodes) remain con-
nected. As we show in this paper, it is actually possible to
make this probability arbitrarily high, regardless of the fail-
ure rate.

While other solutions (see the Related Works section) can
also tolerate random failures, their guarantees collapse when
the network reaches a certain size (i.e., the goal probability
approaches zero). The main goal of this paper is to fix this
problem, together with additional constraints (such as pre-
serving a constant throughput). The choice to focus on ran-
dom failures is motivated by the observation that, in practice,
most failures happen randomly (and are not selected by a cen-
tralized malicious agent). This paper provides several upper
and lower bounds for the randomizedmodel, but many prob-
lems remain open within this model. Note that, despite ran-
dom failures, the problem is deterministic and requires a
deterministic solution. Thus, randomgraphs cannot be a solu-
tion here. The hypercube graph cannot be a solution either, as
it does not have a bounded degree (the degree increases with
the number of nodes).Wediscuss the case of expander graphs
in the RelatedWorks section.� The authors are with the �Ecole Polytechnique F�ed�erale de Lausanne (EPFL),
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1. Note that we do not require the graph to grow gracefully with n
here: the graph connecting nþ 1 nodes can be very different from the
graph connecting n nodes.
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In the following paragraphs, we informally explain the
problems and their solutions. Formal definitions of the
problems are provided in Section 3.

We proceed incrementally.
(1) We first address what we call the RBD (Reliable

BoundedDegree) problem, on how to connect a set of nodes
so that every pair can communicate (i.e., are connected by a
path of alive nodes and channels) with probability at least
m, assuming that any other node or channel has an indepen-
dent probability at most � to crash [19], [30]. (We leave aside
any throughput requirement as well as Byzantine failures in
this first step.) Building a complete graph, connecting any
two nodes with a channel is not a solution as the node
degree (i.e., the number of channels connected to a given
node) keeps increasing. In fact, the RBD problem might
actually seem impossible without additional intermediary
nodes between the n nodes (acting as routers and not neces-
sarily reliably connected to the rest). When n increases, the
diameter of the graph also increases: pairs of nodes become
more distant from each other, inevitably dragging down the
communication probability. Compensating for this loss of
reliability by adding redundant paths between any pair of
(distant) nodes is infeasible for the number of parallel paths
is bounded by the maximal degree whereas the network
diameter keeps increasing with n.

We show in this paper how to address the RBD problem
(with no additional intermediate nodes). For any number of
nodes n, we show how to build a graph of n nodes that
ensures arbitrarily high reliability while preserving a
bounded degree. We proceed in two substeps. We first solve
the Weak RBD (WRBD) problem, whose goal is to reliably
connect n nodes with a graph of bounded degree, by allow-
ing to add intermediary nodes between these n nodes, pro-
vided that their number is OðnÞ (at most linear in n). We do
so by defining a recursive graph that ensures a constant
communication probability between any two given nodes
(independently of their distance) with a bounded degree,
expressing the communication probability as a convergent
sequence, and then a tree-like layered graph reliably connect-
ing n nodes. We then use the solution to the WRBD problem
to solve our seemingly stronger RBD problem, i.e., reliably
connecting n nodes without intermediary nodes (the con-
struction works with any graph solving the WRBD prob-
lem). The idea is to combine several instances of a WRBD
graph, each instance reliably connecting a smaller number
of nodes, and to make their intermediary nodes disappear
by merging them with other nodes.

(2) We then address the problem of message throughput.
We model the exchanges of messages by continuous flows of
messages. Each of the n nodes needs to transmit the same
flow of messages to the n� 1 other nodes.2 Assuming a
bound, independent from n, on (1) the maximal degree of the
network and (2) the maximal flow of the network, i.e., the
maximal flow of messages crossing each node and channel,
we address the BDF (Bounded Degree and Flow) problem
(first leaving aside the reliability requirement), which con-
sists in finding a graph that enables to maintain the flow of

messages between the n nodes. Again, the constraint on the
degree prevents a complete graph directly connecting each
pair of n nodes. Thus, some flows of messages will have to
go through intermediary nodes (acting as routers). At first
glance, one might consider using these intermediary nodes
in a tree topology, of which the leaves would be the n nodes.
However, a tree network is problematic for all messages
would need to cross the root node, making the maximal
flow increase with n. In fact, we prove that solving the BDF
problem requires at least Vðn lognÞ intermediary nodes.
Basically, the bounded degree implies a distance VðlognÞ
between most pairs of nodes, and the resulting amount of
messages has to be distributed over a minimal number of
intermediary nodes, due to the bounded capacity. We then
describe a graph solving the BDF problem using Oðn lognÞ
intermediary nodes, which matches the lower bound.
Essentially, our solution is again multi-layered, and consists
in stacking OðlognÞ layers of OðnÞ nodes each, and then
crossing the flow of messages between each layer so that (1)
the flow of messages crossing each node remains constant
and (2) the flows of messages are uniformly mixed when
reaching the last layer. We merge the first and the last layer
of the graph, enabling each one of the n nodes to exchange
messages with the n� 1 other nodes.

(3) Finally, we combine the RBD and BDF problems and
define the RBDF (Reliable Bounded Degree and Flow) prob-
lem. As for RDB,we assume that each node and channel has a
given probability � to crash, and that each pair of nodes
(among the n initial nodes) must keep exchanging the same
flow of messages with probability m. We also define a recur-
sive graph that ensures reliable communication between any
two nodes, atwhatever distance theymay be (w.r.t the param-
eters � and m). Then, wemake a layer-by-layer product of this
graph with the BDF multi-layered graph, in order to combine
this reliability property with the bounded degree and flow
properties. The number of intermediary nodes of the resulting
graph then goes fromOðn lognÞ toOðn log 1þ�nÞ, where � is a
positive constant that can be as small as wanted. In other
words, the additional cost of the reliability property lies in a
factor log �n, where � can be as small aswanted.

Interestingly, all our constructions have an optimal (loga-
rithmic) diameter. Besides, they can all be extended to toler-
ate Byzantine failures (when the failed components, i.e.,
nodes or channels, behaves arbitrarily), assuming the failure
rate � to be strictly smaller than 0.5, by (1) increasing the
level of redundancy (compared to the case of crash failures)
and (2) adding several layers of majority votes to eliminate
malicious messages.

Overall, the goal of this paper is to show that a network can
scale without limitation while tolerating constraints such as
random failures, bounded degree, bounded throughput, or
all together. All these constraints derive from intrinsic limita-
tions of network components: a component is not perfectly
reliable (random failures); a node cannot be plugged to an
unbounded number of channels (bounded degree); a channel
cannot hold an unbounded throughput (bounded through-
put). In other words, we show that bounded characteristics of
network components do not prevent the network from being
unbounded.

The problems, while simple, require complex and non-
trivial graph constructions to be solved. We do not claim

2. Here, “identical” means that any node p sends the same quantity
of messages to any two nodes q and r, which does not mean that the
messages sent to q and r are the same.
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our solutions to these problems to be unique. In the related
works section, we discuss alternative ways to solve these
problems.

The Rest of the Paper is Organized as Follows. Section 2 pre-
sents our model and Section 3 defines the problems we
address (WRBD, RBD, BDF, RBDF). Sections 4, 5, 6, and 7
present solutions to these problems and argue for their cor-
rectness. In Section 8, we prove our results in terms of cost.
We present the related works in Section 9 and conclude in
Section 10. In the supplemental material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TDSC.2018.2845402, we
discuss the logarithmic diameter of our solutions, and explain
how our solutions can be generalized to handle Byzantine
failures.

Due to space limitations, all proofs are delegated to the
supplemental material, available online.

2 MODEL

A graph is a tuple G ¼ ðV;EÞwhere V is the set of nodes and
E is the set of channels, modeled as a set with repetition of
pairs of nodes fp; qg � V (we enable multiple channels
between p and q). The degree dðvÞ of a node v is the number
of channels ðp; qÞ such that p ¼ v or q ¼ v (the number of
channels connected to v). The maximal degree of graph G is
maxv2V dðvÞ. A path connecting two nodes p and q is a
sequence of nodes ðu1; . . . ; umÞ such that u1 ¼ p, um ¼ q and
8i 2 f1; . . . ;m� 1g, ui and uiþ1 are neighbors.

A component of a graph G is any node or channel of G.
Each component of G can be either correct (functional) or
crashed (failed). A correct path is a sequence of nodes ðp1; . . . ;
pmÞ such that, 8i 2 f1; . . . ;mg, pi is correct, and 8i 2 f1;
. . . ;m� 1g, there exists a correct channel fpi; piþ1g. Two
nodes p and q are connected if there exists a correct path ðp1;
. . . ; pmÞ such that p1 ¼ p and pm ¼ q. We denote by � 2�0; 1½
and m 2�0; 1½ two arbitrary constants.

Fluid Message Flow (FMF). Let S � V be any arbitrary set
of n nodes, with n � 2, representing the computers of the
network that need to issue and exchange messages. The rest
of the nodes are intermediary nodes corresponding to routers
that forward the messages sent by the n computers of S:
they do not issue messages of their own.

We consider a perfectly balanced distributed (peer-to-
peer) system: each of the nodes of S sends the same quantity
of messages to every other node. More precisely, we assume
that each node p 2 S sends a flow of messages F , equally
distributed between the n� 1 other nodes of S.3 Thus, for
any two nodes p and q of S, p sends a flow of messages
F=ðn� 1Þ directed towards q. We now define the paths
taken by these messages.

A weighted path is a tuple ðP;aÞ, where P is a path and a is
an arbitrary coefficient. Aweighted path represents a continu-
ous flow of messages between two nodes p and q, where P is
the path used by the messages, and a is the fraction of mes-
sages directed towards q. For any two nodes p and q of S, the

flow of messages from p to q uses a set of weighted paths
Rðp; qÞ ¼ fðP1;a1Þ; ðP2;a2Þ; . . . ; ðPm;amÞg. The paths P1; P2;
. . . ; Pm are connecting p to q, and a1 þ a2 þþam ¼ 1. For each
path Pi, the coefficient ai corresponds to the fraction of the
flowofmessages using the pathPi.We illustrate this structure
through a simple example in Fig. 1.

Thus, path Pi receives a flow aiF=ðn� 1Þ of messages
from p to q. We call the function R the routing map of S

Fig. 1. In this graph (toy example), n ¼ 3 nodes A, B and C are con-
nected by 3 intermediary nodes D, E and F (S ¼ fA;B;Cg here). The
pictures describe the (arbitrary) paths used by the flow of messages
from any node to any other node. The paths are not necessarily symmet-
rical: for instance, the path from A to C and the path from C to A are dif-
ferent. Besides, the flow of messages can be split into several paths: for
the messages from C to B, 70 percent of the flow goes through
ðC;E;BÞ, and 30 percent of the flow goes through ðC;E; F;D;BÞ. If we
add up the flows of the six pictures, the maximal flow of messages is
reached for nodeD.

3. We consider a continuous flow of messages, to abstract away the
granularity of messages. This continuous flow of messages does not
represent the network at a given instant, but rather the quantity of mes-
sages exchanged in a given time period, which is assumed to be rela-
tively stable.
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(which takes two nodes p and q of S as input, and returns a
set of weighted paths in output). For instance, in the toy
example of Fig. 1, RðC;BÞ ¼ fðP1; 0:7Þ; ðP2; 0:3Þg, with
P1 ¼ ðC;E;BÞ and P2 ¼ ðC;E; F;D;BÞ.

We say that a path ðu1; . . . ; umÞ crosses a node p if there
exists i 2 f1; . . . ;mg such that ui ¼ p. Similarly, we say that
this path crosses a channel fp; qg if there exists i 2 f1; . . . ;m�
1g such that ui ¼ p and uiþ1 ¼ q. A weighted path ðP;aÞ
crosses a node or channel x if the path P crosses x. For a
given node or channel x, we now define the flow of messages
fðxÞ crossing x. Let V ¼ S

fp;qg�SRðp; qÞ be the set contain-

ing all weighted paths used by the nodes of S. Let W ¼
fðQ1;b1Þ; ðQ2;b2Þ; . . . ; ðQk;bkÞg be the set of weighted paths
of V crossing x. Then, fðxÞ ¼ ðb1þ b2 þ . . .þ bnÞF=ðn� 1Þ
(the sum of the flows of messages crossing x). The maximal
flow of ðG;S;RÞ is fmax ¼ maxðx2V Þ_ðx2EÞfðxÞ (the maximal
flow crossing a node or channel ofG).

Generalized Fluid Message Flow (GFMF). We generalize the
previous model to take failures into account. Here, Rn now
takes two additional parameters V and E, where V (resp. E)
represents the set of faulty nodes (resp. channels)—that is,
the routing map adapts to the failures of nodes and chan-
nels in order to find correct paths, when it is possible. Thus,
a set of weighted paths Rnðp; qÞ becomes RV;E

n ðp; qÞ, and the
routing map Rn becomes RV;E

n . If this set of paths does not
contain any faulty node or channel, we say that p and q are
reliably connected. We will first consider faults as crashes for
simplicity of presentation and then, later, we will discuss
Byzantine failures.

3 PROBLEMS

The parameters � (failure rate) and m (communication prob-
ability) defined in Section 2 are fixed constants of the follow-
ing problems.

The WRBD (Weak Reliable Bounded Degree) problem consists
in finding, for any n � 2, a graph Gn satisfying the three fol-
lowing properties:

1) Reliability. Assume each node and channel crashes
with probability at most � (the probabilities being
independent). Then, there exists a set Sn of n nodes
of Gn such that any two correct nodes of Sn are con-
nected with probability at least m.

2) Bounded degree. There exists a constant D such that,
8n � 2, the maximal degree of Gn is at most D.

3) Linear number of nodes. There exists a constant C such
that, 8n � 2, the number of nodes ofGn is atmostCn.

The RBD (Reliable Bounded Degree) problem consists in
finding, for any n � 2, a graph Gn containing exactly n nodes
and satisfying the two following properties:

1) Reliability. Assume each node and channel crashes
with probability at most � (the probabilities being
independent). Then, any two correct nodes of Gn are
connected with probability at least m.

2) Bounded degree. There exists a constant D such that,
8n � 2, the maximal degree of Gn is at most D.

The BDF (Bounded Degree and Flow) problem considers the
FMF model (of Section 2) and consists in finding, for any
n � 2, a tuple ðGn; Sn;RnÞ—where Gn is a graph, Sn is a set

of n nodes of Gn, and Rn is a routing map of Sn—satisfying
the two following properties:

1) Bounded Degree. There exists a constant D such that,
8n � 2, the maximal degree of Gn is at most D.

2) Bounded Flow. There exists a constant f0 such that,
8n � 2, themaximal flow of ðGn;Sn;RnÞ is at most f0.

4

The RBDF (Reliable Bounded Degree and Flow) problem con-
siders the GFMF model (of Section 2) and consists in finding,
for any n � 2, a tuple ðGn;Sn;R

V;E
n Þ—where Gn ¼ ðVn;EnÞ is

a graph, Sn is a set of n nodes ofGn, andRV;E
n is a routingmap

of Sn – satisfying the three following properties:

1) Bounded Degree. There exists a constant D such that,
8n � 2, the maximal degree of Gn is at most D.

2) Bounded Flow. There exists a constant f0 such that,
8n � 2, 8V � Vn and 8E � En, the maximal flow of
ðGn; Sn;R

V;E
n Þ is at most f0.

3) Reliability. Assume each node and channel crashes
with probability at most � (the probabilities being
independent). Let V (resp. E) be the set of crashed
nodes (resp. channels). Then, any two correct nodes of
Sn are reliably connected in RV;E

n with probability at
leastm.

4 SOLVING THE WRBD PROBLEM

In this section, we provide a solution to the WRBD problem
(Section 4.1) and prove its correctness (Section 4.2).

4.1 Solution

We describe here a graph Gn that solves the WRBD prob-
lem. We first give an overview, then the complete definition.

Overview. We first define the notion of layered graph,
namely a graph where nodes are separated into several
layers, and where only nodes of two adjacent layers can be
connected. Then, we describe two layered graphs: Tn, which
contains a binary tree connecting at least n nodes, and Fn,
which is a recursive graph defined by induction. The recur-
sive definition of Fn enables to preserve a constant commu-
nication probability between the first and last layer
(independently of n) when � < 0:01 (Lemma 1).5 We show
how to overcome this “� < 0:01” constraint below. Besides,
Fn is defined so that the number of nodes doubles at most
every 2 layers, which enables to preserve a linear number of
nodes, as shown in Theorem 3. The number of layers of Tn

is adjusted so that Tn and Fn have the same number of
layersHn.

We consider a graph Xn, which is a layer-by-layer prod-
uct of Tn and Fn, and a graph Yn, which puts two graphs Xn

in parallel. Doing so ensures a constant communication
probability between any two nodes of the first layer.

We then apply three transformations in order to reach
any communication probability m with any failure rate �.
First, we connect several graphs Yn in parallel, in order to
achieve any communication probability m. Second, we repli-
cate each node, in order to simulate a failure rate � < 0:01
for each node. Third, we replicate each channel, in order to

4. The “bounded flow” constraint here represents the capacity limi-
tations of the network.

5. Note that this bound “� < 0:01” is not supposed to be tight, and
is simply small enough to have the desired property.
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simulate a failure rate � < 0:01 for each channel. The graph
thus obtained is Gn.

Definitions.6 We introduce a few variables below, then
give a preliminary intuition of their use in the construction
of the graph.

For any n � 2, let hn be the smallest integer such that
2hn�1 � n. Let Kn be the smallest integer such that
2þ 4Kn � hn, and let Hn ¼ 2þ 4Kn. Let a be the smallest
integer such that a � 1 and 0:5a � 1� m. Let b be the small-
est integer such that b � 1 and �b � 0:01.

hn is the height of a binary tree connecting at least n
leaves. However, as our construction relies on an inductive
process (see Fig. 11), The minimal height we can have is
actually Hn. a corresponds to the number of replications of
the graph, as shown in Fig. 6. b corresponds to the number
of replications of each node and channel, as shown in.

A layered graph of height H is a tuple ðV1; . . . ; VH; EÞ satis-
fying the following conditions:

1) ðV;EÞ is a graph with V ¼ S
i2f1;...;HgVi.

2) The sets Vi (layers) are disjoint: 8fi; jg � f1; . . . ; Hg,
Vi \ Vj ¼ ;.

3) The channels only connect neighbor layers: 8fp; qg 2
E, if p 2 Vi and q 2 Vj, then ji� jj ¼ 1.

An example of a layered graph is given in Fig. 2. By con-
vention, in the following figures, V1 always corresponds to
the lower layer on the figure. We call V1 the first layer and
VH the last layer.

Graph Tn. We first define a tree-like layered graph of
height Hn. Consider the layered graph represented in
Fig. 3: this graph is composed of a line of height H ¼ 3
and of a binary tree of height H 0 ¼ 3. In other words,
8i 2 f1; . . . ; H 0g, the layer i contains 2i�1 nodes, and the
H remaining layers contain each 1 node. Then, 8n � 2,
we define Tn as a similar graph with H ¼ Hn � hn and
H 0 ¼ hn.

Graph Fn. 8k � 0, we first define a layered graph Qi by
induction. Let Q0 be a layered graph of height 2 containing 2
nodes and 1 channel, as described in Fig. 4. Then, 8i � 0,Qiþ1

is constructed with 2 instances of Qi in parallel and 4 addi-
tional nodes, as described in Fig. 4 (Qiþ1 has 4 more layers
thanQi).We nowdefine Fn as follows: 8n � 2,Fn ¼ QKn .

Graph Xn.
7 8n � 2, Tn is a layered graph of height Hn,

and Fn is a layered graph of height 2þ 4Kn ¼ Hn. As Tn

and Fn are layered graphs, let Tn ¼ ðV1; . . . ; VHn ; EÞ and
Fn ¼ ðV 0

1 ; . . . ; V
0
Hn

; E0Þ. Then, 8n � 2, we define the layered
graphXn ¼ ðV �

1 ; . . . ; V
�
Hn

; E�Þ as follows:

� 8i 2 f1; . . . ; Hng, to each pair of nodes ðu; vÞ nVi 	 V 0
i ,

we associate a unique node p ¼ fðu; vÞ 2 V �
i (thus,

jV �
i j ¼ jVijjV 0

i j).
� Let p ¼ fðu; vÞ and p0 ¼ fðu0; v0Þ. Then, p and p0 are

neighbors in Xn if and only if u and u0 (resp. v and
v0) are neighbors in Tn (resp. Fn).

Observe that, as the last layers of Tn and Fn contain 1
node, the last layer ofXn also contains 1 node.

Graph Yn. 8n � 2, we define graph Yn as follows: we con-
sider two instances of Xn (XA

n and XB
n ), we merge the nodes

of their first layers, and we merge the nodes of their last
layers. This is illustrated in Fig. 5.

Graph Gn. 8n � 2, graph Gn is finally obtained by apply-
ing three successive transformations to Yn:

(1) Transformation 1 (Network replication). First, we con-
nect a instances of Yn by merging the nodes of their
first layers, as illustrated in Fig. 6 for a ¼ 3.8

Fig. 2. A layered graph of heightH ¼ 4.

Fig. 3. Structure of graph Tm.

Fig. 4. Construction (by induction) of graph Qi. The graph is defined so
that the number of nodes doubles at most every 2 layers, which enables
to preserve a linear number of nodes (see Theorem 3).

6. These definitions are specific to the current graph. The same goes
for the definitions in the following sections.

7. The definition of Xn looks like a Cartesian product, but it is not:
we do not make the product of the whole graphs, but of each pair of
layer separately.

8. More precisely, let Ei ¼ ðui1; . . . ; uiQÞ be the first layer of the ith
instance of Yn (with i 2 f1; . . . ;ag). Then, 8j 2 f1; . . . ; Qg, we merge the
a nodes u1j ; . . . ; u

a
j .
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(2) Transformation 2 (Node replication). Second, we replace
each node p by a set of b nodes MðpÞ. Then, for each
channel fp; qg, we add a channel between each node of
MðpÞ and each node ofMðqÞ (see Fig. 7a).

(3) Transformation 3 (Channel replication).Third,we replace
each channel by b channels in parallel (see Fig. 7b).

4.2 Correctness Proof

We prove that graph Gn described in Section 4.1 solves the
WRBD problem. For this purpose, we prove the three prop-
erties of the WRBD problem: Reliability, Bounded degree and
Linear number of nodes.

In Lemma 1, we show that, for a sufficiently small failure
rate (� � 0:01), the first layer and the last layer of Fn are con-
nected with a constant probability (independently of n). To
do so, we call Pi the probability that the first and last layer of
Qi are connected, then expressPiþ1 as a function ofPi (accord-
ing to the inductive definition of Qi). Then, we show that if
Pi � 0:8, we also have Piþ1 � 0:8. Thus, the first and last layer
ofQi (and thus, Fn) are connectedwith probability at least 0.8.

In Lemma 2, we show that the first layer of Gn contains at
least n nodes. Then, we consider that Sn is a subset of the
first layer of Gn to prove the following property.

In Theorem 1, we prove the Reliability property. We first
consider the case � � 0:01 and m � 0:5 (in this case,
Yn ¼ Gn). According to the definition of Xn and Yn, any two
nodes of Sn are connected to the last layer of Yn by two
graphs Fn. Thus, the result, according to Lemma 2. We then
consider that � and m can have any value, and show that the
3 final transformations of Section 4.1 enable to simulate the
previous situation where � � 0:01 and m � 0:5.

In Theorem 2, we prove the Bounded degree property. As
Gn is intentionally defined as a combination of graphs with
a bounded degree, the property follows.

In Theorem 3, we prove the Linear number of nodes prop-
erty. We use the fact that the number of nodes of Tn is

divided by 2 every layer (starting from the first layer), while
the number of nodes of Fn at most doubles every 2 layers.
Therefore, the number of nodes of Xn (which is the combi-
nation of Tn and Fn) is at least divided by 2 every 2 layers.
Then, as 1þ 1=2þ 1=4þ 1=8 þ � 2, the number of nodes of
Xn is linear in n, and so is the number of nodes of Gn.

Lemma 1. Assume each node and channel crashes with probabil-
ity at most � (the probabilities being independent). If � � 0:01,
then 8n � 2, the nodes of the first and last layer of Fn are both
correct and connected with probability at least 0.8.

Lemma 2. 8n � 2, the first layer of Gn contains at least n nodes.

Theorem 1. Assume each node and channel crashes with proba-
bility at most � (the probabilities being independent). Then,
there exists a set Sn of n nodes of Gn such that any two correct
nodes of Sn are connected with probability at least m.

Theorem 2. There exists a constant D such that, 8n � 2, the
maximal degree of Gn is at most D.

Theorem 3. There exists a constant C such that, 8n � 2, the
number of nodes of Gn is at most Cn.

5 SOLVING THE RBD PROBLEM

In this section, we provide a solution to the RBD problem
(Section 5.1) and prove its correctness (Section 5.2).

5.1 Solution

We describe here a graph Gn
9 that solves the RBD problem.

We first give an overview, then the complete definition.
Overview. The idea is to combine several instances of a

WRBD graph, each instance reliably connecting a smaller
number of nodes, and to make their intermediary nodes dis-
appear by merging them with other nodes.

Let Wm be any WRBD graph (for instance, the WRBD
graph defined in Section 4). Then, 8n � 2, we consider the
largest integer m such that the number of nodes of Wm is at
most n. If such a m does not exist, we define Gn as a com-
plete graph with redundancy of channels. As it only hap-
pens for bounded values of n, it does not break the
“Bounded degree” property.

Otherwise, we consider a set V of n nodes, and we split V
into subsets of bm=2c nodes. Then, we connect each pair of
subsets with an instance ofWm merged with the nodes of V .
The resulting graph is Gn. Doing so ensures that any two
nodes of V are reliably connected. Besides, according to the
“Linear number of nodes” property of Wm, the number of
instances of Wm is bounded, and so is the maximal degree
of Gn.

Fig. 6. Transformation 1 (Network replication) with a ¼ 3.

Fig. 7. Transformations 2 (Node replication) and 3 (Channel replication)
with b ¼ 3.

Fig. 5. Construction of graph Yn.

9. The graph Gn of each section is different, each one solving one of
the four problems.
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Construction ofGn. Let n � 2, and let V be a set of n nodes.
Let Wm be any WRBD graph. Let Nm be the total number

of nodes of Wm (Nm � m), and let Sm be the set of m nodes
reliably connected byWm.

If there exists no m � 2 such that Nm � n, then for any
two nodes p and q of V , we add dlog ð1� mÞ=log ð1� �Þe
channels between p and q (complete graph).

Otherwise, let m � 2 be the largest integer such that
Nm � n. LetM be the smallest integer such thatMbm=2c � n.

Let fA1; . . . ; AMg be any set of M subsets of V such that
S

i2f1;...;MgAi ¼ V and 8i 2 f1; . . . ;Mg, jAij ¼ bm=2c.
Then, 8fi; jg � f1; . . . ;Mg, we apply the following trans-

formations. LetWði; jÞ be an instance ofWm, let V ði; jÞ be the
set of nodes ofWði; jÞ, and let Sði; jÞ be the set ofm nodes cor-

responding to Sm. Let Aði; jÞ and Bði; jÞ be two disjoint sub-

sets of Sði; jÞ such that jAði; jÞj ¼ jBði; jÞj ¼ bm=2c. Wemerge

the bm=2c nodes ofAði; jÞ (resp.Bði; jÞ) with the bm=2c nodes
of Ai (resp. Aj). Then, we merge the Nm � 2bm=2c nodes of
V ði; jÞ �Aði; jÞ �Bði; jÞ with any Nm � 2bm=2c nodes of

V �Ai �Aj. The graph thus obtained isGn. We illustrate this

in Fig. 8.

5.2 Correctness Proof

We prove that graph Gn described in Section 5.1 solves the
RBD problem. For this purpose, we prove the two proper-
ties of the WRBD problem: Reliability and Bounded degree.

In Theorem 4, we prove the Reliability property. Let p and q
be two nodes of Gn. In the case where the graph is complete,
the reliability property is ensured by the number of channels
between p and q. Otherwise, it is ensured by the fact that p
and q belong to the set Sm of at least one instance ofWm.

In Theorem 5, we prove the Bounded degree property. We
first notice that the graph is complete only when n � N2.
Thus, in this case, the degree is bounded. Otherwise, we
show that the number of subsets of bm=2c nodes is bounded
(which is a consequence of the linearity property of the
WRBD problem). Thus, the number of instances of Wm is
bounded, and so is the degree of Gn.

Theorem 4. Assume each node and channel crashes with probabil-
ity at most � (the probabilities being independent). Then, any two
correct nodes ofGn are connected with probability at leastm.

Theorem 5. There exists a constant D such that, 8n � 2, the
maximal degree of Gn is at most D.

6 SOLVING THE BDF PROBLEM

In this section, we provide a solution to the BDF problem
(6.1) and prove its correctness (6.2).

6.1 Solution

We describe here a tuple ðGn; Sn;RnÞ that solves the BDF
problem. We first give an overview, then the complete defi-
nition of Gn, Sn and Rn.

Overview. To constructGn, the intuitive idea is the follow-
ing. We define a sequence ðX1; . . . ; XHÞ of sets of OðnÞ
nodes. X1, X2, . . ., XH can be represented as tables of
respectively 2H�1 	 1, 2H�2 	 2, . . ., 1	 2H�1 nodes (each
time, the width is divided by two and the height is multi-
plied by two). This is illustrated in Fig. 9. Then, each node
ofXi is connected to two nodes ofXiþ1 with the same height
modulo 2 and the same width modulo 2H�i.10 Finally, we

Fig. 8. Illustration of the construction of Gn for M ¼ 3 (RBD problem).
We represented V ð1; 2Þ, V ð2; 3Þ, V ð1; 3Þ and V , as well as their subset
Aði; jÞ, Bði; jÞ and Ai. The grey lines show how the subsets Aði; jÞ and
Bði; jÞ are merged with the subsets Ai.

Fig. 9. Illustration of the construction ofGn forH ¼ 4 (BDF problem). The
first part represents the setsXk for k 2 f1; 2; 3; 4g. The nodes ukði; jÞ are
ordered such that i (resp. j) corresponds to the horizontal (resp. vertical)
axis. The second part shows how Xk and Xkþ1 are connected. Xk (resp.
Xkþ1) is partitioned into horizontal (resp. vertical) pairs of nodes. Each
pair of nodes ofXk is connected to the pair of nodes ofXkþ1 with the cor-
responding position, as shown in the third part.

10. The demultiplexing properties of Gn are similar to those of a but-
terfly [20] network. However, Gn is defined differently. In a butterfly
network, the nodes of each layer are described by an index i. Here, they
are described by two indexes i and j (“ukði; jÞ”).
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merge X1 and XH so that the sets of nodes form a cycle. As
we show further, this construction enables to mix the flows
of messages in a perfectly balanced way. Sn is an arbitrary
set of n nodes of the first layer of Gn.

We then define the routing map Rn as follows. The flows
of messages between two nodes p and q of Sn take a unique
path rðp; qÞ (p is seen as a node ofX1 and q as a node ofXH).
The path is determined by the binary decomposition of the
position of q in XH : at each new step, 0 means “go down”
(vkþ1 ¼ xðbkÞ) and 1 means “go up” (vkþ1 ¼ yðbkÞ). This cor-
responds to the upper node and lower node in the third
part of Fig. 9. We show that rðp; qÞ actually reaches q in the
correctness proof.

GraphGn. LetH be the smallest integer such that 2H�1 � n
(as n � 2, H � 2). We considerH sets of nodes ðX1; . . . ;XHÞ,
containing 2H�1 nodes each. 8k 2 f1; . . . ;Hg, we denote each
node of Xk by ukði; jÞ, with i 2 f1; . . . ; 2H�kg and
j 2 f1; . . . ; 2k�1g (this is possible as 2H�k 	 2k�1 ¼ 2H�1). We
connect these H sets of nodes with communication channels
as follows. 8k 2 f1; . . . ;H � 1g, 8i 2 f1; . . . ; 2H�k�1g and 8j 2
f1; . . . ; 2k�1g, let a ¼ ukð2i� 1; jÞ, b ¼ ukð2i; jÞ, x ¼ ukþ1ði;
2j� 1Þ and y ¼ ukþ1ði; 2jÞ. Then, we add the following com-
munication channels: fa; xg, fa; yg, fb; xg and fb; yg. Finally,
8i 2 f1; . . . ; 2H�1g, we merge the node u1ði; 1Þ with the node
uHð1; iÞ. The graph thus obtained isGn.

Set of Nodes Sn. We define Sn as an arbitrary subset of the
set X1, containing exactly n nodes. This is possible as
2H�1 � n.

Routing Map Rn. For a given node v 2 X1 [ [XH�1, let k, i

and j be such that v ¼ ukði; jÞ. Let i0 be the smallest integer

such that 2i0 � i. Let xðvÞ ¼ ukði0; 2j� 1Þ and yðvÞ ¼ ukði0;
2jÞ. Let p 2 X1 and q 2 XH ¼ X1. Let j be such that q ¼ uHð1;
jÞ. Let ðb1; . . . ; bH�1Þ be the binary sequence (8k 2 f1; . . . ;H�
1g; bk 2 f0; 1g) such that j� 1 ¼ S

k¼H�1
k¼1 bk2

H�k�1 (that is, the
binary decomposition of i� 1).

Let v1 ¼ p. We define vkþ1 by induction: if bk ¼ 0,
vkþ1 ¼ xðbkÞ, and if bk ¼ 1, vkþ1 ¼ yðbkÞ. Let rðp; qÞ ¼ ðv1;
. . . ; vHÞ. Then, we define the routing map Rn by Rnðp; qÞ ¼
fðrðp; qÞ; 1Þg.

6.2 Correctness Proof

We prove that the tuple ðGn; Sn;RnÞ described in Section 6.1
solves the BDF problem. For this purpose, we first prove
that Rn is actually a routing map of Sn. Then, we prove the
two properties of the BDF problem: Bounded degree and
Bounded flow.

In Theorem 6, we show that Rn is a routing map of Sn.
For this purpose, we show that the definition of rðp; qÞ (with
the binary decomposition of the position of q in XH) is so
that the path actually reaches q. To do so, we show by
induction that the k first bits always reflect the position of
the node crossed by rðp; qÞ inXk.

In Theorem 7, we prove the Bounded degree property: the
degree of Gn is at most 4 by construction.

In Theorem 8, we prove the Bounded flow property: we
show that according to the definition of the routing map,
each node of Xk is crossed by 2k�1 	 2H�k ¼ 2H�1 paths
(which is a constant). Hence, the maximal flow is bounded.

Theorem 6. Rn is a routing map of Sn.

Theorem 7. There exists a constant D such that, 8n � 2, the
maximal degree of Gn is at most D.

Theorem 8. There exists a constant f0 such that, 8n � 2, the
maximal flow of ðGn; Sn;RnÞ is at most f0.

7 SOLVING THE RBDF PROBLEM

In this section, we provide a solution to the RBDF problem
(Section 7.1) and prove its correctness (Section 7.2).

7.1 Solution

We describe here a tuple ðGn; Sn;R
V;E
n Þ that solves the RBDF

problem. We first give an overview, then the complete defi-
nition of Gn, Sn and RV;E

n .
Overview. Let G0

n be the BDF graph defined in Section 6.1.
After introducing preliminary definitions, we first define
graph Gn. For this purpose, we define 4 intermediary
graphs An, Fn, Pn and Xn. All these graphs are layered
graphs, as introduced in Section 4.1, and have the same
height H 0

n. An is an variation of the previous graph G0
n with

additional layers. Fn is a recursive graph designed to satisfy
the reliability property. Pn is an adaptation of Fn to the reli-
ability parameters � and m. Similarly to Section 4.1, Xn is a
layer-by-layer product of An and Pn, in order to combine
the properties of the previous graph G0

n with the reliability
property of Pn. Gn is finally obtained by merging the first
and the last layer of Xn, similarly to G0

n. Sn is an arbitrary
set of n nodes of the first layer of Gn.

To define routing map RV;E
n , the intuitive idea is the fol-

lowing. For any two nodes p and q of Sn, we first define a
subgraph Wðp; qÞ. Schematically, if p0 and q0 are the two cor-
responding nodes in G0

n, and rðp0; q0Þ is the path connecting
them, then Wðp; qÞ is the instance of Bn corresponding to
rðp0; q0Þ in Gn. Then, the routing map connects p and q with
a unique path avoiding the crashed nodes and channels in
Wðp; qÞ (if it exists).

Definitions. Let � > 0 be any arbitrary positive constant. �
is the constant determining the cost of the graph (in terms
of number of components). Therefore, it impacts many sub-
sequent parameters.

Let K be the smallest integer such that K � 21=�. K is a
parameter involved in the definition of graph Fn. 8n � 2, let
Hn be the smallest integer such that 2Hn�1 � n. We define
the following sequence ðh0; h1; h2; . . .Þ by induction: h0 ¼ 1,
and 8i � 0, hiþ1 ¼ 2þKhi. 8n � 2, let Mn be the smallest
integer such that hMn � Hn. Let H

0
n ¼ hMn . H

0
n corresponds

to the height of the layers graphs An, Fn, Bn,Xn and Gn.
Let gðxÞ ¼ 2xK � x2K . Let z be the smallest integer such

that gðgzÞ � gz, with gz ¼ 1� ð1=2zÞ (we show that such an
integer z always exists in Lemma 3 in Section 7.2), and let

m0 ¼ gz. Let �0 ¼ minð1� m0; 1� ðm0=gðm0ÞÞ1=ð4þ2KÞÞ. Let a

be the smallest integer such that a � 1 and ð1� m0Þa �
1� m. Let b be the smallest integer such that b � 1 and

�b � �0. The parameters a and b impact the redundancy of

nodes and channels in the definition of Bn.
Let ðG0

n; S
0
n; R

0
nÞ be the solution to the BDF problem

described in Section 6.1.
Graph Gn. To define Gn ¼ ðVn; EnÞ, we first define 4 inter-

mediary graphs An, Fn, Bn andXn.
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8n � 2, we define layered graph An as follows. Consider
graph G0

n and its definition in Section 6.1. The last step of the
construction of G0

n consists in merging the nodes of X1 and
XH . LetG

0
n be graphG0

n just before this last step. Then,G
0
n can

be seen as a layered graph of height H ¼ Hn, where the H
layers are ðX1; . . . ;XHÞ. We define graphAn as a combination
of G0

n and of 2Hn�1 sequences of H 0
n �Hn nodes, such as

described in Fig. 10. Thus,An is a layered graph of heightH 0
n.

8i � 0, we first define a layered graph Qi by induction.
Let Q0 be a layered graph of height 1 containing 1 node (see
Fig. 11). Then, 8i � 0, Qiþ1 is constructed with 2K instances
of Qi and 2 additional nodes, as described in Fig. 11. We
now define Fn as follows: 8n � 2, Fn ¼ QMn .

8n � 2, graph Bn is obtained by applying three succes-
sive transformations to Fn. Transformation 1 consists in con-
necting a instances of Fn by merging the nodes of their first
layers and then of their last layers. Transformations 2 and 3
are the same as for the WRBD graph.

8n � 2,An is a layered graph of heightH 0
n, and Fn is also a

layered graph of height H 0
n (by definition of H 0

n). Thus, Bn is
also a layered graph of height H 0

n. As An and Bn are layered
graphs, let An ¼ ðV1; . . . ; VH0

n
;EÞ and Bn ¼ ðV 0

1 ; . . . ; V
0
H0
n
; E0Þ.

Then, 8n � 2, we define the layered graph Xn ¼ ðV 00
1 ; . . . ;

V 00
H0
n
;E00Þ by the samemechanism as for theWRBDgraph.

The first layer V 00
1 ofXn containsm ¼ 2Hn�1 nodes, and so

does its last layer V 00
H0
n
. Let V 00

1 ¼ fu1; . . . ; umg and V 00
H0
n
¼ fv1;

. . . ; vmg (the order of numbering is unimportant here). We
finally obtain graph Gn as follows: 8i 2 f1; . . . ;mg, we
merge the nodes ui and vi.

Set of Nodes Sn. Let S
0
n be any set of any n nodes of the

first layer of Xn (such a set exists, as jV 00
1 j � 2Hn�1 � n).

We define Sn as the corresponding set of nodes in Gn.
Routing Map RV;E

n . Let p and q be any two nodes of Sn. As
Gn is obtained by merging the nodes of V 00

1 and V 00
H0
n
in Xn,

let p00 (resp. q00) be the corresponding node if V 00
1 (resp. V 00

H0
n
).

According to the definition of Xn, let pF (resp. qF ) be the
node of An such that there exists a node v (resp v0) such that
p00 ¼ pðpF ; vÞ (resp. q00 ¼ pðqF ; v0Þ). According to the defini-
tion of An, let pG be the node of G0

n corresponding to pF , and
let qG be the node of the last layer of G0

n which is connected
to qF by a path of H 0

n �Hn nodes (according to Fig. 10).
Finally, let p0 (resp. q0) be the node corresponding to pG
(resp. qG) in G0

n.
Let rðp0; q0Þ be the path connecting p0 and q0 in G0

n, such as
defined in Section 6.1 (as shown in the proof of Theorem 6,

rðp0; q0Þ actually connects p0 and q0). Let rGðpG; qGÞ be the cor-
responding path in G0

n. Let rF ðpF ; qF Þ ¼ ðu1; . . . ; uH0
n
Þ be an

extension of rGðpG; qGÞ connecting pF and qF in An with
H 0

n �Hn additional nodes (see Fig. 10). 8i 2 f1; . . . ; H 0
ng, let

Wi be the set of nodes w of Xn such that there exists a node
v such that w ¼ pðui; vÞ. Let W ¼ S

i2f1;...;H0
ngWi. Let W

0 be

the corresponding set of nodes in Gn. We define W ðp; qÞ as
the subgraph containing the nodes of W (and the channels
connecting them) in Gn.

Now, let V (resp. E) be any arbitrary set of crashed nodes
(resp. edges) of Gn. If there exists a path of correct nodes and
channels connecting p and q inWðp; qÞ, let cðV; E; p; qÞ be this
path. Otherwise, let cðV; E; p; qÞ be any path connecting p and
q in Wðp; qÞ. We define the routing map Rn by RV;E

n ðp; qÞ ¼
fðcðV; E; p; qÞ; 1Þg for any two nodes p and q ofSn.

7.2 Correctness Proof

We prove that the tuple ðGn; Sn;R
V;E
n Þ described in Section

7.1 solves the RBDF problem. For this purpose, we prove
the three properties of the RBDF problem: Bounded degree,
Bounded flow and Reliability.

In Lemma 3, we prove a small property assumed in the
description of the RBDF solution in Section 7.1.

In Theorem 9, we show the Bounded degree property,
which follows from the construction of the graph.

In Theorem 10, we show the Bounded flow property: the
worst case in terms of maximal flow (after merging several
nodes) corresponds to our solution to the BDF problem.

In Lemma 4, we show that if the failure rate is at most �0,
then the communication probability in Qi (and thus, in Fn) is
at least m0. This is due to the recursive definition ofQi, which
enables this property to propagate through each recursive
step. In Lemma 5, we show that the three transformations
betweenFn andBn adapt the result of Lemma 4 to any param-
eters � and m. Then, in Theorem 11, we show the Reliability
property, which follows from the properties ofBn.

Lemma 3. Let gi ¼ 1� ð1=2iÞ. There exists an integer i � 1
such that gðgiÞ � gi.

Theorem 9. There exists a constant D such that, 8n � 2, the
maximal degree of Gn is at most D.

Theorem 10. There exists a constant f0 such that, 8n � 2,
8V � Vn and 8E � En, the maximal flow of ðGn; Sn;R

V;E
n Þ is

at most f0.

Fig. 10. Construction of graph An with graph G0
n and 2Hn�1 sequences of

hMn �Hn nodes.
Fig. 11. Construction (by induction) of graphQi.
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Lemma 4. 8i � 0, let pi (resp. qi) be the node of the first (resp.
last) layer of Qi. Suppose that � � �0. If each node and channel
crashes with probability at most �, pi and qi are connected with
probability at least m0.

Lemma 5. 8n � 2, let pn (resp. qn) be any node of the first (resp.
last) layer of Bn. If pn and qn are correct, and each other node
and channel crashes with probability at most �, then pn and qn
are connected with probability at least m.

Theorem 11. Assume each node and channel crashes with proba-
bility at most � (the probabilities being independent). Let V
(resp. E) be the set of crashed nodes (resp. channels). Then, any
two correct nodes of Sn are reliably connected in RV;E

n with
probability at least m.

8 COST

In this section, we show that solving the BDF problem
requires at least Vðn lognÞ nodes (8.1), then that our solu-
tion to the BDF and RBDF problems contain respectively
Oðn lognÞ and Oðn log 1þ�nÞ nodes (Sections 8.2 and 8.3).

8.1 Lower Bound on the BDF Problem

In Theorem 12, we show that solving the BDF problem
requires at least Vðn lognÞ nodes.

In broad outline, we assume a solution ðGn; Sn;RnÞ of the
BDF problem. We first show that there are at least Vðn2Þ
tuples of nodes ðp; qÞ of Sn such that p and q are at distance at
least VðlognÞ from each other, due to the bounded degree.
Therefore, as the flow of messages sent by each node of Sn is
divided between the n� 1 other nodes, the sum of the flows
of all nodes is Vðn lognÞ. Thus, for the maximal flow to be
bounded, at leastVðn lognÞ nodes are required.
Theorem 12. A graph solving the BDF problem, if it exists, con-

tains at least Vðn lognÞ nodes.

8.2 Cost of our BDF Solution

In Theorem 13, we show that graph Gn described in Section
6.1 contains Oðn lognÞ nodes: Gn is composed of H sets
ðX1; . . . ; XHÞ of OðnÞ nodes each, withH ¼ OðlognÞ.
Theorem 13. Graph Gn, described in Section 6.1, contains

Oðn lognÞ nodes.

8.3 Cost of our RBDF Solution

We show that graph Gn described in Section 7.1 contains
Oðnlog 1þ�nÞ nodes. In Lemma 6, we show that the layers of
Fn contain Oðlog �nÞ nodes. In Lemma 7, we show that the
height of Gn is OðlognÞ. Then, as shown in Theorem 14, Gn

contains Oðlog �nÞ 	OðlognÞ 	OðnÞ ¼ Oðn log 1þ�nÞ nodes.
Lemma 6. There exists a constant C1 such that the layers of

graph Fn contain at most C1log
�n nodes each.

Lemma 7. There exists a constant C2 such thatH
0
n � C2 logn.

Theorem 14. GraphGn, described in 7.1, contains Oðn log 1þ�nÞ
nodes.

9 RELATED WORKS

The area of robust network design is a vast domain. We thus
focus of papers where the general objective is to build a
graph with good connectivity properties.

A lot of work in distributed computing has been devoted
to tolerating a specific number of failures [9], [11], [28]. A
constant failure rate raises different problems when the size
of the network is unbounded, e.g., even a very small failure
rate can entirely change asymptotic properties.

In [15], [25], [27], random failures are considered, but the
reliability criteria is that the whole graph should remain con-
nected. In other words, for a failure rate � and a maximal
degree D, the probability that a single node is disconnected
is at least �D, and the probability that the graph remains
fully connected is at most 1� �D. Thus, it is impossible to
have an arbitrarily high reliability m (which is required in
the very definition of our problems).

In [7], [12], [26], the focus was on constructing a graph sat-
isfying certain topological properties. In [12] and [7] however,
the node degree is not bounded. In [26], the degree is
bounded, and the reliability criteria is the connectivity of the
graph – i.e., the number k of disjoint paths between two given
nodes. However, the length of these paths increases with the
number of nodes. Therefore, when each node or channel has a
given probability to fail, the probability that the k paths are
cut approaches 1. Thus, no bound can be given on the commu-
nication probability when each node and channel has a given
probability of failure.

A lot of network topologies that were proposed to reli-
ably connect a large number of nodes with a reasonable
degree [10], [13], [16], [17], [23], [24], [29], [31] were empiri-
cal and have only been experimented through simulations:
their performances were evaluated only for a specific num-
ber of nodes. In [13], [23], [24], [31], traffic congestion slowly
increases when the size of the network increases. In [10],
[16], [17], [29], if we consider the asymptotic behavior of the
proposed graphs (i.e., when the number of nodes grows),
either the communication probability approaches zero, or
the maximal degree approaches infinity.

For the RBD problem, our approach was to construct a
specific graph (step by step) to match the desired properties.
Intuitively, another idea could be to use expander graphs
[14], [18], [21]. However, solving the RBD problem with
expander graphs may be harder than it seems, if not impos-
sible. We discuss this below.

We would define a graph as a ðK;AÞ vertex expander if,
for any set S of at most K nodes, the nodes of S are con-
nected to at least AjSj nodes [4]. By definition, K is at most
n=A (where n is the number of nodes).

One could then have the following intuition of proof. Let
G be the graph, and let G0 be the graph after removing all
crashed nodes and channels. Let u be a node of G0, and let
Si be the ith neighborhood of u in G0. Then, with a constant
probability, we can show that jSiþ1j � 2jSij (assuming that
A is large enough). Thus, by induction, one could deduct
that u is connected to a majority of the nodes of G0 with a
constant probability.

There is, however, at least one flaw is this reasoning.
First, to have jSiþ1j � 2jSij, we must have at least jSij cor-

rect nodes connected to Si by one correct channel. These
nodes represent an average fraction ð1� �Þ2 of the neigh-
bors of Si in G. Thus, we must have A � 1=ð1� �Þ2. As
K � n=A,K � nð1� �Þ2.

Second, to show that jSiþ1j � 2jSij, we have to use the
property according to which Si is connected to at least AjSij
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nodes. However, the property only applies for jSij � K.
Thus, all the sets Si combined contain at most 2K þKþ
K=2þK=4þ � 4K � 4nð1� �Þ2 nodes.

Therefore, for some values of � (e.g., when ð1� �Þ2 is
much smaller than ð1� �Þ=2), the sets Si do not cover a
majority of correct nodes with a constant probability. Note
that increasing A does not help here.

In a nutshell, an idea could be to build a subgraph (with
some reliability properties) around the initial node and the
final node, until the two subgraphs intersect. However, this
requires to use a property which is not satisfied for some
failure rates, once the subgraph reaches a certain size. Thus,
it cannot be proved that the two subgraphs intersect.

Whether or not the RBD problem can be solved using
expanders graphs (or another family of graphs) remains an
open problem. Such a claim would require a fully consistent
proof, which does not exist to our knowledge. The contribu-
tion of this paper is to show that the RBD problem can be
solved, the very nature of solution itself being secondary.

10 CONCLUDING REMARKS

The asymptotic behavior of a distributed system has been
studied in the literature of distributed computing so far as a
function of its number of nodes n. The parameters studied
have typically been the message and memory complexities.
Here, we consider, for the first time, the asymptotic reliability
of the distributed system (i.e., the probability that any two
nodes remain connected) and consider as a parameter the
number of physical components needed to build the system.
We show that it is possible to connect an arbitrarily large
number of nodes with any desired level of reliability while
preserving a bounded degree and a bounded throughput.

Our approach suggests several research directions. For
instance, instead of considering a continuous flow of mes-
sages, we could model more accurately the granularity of
messages with a probabilistic model. One could also consider
the cost of physicallywiring the network, and try to bound it.
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