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Mobile Crowdsourcing Task Allocation with
Differential-and-Distortion Geo-Obfuscation
Leye Wang , Dingqi Yang , Xiao Han , Daqing Zhang, Fellow, IEEE, and Xiaojuan Ma

Abstract—In mobile crowdsourcing, organizers usually need participants’ precise locations for optimal task allocation, e.g., minimizing

selected workers’ travel distance to task locations. However, the exposure of users’ locations raises privacy concerns. In this paper,

we propose a location privacy-preserving task allocation framework with geo-obfuscation to protect users’ locations during task

assignments. More specifically, wemake participants obfuscate their reported locations under the guarantee of two rigorous

privacy-preserving schemes, differential and distortion privacy, without the need to involve any third-party trusted entity. In order to achieve

optimal task allocationwith the differential-and-distortion geo-obfuscation, we formulate amixed-integer non-linear programming problem

tominimize the expected travel distance of the selected workers under the constraints of differential and distortion privacy. Moreover,

a worker may bewilling to acceptmultiple tasks, and a task organizermay be concernedwithmultiple utility objectives such as task

acceptance ratio in addition to travel distance. Against this background, we also extend our solution to themulti-task allocation and

multi-objective optimization cases. Evaluation results on both simulation and real-world usermobility traces verify the effectiveness of our

framework. Particularly, our framework outperforms Laplace obfuscation, a state-of-the-art geo-obfuscationmechanism, by achieving

up to 47 percent shorter average travel distance on real-world data under the same level of privacy protection.

Index Terms—Mobile crowdsensing, differential location privacy, distortion location privacy, task allocation, travel distance

Ç

1 INTRODUCTION

MOBILE CrowdSourcing (MCS) [1], also known asmobile
crowdsensing [2], [3] and spatial crowdsourcing [4],

has attracted lots of interest from academia [5]. Nowadays,
industry has also seen many successful MCS applications
such as TaskRabbit.1

On a typical MCS platform, users are registered as candi-
date workers. When new MCS tasks come, the platform
selects a proper subset of candidates to complete the tasks
by providing them with some monetary incentives. This
worker selection process, called task allocation, is a key step
in MCS that can significantly impact the efficiency of MCS.
Particularly, workers’ travel distance to task locations is an
important issue to consider in task allocation. If the travel
distance is too long, participants will probably be unwilling
to conduct the task (i.e., the task acceptance probability will

be lowered). Therefore, following previous work [6], [7], we
consider minimizing the overall travel distance of workers
in task allocation.

Existing work on MCS task allocation mostly assumes
that candidates’ locations are known to the platform, and
thus can optimize the task efficiency (i.e., minimize the
travel distance) by directly assigning tasks to nearby work-
ers. However, this indicates that users’ location privacy is at
risk. Note that in task allocation, while only a subset of can-
didates are selected as workers, all of them are requested to
share their locations. Even though the selected workers’ pri-
vacy concerns may be alleviated with incentives, there is no
compensation for the privacy sacrifice of the remaining can-
didates. These people may get discouraged and leave the
MCS platform, downsizing the candidate worker pool and
impairing the performance of the whole platform. There-
fore, location privacy needs to be carefully considered in
task allocation, especially for the large number of unselected
candidates.

While researchers begin to address the interdisciplinary
topic of optimizing MCS task allocation under location pri-
vacy protection in recent years, most existing solutions still
suffer from the following limitations.

(1) Sensitive to adversaries’ prior knowledge. According to a
recent survey [8], most existing mechanisms (e.g., [9],
[10], [11]) employ a cloaking-based idea (i.e., using a
coarse area to represent a precise location) to provide
location protection. However, their expected privacy
guarantee can be easily downgraded if adversaries
hold certain prior knowledge [12]. For example, if an
adversary foreknows that a user is a student, and the
cloaking area includes both a school and government

1. https://www.taskrabbit.com
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office, the adversary can infer rather confidently that
the user is in the school region.

(2) Dependent on third-party trusted entities. Some existing
mechanisms require the support of other third-
parties (besides users and MCS platforms), which
makes them difficult to deploy in reality. For exam-
ple, To et al. [7] need users’ cellular service providers
to take an important coordination role between users
and MCS platforms to provide privacy protection,
while in practice cellular service providers may lack
the motivation to participate.

(3) Relying on a single privacy scheme. Although a variety
of location privacy-preserving schemes have been
proposed in current literature, existing location pro-
tection mechanisms for MCS task allocation usually
adopt a single scheme [8]. Since each protection
scheme has its own assumptions and objective, a
mechanism incorporating multiple privacy schemes
would be more desired in reality, as it can provide
more robust protection.

Therefore, MCS is still in need for a more competitive
and practical location privacy-preserving task allocation
mechanism, which can robustly protect users’ privacy
against adversaries holding arbitrary prior knowledge with-
out involving third-parties.

Recently, location privacy research introduces differential
privacy [13] to provide theoretically guaranteed protection
regardless of adversaries’ prior knowledge. Consequently,
some Location-Based Services (LBS) have proposed several
differential geo-obfuscation mechanisms [12], [14]. Such appr-
oaches in LBS shed lights on the design of privacy-preserving
MCS task allocation regarding the two aforementioned con-
cerns. First, differential privacy ensures that the probability of
users being mapped to one specific obfuscated location from
any of the actual locations is similar, so that an adversarywith
arbitrary prior knowledge gains little additional information
from the observation (i.e., obfuscated location). Second, differ-
ential geo-obfuscation alters users’ locations on their smart-
phones, and thus has no need to involve trusted third-parties.

However, differential privacy only bounds the relative
information gain, i.e., the difference between adversaries’ posterior
knowledge after observing the obfuscated location and their prior
knowledge. We still do not have a clear idea about adversaries’
absolute information gain of their target users, e.g., the distance
between adversaries’ guessed locations and users’ actual
positions. To this end, we consider leveraging distortion pri-
vacy [15] along with differential privacy in geographic obfus-
cation. Distortion privacy guarantees that the expected
inference error of adversaries is larger than a threshold under
an arbitrary inference attack on locations, assuming that
adversaries only hold an overall prior knowledge of users.2

OptimizingMCS task allocation under differential-and-dis-
tortion geo-obfuscation needs to address the following chal-
lenges. In LBS, each individual user’s geo-obfuscation method
can be optimized independently by considering only his/her
own actual and obfuscated locations [14]. However, the utility
of MCS task allocation depends on all the candidates’ loca-
tions, and thus the optimization process must collectively take

all the candidates into account. For example, suppose there are
two candidates u1, u2 and one task t1, and u1 is the one nearer
to the location of t1 (should be selected as worker). After geo-
obfuscation, task allocation may wrongly select u2 as the
worker if u1’s perturbed location is farther away from t1’s loca-
tion than that of u2. With this in mind, both u1 and u2’s (obfus-
cated) locations, as well as t1’s location, need to be considered
in designing the task allocation mechanism and geo-obfusca-
tion function. In reality, as many candidates and tasks will
simultaneously co-exist, it is challenging to optimally incorpo-
rate differential-and-distortion geo-obfuscation in MCS task
allocation while minimizing the workers’ overall travel dis-
tance. Besides, a user may be willing to accept multiple
tasks [6], and an MCS organizer may also be concerned with
multiple utility metrics, e.g., task acceptance ratio as well as
travel distance [7]. Hence, a practical privacy-preserving solu-
tion should also be able to cover these scenarios.

In this paper, we propose an MCS task allocation frame-
work to protect participants’ location privacy with differ-
ential-and-distortion geo-obfuscation, while minimizing
selected workers’ overall travel distance. This framework
is further extended to multi-task allocation and multi-
objective optimization scenarios. The contributions of this
paper are summarized as follows.

(1) To the best of our knowledge, this is the first work to
introduce differential and distortion geo-obfuscation
jointly to MCS task allocation.

(2) To minimize candidate workers’ travel distance, we
propose an optimal privacy-preserving MCS task
allocation framework with two interleaved modules:
differential-and-distortion geo-obfuscation and obfusca-
tion-aware task allocation. We then formulate a mixed-
integer nonlinear program (MINLP) to optimize the two
aforementioned modules collectively for travel dis-
tance minimization (Section 3). As directly solving
MINLP is hard, we propose a method integrating
Benders Decomposition [17], Genetic Algorithm and
Bayesian Analysis techniques to obtain the solution
(Section 4). Furthermore, we extend our approach
to multi-task allocation and multi-objective optimization
(Section 5).

(3) The evaluation on both simulated and real-world user
mobility traces verifies that our framework can reduce
up to 47 percent of travel distance of selected workers
compared to the state-of-the-art geo-obfuscation
mechanism, Laplace obfuscation [12], under the same
level of differential and distortion privacy protection.

2 BACKGROUND

2.1 Mobile Crowdsourcing Task Model

In MCS, there are two task assignment models [7], Worker
Selected Task (WST) and Server Assigned Task (SAT). In the
WST model, the MCS platform publishes tasks online and
candidates can select any tasks to conduct without exposing
their location information. In the SAT model, candidates
upload their locations to the platform and the platform selects
some candidates to allocate tasks. Although theWSTmodel is
more friendly to users’ privacy, it falls shorts in not being able
to globally control the task allocation process. In contrast, the

2. To quantify adversaries’ absolute information gain, certain
assumptions on the prior knowledge are required [15], [16].



SAT model can better optimize the overall task efficiency as
the platform has the whole knowledge of all the candidates’
locations. Our research attempts to combine the advantages
of both models, i.e., using the SATmodel to get the good run-
ning performance of all the MCS tasks, while still protecting
users’ location privacy.

In this paper, we assume that the number of tasks is
smaller than that of candidate workers during the assign-
ment, as this is more common in practical MCS platforms.
For instance, the worker number of TaskRabbit was more
than ten times of the task number (per day) in 2011.3 It is also
worth noting that our solution can be modified to the case
when the task number is larger than the worker number,
whichwill be discussed in Section 8.

2.2 Differential Geo-Obfuscation

Differential privacy is recently introduced in location protec-
tion by Andres et al. [12]. It performs as a probabilistic geo-
obfuscation process, i.e., a user first obfuscates his/her real
location to another one according to a pre-configured proba-
bility function P (encoding the probability of mapping arbi-
trary location l to l�) and then uploads the obfuscated location
to the server. The probability function is the key to ensure
differential privacy. The basic idea is that, supposing the
obfuscated location is l�, for any two locations l1, l2, their
probability of being mapped to l� are similar. Then, if an
adversary observes a user u in l�, he/she cannot distinguish
whether u is actually in l1 or l2, even if he/she knows the
obfuscation function P . With this intuition, differential pri-
vacy formally defines such similarity between any two loca-
tions l1, l2 for arbitrary l�.

XDifferential Privacy [12], [14]. Suppose the concerned area
includes a set of locations L, then a probabilistic geo-obfuscation
function P satisfies �-differential-privacy, iff

P ðl�jl1Þ � e�dðl1;l2ÞP ðl�jl2Þ 8l1; l2; l� 2 L; (1)

where P ðl�jlÞ is the probability of obfuscating l to l�, dðl1; l2Þ is the
distance between l1 and l2, � is the privacy budget — the smaller �,
the higher privacy.

The distance dðl1; l2Þ is introduced to reflect the intuition
that if l1 and l2 are near (i.e., small dðl1; l2Þ), they should be
more indistinguishable. Note that L can be constructed by
dividing the concerned area into a set of regions (of arbi-
trary size) and selecting the representative locations of the
regions (e.g., geographic center) [14]. While dðl1; l2Þ could be
any distance metric, usually it is considered to be euclidean
distance with the unit of kilometer [14].

If P satisfies �-differential-privacy, it can be theoretically
proved that with the observation of the obfuscated location l�,
the improvement of an adversary’s posterior knowledge
about a user’s location distribution s over the prior knowledge
p, i.e., s=p, is bounded by e�DðLÞ (DðLÞ is the maximum dis-
tance of any two locations in L), regardless of what the prior p
is [12]. Thus, differential geo-obfuscation can robustly protect
users’ location privacy against adversarieswith arbitrary prior
knowledge. Please refer to [12] for the theoretical proof.

2.3 Distortion Geo-Obfuscation

Distortion location privacy is another rigorous location pro-
tection scheme for limiting the expected inference error of
adversaries larger than a pre-defined threshold. The protec-
tion is ensured with the assumption that adversaries only
foreknow users’ overall location distribution.4 This is achie-
ved by first modeling an optimal attack s� that minimizes the
expected inference error [16]

argmin
s�

X
l2L

pðlÞ
X
l�2L

P ðl�jlÞ
X

l̂2L
s�ðl̂jl�Þdðl̂; lÞ; (2)

where p is users’ overall location distribution. Then, we
bound the expected inference error of the optimal attack s�

larger than a threshold d. The formal definition is:
Distortion Privacy [15]. A probabilistic geo-obfuscation func-

tion P satisfies d-distortion-privacy iff

X
l2L

pðlÞ
X
l�2L

P ðl�jlÞ
X

l̂2L
s�ðl̂jl�Þdðl̂; lÞ � d; (3)

where d indicates the user’s privacy requirement of the lower
bound of the expected optimal attack inference error.

While the above definition gives a rigorous formulation
of distortion privacy, it is hard to directly apply, as the opti-
mal attack s� in the definition requires solving the optimiza-
tion problem (2). Fortunately, existing literature has proved
that P satisfying the following two constraints are equiva-
lent to distortion privacy [15]

X
l2L

pðlÞP ðl�jlÞdðl̂; lÞ � yðl�Þ; 8l̂; l� 2 L (4)

X
l�2L

yðl�Þ � d: (5)

Both as geo-obfuscation methods, differential and distor-
tion privacy can work together to provide more comprehen-
sive privacy protection. Differential privacy limits the
relative information gain of adversaries regardless of their
prior knowledge, whereas distortion privacy bounds the
absolute information gain with a moderate assumption that
adversaries only foreknow the overall location distribution of
participants.

It is worth noting that the protection effect of differential-
and-distortion privacy depends only on whether the geo-
obfuscation function P satisfies the definitions (1) and (3).
Hence, it is flexible to protect many types of attacks in real-
ity. For example, MCS workers may face the attacks
incurred by fake tasks sent by task owners or platforms.5

But as long as a user adopts the differential-and-distortion
geo-obfuscation function to obfuscate his/her location, the
privacy protection effect can stand no matter whether the
task is fake or not.

3. ‘... Today the site, since renamed TaskRabbit, has more than 1,500 run-
ners (a.k.a., workers) in San Francisco, Boston, Los Angeles, and Orange
County fulfilling up to 3,000 tasks per month ...’ — https://www.wired.
com/2011/07/mf_taskrabbit/

4. We need to make this assumption for distortion privacy. For
example, instead of the overall distribution of participants, if an adver-
sary happens to know a victim’s exact location from some auxiliary
data sources (i.e., p�ðrÞ ¼ 1 where r is the victim’s true location), then
the inference error will always be zero, i.e., no distortion privacy can be
obtained [15].

5. https://splinternews.com/if-you-use-waze-hackers-can-stalk-
you-1793856445

https://www.wired.com/2011/07/mf_taskrabbit/
https://www.wired.com/2011/07/mf_taskrabbit/
https://splinternews.com/if-you-use-waze-hackers-can-stalk-you-1793856445
https://splinternews.com/if-you-use-waze-hackers-can-stalk-you-1793856445


3 PROBLEM ANALYSIS

In this section, we first illustrate the overall process of MCS
task allocation with geo-obfuscation. Then, we formalize
the key problems during this process.

3.1 Task Allocation with Geo-Obfuscation

Suppose there exists anMCSplatformholding various tasks in
a city which require workers to conduct. To protect users’ pri-
vacy, rather than frequently requiring location updates, our
framework only needs candidates to upload their (obfuscated)
locations before a snapshot of task allocation, which is called
initialization stage (e.g., 1-hour snapshot with 5-minute initiali-
zation). More specifically, the initialization stage first gener-
ates a geo-obfuscation function (considering task locations),
transfers this function to candidates, and then collects their
obfuscated locations. The non-responding candidates can be
seen as unavailable so that this initialization stage is also an
effective step to filter out unavailable candidates. Finally, after
collecting available candidates’ obfuscated locations, we
assign tasks to the appropriate ones. Selected workers can
decide whether to accept the assigned tasks or not depending
on their actual distance from the designated task locations.

In brief, the above process includes three steps, as shown
in Fig. 1: (i) Platform-side Geo-Obfuscation Function Generation,
(ii) User-side Location Obfuscation, and (iii) Platform-side Obfus-
cation-aware Task Allocation.

(i) Platform-side Geo-Obfuscation Function Generation.
Before collecting candidates’ locations, a probabilistic
obfuscation function needs to be generated for candi-
dates with certain differential and distortion privacy
guarantee. Note that task locations need to be consid-
ered when generating the geo-obfuscation function,
as we attempt to reduce the negative effects of such
geo-obfuscation on the workers’ travel distance to
task locations. Besides, the platform can take charge of
generating the obfuscation function without violating
users’ privacy, since the theoretical protection of both
differential and distortion privacy is guaranteed
assuming that the adversary knows the obfuscation
function [12], [15]. Hence, users can get privacy

protectionwithout needing to trust the platform, even
the platform generates the obfuscation function.

(ii) User-side Location Obfuscation. After the platform gen-
erates the geo-obfuscation function, the candidates
can download it into their smartphones, and then
obfuscate their actual locations accordingly. The obfu-
scated locations are uploaded to the platform for task
allocation in the next step. Since the location obfusca-
tion runs locally on a user’s smartphone, no one else
knows the user’s real location.

(iii) Platform-side Obfuscation-aware Task Allocation.
Finally, after receiving candidates’ obfuscated loca-
tions, the MCS platform will assign tasks to proper
workers, attempting to minimize selected workers’
travel distance to the task locations. Since users’
uploaded locations are obfuscated, directly taking
them as actual locations and assigning tasks accord-
ingly may not perform well. Instead, the obfusca-
tion function should be taken into account for better
task allocation efficiency.

Note that to minimize workers’ travel distance, the design
of geo-obfuscation function and task allocation are somehow
interleaved. In other words, the task allocation could be
optimized only when the geo-obfuscation function is given,
and vice-versa. Therefore, collectively optimizing these two
parts is necessary to ensure a good system utility. Next, we
will mathematically formalize these two key problems.

3.2 Mathematical Problem Formulation

In this section, we formally define two key problems in the
above process: differential-and-distortion geo-obfuscation and
obfuscation-aware task allocation.

3.2.1 Differential-and-Distortion Geo-Obfuscation

In brief, the problem of generating the geo-obfuscation func-
tion P can be formulated as:

minimize: Travel distance of selected workers
subject to:

(i) P satisfies differential privacy
(ii) P satisfies distortion privacy
As differential and distortion privacy constraints have

been given in Eqs. (1) and (4)-(5), respectively, we still need
to model the objective: travel distance of selected users.

Objective:Minimize Travel Distance
To compute the expected travel distance of the selected

workers, we first calculate the expected travel distance of
assigning a task at lt to a user at obfuscated l� given the geo-
obfuscation function P

d�ðl�; ltÞ ¼
P

l2L pðlÞP ðl�jlÞdðl; ltÞP
l2L pðlÞP ðl�jlÞ

; (6)

where p is the candidates’ overall geographic distribution in
the concerned set of locations L (

P
l2L pðlÞ ¼ 1), and how to

estimate it will be elaborated in Section 4; dðl; l0Þ is the dis-
tance between locations l and l0.

Suppose xðl�; ltÞ denotes the number of task assignments
which allocate the tasks at lt to the users at obfuscated l�.
Based on x, we can calculate the mean expected travel
distance (ETD) of each selected user as

Fig. 1. Workflow of task allocation with geo-obfuscation.



ETD ¼
X
l�2L

X
lt2L

d�ðl�; ltÞxðl�; ltÞ
Nt

(7)

¼
X
l�2L

X
lt2L

P
l2L pðlÞP ðl�jlÞdðl; ltÞP

l2L pðlÞP ðl�jlÞNt
xðl�; ltÞ: (8)

Note that when we optimize the geo-obfuscation func-
tion P , the actual task allocation result x is unknown. This
means that P has to be optimized under a certain hypotheti-
cal x. More specifically, to minimize ETD, this hypothetical x
is also a variable to be optimized, i.e., P and x should be the
best combination to achieve the optima. We use x̂ to denote
the x in the best combination {P , x}.

Then, given the number of tasks at each location l,
denoted as NtðlÞ, and the total number of candidates Nc,

6

we can mathematically formalize the problem of optimizing
geo-obfuscation function P as

min
P;x̂

X
l�2L

X
lt2L

P
l2L pðlÞP ðl�jlÞdðl; ltÞP

l2L pðlÞP ðl�jlÞNt
x̂ðl�; ltÞ; (9)

s.t.

P ðl�jl1Þ � e�dðl1;l2ÞP ðl�jl2Þ l1; l2; l
� 2 L (10)

X
l2L

pðlÞP ðl�jlÞdðl̂; lÞ � yðl�Þ 8l̂; l� 2 L (11)

X
l�2L

yðl�Þ � d (12)

X
l�2L

x̂ðl�; ltÞ ¼ NtðltÞ lt 2 L (13)

Nt ¼
X
lt2L

NtðltÞ (14)

X
l2L

pðlÞP ðl�jlÞ ¼ pðl�Þ l� 2 L (15)

X
lt2L

x̂ðl�; ltÞ � pðl�ÞNc l� 2 L (16)

X
l�2L

P ðl�jlÞ ¼ 1 l 2 L (17)

P ðl�jlÞ � 0 l; l� 2 L (18)

x̂ðl�; ltÞ 2 Z�0 l�; lt 2 L: (19)

As above mentioned, although we attempt to optimize
the geo-obfuscation function (P ), the hypothetical task allo-
cation scheme (x̂) also needs to be optimized. Constraint (10)
is differential privacy; constraints (11) and (12) represent
distortion privacy; constraint (13) guarantees that every
task is assigned to a worker; constraint (15) ensures
that the geo-obfuscation does not change candidates’ overall

location distribution;7 constraint (16) ensures that the num-
ber of tasks assigned to users at l� is smaller than the total
number of users there; 8 constraint (17) and (18) are two gen-
eral probability restrictions; constraint (19) ensures that the
number of task allocations should be an integer.

As there is an integral constraint (19) and the objective
function (9) is non-linear, this optimization is a mixed-integer
non-linear program [19]. While state-of-the-art non-linear
optimization techniques can deal with convex objectives effec-
tively [20], unfortunately our objective function is non-con-
vex. To this end, a specialized algorithm is needed to solve
this MINLP for getting an effective geo-obfuscation function,
whichwill be presented in Section 4.

3.2.2 Obfuscation-Aware Task Allocation

The above formulation is used for generating the obfuscation
function (although it is constructed based on the hypothetical
optimal task allocation). After the candidates upload their
obfuscated locations, the server needs to actually allocate
tasks according to the users’ uploaded locations. We use ~x to
denote such a real task allocation scheme, and the problem of
optimizing ~x is formalized as

min
~x

X
l�2L

X
lt2L

P
l2L pðlÞP ðl�jlÞdðl; ltÞP

l2L pðlÞP ðl�jlÞNt
~xðl�; ltÞ; (20)

s.t. X
l�2L

~xðl�; ltÞ ¼ NtðltÞlt 2 L (21)

X
lt2L

~xðl�; ltÞ � Ncðl�Þ l� 2 L (22)

~xðl�; ltÞ 2 Z�0 l�; lt 2 L; (23)

where Ncðl�Þ is the actual number of users with obfuscated
location l�. Now P is known and the only variable is ~x.
Hence, this is a mixed-integer linear program (MILP). Solving
MILP is easier than MINLP, and many off-the-shelf optimi-
zation tools can solve it with well-studied optimization
techniques such as branch and bound [21]. Based on ~xðl�; ltÞ,
which points out how many candidates at obfuscated l� will
be selected to conduct the tasks at lt, we can then randomly
select this number of workers from all the candidates
reporting their locations as l�.

Note that the aforementioned optimized task allocation
assumes that each user takes at most one task. In reality,
users may be willing to accept multiple tasks and this pro-
vides extra opportunities to reduce workers’ travel distance.
In Section 5.1, we will extend our method to allow assigning
multiple tasks to one candidate worker.

6. We can get Nc by sending messages to all the users on the plat-
form and collect their feedbacks before generating the geo-obfuscation
function.

7. Keeping key statistics invariant in obfuscation is a common prac-
tice in statistical disclosure control with many benefits [18]. In our case,
for instance, this ensures that directly plotting candidates’ obfuscated
locations on the map can still roughly reflect user distribution. Such a
map is usually an important part of the user interface for MCS applica-
tions (e.g., WAZE).

8. Because we cannot foreknow the number of users whose obfus-
cated location is l�, here we estimate it using the overall geographic dis-
tribution and the total number of candidates.



4 GEO-OBFUSCATION OPTIMIZATION

To solve MINLP (9), we propose a method integrating the
techniques such as Benders Decomposition (BD) [17], Genetic
Algorithm (GA), and Bayesian analysis.

4.1 Benders Decomposition

The basic idea of BD is divide-and-conquer [22], i.e., dividing
the variables into two subsets so that two subproblems are
derived. Then, the solution of one subproblem can be seen
as the input of another subproblem, and the two subpro-
blems are alternatively solved until convergence (or the iter-
ation times exceed a given threshold).

As our geo-obfuscation optimization naturally includes
two subsets of variables, P and x̂, we can accordingly split
the original optimization problem into two subproblems of
solvingP and x̂, respectively. Each subproblem only includes
the constraints relevant to either P or x̂.

P-subproblem:

min
P

X
l�2L

X
lt2L

P
l2L pðlÞP ðl�jlÞdðl; ltÞP

l2L pðlÞP ðl�jlÞNt
x̂ðl�; ltÞ; (24)

s.t.

P ðl�jl1Þ � e�dðl1;l2ÞP ðl�jl2Þ l1; l2; l
� 2 L (25)

X
l2L

pðlÞP ðl�jlÞdðl̂; lÞ � yðl�Þ 8l̂; l� 2 L (26)

X
l�2L

yðl�Þ � d (27)

X
l2L

pðlÞP ðl�jlÞ ¼ pðl�Þ l� 2 L (28)

X
l�2L

P ðl�jlÞ ¼ 1 l 2 L (29)

P ðl�jlÞ � 0 l; l� 2 L: (30)

By considering the Eq. (28), the objective (24) can be con-
verted as follows:

min
P

X
l�2L

X
lt2L

X
l2L

pðlÞdðl; ltÞ
pðl�ÞNt

x̂ðl�; ltÞP ðl�jlÞ: (31)

Given x̂, the objective (31) is a linear function regarding P ,
and thus P -subproblem is a linear programming problem.
Note that for implementation speedup, we adopt the
d-spanner-based approximation method to reduce the

complexity of the �-differential-privacy constraint (25) from

OðjLj3Þ to OðjLj2Þ; details can be found in [14].
x̂-subproblem:

min
x̂

X
l�2L

X
lt2L

P
l2L pðlÞP ðl�jlÞdðl; ltÞP

l2L pðlÞP ðl�jlÞNt
x̂ðl�; ltÞ; (32)

s.t. X
l�2L

x̂ðl�; ltÞ ¼ NtðltÞ lt 2 L (33)

X
lt2L

x̂ðl�; ltÞ � pðl�ÞNc l� 2 L (34)

x̂ðl�; ltÞ 2 Z�0 l�; lt 2 L: (35)

Given P , the objective (32) is a linear function regarding x̂;
considering the integral constraint (35), x̂-subproblem is a
mixed-integer linear programming problem.9

In a word, after BD, P -subproblem and x̂-subproblem are
both changed to (mixed-integer) linear programming prob-
lems, which can be efficiently solved with off-the-shelf tools.
In our experiment, we find that usually after two or three iter-
ations, the iterative problem-solving process is converged.

4.2 Genetic Algorithm Based Initialization

To start the iteration of solving P -subproblem and
x̂-subproblem, we need to set an initial x̂ (if solving
P -subproblem first) or P (if solving x̂-subproblem first),
denoted as x̂0 or P0. As using BD to optimize the geo-
obfuscation function often leads to the local optima, the
selection of the initial value of x̂0 or P0 becomes impor-
tant regarding how good the local optima can achieve.

To address this issue, we adopt the Genetic Algorithm [23]
to select the initial value of x̂0 that deserve testing based on
the previously obtained local optima x̂.10 Based on the new
x̂0, we can learn P , and followed by iterative BD for geo-
obfuscation optimization. The key idea of GA is to generate a
potential solution for utility testing from existing solutions
with eithermutation or crossovermethods under a given prob-
ability, which is often set according to specific applica-
tions [23]. We design themutation and crossover processes as
follows (Fig. 2).

Mutation. Given a previous obtained x̂, we randomly select
a location pair ðl1; l2Þ 2 fðl; l0Þjx̂ðl; l0Þ > 0g. Afterward, we
randomly select another location l3 (l3 6¼ l1). We construct a
new x̂00 by setting x̂00ðl1; l2Þ ¼ x̂ðl1; l2Þ � 1, x̂00ðl3; l2Þ ¼ x̂ðl3;
l2Þ þ 1, and the rest values same as x̂.

Crossover. Given the parents x̂1 and x̂2, the crossover func-

tion is used to generate two children x̂1
0

0 and x̂2
0

0 by column

exchange. More specifically, we randomly select a location l0

and then set x̂10
0 ð:; l0Þ ¼ x̂2ð:; l0Þ and x̂20

0 ð:; l0Þ ¼ x̂1ð:; l0Þ; for the
rest values, x̂1

0
0 ¼ x̂1 and x̂20

0 ¼ x̂2.

Fig. 2. Illustrative examples of mutation and crossover.

9. x̂-subproblem is similar to the task allocation problem (Sec-
tion 3.2.2) except for the difference between the constraints (22)
and (34), as we do not know real user number in each obfuscated
region when solving x̂-subproblem.

10. Using GA to construct a new feasible P is complicated due to the
existence of the differential privacy constraint (25). We thus focus on
generating new x̂0.



Note that for both mutation and crossover results, the con-
straint (34) may be violated, i.e., the number of selected work-
ers may be larger than the number of candidates in a certain
location. Therefore,we need to recheckwhether the constraint
(34) stands aftermutation or crossover. If it does not stand,we
will re-run mutation or crossover until (i) the constraint (34)
stands, or (ii) the re-running times exceed a given threshold.

4.3 Candidate Geo-Distribution Estimation

Our optimization process needs the overall geographic distri-
bution of candidates, p, as one input. In reality, the exact p is
hardly known, especially as candidates upload their obfus-
cated locations. Here, we propose to estimate p based on the
obfuscated locations uploaded by candidates. In such a way,
when a new round of task allocation starts, we can use an up-
to-date approximation of p based on candidates’ obfuscated
locations in the previous rounds.

In principle, a candidate’s actual location l could be consid-
ered as a random sample from all the locations L according to
p. Although his/her reported location is obfuscated, it can
still help to improve our estimation of p, especially because
the obfuscation function P is known to the MCS platform.
Hence, estimating p can be seen as a process of gradually
updating p according to the incoming obfuscated locations
that are reported by the candidates. This can be modeled
using Bayesian analysis. Supposing a user’s obfuscated loca-
tion is l� and the corresponding obfuscation function is P , we
update p by the Bayes rule

pðlÞ pðlÞP ðl�jlÞP
l02L pðl0ÞP ðl�jl0Þ

; l 2 L: (36)

In the beginning, we need to set an initial value to p, denoted
as p0. In most cases, p0 can be chosen as non-informative uni-
form distribution, or the overall population distribution over
the target sensing area (e.g., modeled by mobile phone call
traces [24]). With the continuously incoming observations
(i.e., obfuscated locations), the estimated p will converge to
the real candidates’ geographic distribution, and the impact
of p0 on the estimated p is gradually reduced [25].

Note that this estimation has an implicit assumption that
candidates’ actual locations are sampled from the same hid-
den geographic distribution. In reality, users’ mobility pat-
terns could be affected by various contexts [26]; only under
similar contexts, this assumption could stand. Hence, in
implementation, we can estimate a set of p corresponding to
various contexts (e.g., time, weekday/holiday [24]).

5 APPROACH EXTENSIONS

In this section, we further extend the proposed differential-
and-distortion geo-obfuscation method from two aspects:
multi-task allocation and multi-objective optimization.

5.1 Multi-Task Allocation

Assuming that a worker can do only one task, the mixed-
integer linear program (20) makes an optimal task allocation
given an obfuscation function P . In reality, a user may accept
multiple tasks. Here, based on the task allocation scheme
obtained by MILP (20), we investigate how to use multi-task
allocation to further reduce workers’ overall travel distance
compared to single-task allocation.

Motivated Example. Supposing tasks t1 and t2 are at location
l1 and l2, respectively, Eq. (20) assigns t1 to u1 and t2 to u2. The
expected travel distance of u1 ! l1 is 2 km and u2 ! l2 is 1 km.
Then, the total distance is 3 km. If the distance between l1 and
l2 is 1 km and a user can accept multiple tasks, then we can
assign both t1 and t2 to u2, leading to a shorter total distance

of 2 km (u2
1 km��! l2

1 km��! l1).

While multi-task allocation has been studied by previ-
ous MCS works [27], [28], [29], [30], they usually do not
consider privacy protection. We then develop a method
for multi-task allocation with differential-and-distortion
geo-obfuscation. We elaborate more about why previous
works cannot be directly applied to our scenario later in
the related work section (Section 7.1).

Our proposed method converts the multi-task allocation
problem into an MILP problem. To illustrate this conversion,
we first build the task graph as follows. We create a start allo-
cation node t0 and an end allocation node t�1; for each task
i 2 f1 . . .Ntg, we create a node ti (each ti needs one worker; ti
and tj could be at a same location). Then, we link t0 to each ti
and each ti to t�1. The weight of the edge ht0; tii is the
expected travel distance of the assigned worker ui to ti
according to MILP (20), while the weight of hti; t�1i is set to
zero. We also link the task nodes which may be co-allocated
to one worker; the link weight is set to the distance between
two task locations.Without the loss of generality, we suppose
that multiple tasks in one location cannot be allocated to one
user, but tasks in different locations can.11 Hence, the tasks in
one location will not be connected to each other. Fig. 3 shows
an example of four tasks distributed in three locations. We
use the node color to mark the location. Then, we define a
valid allocation path as a path starting from t0, ending at t�1
and not containing multiple same-color nodes. For example,
ht0; t2; t4; t�1i is a valid allocation path; but ht0; t2; t4; t1; t�1i is
invalid. The sum of the edge weights is the expected travel
distance for theworker to finish all the tasks in the path.

With the task graph, a task allocation strategy can be seen
as a set of valid allocation paths covering every task node
exactly once. In Fig. 3, the allocation result of MILP (20) is
fht0; t1; t�1i; ht0; t2; t�1i; ht0; t3; t�1i; ht0; t4; t�1ig (four work-
ers); while other task allocation results are also possible, e.g.,
fht0; t1; t�1i; ht0; t2; t4; t�1i; ht0; t3; t�1ig (three workers). Then,
our objective is to find a set of valid allocation paths with the

Fig. 3. An illustrative example of task graph.

11. It is common in practice that multiple tasks in one location can-
not be finished by one user. For example, five tasks at one location need
five different workers to sense the noise level to ensure data reliability.
Also, if multiple tasks in one location can be finished by one user, these
tasks can be combined into one ‘big’ task, and then our method still
works.



smallest sum of weights, which can be formulated as the fol-
lowingMILP:

min
x

X
i;j

wi;j � xi;j; (37)

s.t.

X
i2f�1;0;1...Ntg

xi;j ¼ 1; 8j 2 f1 . . .Ntg (38)

X
j2f�1;0;1...Ntg

xi;j ¼ 1; 8i 2 f1 . . .Ntg (39)

xi;j þ xj;i � 1; 8i; j 2 f�1; 0; 1 . . .Ntg (40)

X
j2f1...Ntg

x0;j � 1 (41)

X
j2f1...Ntg

x0;j ¼
X

i2f1...Ntg
xi;�1 (42)

xi;j 2 f0; 1g; 8i; j 2 f�1; 0; 1 . . .Ntg; (43)

where xi;j indicates whether the edge hti; tji exists in the
allocation, and wi;j is the weight. Note that the solution of
MILP (37) may still include two types of invalid paths, i.e.,
the path not starting (ending) at t0 (t�1), or the path covering
multiple same-location tasks. We thus iteratively add more
constraints and re-solve MILP (37) if an invalid path exists
in the solution. The added constraint is

X
hti;tji2IP

xi;j � jIP j � 1; (44)

where IP is an invalid path and jIP j is its length. Theoreti-
cally, to eliminate all of the possible invalid paths, it needs
to iteratively add at most Oð2nÞ constraints. But in practice,
the number is much smaller and the solution can be
obtained for a moderate scale problem.

If the task number is very large, we can turn to the
greedy algorithm for multi-task allocation, i.e., iteratively
reallocating one task from a worker to another worker if
this can reduce the total travel distance the most. Although
the greedy algorithm may lead to a sub-optimal solution
compared to MILP (37), its scalability is much better.

5.2 Multi-Objective Optimization

Besides travel distance, we may optimize multiple objec-
tives simultaneously if we can also model other objectives
mathematically. Here, we take another widely concerned
utility metric, acceptance ratio [7], [31], as an example to
show how to consider it together with travel distance.

Objective 2:Maximize Acceptance Ratio
We calculate the expected probability that a user whose

obfuscation location is l� would accept a task at lt

paccðl�; ltÞ ¼
P

l2L pðlÞP ðl�jlÞAðl; ltÞP
l2L pðlÞP ðl�jlÞ

; (45)

where Aðl; ltÞ models the probability of a user at l accepting
a task at lt. As a variety of real-life MCS studies [32] have
shown that users tend to accept tasks near them, we use a

decreasing function of distance between l and lt to model A.
In the literature, linear and power law distribution functions
are two common methods to model A [7], [31].

Suppose Nt is the total number of task assignments and
xðl�; ltÞ denotes the number of task assignments which allo-
cate the tasks at lt to the users whose obfuscated location is
l�. Then, the expected acceptance ratio (EAR) of selected
workers are

EAR ¼
X
l�2L

X
lt2L

paccðl�; ltÞxðl�; ltÞ
Nt

(46)

¼
X
l�2L

X
lt2L

P
l2L pðlÞP ðl�jlÞAðl; ltÞP

l2L pðlÞP ðl�jlÞNt
xðl�; ltÞ: (47)

Combining Two Objectives Together
Minimizing travel distance ETD (8) and maximizing

acceptance ratio EAR (47) are two objectives that we aim to
achieve simultaneously. To solve this bi-objective optimiza-
tion problem, we can use linear scaling [33] to convert it to
single-objective optimization, i.e.,

min ð1� bÞETD � bEAR (48)

) min
X
l�2L

X
lt2L

P
l2L pðlÞP ðl�jlÞMbðl; ltÞP

l2L pðlÞP ðl�jlÞNt
x̂ðl�; ltÞ; (49)

whereMbðl; ltÞ ¼ ð1� bÞdðl; ltÞ � bAðl; ltÞ.
Our previously proposed differential-and-distortion geo-

obfuscation framework for minimizing travel distance can
be directly applied to the objective (49). Specifically, by
varying b from 0 to 1, we can make the trade-off between
travel distance minimization and acceptance ratio maximi-
zation for getting a set of Pareto optimal solutions [33].

Setting of b. Generally, we need to set b 2 ½0; 1� inMb to
solve the optimization problem. But under certain condi-
tions, we prove that b does not impact the solution.

Theorem 1. If users’ task acceptance model A is linear w.r.t. the
distance away from the task location, and the minimum proba-
bility in A between any two locations is larger than zero, i.e.,
minAðl; l0Þ > 0; 8l; l0 2 L, then minimizing ETD is equiva-
lent to maximizing EAR.

The proof is in shown in Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TDSC.2019.2912886. Theo-
rem 1 suggests that if the acceptance probability follows a lin-
ear model and the target area is relatively small (i.e., the
probability of a user accepting any task in the area is larger
than zero), then minimizing travel distance and maximizing
acceptance ratio is equivalent. In other words, the specific
value of b does not impact the optimization in such cases.

6 EVALUATION

In this section, we assess the effectiveness of our proposed
framework in two aspects. First, we evaluate the perfor-
mance of our framework by simulating a target sensing
area and candidates’ real locations. Second, to validate its
applicability in real-world use cases, we also verify our

http://doi.ieeecomputersociety.org/10.1109/TDSC.2019.2912886
http://doi.ieeecomputersociety.org/10.1109/TDSC.2019.2912886


framework on a real-life mobility dataset, D4D [34], which
includes 50,000 users’ two-week mobility traces represented
by their mobile phone call logs.

6.1 Experiment Setup

6.1.1 Evaluation Scenarios

We run experiments with both simulations and real datasets.
Simulation. We simulate a target area with n	 n grids

and the collection of all the grid centers forms the whole
location set L. Each grid is set to 1 km 	 1 km. We vary sev-
eral key parameters in Table 1 to evaluate our framework in
different settings.

D4Ddataset [34] includes 50,000 users’ phone call traces in
Ivory Costa, which is widely used to evaluate task allocation
mechanisms in MCS [6], [27], [35]. Referring to [6], [27], we
see a user’s current location as the position of the cell tower
where he/she makes the last phone call. We select the down-
town area of the largest city in Ivory Costa,Abidjan, as the tar-
get area, and randomly distribute tasks to a group of cell
towerswithin the area.

6.1.2 Evaluation Metric

Average Travel Distance (ATD). Referring to [36], we use the
euclidean distance to measure the distance between workers
and tasks

ATD ¼
X
ðu;tÞ2S

dðu; tÞ=jSj; (50)

where S is the set of final task assignment (user, task) pairs,
and dðu; tÞ is the euclidean distance (in km) between the
worker u and the task t. Note that the distance can be changed
to other metrics, such as Manhattan distance and map route
distance, according to the practical use cases.

6.1.3 Baselines

Laplace. We compare our framework with the state-of-the-art
differential geo-obfuscation mechanism [12] that adds Lapla-
cian noise to a user’s actual location, denoted as Laplace. Intui-
tively, Laplace tends to obfuscate a location to its nearby
locations with higher probabilities. Formally, the obfuscation
probabilities are

P ðl�jlÞ / e
��dðl;l

�Þ
DðLÞ ; (51)

where DðLÞ is the maximum distance between any two
locations in the target area L. The task allocation part of

Laplace also adopts the same linear program illustrated in
Section 3.2.2 to get the optimal task assignments.

Since Laplace only constrains differential privacy, to make
it comparable to our method, given the differential privacy
level �, we calculate the ‘actual’ distortion privacy d that Lap-
lace achieves with Eqs. (4) and (5). Then, we use this d in our
optimization formulation.

No-Privacy. We show the optimal task allocation results
when candidates’ real locations are reported, to see the assi-
gnment performance loss incurred by privacy protection.

6.2 Results on Simulation

The evaluation is conducted with a set of tunable parameters
(see Table 1) on the simulated n	 n grid-cell target area. By
alternatively tuning one of these parameters while fixing the
others, we study how our framework performs under differ-
ent settings. For each parameter setting, we repeat 100 trials
and record the mean ATD. The evaluation results are repo-
rted in Fig. 4.

In particular, we observe that a smaller ATD can be often
achieved for MCS task allocation either by increasing the
number of candidates (Fig. 4a), reducing the number of tasks
(Fig. 4d), downsizing the target area (Fig. 4c) or loosening the
privacy level (Fig. 4b). Compared to Laplace, our method
achieves significantly smaller ATD.

We also change task spatial distribution (Fig. 4e) and can-
didate worker spatial distribution (Fig. 4f) to see simulation
results. Besides uniform, we inspect distributions around the
center and corner (Fig. 5). Our method still consistently out-
performs Laplace in obtaining lower ATD.Note that in Fig. 4f
where the candidate distribution is not uniform, we also
show ATD of our method when still supposing uniform can-
didate distribution during the optimization. We can observe
that the inaccurate assumption about the candidates’ distri-
bution will lower the performance of our method, which can
lead up to a 20 percent increase in ATD. Therefore, an accu-
rate candidate distribution estimation is necessary for the real
deployment, verifying the necessity of our proposed candi-
date geo-distribution estimationmethod in Section 4.3.

As Benders Decomposition and Genetic Algorithm are heuris-
tic optimization methods which may not obtain the global
optimal P �, we compare the ATD of our obtained P to P � in
Fig. 6. Since calculating P � is expensive,12 we show the com-
parison when Nt ¼ 2. Results show that our solution is very
competitive to the optimal solution with similar ATD (< 2%
of loss). More specifically, we compare our method to the
approach which only leverages BD to obtain P (not using
GA). We find that if only using BD, the solution quality is
much worse, which leads to > 30% of loss compared to the
optimal solution. This verifies that, by introducing GA, we
significantly improve the solution quality in practice.

6.3 Results on Real Human Mobility Datasets

Now, we use a real-life human mobility dataset, D4D [34], to
evaluate our method. Similar to [6], we use the cell tower
positions in Abidjan as the total set of locations L and con-
sider three types of task distributions, compact, scattered, and

TABLE 1
Key Parameters in Simulation

Notation Default Description

n 4 side length of area
Nc 10 candidate number
Nt 4 task number
� ln(4) differential privacy level
d (LAP) distortion privacy level (default is

set to the same value as Laplace)
p uniform candidate worker spatial

distribution
t uniform task spatial distribution

12. We exhaustively enumerate possible task allocation x̂ and solve
LP (24) to get a candidate set of fPg; P � with the smallest objective is
selected from fPg. This calculation needsOðjLjNt Þ iterations.



hybrid, as shown in Fig. 7 (default: hybrid).We use 10:00-19:00
inworkdays as the experimental period. Every hour, theMCS
platform needs to do one round of task allocation. In each
round of task allocation, the task number ranges from 5 to 20
(default: 5), and the candidate number ranges from 20 to 50
(default: 30). Note that for each one-hour time slot, we learn a
separate candidate distribution p according to candidates’
uploaded obfuscated locations. The total task period lasts for
two weeks, i.e., 10 workdays. The privacy level � ranges from
lnð2Þ to lnð8Þ (default: lnð4Þ).

Fig. 8 shows the evaluation results of ATD. In general, the
D4D results are similar to the simulation results, and our
method can always achieve a smaller ATD than Laplace.
Note that among the three distribution settings, our method

can gain more improvements for larger target areas (i.e., scat-
tered and hybrid). Particularly, in the scattered setting, our
method outperforms Laplace by reducing 47 percent of ATD.

In the following, we investigate the impact of geo-distri-
bution estimation and GA-based initialization on the per-
formance of our method. We then evaluate its runtime
performance.

Geo-Distribution Estimation. To evaluate the effectiveness
of our geo-distribution estimation (Section 4.3), we measure
the difference of our estimated p0 and the actual p� using
Kullback-Leibler divergence [37], which can quantify how
much information is lost if using p0 to represent p�

DKLðp0jjp�Þ ¼
X
l2L

p0ðlÞlog p0ðlÞ
p�ðlÞ : (52)

The more similar p0 and p� are, the lower DKL is. Fig. 9a
shows theDKL for three example one-hour time slots, andwe
set the initial value of p0 to the uniform distribution. We can
see that after two or three days,DKL can be reduced to about
0.2, which is much smaller than the initialDKL (i.e., p0 is uni-
form), indicating the effectiveness of our geo-distribution
estimationmethod.

Genetic Algorithm-Based Initialization. To verify the effec-
tiveness of GA-based initialization (Section 4.2), we com-
pare it with the random selection of the initial value of x̂0.
As shown in Fig. 9b, GA-based initialization can effec-
tively reduce more than 10 percent of ATD to random
initialization.

Runtime Performance. We use MOSEK 7.113 to solve our
linear optimization problems. On our test PC (Intel Core i7-
3612QM, 8 GB RAM), it takes about 23.6 and 0.2 seconds
to do one round of geo-obfuscation function generation
and obfuscation-aware task allocation, respectively. Hence,

Fig. 4. Simulation results of average travel distance (NP: No-privacy, OUR: Our method, LAP: Laplace).

Fig. 5. Different distribution settings in simulation (a dark grid has
9	 probability larger than a white grid).

Fig. 6. ATD of our method and the optimal solution (Nt ¼ 2; Nc ¼ 20;
� ¼ lnð4Þ). 13. https://www.mosek.com/

https://www.mosek.com/


compared to no-privacy task allocation, our framework intro-
duces an overhead of fewer than 30 seconds, which is totally
acceptable in real-lifeMCS applications.

6.4 Balancing Differential and Distortion Privacy

In previous experiments, we set the distortion privacy level
d in our method the same as Laplace to make a fair compari-
son. In this section, we try to vary the setting of d to see how
it will impact the performance of our method.

It isworth noting that d cannot be an arbitrary value since it
represents the adversaries’ expected inference error. A too
large d will make our optimization problem infeasible.
For example, assigning d to 100 km when the target area is
only 10 km 	 10 km is apparently not a valid setting. In prac-
tice, we can get the maximum possible d, called dmax by the
following linear program:

max d s:t: Eq: ð26Þ to ð30Þ: (53)

By solving this optimization problem, we find that in the
D4D hybrid, dmax is 1.54 km.

Besides,we can ignore the distortionprivacy constraint (11)
& (12) and solve the geo-obfuscation optimization problem (9)
to get a P with only the �-differential-privacy constraint, and
then see what is the actual distortion privacy level d that the P
achieves, denoted as d�. This can be seen as a practical lower

bound of the d configuration given �, because setting d to any
value < d� will generate the sameP aswe set d ¼ d�.

Fig. 10a plots how d� changes with �. With the increase of
�, d� decreases. This suggests that when we do not explicitly
consider the distortion privacy in the geo-obfuscation opti-
mization, the actually achieved distortion privacy level d�
decreases when we loosen the differential privacy level �.

Given �, tuning d between d� and dmax makes a trade-off
between the utility (i.e., ATD) and distortion privacy protec-
tion. We then compare ATD under different d while fixing �
to lnð4Þ in the D4D hybrid setting (Fig. 10b).With the increase
of d, i.e., stronger distortion privacy, the utility of the obtained
geo-obfuscation function decreases, i.e., ATD goes up. It is
also worth noting that, the utility decreasing speed is not
steady. When d is closer to dmax, increasing d leads to higher
utility loss. This observation implies that, in practice, we can
sometimes obtain a certain level of distortion privacy
with only a little utility loss, e.g., when we want to ensure
lnð4Þ-differential-privacy onD4D hybrid, we can increase d to
1.4 km from d� ¼ 1:1 km with little utility loss; however,
when we want to offer a stronger distortion privacy with
d > 1:4 km, the utility loss becomesmuchmore obvious.

6.5 Results on Approach Extensions

Here, we evaluate our approach extensions of Section 5 with
the same simulation setting as Section 6.2.

Fig. 7. Task distributions in D4D.

Fig. 8. D4D results of average travel distance (NP: No-privacy, OUR: Our method, LAP: Laplace).

Fig. 9. Submodule evaluation on D4D. Fig. 10. Balance differential and distortion privacy.



6.5.1 Multi-Task Allocation

We conduct the experiment of multi-task allocation on the
simulation scenario. The target is to check how ATD
changes by introducing multi-task allocation into our
approach. Fig. 11 shows the ATD results of the multi-task
allocation (MULTI) compared to our original single-task
allocation (SINGLE), as well as No-Privacy (NP).

Fig. 11a illustrates that the improvement of MULTI over
SINGLE becomes more significant with the increase of the
number of tasks. Specifically, when Nt ¼ 8, MULTI reduces
ATD by 25.2 percent compared to SINGLE. The reason is that,
when the task number increases,MULTI hasmore opportuni-
ties to find beneficial multi-task allocation strategies for
reducing ATD. Fig. 11b indicates that when the number of
candidate workers increases, the improvement of MULTI
turns to be minor. The possible reason is when the candidate
worker number is large, even each worker takes only one
task, there are many candidate allocation strategies, and thus
SINGLE can find a relatively efficient strategy. In summary,
if we have fewer candidate workers and more tasks, allow-
ing multi-task allocation will reduce ATD more significantly;
and vice-versa.

6.5.2 Multi-Objective Optimization

In multi-objective optimization, we use acceptance ratio (AR)
along with travel distance in optimization (Section 5.2).
Two task acceptance models [31] are evaluated: (1) a linear
model where users’ acceptance probability drops from one
when they are co-located with the task, to zero when they
are 13.6 km or more away from the task (threshold is set
according to a real user’s crowdsourcing dataset [31]); and
(2) a power law distribution model as follows:

Aðl; ltÞ ¼ ð1þ dðl; ltÞÞ�a; (54)

where a is set to 0.5. Same as [31], we suppose that all the
workers are homogeneous. Fig. 12 shows the acceptance

probabilities of the two models. The b in the objective (49)
for the trade-off of AR and ATD is set to 0.5 by default.

The results of AR (linear model) on our simulation is
shown in Fig. 13. Briefly, the results are very similar to ATD,
i.e., our method can outperform Laplace significantly in all
the settings. We then change the task acceptance model from
the linear to the power law. Note that the power law model
has a much sharper decrease in users’ acceptance probability
with the increase of distance (Fig. 12), and thus the AR obta-
ned by the power law model is lower than the linear model.
In our simulation, we find that in the default setting, the
power lawmodel obtains an AR of 69.6 percent, while the lin-
earmodel obtains anAR of 89.2 percent.

According to the Theorem 1 in Section 3.2, the setting of b
does not affect our optimization results for the linear accep-
tance model in the simulation, but it indicates a trade-off
between ATD and AR for the power law model. Hence, we
show the results of ATD and AR with the power law model
by varying b in Fig. 13d.We can see that, if we prioritizemini-
mizing ATD, a smaller b can be set; if we prefer maximizing
AR, a larger b can be configured. More importantly, our
method consistently outperforms Laplace in both ATD and
AR with any b. Our results also indicate that in practice, even
if we are uncertain about the exact task acceptance model,
directly minimizing travel distance usually leads to a high
acceptance ratio.

7 RELATED WORK

We review the related work from the following two aspects
in MCS literature: task allocation and location privacy.

7.1 Task Allocation

The objective of task allocation inMCS is to optimize the over-
all system utility while completing all (or a high percentage
of) the tasks in the target sensing area. In the current litera-
ture, such system utilities can be roughly classified into four
categories: 1) sensing data quality [38], [39], [40], which tries to

Fig. 11. Results of multi-task allocation.

Fig. 12. Acceptance probability of two models.

Fig. 13. Simulation results of acceptance ratio (NP: No-privacy, OUR: Our method, LAP: Laplace).



maximize the data quality measured by a certain metric
(mostly used in environmental monitoring tasks); 2) incentive
cost [35], [41], which aims at minimizing the total budget
(from the perspective of the task organizer) for an MCS task
with different incentive mechanisms, such as pay per partici-
pant [35] or pay per task [41]; 3) energy consumption [24], [42],
whose objective is to identify an optimal collaborative data
sensing and uploading scheme with energy-saving techni-
ques such as piggybacking [24]; 4) travel distance [6], [27], [36],
where the travel distance of a user for accomplishing a task is
considered in task allocation, in order to reduce the overall
travel distance for all the tasks. In this study, we emphasize
on the utility on travel distance, i.e., minimizing the overall
travel distance andmaximizing the task acceptance ratio, as it
is a critical issue for both participants and task organizers.
The other kinds of utility metrics, such as the monetary bud-
get under certain incentive mechanisms, will be studied in
the future.

Multi-task allocation, as discussed in Section 5.1, has also
been studied in the literature. Some studies focused on the
Worker Selected Task model [28], [29], which is different from
our studied Server Assigned Task model (Section 2.1). Among
the related works on the SATmodel, Liu et al. [27] considered
multi-task allocation in emergency scenarios (e.g., heavy rain)
when the total task number is larger than theworker capacity;
however, in our case, the task number is smaller than the
worker number, and thus the method in [27] cannot be
applied. Deng et al. [30] considered a strict constraint in
multi-task allocation—each task has its hard deadline and an
assignedworker should complete the task before it. With geo-
obfuscation, it is hard to estimate the time when a worker can
finish a task due to location uncertainty; so designing an
assignment strategy to satisfy the hard deadline constraint
becomesmore challenging.We leave this to our futurework.

7.2 Location Privacy

Location privacy in MCS has attracted increasing research
interests. Based on a recent survey on the MCS privacy
issues [8], cloaking is still a widely used strategy in practice
for protecting location privacy, e.g., [9], [10], [11]. However,
these works all have the same drawback of being sensitive to
the adversary’s prior knowledge. In order to avoid this issue,
differential privacy starts to be introduced in MCS. Wang
et al. [43] proposed to leverage differential geo-obfuscation in
environmental monitoring tasks, whose utility is measured
by the overall sensing error of the target area. Our work, by
using the metric of travel distance, is not limited to environ-
mental monitoring tasks. A closely related work to ours
is presented in [7], which also attempted to optimizeworkers’
travel distance under differential privacy protection. How-
ever, their mechanism needs a third-party trusted entity to
first collect users’ real locations before perturbation. They pro-
posed to let users’ cellular service providers act like such a
third-party, but incentivizing service providers for participa-
tion is hard in practice. In our solution,mobile users obfuscate
their locations on their smartphones, thus avoiding such a
trusted third-party.

Oya et al. [44] studied differential geo-obfuscation on the
inference error of confidence, i.e., the probability that an
adversary chooses a wrong location given two candidates
(one correct and one wrong). We note that this inference
error [44] is inherently equivalent to differential privacy and

distinct from the inference error of distortion privacy (mea-
sured by distance) in our work. Recently, the original diff-
erential geo-obfuscation definition (1) has been redefined
for certain practical cases. For example, Chatzikokolakis
et al. [45] proposed an alternative definition tomodify the dis-
tancemetric d in the definition (1) from the euclidean distance
to an elastic metric which considers the location characteris-
tics (space, population, points-of-interests, etc.). Our method
can be easily extended to such alternative differential geo-
obfuscation definitions by simply replacing the original defi-
nition (1) with the new one such as [45].

Compared to our preliminary conference version [46], this
journal paper has improved its substantial technical part from
three perspectives: (1) adding distortion privacy in company
with differential privacy; (2) extending the approach toward
multi-task allocation; (3) realizing multi-objective optimization
considering both travel distance and task acceptance ratio.

8 DISCUSSION AND FUTURE WORK

More Tasks& FewerWorkers. Our paper assumesmoreworkers
& fewer tasks (abbr. MWFT, Section 2.1), while the opposite
case (more tasks & fewer workers, abbr. MTFW) might also
happen. For instance, in emergency scenarios like heavy rain,
there could be fewer workers while more tasks (e.g., check
traffic condition) on the roads [27]. Our solution can deal with
MTFW with minor modifications. Specifically, to maximize
the number of assigned tasks in MTFW, every worker will be
assigned with one task (if not considering multi-task alloca-
tion). Hence, when formulating MINLP (9) in Section 3, we
modify ‘�’ to ‘¼’ in Eq. (16) as one user can only conduct one
task.14 Besides, we change ‘¼’ to ‘�’ in Eq. (13) as not all the
tasks can be assigned in MTFW. For this modified MINLP,
our solution in Section 4 can still work. If allowing multi-task
allocation in MTFW, we can also refer to Section 5.1 for the
solution extension.

Theoretical Performance Analysis. In this work, we propose a
method combing BD and GA for solving MINLP (9). As BD
and GA are heuristic methods, the theoretical performance
guarantee of the solution is unclear. While we have empiri-
cally validated the performance of our solution by comparing
it to the global optima under a small-scale simulation test, we
will try to conduct theoretical analysis in the future.

Trajectory Protection. Our current research provides the
snapshot protection. In reality, an MCS worker may conduct
multiple tasks continuously and then reveal her/his moving
trajectory. A simple adaptation of the snapshot protection to
the trajectory protection with differential geo-obfuscation is
setting smaller � [12], but this will lead to significant utility
loss in practice. Hence, how to protect trajectory privacy is
still an open question to investigate.

Task Location Protection. As task locations may reveal task
owners’ sensitive information [47], some recent studies
started considering task location protection with techniques
such as Laplace differential geo-obfuscation [48]. In the
future, we will study whether optimized differential-and-
distortion privacy protection can be incorporated to protect
both worker and task locations.

14. Rounding (floor or ceiling) may be needed as it is a integer
program.



9 CONCLUSION

This paper addresses the privacy-preserving problem in
MCS task allocation. It uses differential-and-distortion geo-
obfuscation to protect users’ location privacy without the
need to involve any trusted third-party service. Meanwhile, it
aims at minimizing workers’ travel distance. To this end,
this paper proposes a mixed-integer nonlinear program to
collectively optimize both differential-and-distortion geo-
obfuscation and task allocation, using the techniques includ-
ing Benders decomposition, genetic algorithms, and Bayesian
analysis. The approach is further extended to multi-task allo-
cation andmulti-objective optimization.
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