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On Benchmarking the Capability of Symbolic
Execution Tools with Logic Bombs
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Abstract—Symbolic execution now becomes an indispensable technique for software testing and program analysis. There are several

symbolic execution tools available off-the-shelf, and we need a practical benchmark approach to learn their capabilities. Therefore, this

paper introduces a novel approach to benchmark symbolic execution tools in a fine-grained and efficient manner. In particular, our

approach evaluates the performance of such tools against the known challenges faced by general symbolic execution techniques, such

as floating-point numbers and symbolic memories. To this end, we first survey related papers and systematize the challenges of

symbolic execution. We extract 12 distinct challenges from the literature and categorize them into two categories: symbolic-reasoning

challenges and path-explosion challenges. Then, we develop a dataset of logic bombs and a framework to benchmark symbolic

execution tools automatically. For each challenge, our dataset contains several logic bombs, each of which is guarded by a specific

challenging problem. If a symbolic execution tool can find test cases to trigger logic bombs, it indicates that the tool can handle the

corresponding problems. We have conducted real-world experiments with three popular symbolic execution tools: KLEE, Angr, and

Triton. Experimental results show that our approach can reveal their capabilities and limitations in handling particular issues accurately

and efficiently. The benchmark process generally takes only dozens of minutes to evaluate a tool. We release our dataset on GitHub as

open source, with an aim to better facilitate the community to conduct future work on benchmarking symbolic execution tools.

Index Terms—symbolic execution.

✦

1 INTRODUCTION

Symbolic execution is a popular technique for software
testing and program analysis [1]. It has achieved rapid
development in the last decade with several open-source
symbolic execution tools available, such as KLEE [2] and
Angr [3]. Current methods for evaluating symbolic exe-
cution tools generally rely on the achieved code coverage
or the number of bugs detected in real-world programs
(e.g., [2], [4]). Nevertheless, such metrics may fluctuate with
different types of programs being analyzed, and they cannot
manifest the detailed capabilities of a symbolic execution
tool. This paper, therefore, aims to propose a fine-grained
benchmark approach for symbolic execution tools which is
less sensitive to targeting programs.

In particular, we observe that there are some common
challenging problems which symbolic execution tools may
not handle well, such as floating-point numbers [5] and
loops [6]. They are the determinant factors of the code
coverage that a symbolic execution tool can achieve. There-
fore, we propose to develop a benchmark approach based
on these known challenges. To elaborate, we can employ
each challenge as an evaluation metric. In this way, our
approach can give more meaningful information concerning
the capability of a symbolic execution tool. Moreover, the
benchmark result is unbiased as it does not depend on
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particular programs for analysis.
To this end, we first conduct a systematic survey on

the challenges of symbolic execution. This step is essential
for our benchmark approach to embrace as many distinct
challenges as possible. We categorize existing challenges
into two categories: symbolic-reasoning challenges and path-
explosion challenges. Symbolic-reasoning challenges attack
the core symbolic reasoning process, where they may pose
problems to a symbolic execution tool in generating incor-
rect test cases for particular control flows. These challenges
include symbolic variable declarations, covert propagations,
parallel executions, symbolic memories, contextual sym-
bolic values, symbolic jumps, floating-point numbers, buffer
overflows, and arithmetic overflows. Path-explosion chal-
lenges introduce too many possible control flows to analyze,
which may cause a symbolic execution tool starving the
computational resources or spending very long time on
exploring the paths. Not only large-sized programs but also
small-sized programs can cause path-explosion issues, as
long as they include complex routines, such as external
function calls, loops, and crypto functions. With our ap-
proach, consequently, all existing challenges discussed in
the literature can be well categorized.

Next, we develop an accurate and efficient approach to
benchmark the capability of symbolic execution tools with
respect to each of the challenges. To this end, we cannot
employ real-world programs for testing because they are
too complicated and any challenges could cause a failure.
Moreover, symbolic execution itself is not very efficient,
and benchmark with real-world programs generally takes
a long time. We tackle the problem by designing small
programs embedded with logic bombs. A logic bomb is an
artificial code block that can only be executed when certain

http://arxiv.org/abs/1712.01674v2
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Fig. 1. The challenges of symbolic execution discussed in the literature. The detailed paper references are Schwartz’10 [7], Qu’11 [8], Cadar’13 [6],
Cseppento’15 [9], Kannavara’15 [10], Quan’16 [5], Xu’17 [11], and Baldoni’18 [12].

conditions are met. We create such logic bombs that can
only be triggered when a challenging problem is solved.
The benefits are two folds. By keeping each logic bomb as
small as possible, our evaluation result would be less likely
affected by other unexpected issues. Also, employing small
programs can shorten the required symbolic execution time
and provides efficiency.

Following this method, we have designed a dataset of
logic bombs covering all the challenges and a framework
to run benchmark experiments automatically. For each chal-
lenge, our dataset contains several logic bombs with differ-
ent problem settings or different levels of hardness, such as
a one-leveled arrays or a two-leveled arrays for the symbolic
memory challenge. Our framework employs the dataset of
logic bombs as evaluation metrics. It firstly parses the logic
bombs and compiles them to object codes or binaries; then,
it directs a symbolic execution tool to perform symbolic
execution on the logic bombs in a batch mode; and finally,
it verifies the generated test cases and produces reports. We
release our dataset and framework tools on GitHub.

We have conducted real-world experiments to bench-
mark three prevalent symbolic execution tools, KLEE, Tri-
ton, and Angr. Although these tools adopt different imple-
mentation techniques, our framework can adapt to them
with only a little customization. The benchmark process for
each tool generally took dozens of minutes. Experimental
results show that our benchmark approach can reveal their
capabilities and limitations efficiently and accurately. In
summary, Angr has achieved the best performance with 21
cases solved, which is roughly one third of the total logic
bombs; KLEE solved nine cases; and Triton only solved
three cases. We manually checked the reported solutions
and confirmed that they are all correct and nontrivial. Be-
sides, the results also demonstrate some interesting findings
about these tools. For example, Angr only supports one-
leveled arrays but not two-leveled arrays; Triton does not
even support the atoi function. Most of our findings are
unavailable from the tool websites or existing papers, which
further justifies the value of our benchmark approach.

The rest of the paper is organized as follows. We first
discuss the related work in Section 2 and introduce the
preliminary knowledge of symbolic execution in Section 3.
Then, we demonstrate our systematic study about the chal-
lenges of symbolic execution in Section 4, and we introduce
our benchmark methodology in Section 5. We present our
experiments and results in Section 6. Finally, we conclude
this paper in Section 7.

2 RELATED WORK

This section compares our work with present papers that
either systematize the challenges of symbolic execution
or employ the challenges to evaluate symbolic execution
tools. Note that although symbolic execution has received
extensive attention for decades, only a few papers include
a systematic discussion about the challenges of the tech-
nique. Existing work in this area mainly focuses on em-
ploying the technique to carry out specific software analysis
tasks (e.g., [13], [14], [15]), or proposing new approaches
to improve the technology concerning particular challenges
(e.g., [16], [17], [18]).

The papers that focus on systematizing the challenges
of symbolic execution tools include [8], [9], [10], [19]. Kan-
navara et al. [10] enumerated several challenges that may
hinder the adoption of symbolic execution in industrial
fields. Qu and Robinson [8] conducted a case study on
the limitations of symbolic testing tools and examined their
prevalence in real-world programs. However, none of the
two papers provides a method to evaluate symbolic execu-
tion tools. Cseppento and Micskei [9] proposed several met-
rics to evaluate source-code-based symbolic execution tools.
But their metrics are based on specific program syntax of
object-oriented codes rather than the language-independent
challenges. These metrics are not very general for symbolic
execution. Banescu et al. [19] also design several small
programs for evaluation. But their purpose is to evaluate
the resilience of code obfuscation transformations against
symbolic execution-based attacks. They do not investigate
the capability of symbolic execution but trust KLEE as a
state-of-the-art symbolic executor. Besides, there are several
survey papers (e.g., [6], [7], [12]) which also include some
discussion about the challenges. But our work provides a
more complete list of challenges as shown in Figure 1.

In our previous conference paper [11], we have con-
ducted an empirical study with some of the challenges.
This paper notably extends our previous paper with a
formal benchmark methodology. It serves as a pilot study
on systematically benchmarking symbolic execution tools
in handling particular challenges. We consequently design a
novel benchmark framework based on logic bombs, which
can facilitate the automation of the benchmark process.
We further provide a benchmark toolset that can be easily
deployed by ordinary users.



3

3 PRELIMINARY

This section reviews the underlying techniques of symbolic
execution, which is a preliminary for discussing the chal-
lenges and the benchmark approach we proposed in this
work.

3.1 Theoretical Basis

The core principle of symbolic execution is symbolic rea-
soning. Informally, given a sequence of instructions along
a control path, a symbolic reasoning engine can extract a
constraint model and generates a test case for the path by
solving the model.

Formally, we can use Hoare Logic [20] to model the sym-
bolic reasoning problem. Hoare Logic is composed of basic
triples {S1}I{S2}, where {S1} and {S2} are the assertions
of variable states and I is an instruction. The Hoare triple
says if a precondition {S1} is met, when executing I , it will
terminate with the postcondition {S2}. Using Hoare Logic,
we can model the semantics of instructions along a control
path as:

{S0}I0{S1,∆1}I1...{Sn−1,∆n−1}In−1{Sn}

{S0} is the initial symbolic state of the program; {S1} is
the symbolic state before the first conditional branch with
symbolic variables; ∆i is the corresponding constraint for
executing the following instructions, and {Si} satisfies ∆i.
A symbolic execution engine can compute an initial state
{S′

0} (i.e., the concrete values for symbolic variables) which
can trigger the same control path. This can be achieved
by computing the weakest precondition (aka wp) backward
using Hoare Logic:

{Sn−2} = wp(In−2{Sn−1}), s.t. {Sn−1} sat ∆n−1

{Sn−3} = wp(In−3{Sn−2}), s.t. {Sn−2} sat ∆n−2

...

{S1} = wp(I1{S2}), s.t. {S2} sat ∆2

{S0} = wp(I0{S1}), s.t. {S1} sat ∆1

Combining the constraints in each line, we can get a
constraint model in conjunction normal form: ∆1 ∧ ∆2 ∧
...∧∆n−1. The solution to the constraint model is a test case
{S′

0
} that can trigger the same control path.

Finally, when sampling {Ii}, not all instructions are use-
ful. We only keep the instructions whose parameter values
depend on the symbolic variables. We can demonstrate the
correctness by expending any irrelevant instruction Ii to
X := E, which manipulates the value of a variable X

with an expression E. Suppose E does not depend on any
symbolic value, then X would be a constant, and should not
be included in the weakest preconditions. In practice, it can
be realized using taint analysis techniques [21].

Fig. 2. A conceptual framework for symbolic execution.

3.2 Symbolic Execution Framework

We demonstrate the conceptual framework of a symbolic
execution tool in Figure 2. It inputs a program and outputs
test cases for the program. The framework includes a core
symbolic reasoning engine and a path selection engine.

The symbolic reasoning engine analyzes the instructions
along a path and generates test cases that can trigger the
path. Based on the theoretical basis of symbolic reasoning,
we can divide symbolic reasoning into four stages: symbolic
variable declaration, instruction tracing, semantic interpre-
tation, and constraint modeling and solving. The details are
discussed as follows:

• Symbolic variable declaration (Svar): In this stage, we
have to declare symbolic variables which will be
employed in the following symbolic analysis process.
If some symbolic variables are missing from decla-
ration, insufficient constraints can be generated for
triggering a control path.

• Instruction tracing (Sinst): This stage collects the in-
structions along control paths. If some instructions
are missing, or the syntax are not supported, errors
would occur.

• Semantic interpretation (Ssem): This stage translates
the semantics of collected instructions with an in-
termediate language (IL). If some instructions are
not correctly interpreted, or the data propagation are
incorrectly modeled, errors would occur.

• Constraint modeling and solving (Smodel): This stage
generates constraint models from IL, and then solve
the constraint models. If a required satisfiability
modulo theory is unsupported, errors would occur.

The path selection engine determines which path should
be analyzed in the next round of symbolic reasoning pro-
cess. Several favorite strategies include depth-first search,
width-first search, random search, etc [12].

3.3 Implementation Variations

According to the different ways of instruction tracing, we
can classify symbolic execution tools into static symbolic
execution and dynamic symbolic execution. Static symbolic
execution loads a whole program first before extracting
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TABLE 1
A list of the challenges faced by symbolic execution, and the symbolic reasoning stages they attack.

Challenge Idea
Stage of Error

Svar Sinst & Ssem Smodel

Symbolic
-reasoning
Challenges

Sym. Var. Declaration Contextual variables besides program arguments X X X

Covert Propagations Propagating symbolic values in covert ways - X X

Buffer Overflows Writing symbolic values without proper boundary check - X X

Parallel Executions Processing symbolic values with parallel codes - X X

Symbolic Memories Symbolic values as the offset of memory - X X

Contextual Symbolic Values Retrieving contextual values with symbolic values - X X

Symbolic Jumps Sym. values as the addresses of unconditional jump - - X

Floating-point Numbers Symbolic values in float/double type - - X

Arithmetic Overflows Integers outside the scope of an integer type - - X

Path-explosion
Challenges

Loops Change symbolic values within loops - - -
Crypto Functions Processing symbolic values with crypto functions - - -

External Function Calls Processing sym. values with some external functions - - -

instructions along with a path on the program control-flow
graph (CFG). Dynamic symbolic execution is also known
as concolic (concrete and symbolic) execution. It collects
instructions which are actually executed. In each round,
the concolic execution engine executes the program with
concrete values to generate instructions.

We may also classify symbolic execution tools into
source-code-based symbolic execution and binary-code-
based symbolic execution. In general, we do not perform
symbolic reasoning on source codes or binaries directly. A
prior step is to interpret the semantics of the program with
an intermediate language (IL). For source codes, we can
translate the code directly with a compiler frontend. For
binaries, we have to lift the assembly codes into IL, which
is more difficult. Their main difference lies in the translation
process.

4 CHALLENGES OF SYMBOLIC EXECUTION

Based on whether a challenge attacks the symbolic reason-
ing process, we categorize the challenges of symbolic ex-
ecution into symbolic-reasoning challenges and path-explosion
challenges. A symbolic-reasoning challenge attacks the sym-
bolic reasoning process and leads to incorrect test cases
generated. A path-explosion challenge happens when there
are too many paths to analyze. It does not attack a single
symbolic reasoning process, but it may starve the compu-
tational resources or requires a very long time for symbolic
execution.

Table 1 demonstrates the challenges that we have in-
vestigated in this work. We collect such challenges via a
careful survey of existing papers. The survey scope covers
several survey papers about symbolic execution techniques
(e.g., [6], [7], [12]), several investigations that focus on sys-
temizing the challenges of symbolic execution (e.g., [9], [10]),
and other important papers related to symbolic execution
(e.g., [15], [16], [22], [23], [24], [25], [26], [27]).

4.1 Symbolic-reasoning Challenges

Next, we discuss nine challenges that may incur errors to
the symbolic reasoning process.

4.1.1 Symbolic Variable Declarations

Test cases are the solutions of symbolic variables subject to
constrain models. Therefore, symbolic variables should be

declared before a symbolic analysis process. For example,
in source-code-based symbolic execution tools (e.g., KLEE),
users can manually declare symbolic variables in the source
codes. Binary-code-based concolic execution tools (e.g., Tri-
ton) generally assume a fixed length of program arguments
from stdin as the symbolic variable. If some symbolic vari-
ables are missing from the declaration, the generated test
cases would be insufficient for triggering particular control
paths. Since the root cause occurs before symbolic execution,
the challenge attacks Svar .

Figure 3(a) is a sample with a symbolic variable declara-
tion problem. It returns a BOMB_ENDING only when being
executed with a particular process id. To explore the path,
a symbolic execution tool should treat pid as a symbolic
variable and then solve the constraint with respect to pid.
Otherwise, it cannot find test cases that can trigger the path.

To declare symbolic variables precisely, a user should
know target programs well. However, the task is impossi-
ble when analyzing programs on a large scale, e.g., when
performing malware analysis. In an ideal case, a symbolic
execution tool may automatically detect such variables
which can control program behaviors and reports the so-
lutions accordingly. To our best knowledge, non-existent
tools have implemented the ideal feature. Instead, they are
generally discussed together with other problems related
to the computing environment, such as libraries, kernels,
and drivers [28]. In reality, there are several challenges
of this work refer to the computing environment, such as
contextual symbolic variables, covert propagations, parallel
executions, external function calls. We demonstrate that
these challenges are different.

4.1.2 Covert Propagations

Some data propagation ways are covert because they cannot
be traced easily by data-flow analysis tools. For example, if
the symbolic values are propagated via other media (e.g.,
files) outside of the process memory, the propagation would
be untraceable. Such propagation methods are undecidable
and can be beyond the capability of pure program analysis.
Symbolic execution tools have to handle such cases with ad
hoc methods. There are also some propagations challenging
only to certain implementations. For example, propagating
symbolic values via embedded assembly codes should be
a problem for source-code-based symbolic execution tools
only. If a symbolic execution tool fails to detect some prop-
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(a) Symbolic variable declarations. (b) Covert symbolic propagations. (c) Buffer overflows.

(d) Parallel executions. (e) Symbolic memories. (f) Contextual symbolic val-
ues.

(g) Symbolic jumps. (h) Floating-point numbers. (i) Arithmetic overflows. (j) External function calls.

(k) Loops. (l) Crypto functions.

Fig. 3. Logic bomb samples with challenging symbolic execution issues. In each sample, we employ symvar to denote a symbolic variable, and
BOMB_ENDING to denote a macro value indicating a particular program behavior.

agation, the instructions related to the propagated values
would be missed from the following analysis. Therefore, the
challenge attacks the stages of Sinst and Ssem.

Figure 3(b) shows a covert propagation sample. We de-
fine an integer i and initiate it with the value of a symbolic
variable (symvar). So i is also a symbolic variable. We then
propagate the value of i to another variable (ret) through a
shell command (echo), and let ret control the return value.
To find a test case which can return the BOMB_ENDING, a
symbolic execution tool should properly track or model the
propagation incurred by the shell command.

4.1.3 Buffer Overflows

Buffer overflow is a typical software bug that can bring
security issues. Due to insufficient boundary check, the
input data may overwrite adjacent memories. Adversaries
can employ such bugs to inject data and intentionally tam-
per the semantics of the original codes. Buffer overflows
can happen in either stack or heap regions. If a symbolic
execution tool cannot detect the overflow issues, it would
fail to track the propagation of symbolic values. Therefore,
buffer overflow involves a particular covert propagation
issue. Source-code-based symbolic execution tools are prone

to be affected by buffer overflows because the stack layout
of a program only exists in assembly codes, which may
vary for particular platforms. Therefore, such tools cannot
model the stack information with source codes only. In
contrast, binary-code-based symbolic execution tools should
be more potent in handling buffer overflow issues because
there can simulate actual memory layouts. However, even
if these tools can precisely track the propagation, they still
suffer difficulties in automatically analyzing the unexpected
program behaviors caused by overflow. Otherwise, they
would be powerful enough to generate exploits for bugs,
which is a problem far from being solved [29].

Figure 3(c) demonstrates a buffer overflow example.
The program returns a BOMB_ENDING if the value of flag
equals one, which is unlikely because the value is zero and
should remain unchanged without explicit modification.
However, the program has a buffer overflow bug. It has a
buffer (buf) of eight bytes and employs no boundary check
when copying symbolic values to the buffer with strcpy.
We can change the value of flag to one leveraging the bug,
e.g., when symvar is “ANYSTRIN\x01\x00\x00\x00”.
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4.1.4 Parallel Executions

Classic symbolic execution is effective for sequential pro-
grams. We can draw an explicit CFG for sequential pro-
grams and let a symbolic execution engine traverse the
CFG. However, if a program processes symbolic variables in
parallel, classic symbolic execution techniques would suffer
problems. Parallel programs can be undecidable because the
execution order of parallel codes does not only depend on
the program but may also depend on the execution context.
A parallel program may exhibit different behaviors even
with the same test case. This poses a problem for symbolic
execution to generate test cases for triggering corresponding
control flows. If a symbolic execution tool directly ignores
the parallel syntax or addresses the syntax improperly,
errors would happen during Sinst and Ssem.

Figure 3(d) demonstrates an example with parallel
codes. The symbolic variable i is processed by another two
additional threads in parallel, and the result is assigned to
j. Then the value of j determines the whether the program
should return a BOMB_ENDING.

To handle parallel codes, a symbolic execution tool has
to interpret the semantics and track parallel executions, e.g.,
by introducing extra symbolic variables [30]. However, such
an approach may not be scalable because the possibility of
parallel execution can be a large number. In practice, there
are several heuristic approaches to improve the efficiency.
For example, we may restrict the exploration time of concur-
rent regions with a threshold [30]; we may conduct symbolic
execution with arbitrary contexts and convert multi-thread
programs into equivalent sequential ones [31]; or we can
prune unimportant paths leveraging some program codes,
such as assertion [32].

4.1.5 Symbolic Memories

Symbolic memory is a situation whereas symbolic variables
serve as the offsets or pointers to retrieve values from the
memory, such as array indexes. To handle symbolic mem-
ories, a symbolic execution engine should take advantage
of the memory layout for analysis. For example, we can
convert an array selection operation to a switch/case

clause in which the number of possible cases equals the
length of the array. However, the number of possible com-
binations would grow exponentially when there are several
such operations along a control flow. In practice, a symbolic
execution tool may directly employ the feature of array
operations implemented by some constraint solvers, such as
STP [33] and Z3 [34]. It may also analyze the alignment of
some pointers in advance, such as CUTE [35]. However, the
power of pointer analysis is limited because the problem can
be NP-hard or even undecidable for static analysis [36]. If a
symbolic execution tool cannot model symbolic memories
properly, errors would occur during Sinst and Ssem.

Figure 3(e) demonstrates a sample of symbolic memo-
ries. In this example, the symbolic variable i serves as an
offset to retrieve an element from the array. The retrieved
element then determines whether the program returns a
BOMB_ENDING.

4.1.6 Contextual Symbolic Values

The challenge is similar to symbolic memories but more
complicated. Other than retrieving values from the memory

like symbolic memories, symbolic values can also serve as
the parameters to retrieve values from the environment,
such as loading the contents of a file pointed by symbolic
values. By default, this contextual information is unavailable
to the program or process, and the analysis is complicated.
Moreover, since the contextual information can be changed
any time without informing the program, the problem is
undecidable. A symbolic tool that does not support such
operations would cause errors during Sinst and Ssem.

Figure 3(f) is an example of contextual symbolic values.
If symvar points to an existed file on the local disk, the
program would return a BOMB_ENDING.

4.1.7 Symbolic Jumps

In general, symbolic execution only extracts constraint mod-
els when encountering conditional jumps, such as var<0 in
source codes, or jle 0x400fda in assembly codes. How-
ever, we may also employ unconditional jumps to achieve
the same effects as conditional jumps. The idea is to jump
to an address controlled by symbolic values. If a symbolic
execution engine is not tailored to handle the unconditional
jumps, it would fail to extract corresponding constraint
models and miss some available control flows. Therefore,
the challenge attacks the constraint modeling stage Smodel.

Figure 3(g) is an example of symbolic jumps. The pro-
gram contains an array of function pointers, and each func-
tion returns an integer value. The symbolic variable serves
as an offset to determine which function should be called
during execution. If f5() is called, the program would
return a BOMB_ENDING.

4.1.8 Floating-point Numbers

A floating-point number (f ∈ F) approximates a real num-
ber (r ∈ R) with a fixed number of digits in the form of
f = sign∗baseexp. For example, the 32-bit float type compli-
ant to IEEE-754 has 1-bit for sign, 23-bit for base, and 8-bit
for exp. The representation is essential for computers, as the
memory spaces are limited in comparison with the infinity
of R. As a tradeoff, floating-point numbers only have limited
precision, which makes some unsatisfiable constraints over
R to be satisfied over F with a rounding mode. In order to
support reasoning over F, a symbolic execution tool should
consider such approximations when extracting and solving
constraint models. However, recent studies (e.g., [5], [37],
[38], [39]) show that there is still no silver bullet for the
problem. Floating-point numbers remains a challenge for
symbolic execution tools, and the challenge attacks Smodel.

Figure 3(h) demonstrates an example with floating-point
operations. Because we cannot represent 0.1 with float type
precisely, the first predicate a != 1 is always true. If the
second condition a == b can be satisfied, the program
would return a BOMB_ENDING. Therefore, one test case to
returning a BOMB_ENDING is symvar equals ‘7’.

4.1.9 Arithmetic Overflows

Arithmetic overflow happens when the result of an arith-
metic operation is outside the range of an integer type. For
example, the range of a 64-bit signed integer is [−264, 264 −
1]. In this case, a constraint model (e.g., the result of a pos-
itive integer plus another positive integer is negative) may
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have no solutions over R; but it can have solutions when
we consider arithmetic overflow. Handling such arithmetic
overflow issues is not as difficult as previous challenges.
However, some preliminary symbolic execution tools may
fail to consider these cases and suffer errors when extracting
and solving the constraint models.

Figure 3(i) shows a sample with an arithmetic overflow
problem. To meet the first condition 254748364 * i <

0, i should be a negative value. However, the second
condition requires i to be a positive value. Therefore, it
has no solutions in the domain of real numbers. But the
conditions can be satisfied when 254748364 * i exceeds
the max value that the integer type can represent.

4.2 Path-explosion Challenges

Now we discuss three path-explosion challenges existed in
small-size programs.

4.2.1 External Function Calls

Shared libraries, such as libc and libm (i.e., a math
library), provide some basic function implementations to
facilitate software development. An efficient way to employ
the functions is via dynamic linkage, which does not pack
the function body to the program but only links with the
functions dynamically when execution. Therefore, such ex-
ternal functions do not enlarge the size of a program, but
they can enlarge the code complexity in nature.

When an external function call is related to the prop-
agation of symbolic values, the control flows within the
function body should be analyzed by default. There are two
situations. A simple situation is that the external function
does not affect the program behaviors after executing it,
such as simply printing symbolic values with printf. In
this case, we may ignore the path alternatives within the
function. However, if the function execution affects the
follow-up program behaviors, we should not ignore them.
Otherwise, the symbolic execution would be based on a
wrong assumption that the new test case generated for an
alternative path can always trigger the same control flow
within the external function. If a small program contains
several such function calls, the complexity of external func-
tions may cause path explosion issues. In practice, there are
different strategies that symbolic execution tools may adopt
with a trade-off between consistency and efficiency [28].

Figure 3(j) demonstrates a sample with an external
function call. It computes the sine of a symbolic value
via an external function call (i.e., sin), and the result is
used to determine whether the program should return a
BOMB_ENDING.

4.2.2 Loops

Loop statements, such as for and while, are widely em-
ployed in real-world programs. Even a very small program
with loops can include many or even an infinite number of
paths. By default, a symbolic execution tool should explore
all available paths of a program, which can beyond the
capability of the tool if there are too many paths. In practice,
a symbolic execution tool may employ a search strategy
which favorites the unexplored branches on a program
CFG [18], [40], or introduces new symbolic variables as

the counters for each loop [41]. Because loop can incur
numerous paths, we can hardly have a perfect solution for
this problem.

Figure 3(k) shows a sample with a loop. The loop func-
tion is implemented with the Collaz conjecture [42]. No
matter what is the initial value of i, the loop will terminate
with j equals 1.

4.2.3 Crypto Functions

Crypto functions generally involve some computationally
complex problems to ensure security. For a hash func-
tion, the complexity guarantees that adversaries cannot
efficiently compute the plaintext of a hash value. For a
symmetric encryption function, it promises that one cannot
efficiently compute the key when given several pairs of
plaintext and ciphertext. Therefore, such programs should
also be resistant to symbolic execution attacks. From a
program analysis view, the number of possible control paths
for the crypto functions can be substantial. For example,
the body of the SHA1 algorithm [43] is a loop that iterates
80 rounds, and each round contains several bit-level opera-
tions.

Figure 3(l) demonstrates a code snippet which employs a
SHA1 function [43]. If the hash result of the symbolic value
is equivalent to a predefined value, the program would
return a BOMB_ENDING. However, it is difficult since SHA1
cannot be reversely calculated.

In general, symbolic execution tools cannot handle such
crypto programs. Malware may employ the technique to de-
ter symbolic execution-based program analysis [44]. When
analyzing programs with crypto functions, a common way
is to avoid exploring the function internals (e.g., [45], [46]).
For example, TaintScope [45] first discriminates the symbolic
variables corresponding to crypto functions from other vari-
ables, and then it employs a fuzzy-based approach to search
solutions for such symbolic variables rather than solving the
problem via symbolic reasoning.

So far, we have discussed 12 different challenges in total.
Note that we do not intend to propose a complete list of
challenges for symbolic execution. Instead, we collect all
the challenging issues that have been mentioned in the
literature and systematically analyze them. This analysis is
essential for us to design the the dataset of logic bombs in
Section 5.2.2.

5 BENCHMARK METHODOLOGY

In this section, we introduce our methodology and a frame-
work to benchmark the capability of real-world symbolic
execution tools.

5.1 Objective and Challenges

Before describing our approach, we first discuss our design
goal and the challenges to overcome.

This work aims to design an approach that can bench-
mark the capabilities of symbolic execution tools. Our pur-
pose is critical and valid in several aspects. As we have
discussed, some challenging issues are only engineering
issues, such as arithmetic overflows. With enough engineer-
ing effort, a symbolic execution tool should be able to handle
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Algorithm 1: Method to design evaluation samples.

// Create a function with a symbolic

variable

Function LogicBomb(symvar)
// symvar2 is a value computed from a

challenging problem related to symvar

symvar2← Challenge(symvar);
// If symvar2 satisfies a condition

if Condition(symvar2) then
// Trigger the bomb

Bomb();
end

these issues. On the other hand, some challenges are hard
from a theoretical view, such as loops. But some heuristic
approaches can tackle certain easy cases. Symbolic execu-
tion tools may adopt different heuristics and demonstrate
different capabilities in handling them. Therefore, it is worth
benchmarking their performances in handling particular
challenging issues. Developers generally do not provide
much information about the limitations of their tools to
users.

A useful benchmark approach should be accurate and
efficient. However, it is challenging to benchmark symbolic
execution tools accurately and efficiently. Firstly, a real pro-
gram contains many instructions or lines of codes. When a
symbolic execution failure happens, locating the root cause
requires much domain knowledge and effort. Since errors
may propagate, it is challenging to conjecture whether a
symbolic execution tool fails in handling a particular issue.
Secondly, the symbolic execution itself is inefficient. Bench-
marking a symbolic execution tool generally implies per-
forming several designated symbolic execution tasks, which
would be time-consuming. Note that existing symbolic exe-
cution papers (e.g., [2], [3], [47], [48]) generally evaluate the
performance of their tools by conducting symbolic execu-
tion experiments with real programs. The process usually
takes several hours or even days. They demonstrate the
effectiveness of their work using the achieved code coverage
and number of bugs detected, and they do not analyze the
root causes of uncovered codes.

5.2 Approach based on Logic Bombs

To tackle the challenges of benchmark concerning accuracy
and efficiency, we propose an approach based on logic
bombs. Below, we discuss our detailed design.

5.2.1 Evaluation with Logic Bombs

A logic bomb is a code snippet that can only be executed
when certain conditions are met. To evaluate whether a
symbolic execution tool can handle a challenge, we can
design a logic bomb guarded by a particular issue with
the challenge. Then we can perform symbolic execution on
the program which embeds the logic bomb. If a symbolic
execution tool can generate a test case that can trigger the
logic bomb, it indicates the tool can handle the challenging
issue, or vice versa.

Algorithm 1 demonstrates a general framework to de-
sign such logic bombs. It includes four steps: the first step
is to create a function with a parameter symvar as the

symbolic variable; the second step is to design a challenging
problem related to the symbolic variable and save the result
to another variable symvar2; the third step is to design a
condition related to the new variable symvar2; the final
step is to design a bomb (e.g., return a specific value) which
indicates the condition has been satisfied. Note that because
the value of symvar2 is propagated from symvar, symvar2
is also a symbolic variable and should be considered in the
symbolic analysis process.

The magic of the logic bomb idea enables us to make the
evaluation much precise and efficient. We can create several
such small programs; each contains only a challenging issue
and a logic bomb that tells the evaluation result. Because
the object programs for symbolic execution are small, we
can easily avoid unexpected issues that may also cause
failures via a careful design. Also because the programs
are small, performing symbolic execution on them generally
requires a short time. For the programs that unavoidably
incur path explosion issues, we can restrict the symbolic
execution time either by controlling the problem complexity
or by employing a timeout setting.

5.2.2 Logic Bomb Dataset

Following Algorithm 1, we have designed a dataset of logic
bombs to evaluate the capability of symbolic execution tools.
We have already shown several samples in Figure 3. Our full
dataset is available on GitHub1. The dataset contains over 60
logic bombs for 64-bit Linux platform, which covers all the
challenges discussed in Section 4. For each challenge, we im-
plemented several logic bombs. Either each bomb involves
a unique challenging issue (e.g., covert propagation via file
write/read or via system calls), or introduces a problem
with a different complexity setting (e.g., one-leveled arrays
or two-leveled arrays).

When designing the logic bombs, we carefully avoid
trivial test cases (e.g., \x00) that can trigger the bombs.
Moreover, we try to employ straightforward implementa-
tions, and we hope to ensure that the results would not
be affected by other unexpected failures. For example, we
avoid using atoi to convert argv[1] to integers because
some tools cannot support atoi. However, fully avoiding
external function calls is impossible for some logic bombs.
For example, we should employ external function calls to
create threads when designing parallel codes. Surely that if
a symbolic execution tool cannot handle external functions,
the result might be affected. To tackle the interference of
challenges, we draw a challenge propagation chart among
the logic bombs as shown in Figure 4. There are two kinds
of challenge propagation relationships: should in solid lines,
and may in dashed lines. A should relationship means a
logic bomb contains a similar challenging issue in another
logic bomb; if a tool cannot solve the precedent logic bomb,
it should not be able to solve the later one. For example, the
stackarray_sm_l1 is precedent to stackarray_sm_l2.
A may relationship means a challenge type may be a prece-
dent to other logic bombs, but it is not the determinant one.
For example, a parallel program generally involves external
function calls. However, although a tool is unable to solve

1. https://github.com/hxuhack/logic bombs
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Fig. 4. The challenge propagation relationship among our dataset of logic bombs. A solid line means a logic bomb contains a similar problem
defined in another logic bomb; a dashed line means a challenge may affect other logic bombs.

Fig. 5. A framework to benchmark symbolic execution tools.

the external functions well, it might be able to solve some
logic bombs with parallel issues as sequential programs.

5.3 Automated Benchmark Framework

Base on the evaluation idea with logic bombs, we design
a benchmark framework as shown in Figure 5. The frame-
work inputs a dataset of carefully designed logic bombs and
outputs the benchmark result for a particular symbolic exe-
cution tool. There are three critical steps in the framework:
dataset preprocessing, batch symbolic execution, and case
verification.

In the preprocessing step, we parse the logic bombs
and compile them into object codes or binaries such that
a target symbolic execution tool can process them. The
parsing process pads each code snippet of a logic bomb
with a main function and makes it a self-contained program.
By default, we employ argv[1] as the symbolic variables.
If a target symbolic execution tool requires adding extra
instructions to launch tasks, the parser should add such
required instructions automatically. For example, we can
add symbolic variable declaration codes when benchmark-
ing KLEE. The compilation process compiles the processed

source codes into binaries or other formats that a target
symbolic execution tool supports. Symbolic execution is
generally performed based on intermediate codes. When
benchmarking source-code-based symbolic execution tools
such as KLEE, we have to compile the source codes into the
supported intermediate codes. When benchmarking binary-
code-based symbolic execution tools, we can directly com-
pile them into binaries, and the tool will lift binary codes
into intermediate codes automatically.

In the second step, we direct a symbolic execution tool to
analyze the compiled logic bombs in a batch mode. This step
outputs a set of test cases for each program. Some dynamic
symbolic execution tools (e.g., Triton) can directly tell which
test case can trigger a logic bomb during runtime. However,
other static symbolic execution tools may only output test
cases by default, and we need to replay the generated test
cases to examine the results further. Besides, some tools may
falsely report that a test case can trigger the logic bomb.
Therefore, we need a third step to verify the test cases.

In the third step, we replay the test cases with the
corresponding programs of logic bombs. If a logic bomb can
be triggered, it indicates that the challenging case is solved
by the tool. Finally, we can generate a benchmark report
based on the case verification results.

6 EXPERIMENTAL STUDY

In this section, we conduct an experimental study to demon-
strate the effectiveness of our benchmark approach. Below,
we discuss the experimental setting and results.

6.1 Experimental Setting

We choose three popular symbolic execution tools for bench-
mark: KLEE [2], Angr [3], and Triton [49]. Because our
dataset of logic bombs are written in C/C++, we only
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choose symbolic execution tools for C/C++ programs or
binaries. The three tools are all released as open source
and have a high community impact. Moreover, they adopt
different implementation techniques for symbolic execution.
By supporting variant tools, we show that our approach is
compatible with different symbolic execution implementa-
tions.

KLEE [2] is a static symbolic execution tool implemented
based on LLVM [50]. It requires program source codes to
perform symbolic execution. By default, our benchmark
script employs a klee_make_symbolic function to de-
clare the symbolic variables of logic bombs in the source-
code level. Then, it compiles the source codes into interme-
diate codes for symbolic execution. The symbolic execution
process outputs a set of test cases, and our script finally
examines the test cases by replaying them with the binaries.
The whole process is automated with our benchmark script.
The version of KLEE we benchmark is 1.3.0. Note that
because our experiment does not intend to find the best tool
for particular challenges, so we do not consider the patches
provided by other parties before they are merged into the
master branch.

Triton [49] is a dynamic symbolic execution tool based
on binaries. It automatically accepts symbolic variables from
the standard input. During symbolic execution, Triton firstly
runs the programs with concrete values and leverages Intel
PinTool [51] to trace related instructions, then it lifts the
traced instructions into the SSA (single static assignment)
form and performs symbolic analysis. If there are alternative
paths found in the trace, Triton generates new test cases
via symbolic reasoning and employs them as the concrete
values in the following rounds of concrete execution. This
symbolic execution process goes on until no alternative path
can be found. The version of Triton we adopted is which
released on Jul 6, 2017, on GitHub.

Angr [3] is also a tool for binaries but employs different
implementations. Before performing any symbolic analysis,
Angr firstly lifts the binary program into VEX IR [52].
Then it employs a symbolic analysis engine (i.e., SimuVEX)
to analyze the program based on the IR. Angr does not
provide ready-to-use symbolic execution script for users but
only some APIs. Therefore, we have to implement our own
symbolic execution script for Angr. Our script collects all
the paths to the CFG leaf nodes and then solves the cor-
responding path constraints. Angr provides all the critical
features via APIs, and we only assemble them. Finally, we
check whether the generated test cases can trigger the logic
bombs. In our experiment, we employ Angr with version
7.7.9.21.

Note that our benchmark scripts for these tools all follow
the framework proposed in Figure 5. During the experi-
ment, we employ our logic bomb dataset for evaluation.
A tool can pass a test only if the generated solution can
correctly trigger a logic bomb. We finally report which logic
bombs can be triggered by the tools.

We conduct our experiments on an Ubuntu 14.04 X86 64
system with Intel i5 CPU and 8G RAM. Because some
symbolic execution tasks may take very long time, our tool
allows users to configure a timeout threshold which ensures
benchmark efficiency. However, the timeout mechanism
may incur some false results if it is too short. To mitigate

the side effects, we adopt two timeout settings (60 seconds
and 300 seconds) for each tool. In this way, we can observe
the influence of the timeout settings and decide whether
we should conduct more experiments with an increased
timeout value.

6.2 Benchmark Results

6.2.1 Result Overview

Table 2 demonstrates our experimental results. We label the
results with three options: pass, fail, and timeout. While
‘pass’ and ‘fail’ imply the symbolic execution has finished,
‘timeout’ implies our benchmark script has terminated the
symbolic execution process when a timeout threshold is
triggered.

From the results, we can observe that Angr has achieved
the best performance with 21 cases solved when the timeout
is 300 seconds. Comparatively, it only solved 16 cases when
the timeout is 60 seconds. KLEE solved nine cases and
the result remains the same with different timeout settings.
Triton performs much worse with three cases solved. To
further verify the correctness of our benchmark results,
we compare our experimental results with the previously
declared challenge propagation relationships in Figure 4.
We find the results are all consistent. It justifies that our
dataset can distinguish the capability of different symbolic-
execution tools accurately and effectively.

The efficiency of our benchmark approach largely de-
pends on the timeout setting. Note that Table 2 includes
some timeout results, and they account for most of our
experimental time. Although we try to keep each logic
bomb as succinct as possible, our dataset still contains some
complex problems or path explosion issues unavoidable.
When the timeout value is 60 seconds, our benchmark
process for each tool takes only dozens of minutes. When
extending the timeout value to 300 seconds, the benchmark
takes a bit longer time. However, the benefit is not very
obvious, and only Angr can solve 5 more cases. Can the
result get further improved with more time? We have tried
another group of experiments with 1800 seconds timeout
and the results remain unchanged. Therefore, 300 seconds
should be a marginal timeout setting for our benchmark
experiment. Considering that symbolic execution is compu-
tationally expensive, which may take several hours or even
several days to test a program, our benchmark process is
very efficient. We may further improve the efficiency by
employing a parallel mode, such as assigning each process
several logic bombs.

6.2.2 Case Study

Now we discuss the detailed benchmark results for each
challenge. Firstly, there are several challenges that none of
the tools can trigger even one logic bomb, including sym-
bolic variable declarations, parallel executions, contextual
symbolic values, loops, and crypto functions. For symbolic
variable declaration challenge, because all the tools cannot
recognize the expected symbolic variables automatically,
they fail in modeling the conditions to trigger the logic
bombs. The challenges of contextual symbolic values and
crypto functions involve tough problems, and it can be
expected that all the tools fail in handling them. However, it
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TABLE 2
Experimental results on benchmarking three symbolic execution tools (KLEE, Triton, and Angr) in handling our logic bombs. Pass means the tool
has successfully triggered the bomb; fail means the tool cannot find test cases to trigger the bomb; timeout means the tool cannot find test cases

to trigger the bomb within a given period of time. For each tool, we adopt two timeout settings: 60 seconds and 300 seconds.

Challenge Case ID
KLEE Triton Angr

t = 60s t = 300s t = 60s t = 300s t = 60s t = 300s

Covert Propagations

df2cf cp pass pass fail fail pass pass
echo cp fail fail timeout timeout timeout timeout

echofile cp fail fail fail fail timeout timeout
file cp fail fail timeout timeout fail fail

socket cp fail fail fail fail fail fail
stack cp fail fail pass pass pass pass

file eh cp fail fail fail fail timeout pass
div0 eh cp fail fail fail fail timeout pass
file eh cp fail fail fail fail timeout fail

Buffer Overflows
stack bo l1 fail fail fail fail pass pass
heap bo l1 fail fail fail fail fail fail
stack bo l2 fail fail fail fail fail fail

Symbolic Memories

malloc sm l1 pass pass timeout fail pass pass
realloc sm l1 pass pass fail fail pass pass

stackarray sm l1 pass pass fail fail pass pass
list sm l1 fail fail fail fail timeout pass

vector sm l1 fail fail fail fail timeout pass
stackarray sm l2 pass pass fail fail fail fail

stackoutofbound sm l2 pass pass fail fail pass pass
heapoutofbound sm l2 fail fail timeout fail pass pass

Symbolic Jumps
funcpointer sj l1 pass pass fail fail fail fail

jmp sj l1 fail fail fail fail pass pass
arrayjmp sj l2 fail fail fail fail fail fail
vectorjmp sj l2 fail fail fail fail timeout pass

Floating-point Numbers

float1 fp l1 fail fail fail fail pass pass
float2 fp l1 fail fail fail fail pass pass
float3 fp l2 fail fail fail fail timeout timeout
float4 fp l2 fail fail fail fail timeout timeout
float5 fp l2 fail fail fail fail timeout timeout

Arithmetic Overflows
plus do pass pass pass pass pass pass

multiply do pass pass fail fail pass pass

External Function Calls

printint ef l1 fail fail pass pass pass pass
printfloat ef l1 fail fail fail fail fail fail

atoi ef l2 fail fail fail fail pass pass
atof ef l2 fail fail fail fail timeout timeout
ln ef l2 fail fail fail fail timeout fail

pow ef l2 fail fail fail fail pass pass
rand ef l2 fail fail timeout timeout fail fail
sin ef l2 fail fail fail fail timeout timeout

Symbolic Variable Declarations 7 cases, all fail
Contextual Symbolic Values 4 cases, all fail

Parallel Executions 5 cases, all fail
Loops 5 cases, all fail

Crypto Functions 2 cases, all fail
pass # 62 cases 9 9 3 3 16 21

is a bit surprising that none of the tools can handle parallel
executions and loops.

Covert Propagations: Angr have passed four test cases,
df2cf_cp, stack_cp, and two exception handling cases.
df2cf_cp propagates the symbolic values indirectly by
substituting a data assignment operation with equivalent
control-flow operations. KLEE also solved the case, but Tri-
ton failed. stack_cp propagates symbolic values via direct
assembly instructions push and pop. Only KLEE failed the
test because it is a source-based analysis tool which does
not support assembly codes. Besides, Angr has also passed
two test cases that propagate symbolic values via the C++
exception handling mechanism. Not only this exception
handling mechanism can be covert for some source-code-
based analysis tools, such as KLEE, but also it can be covert
for binary-code-based symbolic execution tools, such as
Triton. We further break down the details of an exception

handling program in Figure 6. As shown in the box region
of Figure 6(b), the mechanism relies on two function calls,
which might be the problem that fails Triton. All the tools
failed other covert propagation cases that propagate values
via file read/write, echo, socket, etc.

Buffer Overflows: Only Angr has solved one easy buffer
overflow problem stack_bo_l1. The case has a sim-
ple stack overflow issue. Its solution requires modifying
the value of the stack that might be illegal. However,
Angr cannot solve the heap overflow issue heap_bo_l1.
It also failed on another harder stack overflow issue
stack_bo_l2, which requires composing sophisticated
payload, such as employing return-oriented programming
methods [53]. We are surprised that Triton failed all the tests
because binary-code-based symbolic execution tools should
be resilient to buffer overflows in nature.

Symbolic Memories: The results show that Triton does not
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(a) Source codes. (b) Assembly codes.

Fig. 6. An exemplary program that raises an exception when divided by zero. The assembly codes demonstrates how the try/catch mechanism
works in low level.

(a) Source codes.

(b) Memory layout after array initialization.
(c) Assembly codes.

Fig. 7. An exemplary program that demonstrates how the stack works with arrays. There is no information about the size of each array left in
assembly codes.

support symbolic memory, but KLEE and Angr provide
very good support. Angr has solved seven cases out of
eight. It only failed in handling the case (Figure 7(a)) with
a two-leveled array stackarray_sm_l2. Also, it implies
that when there are multi-leveled pointers, Angr would fail.
Figure 7(c) demonstrates the assembly codes that initialize
the arrays, and Figure 7(b) demonstrates the stack layout af-
ter initialization. We can observe that the information about
array size or boundary does not exist in assembly codes.
This justifies why binary-code-based symbolic execution
tools do not suffer problems when a challenge requires an
out-of-boundary access, e.g., stackoutofbound_sm_l2.
In comparison, KLEE can solve the two-leveled array prob-
lem because it is based on STP [33], which is designed for
solving such problems related to arrays. However, KLEE
does not support C++, so it failed the problems with vectors
and lists.

Symbolic Jumps: Since symbolic jump demonstrates no
explicit conditional branches in the CFG, it should be a
hard problem for symbolic execution. However, KLEE and
Angr are not likely to be affected much by the trick. KLEE
has tackled the problem with an array of function pointers
funcpointer_sj_l1. It failed the other test cases because
they employ an assembly instruction jmp, which KLEE
does not support. Angr successfully handled two cases with

assembly jmp, but it failed funcpointer_sj_l1.
Floating-point Numbers: The results show KLEE and Tri-

ton do not support floating-point operations, and Angr can
support some. During our test, Triton directly reported that
it cannot interpret such floating-point instructions. Angr has
solved two out of the five designated cases. The two passed
cases are easier ones, which only require integer values as
the solution. All the failed cases require decimal values as
the solution, and they employ the atof function to convert
argv[1] to decimals. Since Angr has also failed the test in
handling atof in atof_ef_l2, the failures are likely to
be caused by the atof function.

Arithmetic Overflows: Arithmetic overflow is not a very
hard problem, and it only requires symbolic execution tools
to handle such cases carefully. In our test, KLEE and Angr
have solved all the cases. However, Triton failed in handling
the integer overflow case in Figure 3(i). The result shows
there is still much room for Triton to improve for this
problem.

External Function Calls: In this group of logic bombs,
each case only contains one external function call. However,
the result is very disappointing. Triton only passed a very
simple case that print out (with printf) a symbolic value of
integer type. It does not even support printing out floating-
point values. Angr has solved the printf cases and two
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more complicated cases, atoi_ef_l2 and pow_ef_l2. It
cannot support atof_ef_l2 and other cases. The results
show that we should be cautious when designing logic
bombs. Even when involving straightforward external func-
tion calls, the results could be affected.

7 CONCLUSION

This work proposes an approach to benchmark the capa-
bility symbolic execution tools in handling particular chal-
lenges. To this end, we studied the taxonomy of challenges
faced by symbolic execution tools, including nine symbolic-
reasoning challenges and three path-explosion challenges.
Such a study is essential for us to design the benchmark
dataset. Then we proposed a promising benchmark ap-
proach based on logic bombs. The idea is to design logic
bombs that can only be triggered if a symbolic execution tool
solves specific challenging issues. By making the programs
of logic bombs as small as possible, we can speed up the
benchmark process; and by making them as straightforward
as possible, we can avoid unexpected reasons that may
affect the benchmark results. In this way, our benchmark
approach is both accurate and efficient. Following the idea,
we implemented a dataset of logic bombs and a prototype
benchmark framework which automates the benchmark
process. Then, we conducted real-world experiments on
three symbolic execution tools. Experimental results show
that the benchmark process for each tool generally takes
dozens of minutes. Angr achieved the best benchmark re-
sults with 21 cases solved, KLEE solved nine, and Triton
only solved three. These results justify the value of a third-
party benchmark toolset for symbolic execution tools. Fi-
nally, we released our dataset as open source on GitHub for
public usage. We hope it would serve as an essential tool for
the community to benchmark symbolic execution tools and
could facilitate the development of more comprehensive
symbolic execution techniques.
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