
1

SecuCode: Intrinsic PUF Entangled Secure Wireless Code
Dissemination for Computational RFID Devices

Yang Su, Yansong Gao, Michael Chesser, Omid Kavehei, Alanson Sample and Damith C. Ranasinghe

September 22, 2022

1 INTRODUCTION

The exponential rate of hardware miniaturization, emer-
gence of low cost and low power sensing modalities coupled
with rapid developments in communication technologies
are driving the world towards a future where tiny scale
computing will be more pervasive and seamlessly inte-
grated with everyday life. This sea of change is driven
by the increasing ability of tiny computing platforms to
connect people and things to the Internet—the Internet-
of-Things (IoT) [1]—enabling transformative applications
ranging from healthcare [2], [3] to preventing counterfeiting
[4], [5]. Despite the magnitude of possibilities, the basic
architecture of those IoT devices are quite similar; micro-
controllers, transceivers, sensors, batteries, and sometimes,
actuators are coupled with the most important component,
the application specific software or more simply ‘code’ which
endows the ‘Things’ with the ability to communicate with
other parties and fulfill interactive tasks [6]–[8].

More recently we have seen the emergence of such tiny
scale computing platforms in the form of highly resource
constrained and intermittently powered batteryless devices
that rely only on harvested RF (radio frequency) energy
for operations; best exemplified by Computational Radio
Frequency Identification (CRFID) devices such as WISP [9],
MOO [10] and commercial devices from Farsens [11]. The
benefit of batteryless devices arises from: i) the removal of
expensive or risky maintenance, for example, when devices

• Yang Su is with Auto-ID Labs, School of Computer Science, The Univer-
sity of Adelaide, SA 5005, Australia. yang.su01@adelaide.edu.au

• Yansong Gao is with School of Computer Science and Engineering, Nan-
Jing University of Science and Technology, Nanjing, China and Data61,
CSIRO, Sydney, Australia. yansong.gao@njust.edu.au

• Omid Kavehei is with School of Electrical and Information En-
gineering, The University of Sydney, NSW 2006, Australia.
omid.kavehei@sydney.edu.au

• Alanson Sample is with Disney Research, Los Angeles, USA. alan-
son.sample@disneyresearch.com

• Damith C. Ranasinghe is with Auto-ID Labs, School of Com-
puter Science, The University of Adelaide, SA 5005, Australia.
damith.ranasinghe@adelaide.edu.au

• We acknowledge support from the Australian Research Council Discov-
ery Program (DP140103448) and NJUST Research Start-Up Funding
(AE89991/039)

are deeply embedded in reinforced concrete structures or
tasked with blood glucose monitoring or pacemaker con-
trol [12]; ii) the reduction in the cost of devices; and iii)
the potential for an indefinite operational life. However, a
significant challenge materializes from the need to patch,
update or reprogram the application specific software in
the form of firmware without the supervisory control of
an operating system; to do so, a physical connection to a
device is required. Unfortunately, a wired connection not
only negates the benefit of the battery-free feature and
makes the process unscalable when potentially millions of
devices need to be updated, but is a more acute problem
in the context of deeply embedded devices, such as a blood
glucose monitor, where physical access to the device poses
practical challenges and risks to the end-user.

1.1 Problem
We define firmware update as the transfer of partial or
entire executable code from the prover P to the non-volatile
memory of the CRFID device, referred to as the token T .
The firmware update aims to, e.g., enhance CRFID device’s
computational or storage performance, impart new func-
tionality, fix software bugs or address system compatibil-
ity. The firmware update is conducted either by physically
connecting a download cable or in a wireless manner. Our
work considers the more desirable but challenging secure
wireless firmware update to eschew the cumbersome and,
often impractical, cable-connected download method.

The fundamental problem of a wireless firmware up-
date for CRFID devices was addressed in two recent ap-
proaches [12], [13]; both focused on transmission reliability,
miniaturization of firmware code size, and energy efficiency.
None of them addressed the difficult problem of assuring
the security of wireless firmware updates, although Tan et
al. [12] highlighted that secure wireless code dissemination
remains the most urgent need to be addressed. This implies
that both wireless approaches allow any party, irrespective
of their trustworthiness, to remotely and wirelessly install
code on a CRFID device. Consequently, malicious firmware
injection from an adversary remains a direct threat that can
lead to, for example, private information leakage such as
health condition to unauthorized parties or the installation
of malicious code in deeply embedded hardware such as
a blood glucose monitor with devastating consequences
for the victim. Therefore, this work aims to address the
following questions:

ar
X

iv
:1

80
7.

10
46

3v
4

 [
cs

.C
R

]
 2

1
Se

p
20

22

2

• Is it possible to realize a secure and wireless code update
mechanism without additional hardware components?

• Can we develop an update protocol compliant with current
communication protocols to ensure translation into practice?

• Can we securely update firmware under resource constrains
and intermittent powering, as illustrated in Fig. 1 and 2,
relying only on harvested power?

100 300 500 700 900

Thousand MCU instruction cycles

0

0.1

0.2

0.3

P
ro

ba
bi

lit
y

Fig. 1. A distribution of clock cycles available for executing instructions
on a CRFID device from power harvested during 100 different power-
up and power loss events. We can see the limited and variable amount
of energy or computational capability (measured as clock cycles) for
executing code before losing state. (We used a WISP5-LRG [14] at
50 cm from a 9 dBic antenna energized by an Impinj R420 RFID Reader
to collect the data, as described in [12]).

Typical operation

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
a
c
k
s
c
a
tt

e
r

e
v
e
n
t(

re
s
p
o
n
s
e
)

V
o
lt
a
g
e
 a

c
ro

s
s

re
s
e
rv

o
ir
 c

a
p
a
c
it
o
r (

V
)

Time (s)

Vcap
Minimum MCU Vin

Brownout Brownout Brownout

Transponder R esponse

Matching
Circuit Rectifier Regulator Load

Reservoir Capacitor

Vcap

Fig. 2. (a) A typical power supply design based on harvested energy. (b)
An example of sudden state loss as Vcap falls below 1.8 V on a CRFID
transponder due to brownout events (the energy stored in the reservoir
capacitor exhausted before the transponder completed its operation).

Addressing the research questions above requires over-
coming a number of challenges. We briefly outline the key
challenges below:
• Receiving and writing firmware to non-volatile mem-

ory (NVM) by a token requires considerable amount
of energy [15] when operating on harvested power,
even before we consider a secure update mechanism.
Battery-free CRFID transponders harvest energy from
incident radio waves and the available energy is further
influenced by a range of factors such as propagation
path loss from the radio source to the transponder
and shadowing effects created by intervening objects
along the radio wave propagation path. Hence, de-
vices that operate on harvested power, such as CRFID
transponders, are always constrained by energy and
computation capability as illustrated in Fig. 1. There-
fore, security must be realized under severe energy and
computational resource limitations of a token.

• Frequent state loss—as illustrated in Fig. 2—results
from interruptions to powering and the transient nature

of power availability [12]. This is especially problematic
when updating executable code. Careless handling of
state loss may lead to unrecoverable firmware cor-
ruption or leave the token vulnerable to attacks [16].
Therefore, a firmware update mechanism should be
robust even under state loss.

• Security mechanisms rely on secure storage of keys.
Traditional key storage methods in NVM is readily
vulnerable to various attacks without expensive protec-
tion, for example, protective coatings and active tamper
sensing circuity requiring batteries. Low-end IoT de-
vices are usually lack of a secure NVM to maintain the
key security. Therefore, a secure key storage method
without additional hardware overhead, modifications
and costs is highly desirable.

• A secure update protocol design must overcome the
common difficulty of transferring large chunks of data
to a transponder over narrow bandwidth wireless chan-
nels while still being compliant with existing stan-
dards and interface protocols for communicating with
devices. Standards compliance will not only ensure
successful adoption in practice but also interoperability
with existing technologies.

1.2 Contributions

Our work takes the first step towards secure code dissemi-
nation for resource constrained and intermittently powered
CRFID devices through a systematic approach that com-
bines theory and judicious cryptographic engineering. We
summarize the contributions of our work below and defer
comparison of prior work to Section 6.

• A first secure wireless firmware update protocol: Se-
cuCode is the first secure wireless firmware update or
reprogramming method for CRFID devices to prevent
malicious firmware injection attacks1.

• Lightweight physically obfuscated key derivation
mechanism: We develop a key derivation mechanism
using a physical unclonable function (PUF). A PUF
converts hardware instance specific random variations
such as gate and wire delays of circuitry to a binary
value. In particular, we take advantage of the random
start-up state of intrinsic Static Random Access Mem-
ory (SRAM) on microcontrollers to extract key mate-
rial on the fly without extra hardware overhead and
modifications. The key derived from such an SRAM
PUF is therefore: i) intrinsically tamper-resistant (un-
clonability) compared to a permanently stored key in
non-volatile memory; ii) unique, through the hardware
instance specific nature of SRAM cells’ startup state;
iii) unpredictable, through the physical randomness
leading to random startup states of SRAM cells; and
iv) never stored permanently in NVM as it is derived
on the fly and discarded after usage. Our contribution
here is to address the challenges faced in realizing a

1. The security provided by the wireless firmware update scheme
prevents an attacker from injecting malicious code. We achieve this aim
by establishing the integrity and authenticity of a firmware. To reduce the
burden on a resource limited device, we do not consider the provision
of confidentiality protection.

3

lightweight, reliable and secure2 key generator using an
on-chip SRAM PUF on a resource constrained device.

• Complete end-to-end design3: We demonstrate an end-
to-end design from firmware compilation to a success-
ful firmware update process supported by an execution
model on a CRFID token to manage the transient nature
of power availability. We develop a tool (SecuCode
App) to update firmware and conduct a complete end-
to-end implementation and evaluation on a resource-
constrained and intermittently powered CRFID device.

• Standards compliance: SecuCode is fully standards
compliant: i) we implement SecuCode over the
EPC C1G2v2 air interface protocol—ISO/IEC 18000-
63:2015—commonly used by modern Radio Frequency
Identification technology, including CRFID devices;
and ii) given the specific Texas Instruments (TI) ultra-
low power micro controller employed by CRFID de-
vices, we implement our bootloader based on TI’s
recent framework for wireless firmware updates—
MSP430FRBoot [17]—to ensure a standard tool chain for
compilation and update of new firmware whilst taking
advantage of the features supported by MSP430FRBoot.

• Public code and SRAM PUF dataset release: We pro-
vide the complete end-to-end solution, including the
SecuCode App source code, and research data collected
on 21 devices to support future research in the field.
The released material is available from [18].

Paper Organization: Section 2 presents a brief background
on CRFID system protocols and physical key derivation
from a PUF. Section 3 presents the SecuCode protocol.
Section 4 details the building blocks required to realize Se-
cuCode and their instantiation on a CRFID device. Section 5
performs extensive experiments, including an end-to-end
SecuCode implementation on a CRFID token as well as
analyze its security. Section 6 discusses related work. We
conclude our work in Section 7.

2 BACKGROUND

2.1 An Overview of CRFID System Protocols

Fig. 3 illustrates a networked RFID system where the RFID
reader resides at the edge of the network and connects to
multiple antennas to communicate with long range RFID
devices such as CRFID tags. The communication proto-
col between an RFID transponder operating in the UHF
(Ultra High Frequency) range is governed by the widely
adopted ISO-18000-6C—also known as the EPCglobal Class
1 Generation 2 version 2 (C1G2v2) air interface protocol or
simply EPC Gen2 protocol henceforth. While communica-
tion between a CRFID device and the reader takes place
using the EPC Gen2 protocol, the reader network interface
described by the Low-Level Reader Protocol (LLRP) must
be used by a host machine to communicate with a reader.
Therefore, to realize a practicable solution, a secure code

2. Specifically, we refer to the security of the fuzzy extractor scheme
expressed as the complexity of recovering the derived key by an
attacker. Eventually, the security (authenticity and integrity) of the
firmware update scheme rests on the security of the key derived from
the reverse fuzzy extractor method.

3. Demonstration video: https://github.com/AdelaideAuto-IDLab/
SecuCode/tree/master/demo

System Overview

CRFID deviceReaderHost

LLRP
EPC Gen2

Network

Transponder
(CRFID device)

Reader

EPC Gen2 Communication

AckQuery/QueryRep

Singulation

Transponder
unique ID

EPC...

Authenticate/BlockWrite/SecureComm

Secure wireless firmware update

Access
Req_RN

RN16

Transponder
handle

RN16

Fig. 3. An overview of entities in the system (top) and an EPC Gen2
protocol session (bottom).

dissemination protocol must be implemented over the EPC
Gen2 protocol where communication with readers must
employ LLRP. Hence, a wireless firmware update process
involves sending data from a host machine to a CRFID
tag through a secure channel. This requires communication
between three separate entities: i) the host machine; ii) the
reader; and iii) the CRFID transponder.

The following steps are used to communicate with a CR-
FID device, or in general any EPC Gen2 protocol compliant
transponder:

• Host to Reader. An application on the host machine
constructs LLRP commands to build an ROSpec and
AccessSpec to control the reader and transmits these
specifications to a reader.

• Reader to CRFID. As part of the anti-collision algo-
rithm in the media access control layer, the reader must
first singulate a CRFD device and obtain a handle,
RN16. Singulation is achieved as part of the inven-
tory operation to discover RFID devices in the pow-
ering and reading range of a reader. Inventory is per-
formed through a combination of Query, QueryRep,
and QueryAdjust commands. At the start of the in-
ventory cycle the reader transmits a Query command,
this notifies any devices in range, the beginning of
a new inventory session. Each device then selects a
random slot counter between zero and an upper value,
Q, defined by the Query command. If the selected slot
counter is zero, then the tag backscatters its handle,
RN16, to the reader, otherwise the tag remains silent.
On receiving a QueryRep, the tag decrements its slot
counter and backscatters a response if the resulting
counter value is zero. On receiving a QueryAdjust,
the tag adjusts the Q value and regenerates its slot
counter.

A singulated transponder can subsequently be queried
using a range of Access commands such as BlockWrite
used to write data to a transponder memory. Our approach
is to realize a standard compliant secure firmware update
protocol and therefore we design our secure firmware up-
date protocol over the EPC Gen2 protocol. Consequently, the
firmware update process will occur after singulating the tar-
get transponder and employ Access command specifications
in EPC Gen2 protocol.

https://github.com/AdelaideAuto-IDLab/SecuCode/tree/master/demo
https://github.com/AdelaideAuto-IDLab/SecuCode/tree/master/demo

4

2.2 Physically Obfuscated Key Derivation

In our secure wireless firmware update method, the in-
tegrity and authenticity of the firmware is dependent on the
secure storage of a private key on a CRFID device. A phys-
ical unclonable function (PUF) is a cost-efficient security
primitive for deriving volatile physically obfuscated keys on
demand for resource and power limited devices. Therefore,
we provide a brief overview on PUFs and introduce the
reverse fuzzy extractor to realize secure and lightweight key
derivation from slightly noisy PUF responses (key material).

2.2.1 Physical Unclonable Functions

A PUF reacts with an instance-specific response (output) by
exploiting manufacturing randomness when it is queried
by a challenge (input) [19]. It is widely employed for
cryptographic key generation and lightweight authentica-
tion applications, including low-end resource-constrained
devices [20]–[22]. In this paper, we exploit the on-chip SRAM
to act as a PUF. Notably, the SRAM PUF is an intrinsic
PUF; i.e. the realization of the PUF does not require a
custom design, additional chip area overhead, or hardware
modifications [23], [24]. Typically, one single SRAM cell con-
sists of two cross-coupled inverters functioning as a latch.
The initial power-up state of each SRAM cell is random
but reproducible [25], thus, the power-up pattern of bits
generated from an SRAM memory—referred as an SRAM
PUF—can be viewed as a unique identifier. In such a PUF,
the address of the SRAM cell acts as the challenge, the initial
power-up state—‘1’/‘0’—acts as the response. It is worth
mentioning here that, instead of the power-up state of the
SRAM cells, the data retention voltage (DRV) of SRAM cells
can also be characterized and exploited as PUF responses—
the so-called DRV PUF [26], [27]. In our study, we employ
the power-up state of SRAM to build a PUF due to the
simplicity of the response readout method at power-up.
However, use of SRAM PUF responses as key material is
challenged by inconsistent regeneration of response bits and
potential response bias, which are addressed in Section 4.3.

2.2.2 Reverse Fuzzy Extractor

PUF response regeneration is noisy as it is vulnerable to fluc-
tuations in environmental conditions such as thermal noise
and power supply and temperature variations. Thus, PUF
responses cannot be directly used as a key and requires error
correction to rectify flipped response bits (errors) in relation
to a reference response. In this case, a fuzzy extractor (FE)
is usually deployed to derive a key by using helper data to
correct regenerated responses at a later time.

A fuzzy extractor FE is described by two algorithms—
see detailed descriptions in Section 3.1: i) key generation
or enrollment algorithm FE.Gen; and ii) key reconstruction
algorithm FE.Rec. However, the computational complexity
of computing the helper data by FE.Gen and the key recon-
struction by FE.Rec using the helper data is asymmetric.
Therefore, here we construct a reverse fuzzy extractor [21]
to ensure the lightweight FE.Gen implementation is on the
resource-constrained CRFID device while the computation-
ally expensive FE.Rec is implemented at the resource-rich
server (or prover P in our case).

In general, a reverse fuzzy extractor’s FE.Gen function is
implemented on the device. Then the device applies a ran-
dom challenge c sent by a server to obtain a noisy response
r from an on-device PUF and uses the generator function
FE.Gen to compute helper data h for the noisy response r.
The helper data h is sent to the server. Subsequently, the
server uses the helper data to reconstruct the response r
with a securely stored response r′ that is evaluated during
a secure provisioning phase for the given challenge c [21].

3 SECUCODE: PROTOCOL DESIGN

We ease into the design of the protocol by first describing
the notations used in the protocol followed by a formal
description of the SecuCode protocol.

3.1 Notations
The notations used in the rest of the paper, following that
in [20], is described below:

• A bold lowercase character is used for a vector, for
example, a challenge applied to a PUF is c. A bold
uppercase character is used for a set, for example, a
challenge set C, where c ∈ C.

• True Random Number Generator TRNG outputs a
truly random number when invoked.

• Physical Unclonable Function PUF takes a challenge c
as input and reacts with a corresponding response r as
output, where r← PUF(c).

• Message Authentication Code MAC computes a bit
string s of fixed length to establish the authenticity and
the integrity of a message. Specifically, s ←MAC(m,
sk) computes a MAC from a message m—to prevent
replay attacks, a nonce can be concatenated with the
message—and a key sk.

• Fuzzy Extractor A fuzzy extractor FE is defined by two
functions: key generation algorithm FE.Gen and key
reconstruction algorithm FE.Rec. The FE.Gen takes a
variable z as input and produces key sk and helper data
h. The FE.Rec algorithm recovers the sk assisted with
h by taking the z′ as input if the Hamming distance
HD(z, z′) is sufficiently small, i.e. HD(z, z′)≤ t with t a
fixed parameter—correctness of reconstruction guarantee.
If HD(z, z′)≤ t for input z and min-entropy [28] of
z ≥ |h|, the fuzzy extractor provides key sk that is
statistically close to a uniformly distributed random
variable in {0, 1}|sk| although helper data h is exposed
to an adversary—security guarantee. Fuzzy extractors
are generally built with an error-correction method [29].

3.2 Adversary Model
In this paper, our focus is on the communication between
the Reader and the CRFID transponder or Token T . We
assume that the communication between a Host and a
Reader is secure using standard cryptographic mechanisms
for securing communication between two parties over a
network [5]; hence a Host computer and a Reader are
considered as a single entity, the Prover, denoted as P .

There is no previous CRFID firmware update protocol
that considers security. Therefore, no existing adversary

5

model has been reasoned. In this initial secure wireless
firmware update investigation, we follow a relevant model
and assumptions in PUF-based authentication protocols de-
signed for resource-constrained platforms [20], [21].

Notably, a wireless firmware update of a CRFID device
is only possible after: i) the commissioning of the device
whereby an immutable program called the bootloader is
installed on the device; and ii) the prover P has enrolled—
extraction and secure storage of—SRAM PUF responses in a
secure environment using a one-time access wired interface.
We assume that the wired interface is disabled after the
installation of the bootloader and enrollment of the PUF
responses. In other words, the adversary A cannot directly
access the SRAM PUF responses, only the immutable boot-
loader maintains this access at power-up and for a very
short duration of time. After the commissioning of the
device, both a trusted party and the adversary A must use
the wireless interface for installing new firmware on a token.

Subsequent deployment of a token T will place it in an
adversarial environment where only the prover P remains
trusted. We assume that the attacker A can eavesdrop on
the communication channel, isolate the CRFID transponder
from the system and carry out a man-in-the-middle attack
and forward tampered information from P to T and vice
versa. Further, following the assumptions in [20], within
the adversarial environment, the adversary A may obtain
any data stored in the NVM of the devices. However, as
in [20], the adversary A cannot mount implementation
attacks against the CRFID, nor gain internal variables stored
in the registers, for example, using invasive attacks and side-
channel analysis. Similar to other adversarial models, we
do not consider Denial of Service (DoS) attacks because, in
practice, it is not possible to defend against an attacker that,
for example, disrupts or jams the wireless communication
medium [30], or attempts to heat the intrinsic SRAM cells to
prevent a firmware update as a result of the proposed con-
ditional firmware update method (detailed in Section 4.3.1).

3.3 SecuCode Protocol
SecuCode protocol described in Fig. 4 relies on the simplic-
ity of transmitting the firmware in plaintext and assumes
the adversary A can gain full knowledge of the firmware—
this is consistent with our adversary model which assumes
that an adversary can read the contents of the NVM of
a CRFID device. Our focus is to prevent malicious code
injection attacks. SecuCode achieves this goal by facilitating
the authentication of the prover by the token and ensuring
the integrity of the firmware by the token before accepting
the firmware. Therefore, only firmware issued by the trusted
prover will be accepted.

The SecuCode protocol is designed to be implemented
over the EPC Gen2 protocol. We employ the recently de-
fined extended Access command features for supporting fu-
ture security services on RFID transponders. Consequently,
firmware update initializations employs TagPrivilege
and Authenticate while downstream data transmissions
in SecuCode are carried out by employing the EPC Gen2
protocol specification of BlockWrite and SecureComm
commands. The SecureComm command specification al-
lows the encapsulation of other EPC Gen2 protocol com-
mands, such as BlockWrite but the payload is encrypted.

Hence, we employ the SecureComm command to transport
the message authentication code to the token. We employ
BlockWrite command to write firmware to a memory
space, or download area, allocated and managed by the
bootloader on a CRFID transponder. Although the specifica-
tion of TagPrivilege, Authenticate and SecureComm
commands are defined in the EPC Gen2 protocol, it is
important to mention here that these commands are yet to be
supported on CRFID transponders and this also constitutes
one of the tasks in this study. The key phases in our
proposed SecuCode protocol are summarized below:
• Prover initialization phase in a secure environment:

This phase is carried out in a secure environment. A
publicly known unique ID string is stored in a token’s
NVM. The prover P enrolls in a database DB the ID
string of the target token T as well as the challenge-
response pairs (CRP) from the PUF (also known as
the enrollment phase [19]). The bootloader, immutable
program stored in a write protected memory space,
is installed on the token T by the prover P and,
subsequently, the physical interface to T is disabled.
The bootloader is responsible for the SecuCode protocol
implementation on the token.

• Firmware update phase in a potential adversarial en-
vironment: For each code dissemination session, there
will be a compiled firmware at the prover P to be
transmitted along with a setup profile which describes
the size of the firmware, starting memory address and
the MAC method for the token T . In particular, the
following occurs: i) lightweight physically obfuscated
key derivation on the token and the subsequent trans-
mission of the token generated random challenge seed
c and helper data h to the prover; ii) firmware up-
date which includes the wireless transfer of firmware
to the token, the establishment of the veracity of the
firmware on the token to accept/abort the firmware
update issued by the prover and update of firmware
on the token. We elaborate on these stages below.

3.3.1 Lightweight Physically Obfuscated Key Derivation
After the token T harvests adequate power from the prover
P , a nonce is generated for use in the firmware update
session, meanwhile a random number ci is generated as the
seed challenge; ci can be viewed as a challenge seed that
determines the starting index into a byte level address in
a block of highly reliable and unbiased SRAM PUF cells;
for a detailed discussion please refer to Section 4.3. These
responses are subsequently readout; ri ←PUF(ci).

We propose a conditional firmware update method
based on evaluating the on-chip temperature prior to the
key derivation phase since response reliability of SRAM
PUFs are more sensitive to changes in temperature than
supply voltage. This is to significantly reduce the compu-
tational burden on the PUF key generation overhead while
meeting error correction and security bounds—details in
Section 4.3. Immediately before key derivation, the TEMP()
function sets an over-temperature flag (TOF) if the in-built
chip thermometer reports a temperature outside of a legal
range (0◦C to 40◦C is the chosen legal range in this
work). Setting OTF will result in aborting key derivation
and triggering a re-booting of the token.

6

if (setup is accepted)
enter Firmwar

and continue

Power UP

() ←Rand()
 ←PUF()

TOF←TEMP()
if (TOF is set) abort

otherwise do

(,)← FE.Gen()

ID

Query

RN16

ACK(RN16)

Req_RN(RN16)

handle
Authenticate
(handle, setup)

ACK(, ,)
←DB()

←FE.Rep()
 ←MAC (||) BlockWrite

(handle,)

ACK

BlockWrite
(handle,)

ACK

· · ·

SecureComm
(handle,confirm,)

ACK

 ← MAC
if ≠ rejectand abort

apply firmware update
.

store
 into code memory at

0

Reader
DB=(,), ...())
setup, =()

Transponder

 

update mode

store
 into code memory at

otherwise accept and

id' idc r '(,c r '
firmware firmware , firmware ,..., firmware

nonce c,
r

1 1 m m

0 1 n

i
i ci

riski hi

id'if ≠ reject and abortid

hi nonce ci

r 'i ci
ski r 'i hi,

s' firmware nonceski
, firmware0

firmware0

firmwaren,
firmwaren

s'

(||) firmware nonceskis
s' s

seq0

seq0

seqn

seqn

Fig. 4. SecuCode protocol.

A token T operating under a legal temperature range
will execute the private key ski derivation and helper data
bfhi generation as (ski,hi)←FE.Gen(ri). The private key
ski is used in the following firmware update process and
only retained in the SRAM on the token T for the duration
of the protocol session and discarded: i) at the completion
of a session; or ii) during a power loss event.

3.3.2 Firmware Update
The ID of the token T is checked by the prover P to select
the target token and once the target is confirmed to be
visible to the prover and is singulated, the proverP can em-
ploy Access commands Authenticate, BlockWrite and
SecureComm—see Figure 3 for an illustration of the EPC
Gen2 protocol behavior—to execute the firmware update.
We describe the update phase below.

The prover issues an Authenticate command to de-
liver setup parameters. The token responds with thenonce,
ci and hi back to the prover. The prover P reconstructs the
private key ski through ski ← FE.Rec(r′i, hi); here, r′i is
the enrolled response corresponding to ci. Now the prover
P and the token T have a shared private key.

The firmware cannot generally be sent to the token
T in a single transaction. The EPC Gen2 protocol im-
plies a limitation on the length of a payload string to
255 words; this can be inadequate to encapsulate a prac-
tical CRFID firmware [12]. Therefore, we partition the

firmware input into n chunks {firmware0, firmware1,
firmware2, ..., firmwaren} and transmit sequentially in-
dexed chunks {seq0, seq1, ..., seqn} to the token T using
the BlockWrite command. Here, seqi indicates the rela-
tive offset of firmware chunk firmwarei.

Before the firmware update is applied, the token T
must validate the authenticity of the prover P and the
integrity of the firmware. First, a message authentication
code s′ is computed by the prover P using a MAC function
as s′ ←MAC(firmware‖nonce, ski), with ski the recon-
structed PUF key. Second, the prover sends s′ to the token.
The token computes s = MAC(firmware‖nonce, ski)
locally to compare s and s′. If s and s′ match, the token
T accepts and applies the firmware update. Success of a
firmware update is signaled to the prover P by the token
backscattering an ACK. This process ensures:

1) The integrity of the received firmware at the token T .
Any corruption or mutation will lead to the failure of
the integrity check on the token owing to the MAC and
subsequent discarding of the firmware.

2) The authority of the prover P . Only the trusted prover
can obtain same secret key ski to issue a valid MAC s′.

4 IMPLEMENTATION

In this section:
1) We generalize the SecuCode control-flow on a token
T and provide an overview of the required functional
blocks.

2) We describe the challenges in instantiating the func-
tional blocks and propose approaches to address them.

3) We complete the end-to-end implementation based on
the instantiated functional blocks

We have selected the open-hardware and software im-
plementation of WISP5.1-LRG [14] CRFID transponder as
our token T for a concrete implementation and experi-
ments. This intermittently powered CRFID transponder is
built using the ultra-low power microcontroller unit (MCU)
MSP430FR5969 from Texas Instruments. Therefore, when
required, we provide specific implementation examples
on a CRFID transponder based on the WISP5.1-LRG and
MSP430FR5969 MCU in the discussions that follow.

4.1 Protocol Control-Flow on a Transponder
Following the SecuCode protocol in Section 3.3, the gener-
alized control flow on a transponder is illustrated in Fig. 5
and detailed below.

1 When a token T is adequately powered, it initializes
the MCU hardware, and determines whether to run in
firmware update mode or application execution mode. If
TOF is not set (the token is operating in a legal temperature
range), the token enters the key derivation phase and 2 a
challenge ci and a nonce are generated using the TRNG.
3 The token T reads the response ri corresponding to ci.
4 The token T derives a key ski and computes helper data

hi through (ski, hi)←FE.Gen(ri). These steps complete the
key derivation phase and 5 the token T awaits for further
commands from the prover P .

6 The token T responds to an Authenticate com-
mand consisting of the firmware update setup parameters

7

initialization
Transponder

Message Authentication

(a)

(b)

firmware MAC comparator

Generate
challenge, nonce

Initialization

 Execute
user code

Wait for
command

Transmit
data

Authenticate

Wait for new
packet

Store
firmware

Compute MAC
and Compare

Discard
update

Accept and
apply update

MAC value
matched

MAC value
mismatched

 Send challenge,
helper data, nonce

Application
execution
mode

BlockWrite

Firmware

update mode

1

Extract PUF
response

 Generate key,
helper data

2

3

4

513

6

78

910

Physically
Obfuscated

Key Derivation

Power­on reset
and power failure

SecureComm

Wait for
command

Set
FirmwareUpdate

Flag

14

11

TagPrivilege

Trigger
power­on reset

FirmwareUpdate
set or invalid

YesNo

Code

'

Trigger
power­on reset

firmware

Physically
Obfuscated

Key Derivation

Firmware Update

Send reply

12

TOF is set

No

Yes

Trigger
power­on reset

Fig. 5. (a) Control flow and (b) Protocol functional blocks implemented
to instantiate SecuCode protocol on a CRFID transponder.

with hi, ci, andnonce to enable the proverP to reconstruct
the PUF key ski. The Authenticate command also directs
the token T to enter the Firmware Update mode. 7 Whilst
in this state, the prover P can transmit new firmware
in chunks. 8 Given a firmware chunk, firmwarei, it
is transmitted using BlockWrite commands and stored
in the download area in a receive and store process. At
the completion of the wireless firmware transmission, the
MAC value s′ computed by the prover is encapsulated in a
SecureComm command and sent to the token T .

9 The MAC value s computed by the token using the
received firmware and nonce with the secret key ski is
compared; if the integrity of the firmware and authenticity
of the prover is established, 11 the firmware is accepted

and 12 the token sends an ACK to the prover. Otherwise,

10 the update is discarded. Regardless of the acceptance
or rejection decision, the token exits the Firmware Update
mode by triggering a power-on-reset.

13 If a firmware update is not required, the token

T executes the user code, 14 if the token receives a
TagPrivilege command, indicating entry into firmware
update mode, the token restarts in firmware update mode
by setting a firmware update flag—FirmwareUpdate—and
triggering a power-on-reset. Whenever the token T is
rebooted by a TagPrivilege command to enter the
Firmware Update mode, nonce and derived key ski is
refreshed. The ski changes because: i) the challenge seed
is refreshed; and ii) a varying response is produced even for
the same challenge as a consequence of the naturally noisy

nature of the response bits.
A power failure such as a brownout event, as shown in

Fig. 2, during the execution of the protocol will result in a
reset and rebooting of the token T . In such an event, the im-
mutable bootloader’s functionality is preserved. Therefore,
a prover P can attempt another secure firmware update. In
the following sections, we describe the instantiation of each
functional block shown in Fig. 5(b).

4.2 Random Number Generator

Our implementation of the SecuCode protocol shown in
Fig. 4 employs an 8-bit challenge seed and a 128-bit nonce.
As with other low-end computing platforms, acquiring true
random numbers on a CRFID device is challenging given
the lack of resources to implement a cryptographically se-
cure random number generator (RNG). Ideally, the RNG
should be a true random number generator (TRNG) and its
implementation should require no modifications to existing
hardware. We evaluate and summarize the performance of
three RNGs in Table 4 in terms of random bits per request,
time overhead, power consumption and required hardware
modules in Appendix A.

We can see that the SRAM TRNG, implementation based
on the study in [20], outperforms the rest with regards to
time and energy overhead. Most importantly, it requires
no extra hardware. Therefore, an SRAM TRNG is chosen for
implementing the SecuCode protocol.

4.3 Lightweight Physically Obfuscated Key Derivation

Deriving and sharing a private key between the prover
P and the token T should also be: i) lightweight; and ii)
secure. Realizing both requirements on a resource limited
token is challenging. Thus we: i) employ an SRAM PUF
to derive a key instead of a stored key in non-volatile
memory—prone to extraction through physical means and
requiring expensive secure NVM—with the ability to refresh
the key between protocol sessions; and ii) employ a reverse
fuzzy extractor to realize a lightweight FE.Gen on the
token to compute helper data necessary for the server to
independently reconstruct the shared key with very high
probability of success. In particular, we propose the follow-
ing mechanisms to derive a lightweight and secure PUF key:

• Enhancing reliability of key material: Time complex-
ity of the generator function FE.Gen and security—
information leakage—is related to the amount of helper
data needed to correct noisy SRAM PUF response bits.
Therefore, we winnow SRAM PUF responses with high
bit specific reliability using response pre-selection with an
on-chip selection meta-data storage structure together with
our conditional firmware update method to significantly
reduce the demand on helper data (see Section 4.3.1).

• Removing information leakage through response
bias: PUF response bias, an imbalance between the
number of zeros and ones, has shown to leak additional
information [28], [29]. Therefore, to guarantee the secu-
rity bounds of the reverse fuzzy extractor, we propose
a Hamming weight based response de-biasing method
to eliminate response bias (see Section 4.3.2).

8

4.3.1 Enhancing Reliability
We consider a syndrome based construction as in [21]
and use a BCH(n, k, t) linear block code encoder to build
FE.Gen. The FE.Gen function is responsible for generating
the helper data h used by the prover to reconstruct the PUF
response extracted by the token using a previously enrolled
response that is securely stored at the prover. Here, t de-
notes the number of errors a BCH(n, k, t) code is capable
of correcting, n denotes the number of bits extracted from a
PUF or the length of the response ri where the length of the
helper data is |h| = (n− k)— which also defines the well
known upper bound on information leakage.

Although we can select a BCH(n, k, t) code with ap-
propriately large parameter values to achieve the desired
attack complexity, error correcting capability to achieve an
industry standard key failure rate of less than 10−6 and
number of key bits k, the computational time complexity
of a BCH encoder, O(n2), forces the use of parallel blocks
of BCH(n, k, t) code with smaller values of n. For |ri|/n
parallel blocks of BCH(n, k, t) code using a syndrome con-
struction, the complexity of finding ri is 2k|ri|/n [29].

The key failure rate when employing a BCH(n, k, t)
code is expressed as:

P1 = 1− binocdf(t, n,BER) (1)

where binocdf is the binomial cumulative distribution
function, BER (bit error rate) is the response unreliability
expressed as [31]:

BER =
1

m

m∑
t=1

HD(r, r′t)

|r|
(2)

where m is the number of response evaluations under
a given operating corner (a combination of voltage and
temperature), r is the reference response (typically the nom-
inal operating voltage and temperature), and r′t is the tth

regenerated response under different operating corner. As
we use multiple blocks, the failure rate when |ri|/n blocks
are employed is expressed as:

PFail = 1− (1− P1)|ri|/n (3)

Therefore, we can see that it is imperative to reduce
BER to significantly decrease the key failure rate PFail and
reduce the complexity of the BCH encoder required. We
devise the following two methods to significantly reduce
the complexity of the BCH encoder required on the resource
constrained token: i) response pre-selection together with
on-chip selection meta-data storage structure; and ii) a con-
ditional firmware update strategy. As shown by detailed
experimental evaluations in Section 5.1, our approaches
significantly reduce the expected BER to be < 1%.

Pre-selection: SRAM PUF pre-selection was first noted by
Hofer et al. in [32]. The idea is to locate SRAM cells which
tend to generate stable PUF responses. During the enroll-
ment phase, unstable responses are identified and discarded
for key generation [33].

We employ an approach similar to the multiple-readout
method in [33]. Given that a microcontroller’s SRAM mem-
ory is byte addressable, we employ a byte-level response
selection method illustrated in Fig. 6. In particular, we

first select response bytes that are reliably reproduced un-
der repeated measurements generated under two corner
temperatures—selected as 40°C and 0°C in our implemen-
tation. Subsequently, under nominal temperature (25°C),
the former response bytes are further subjected to multiple
readouts and majority voting (e.g., if 8 out of 10 readouts of
a bit yields logic ‘1’, then this bit is enrolled as a logic ‘1’) is
applied enrol values for the response bytes.

Conditional firmware update: It is recognized that the BER
of SRAM PUF is sensitive to temperature but insensitive
to supply voltage variations [34]. Therefore, in addition to
reliable response pre-selection, we propose performing a
conditional firmware update based on the core operating
temperature of the token. A firmware update is executed
only when the core temperature of the chip is within a legal
temperature range; considering most practical applications,
we selected 0°C to 40°C range for SecuCode. Without extra
hardware overhead, we take advantage of the available tem-
perature sensor within the MSP430FR5969 microcontroller
used by the CRFID transponder to sample the tempera-
ture before the PUF responses are readout. A temperature
breaching the legal range terminates further execution and
triggers a power-on-reset.

4.3.2 De-biasing

Most studies assume that PUF responses are uniformly dis-
tributed and hence an n-bit response has the fully entropy of
n bits. Using a BCH(n, k, t) code, (n− k)-bit helper data h
will be publicly known. Under the disclosure of helper data
h, there is no less than k-bit entropy remaining. However,
as highlighted recently [28], [35], response bias incurs extra
entropy loss. Thus, the k-bit min entropy bound guaranteed
by a BCH(n, k, t) encoder might be decreased. To prevent
extra entropy leakage, response de-biasing methods can
be employed [35], [36]. In general, de-biasing converts a
response rx into an unbiased enrolled response ry, where
response rx might have a bias and |rx| ≥ |ry|. De-
biasing needs to consider four aspects: i) de-biasing should
not deteriorate or increase response error rate; ii) efficiency; iii)
information leakage; and iv) reusability [28], [35]; to this end,
we propose the following Hamming weight (HW) based de-
biasing method.

HW-based De-biasing: In our application scenario, there
are three design specific requirements: i) minimize the de-
biasing computational overhead on the token T ; ii) avoid
any additional data transmission overhead between the
prover P and the token T ; and iii) reduce additional de-
biasing information stored on the token T . We discuss how
we achieve the first two goals in this section and explain
how we achieve the third goal in Section 4.3.3.

To achieve the first two goals, we offload the compu-
tational burden to the prover P by performing a one-time
de-biasing during the enrollment phase. In the Pre-selection
stage described in Section 4.3.1, stable SRAM PUF bytes are
identified. We further winnow HW balanced bytes from
those stable bytes in our one-time de-biasing process. In
general, we determine the address of bytes which are not
only reliable but also HW balanced; HW close to 0.5. This
approach leads to PUF responses—a linear combination of

9

M
aj

or
ity

De-biasing

(a) (c)

B
it

5 10 15

0

10

20

30

40

50

60

S
el

ec
tio

n

5 10 15

0

10

20

30

40

50

60

S
el

ec
te

d

5 10 15

0

10

20

30

40

50

60

5 10 15

0

10

20

30

40

50

60

E
nr

ol
le

d

5 10 15

0

10

20

30

40

50

60

D
eb

ia
si

ng

M
em

or
y

ad
dr

es
s

(b)

Pre-selection

Selection

m
as

k

by
te

s

m
as

k

C
R

P
s

temperatures
at two corner

5 10 15

0

10

20

30

40

50

60

vo
tin

g

Pre-enrollment

CRPs

st
or

ed
 in

 N
V

M

pr
ob

ab
lit

y

at norminal

Majority

Fig. 6. (a) Procedure for pre-selection, enrollment and de-biasing to enhance the response reliability and generate unbiased PUF response. (b)
Memory maps detailing each step—only the first 64 words are shown here. (c) CRP-block map, a compact data structure to store the mask
configuration on the CRFID transponder for fast response readout.

de-biased stable bytes—to be HW balanced. The HW-based
process applied post pre-selection is shown in Figure 6.

Remark: Our HW-based scheme does not deteriorate reli-
ability of PUF responses, eschews leakage from potential
bias and enables re-usability. As a trade-off, efficiency is
decreased as the |rx||ry| is low as demonstrated by our exper-
imental results in Appendix B. However, efficiency is not
a concern in our implementation of SecuCode as there are
always sufficient SRAM responses while we only need to
use a small fraction of them. In [35], due to the de-biasing
method—i.e. classic von Neumann de-biasing (CVN)—the
token T generates different de-biasing data for each re-
evaluation of the response rx. Thus, multiple observation
of the de-biasing data given the regeneration of rx leads to
extra entropy loss. Therefore, the key generator based on
such a de-biasing method is not reusable unless further op-
timization, e.g., pair-output VN de-biasing with erasures (ε-
2O-VN), is implemented to prevent extra entropy loss from
the multiple production of the de-biasing data. In contrast,
in our HW-based de-biasing method, the de-biasing data is
generated only once during the enrollment phase, we do not
generate multiple de-biasing data and thus incurs no further
entropy leakage from the de-biasing data. This implies that
our HW-based de-biasing is reusable.

4.3.3 On-chip meta-data storage structure
It is inefficient to store the absolute addresses of winnowed
bytes post pre-selection and de-biasing process, described in
Figure 6, on the CRFID device and to subsequently perform
an exhaustive search to find them on demand. We propose
the data storage structure named CRP-block map to refer to
those reliable and HW balanced SRAM PUF responses.

The CRP-block map data structure is illustrated in Fig-
ure 6(c). The CRP-block data structure divides the SRAM
memory into multiple blocks. Each block has an integer
index such as Block 0, Block 1, and Block 2. The size
of each block may vary, however, each block is designed
to contain an equal number of reliable and HW balanced
bytes required for the physically obfuscated key derivation
mechanism. To map a CRP-block into a physical memory
address, each block has an absolute starting address and

several offsets pointing to the winnowed bytes. The starting
address of each block and the offsets are stored in a look up
table (LUT) in a token’s NVM indexable via block number.
To produce a PUF key, the TRNG generates a seed challenge
that is a block number. Consequently, a look up of a block
number will resolve the targeted block’s starting memory
address and the offsets point to the response bytes. Hence
a random challenge ci can be used to select a CRP-block
and, subsequently, the power-up states of the bytes in the
selected CRP-block are readout and concatenated as the
response ri that is both highly reliable and unbiased.

4.4 Message Authentication Code

SecuCode requires one cryptographic primitives: a keyed
hash function to build a message authentication code (MAC)
to realize the MAC() function. The two dominant factors
determining their selection are:

1) The CPU clock cycles required for execution. For exam-
ple, we can see from Fig. 1 that at a 50 cm distance,
we may not expect more than 500,000 to 600,000 clock
cycles before harvested power is exhausted.

2) Memory (RAM) budget. Since available on-chip mem-
ory is shared by the RFID communication stack, sensor
data, user code, and SecuCode, the state space available
for a cipher execution is limited.

Therefore, power and memory efficient primitives are
highly desirable. The construction of a secure, computation
and power efficient message authentication code MAC() on
the token is extremely challenging as the entropy compres-
sion task is resource intensive and attacks, such as birthday
attacks, demand that we use a MAC function with a large
enough output size.

Given the lack of MAC benchmark data for MSP430
microcontroller series, we selected and implemented a set
of existing secure keyed hash functions expected to yield
a computationally efficient software implementation. We
implemented and evaluated: BLAKE2s-256, BLAKE2s-128,
and HWAES-GMAC and HWAES-CMAC for comparison;
here HWAES- functions benefited from the AES hardware
accelerator module on the MSP430 MCU. The results of our
study are detailed in Appendix C. Based on these results,

10

we selected a 128 bit MAC using HWAES-CMAC, Cipher-
based Message Authentication Code 4 built using AES since
it yields the lowest clock cycles per byte.

4.5 Intermittent Execution Model
The nature of intermittently powered devices that rely on
harvested power is typically described by a power harvest-
ing and charging phase where energy is generally stored in
a reservoir capacitor and then released for powering compu-
tations. We refer to this cycle as the IPC—Intermittent Power
Cycle. A brownout event can occur when the available
energy in an IPC subceeds the energy needs of the computa-
tions, and the power harvester is unable to replenish energy
as rapidly as it is consumed. A brownout results in state
loss and termination of the execution thread as highlighted
in Fig 2. Hence, as illustrated in Fig. 4.5, we cannot always
expect to continue a computation task to completion.

Studies such as Alpaca [37], Mementos [38], CCCP [39]
and Clank [40] consider the problem of continuing the
thread of execution over periods of power loss. In general,
these studies employ checkpoint based methods with vari-
ous degrees of programmer support. The basic concept is to
save state—checkpoint—and to restore state to a previously
valid checkpoint to allow the resumption from a previous
state of execution after a power loss event. With the ex-
ception of CCCP, state is saved in a device’s non-volatile
memory; CCCP proposes the saving of state in an untrusted
server. However, in SecuCode, process state such as the PUF
key is intentionally volatile to eliminate the need to protect
key storage. If power-loss or brownout does occur, all un-
finished process state based on old key material should be
discarded. Therefore, approaches to save and restore state
from non-volatile sources are not desirable. Further, writing
to NVM is energy intensive and we would like to avoid
the additional overhead of checkpointing. In contrast, Dew-
drop [41] considers execution under frequent power loss by
attempting to prevent a brownout event by solving a task
scheduling problem; execute tasks only when they are likely
to succeed by monitoring the available harvested power.
Dewdrop provides an elegant dynamic scheduling method,
however, requires the overhead of sampling the harvester
voltage within the application code and task scheduling.

In order to deal to with frequent intermittent power
loss, we consider the following intermittent execution model
(IEM) for computation intensive building blocks of the
protocol: MAC() and FE.Gen() functions. Our IEM is built
on the basic concept of a task in Alpaca [37]—a code block
proportioned to execute to completion under a minimum
number of available clock cycles or energy— and the con-
cept in Dewdrop [41] attempting to prevent brownouts.
We first identify the computationally intensive functions
in the firmware, and construct an execution plan based
on factoring the function to subtasks. These subtasks are
then interleaved with low power sleep states in the code.
We selected the lowest power consuming microcontroller
sleep state from the target microcontroller such that the
memory state is maintained during sleep. The duration of

4. We used the implementation detailed in NIST Special Publication
800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC
Mode for Authentication

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140

R
es

e
rv

o
ir

 C
ap

ac
it

o
r

vo
lt

ag
e

(V
)

Time (ms)

V
ol

ta
ge

V
ol

ta
ge

Von

Von

Voff

Voff

Start-up

Start-up

Brownout

Enter low power
sleep mode

Time

Vcap

IPC

(a) (b)

With IEM

Without IEM
Brownout occurs as microcontroller
power consumption exceeds power
harvester supply.

Fig. 7. (a) Illustration of a brownout event and the proposed intermittent
execution model (IEM) to prevent brownouts during computationally
intensive operations (notations are given in Fig. 2). (b) Comparison of
a PUF key derivation on a CRFID transponder at 50 cm from an RFID
reader antenna with and without our proposed IEM.

the imposed sleep state—termed the intermittent operating
setting—is realized using an on-chip timer interrupt to wake
up the transponder at the conclusion of a given intermittent
operating setting; upon wake-up the transponder continues
the execution of the following subtask.

Immediate benefit of the IEM is the possible prevention
of an intentional brownout event by allowing the replenish-
ment of the reservoir capacitor energy by the power harvest-
ing and charging circuity as illustrated by the graph at the
bottom of Fig. 4.5(a). Fig. 4.5(b), shows an experimental vali-
dation of of our IEM; here, we plot two captures of reservoir
capacitor voltage with and without the IEM. The voltage
capture traces show that the IEM restores power during low-
power sleep states interleaved between subtasks—shown
by the recovery of the voltage developed across the reser-
voir capacitor. In contrast, as shown by a falling reservoir
capacitor voltage, the CRFID device without IEM fails due
to brownout. Here, the CRFID device is unable to harvest
adequate power to replenished the reservoir capacitor fast
enough to provide the minimum operating voltage (1.8 V)
necessary for the MCU.

4.6 End-to-end Implementation
The complete SecuCode based firmware update process is
illustrated in Fig. 8. We describe below the memory ar-
rangement, the development of the bootloader together with
the complete tool chain to realize a standards compliant
secure firmware update process.

Memory Arrangement: As shown in Fig. 8 (c), the 2 KB
SRAM embedded in the MSP430FR5969 MCU is divided
into two sections. The lower address space is used for
the SRAM TRNG and occupies 64 words of SRAM. The
address space above the SRAM TRNG forms the SRAM
PUF. The SRAM PUF and SRAM TRNG do not span the
full space of the SRAM memory. This is necessary to allocate
space for initialization routines and PUF state variables. One
hundred and sixty bytes of higher addresses are allocated
as stack space, and 480 bytes from the lower address space
is designated for static variables such as ci, nonce and hi.
The SRAM PUF and SRAM TRNG are only active during the
Physically Obfuscated Key Derivation stage in Fig. 5; once
the response ri is readout and ski and hi are generated, the
SRAM memory is released for regular operations.

11

User Memory
(Download Area)

0x013FFF

MSPBoot,
SecureCode,

RFID MAC layer

0x010000

App Code

0x004400

0x00FF80

6
3
K
B

C
od

e
m

em
or

y

Device
Vector
Table

SRAM PUF

SRAM TRNG Static
variables

0x0023FF

0x001C00

2
K
B

S
R
A
M

App
Vector
Table

Secure wireless update
(insecure environment)

SecuCode
protocol over

EPC Gen2

New App Code

Provisioned
device

Reader
Network

Provisioning process
(secure environment)

CRFID
device

Initial
App

(Optional)

- MPU setup
- App manager
- ISR redirection

Bootloader

SecuCode

RFID MAC layer

Comm Interface Programmer

MSPBoot

Stack

(a) (b) (c)

Fig. 8. (a) Overview of bootloader provisioning; (b) Secure wireless firmware update; and (c) Memory arrangement for the 2 KB SRAM and 64 KB
FRAM.

The CRFID device we employed has an embedded 63 KB
Ferroelectric Random Access Memory (FRAM) as NVM.
FRAM is partitioned into 63 KB code memory and 1 KB for
Device Descriptor Info [42]. In this work, we only employ
the 63 KB code memory space. The FRAM memory layout
of the specific CRFID device we used is shown in Fig.
8(c). FRAM is divided into three sections: i) the bootloader;
ii) Application code, and iii) User Memory (Download
Area). The User Memory segment can be manipulated using
BlockWrite commands, however only the bootloader can
write to the Application Code memory space.

bootloader: The SecuCode implementation for the CRFID
device requires a bootloader to be provisioned onto the
device. This is because the CRFID device has no supervi-
sory control of an operating system and is designed in the
manner of a low-end and low-cost device.

Our bootloader is based on TI’s bootloader framework,
MSPBoot [17]. The Comm interface is designed to operate on
trusted data and therefore should not directly communicate
with the RFID Media Access Control layer. Instead, the re-
ceived firmware is buffered in a Download Area in memory.
After the SecuCode protocol verifies the authenticity and the
integrity of the firmware, it is passed to the MSPBoot via
the Comm interface. In our implementation, we adopted the
WISP5 firmware5 for the RFID Media Access Control layer.

In order to realize an immutable bootloader, we consid-
ered the full memory protect mode (FMPM) and partial
memory protect mode (PMPM) offered by the microcon-
troller together with setting an e-Fuse [43] to disable the
potential for wired re-programming using the on-chip JTAG
interface after deployment in the field. In FMPM, the MPU
(memory protection unit) is configured to prevent writing
to the bootloader. Most importantly, the MPU is locked
from being accessed. These actions are performed during
the initialization process, before execution of user code, and
therefore it is infeasible for the bootloader to be modified
in FMPM mode. In PMPM, writing to the bootloader is still
prevented, however, the MPU is not locked. Such an MPU
configuration provides basic protection for the bootloader
against programming errors, while still allowing the boot-
loader to be remotely updated. In this context, the firmware
temporarily disables memory protection, overrides parts of

5. https://github.com/wisp

the original code, then re-enables memory protection. We
employ FMPM mode to realize an immutable bootloader.

Secure Firmware Update Process: The provisioning and the
secure wireless update process is illustrated in Fig. 8. A
CRFID device is first provisioned whereby the immutable
program called the bootloader is installed on the device in
a secure environment. We assume the wired interface is dis-
abled after the installation of the bootloader and therefore
wireless code dissemination is the only practical mechanism
by which to alter the firmware. The provisioned CRFID
device is deployed in the field and can be subsequently
updated with new firmware following the process below.
• Compile the new firmware using a standard MSP430

compiler and pass the output, together with a linker
map that specifies the memory allocation scheme
shown in Figure 8, to an MSP430 linker to generate a
binary file in ELF format6.

• Use our SecuCode App, available from [18], to load and
parse the resulting ELF file to wrap the LOAD segments
into MSPBoot commands specified in the MSPBoot
framework [17]. The resulting binary is broken up into
128-bit blocks for transmission to a CRFID transponder.

• The SecuCode App subsequently uses LLRP com-
mands to construct AccessSpecs and ROSpecs—
refer to Section 2.1 for LLRP. These encodes EPC Gen2
protocol commands employed by SecuCode such as
Authenticate, BlockWrite and SecuComm com-
mands7 to setup a networked RFID reader to execute
the SecuCode protocol to wirelessly and securely up-
date the firmware of the target device.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we describe the extensive set of experi-
ments conducted to evaluate SecuCode. In our work, we
employed 20 MSP430FR5969 MCU chips and a WIPS5.1LRG
CRFID device built with the same microcontroller. The
MSP430FR5969 microcontrollers consists of 2 KB (16,384

6. Alternatively, Texas Instrument’s Code Composer Studio inte-
grated development environment which bundles all the necessary tools
can also be used to simplify the task

7. Given that Impinj R420 RFID readers do not yet support the recent
EPC Gen2 protocol changes, we implement the unsupported commands
using BlockWrite commands. The implementation of the employed
commands are detailed in Appendix.D

https://github.com/wisp

12

bits) of internal SRAM memory and 64 KB of internal
FRAM memory. In our implementation we employed an 8-
bit challenge ci and a 128-bit nonce. We summarize our
experiments below:

1) We evaluate and validate the response pre-selection
and HW-based de-biasing methods, and subsequently,
determine the BER of the CRP block maps to determine
the parameters n, k, t for the BCH encoder used to
realize the FE.Gen function on the CRFID transponder
(Section 5.1).

2) Given that: i) security protocol implementation costs
are rarely examined in the literature; and ii) the resource
constrained nature of the CRFID devices demand secu-
rity, performance as well as practicability; we evaluate
the memory requirements (code size in FRAM and state
space in SRAM) and computing clock cycles for the
security functional blocks (those in addition to MSP-
Boot and RFID MAC Layer) necessary for SecuCode
(Section 5.1 and 5.2).

3) We evaluate the impact of the most energy and compu-
tationally demanding SecuCode functional blocks—key
derivation and MAC function—on performance and
evaluate the effectiveness of our intermittent execution
model on these energy intensive building blocks. (Sec-
tion 5.3.1 and Section 5.3.2).

4) We present a case study to demonstrate the end-to-
end implementation of SecuCode in an application
scenario—the source code of our case examples are
released on our project website to facilitate further re-
search, experimentation and adoption of our SecuCode
scheme (Section 5.3.3).

5) We evaluate the security of SecuCode under the adver-
sary model detailed in Section 3.2 (Section 5.5).

5.1 Physically Obfuscated Key Derivation
In this section, we validate the lightweight physically obfus-
cated key derivation method using experimental data.

SRAM PUF Reliability: Considering that SRAM PUFs are
insensitive to voltage variations [44] and the voltage can
be eventually controlled well in practice, we focus on its
performance under differing temperature corners (-15°C,
0°C, 25°C, 40°C and 80°C). Under each temperature corner,
we repeat the response readout 100 times. Each SRAM
PUF can generate 16,384 response bits, we tested 20 such

-15 0 25 40 80
Temperature (°C)

0

0.02

0.04

0.06

0.08

0.1

0.12

B
E

R

temperature
range

Legal

(a) Before Pre-selection
After Pre-selection

0.4 0.45 0.5 0.55 0.6
0

10

20

30

O
cc

ur
re

nc
e

0.4 0.45 0.5 0.55 0.6
0

10

20

30

O
cc

ur
re

nc
e

0.4 0.45 0.5 0.55 0.6

Bias distribution

0

10

20

30

O
cc

ur
re

nc
e

(b)

(c)

(d)

μ=0.4999
σ=0.0110
wc=0.5374

μ=0.5036
σ=0.0205
wc=0.5685

μ=0.4990
σ=0.0018
wc=0.4917

Fig. 9. (a) BER across differing operating temperatures. Bias distribution
of 20 tested chips: (b) raw PUF responses; (c) after pre-selection; and
(d) after HW-based de-biasing.

PUFs. The BER values for various corner temperatures is
shown in Fig. 9(a). The applied pre-selection reduces the
BER significantly to no more than 0.94% over the defined
legal temperature range of 0°C to 40°C—see Section 4.3.1.

SRAM PUF Bias: We follow the method in [28] to evaluate
PUF bias. The bias distribution b is expressed as:

b = P(ri = 1) for i ∈ [1, n] (4)

where r is a response vector of length n. After response
pre-selection, we implemented our HW-based de-biasing
method. As shown in Fig. 9(d), experimental results from
the 20 SRAM PUFs show that the mean of the bias is 0.499;
very close to the ideal value of b = 0.5.

Reverse Fuzzy Extractor using BCH(n, k, t): Although our
BER is less than 1%, as experimentally evaluated and shown
in Fig. 9, we selected to evaluate: i) 8 blocks of BCH(31,6,3)
code capable of correcting up to 3

31
or 10% of bits with

PFail = 0.0016 for 8 parallel blocks; and ii) 5 blocks of
BCH(63,24,7) code capable of correcting up to 7

63
or 11%

of bits with PFail = 7.4506 × 10−7 for 5 parallel blocks
according to Eq. (3). Executing eight BCH(31,16,3) blocks
to derive a 128-bit key requires 146,535 clock cycles while
computing 5 blocks of BCH(63,24,7) to obtain a 120-bit key
consumes 288,980 clock cycles.

Although employing a BCH(63,24,7) code allows us to
achieve an industry standard key failure rate of less than
10−6, we will see in Section 5.3 that protocol failure due to
external conditions such as intermittent powering is more
likely than protocol failure due to a failed key recovery.
Therefore, we employed parallel blocks of BCH(31,16,3)
code as a compromise between error correction capability,
computational complexity and performance in practice. In
general, for each block, the computational complexity of
finding the 31-bit response ri through the corresponding
15-bit public h is 216—assuming that the response bits are
uniformly distributed and have no correlations with each
other. In order to achieve a 128-bit security level with an
attack complexity of 2128, we need eight such blocks as
discussed in Section 4.3.1. Thus, an SRAM PUF response
ri with 31 × 8 = 248 bits need to be readout from the
SRAM PUF for each protocol session.

5.2 SecuCode Implementation Footprint

In Table 1, we summarize the cost, in terms of CPU clock
cycles, FRAM memory usage for code size and SRAM
memory usage for state space size, for implementing each
security related building block of SecuCode on a CRFID
transponder. These blocks represent the necessary overhead
imposed on the CRFID transponder to build our secure
update method to prevent malicious code injections attacks.
While the computational cost of the reverse fuzzy extractor
is significant, it is fixed for each iteration of an update
session. In contrast, the computational cost of the MAC()
function can increase with larger firmware code blocks (see
our evaluations in Appendix C).

13

TABLE 1
Memory & execution load of functional blocks

Protocol Steps Memory Footprint (Byte) Clock Cycles
Data(SRAM) Code(FRAM)

nonce←Rand() 6 68 375
ri←PUF(ci) 6 32 615

OTF← Temp() 10 204 734
hi← FE.GEN(ri)1 53 621 109,234

s′← MAC(firmware‖nonce,ski)2 58 3,198 22,1973

SecuCode total 133 4,123 133,155

1FE.GEN based on BCH(31,16,3) code.
2using a 128-bit HWAES-CMAC message authentication code.
3For a moderate firmware size of 240 bytes.

0 ms
10 ms

20 ms
30 ms

0

0.1

0.2

0.3

0.4

20 cm 40 cm 60 cm 80 cm

C
o

ld
 s

ta
rt

-u
p

 t
im

e
o

ve
rh

ea
d

 (
s)

Distance

0 ms
10 ms

20 ms
30 ms

0%

20%

40%

60%

80%

100%

20 cm 40 cm 60 cm 80 cm

In
te

rm
itt

ent o
pera

tio
n se

tti
ng

C
o

ld
 s

ta
rt

-u
p

 s
u

cc
es

s
ra

te

Distance

(a) (b)

Fig. 10. Physically obfuscated key derivation: (a) Cold start-up time
overhead and (b) success rate.

5.3 SecuCode Overhead and IEM Settings
Table 1 shows us that the most computationally intensive
security building block are the FE.Gen (key derivation
building block) and MAC (needed for firmware integrity
checks and prove authentication) implementations. Hence
these building blocks are likely to be most impacted by as
well as be the cause for brownout events. Therefore, both
FE.Gen and MAC implementations operate under our IEM.

A cold start-up is when a CRFID tag is activated from
a completely powered down sate—i.e. where the reservoir
capacitor of the CRFID device has been discharged in the
absence of a wireless powering source. Cold start time is
defined as the time taken by a CRFID device to respond
to an RFID reader inventory command from a cold start-
up. As illustrated in the control flow diagram in Fig. 5,
physically obfuscated key derivation steps occur after a cold
start-up. Therefore, the FE.Gen or key derivation method
will place additional energy and computation burdens on
a cold start-up initialization process and potentially lead to
unsuccessful device start-ups at the initiation of a firmware
update. Hence, we evaluate the cold start-up success and time
overhead of a key derivation operation.

We also evaluate the success rate of our FE.Gen
and MAC functions under wireless powering conditions—
different distances from a wireless powering source, i.e.
RFID reader antenna—and intermittent operating settings
to understand the overhead imposed by our IEM as well as
the effectiveness of IEM to mitigate brownouts. We detail
our experimental method in Appendix E.

5.3.1 Physically obfuscated key derivation
In this experimental setting, we place the CRFID transpon-
der (WISP5.1-LGR) provisioned with our bootloader at
20 cm, 40 cm, 60 cm and 80 cm apart from a 9 dBi circularly
polarized reader antenna oriented towards a high ceiling to

minimize interference from multipath signals on our obser-
vations. We used each of the eight BCH code computations
as subtasks for our intermittent execution model (IEM).

The results of cold start-up times and success rates are
plotted in Fig. 10(a) and (b), respectively; here we plot mean
cold start-up times and success rates over 100 repeated mea-
surements collected for each intermittent operating setting
and distance pair. At 20 cm interrogation range, the CRFID
transponder completes key derivation from a cold start-up
with a high success rate; approximately 100%. When the
distance is 40 cm, the success rate witnessed a dramatic drop
down to less than 50%, unless we increase the intermittent
operation setting to 30 ms. When the distance is beyond
60 cm, the success rate cannot be guaranteed even using
a large intermittent operation setting. Achieving higher
success rates beyond 60 cm will require further division of
subtasks capable of utilizing the available clock cycles before
brownout. Most importantly, we observe that the IEM can
increase the success rate of completing the key derivation
process from a cold start-up but the trade-off is an increase
in the cold start-up time overhead as illustrated in see Fig.
10(a).

5.3.2 MAC Computation
We define MAC function latency as the time interval between
calling a MAC function to perform a calculation over a
block of pre-loaded data on the CRFID transponder and
the generation of a valid result. We employ a single data
block size. Following the definition in [45], the data size is
large enough such that the latency is mainly dominated by
multiple compression rounds. In this experiment, a random
string of 1,280 bytes is used. Notably 1,280 bytes is twice
the size of the largest firmware update used in our experi-
ments. Since the hardware AES accelerator is very efficient
in terms of clock cycles, instead of considering each AES
compression round as a subtask, we employ 32 rounds of
AES computations as a subtask in our IEM implementation.

We report the mean latency and success rate obtained
over 10 repeated MAC computations collected for each in-
termittent operating setting and distance pair in Fig. 11. As
expected, the observed latency increases linearly along with
the intermittent operating setting. Overall, increasing the
intermittent operation setting improves the mean success
rate of the MAC computation. For example, in Fig. 11(b),
we can see that at a 60 cm distance, the success rate of
the MAC computation improves from 20% to 80% with
an intermittent operating setting of 30 ms. Further, we can
achieve success of no less than 60% at 80 cm distance when
the intermittent operating setting is greater than 20 ms.

5.3.3 SecuCode Case Study
As a demonstration of SecuCode in an application scenario,
we evaluate SecuCode in the following setting: There are
several CRFID transponders embedded in plasterboards mounted
as ceiling tiles in a chemical warehouse. We require three dif-
ferent types of services from these transponders. Some are to be
programmed with Accelerometer service code to monitor potential
structural failures, some are to be programmed with Thermome-
ter service code to detect potentially dangerous thermal storage
conditions while others are to be programmed with basic firmware

14

0 ms

10 ms

20 ms

30 ms

0

100

200

300

400

500

600

20 40 60 80

0 ms

10 ms

20 ms

0

20

40

60

80

100

20 40 60 80

La
te

nc
y

(m
s)

S
uc

ce
ss

 R
at

e
(%

)

Distance (cm) Distance (cm) Int
er

mitte
nt

Ope
ra

tio
n

Sett
ing

(a) (b)

30 ms

Fig. 11. (a) MAC function success rate and (b) success rate at different
distances from an RFID reader antenna under different intermittent
operation settings. With data size 1280 bytes.

Fig. 12. SecuCode case study set-up. The CRFID transponder is em-
bedded in a plaster tile and placed 20 cm above the antenna to emulate
the target application scenario.

TABLE 2
SecuCode case study performance measures.

Application code Size
(Bytes)

Latency
(mean, std)1(s)

success
rate (%)

Accelerometer
service code 399 3.1, 1.0 81

Thermometer
service code 273 2.5, 0.6 92

GLN identifier code 223 2.1, 0.5 90

1Latency was measured as the time interval between the SecuCode
App transmitting the firmware to an RFID reader using LLRP
commands and the time SecuCode App confirms the
acknowledgement of a successfully updated firmware.

to respond with a fixed Global Location Number (GLN) as an-
chor points to identify storage locations. The embedded CRFID
transponders need to be reprogrammed wirelessly to support
monitoring and location service needs of the warehouse; further,
over time, changes to the warehouse layout and monitoring needs
such as hazardous temperature levels can require alterations to
existing firmware.

As shown in Fig. 12, to emulate such a scenario, we em-
bedded a WISP5.1-LGR into a plaster tile after provisioning
the device with our bootloader. The plaster tile with the em-
bedded WISP is then placed 20 cm above an RFID reader an-
tenna. We used an IEM setting of 30 ms as it provided a good
compromise between latency (time to complete a firmware
update) and a high success rate over a range of wireless
transfer distances. The results from 100 repeated wireless
firmware updates based on the three firmwares specific
to three distinct applications in our scenario description
is summarized in Table 2. We successfully reprogrammed

all three application firmwares within a few seconds. Most
notably we observed an increased number of failures due to
brownout for the larger firmware owing predominately to
the increased energy required for the FE.Gen computation.
Further, as expected, all of the failures were due to brownout
as opposed key recovery—recall that the key failure rate for
the BCH code used is less than 0.2% as shown in Section 5.1.
Demonstration video of the firmware update process and
the source code of SecuCode App are available from [18].

5.4 Summary

Our results demonstrate: i) the practicability and robustness
of the developed SecuCode protocol; ii) the relationship be-
tween operating conditions, intermittent operation settings
and protocol performances; and iii) the effectiveness of the
proposed IEM on realizing successful secure firmware up-
dates under intermittent powering from harvested energy.

5.5 Security Analysis

We analyze the security of SecuCode under the adversary
model detailed in Section 3.2 in the following.

Man-in-the-middle attack: Here, security is related to the
complexity of the adversaryA fooling the token T in order
to inject malicious code. Such an adversary is faced with
the task of determining the secret key ski and therefore, we
evaluate the security of the reverse fuzzy extractor which
leaks helper data during a firmware update session.

We employ a reverse fuzzy extractor where the helper
data computation is placed on the resource-constrained
token T . In this context, different helper data corresponding
to the same response ri will be generated during different
firmware update sessions; thus, multiple helper data are
exposed. It has been proved that the entropy leakage from
the helper data is independent of the number of enrollments
for SRAM PUF [46]. In other words, one can evaluate the
entropy leakage from the helper data of the reverse fuzzy
extractor for a single helper data generation case; or the
entropy leakage from multiple helper data observations is
same as the entropy leakage from a single helper data
observation, as with a traditional fuzzy extractor. Further,
we assume that the debiasing mask does not leak infor-
mation. This is a reasonable assumption as the mask is
limited to indicating the reliable CRP-blocks only and not
the response itself. In addition, it has been demonstrated
through extensive experiments that modern SRAM PUFs
possess good uniqueness properties [47]. In other words,
the highly reliable bits are not correlated across different
instances of SRAM PUFs. Therefore, knowledge of an SRAM
PUF instance’s mask can safely be assumed to not leak
responses information of other SRAM PUFs.

Then, given the BCH(n,k,t) code used to implement the
reverse fuzzy extractor helper data computation, no more
than (n−k)-bit entropy is leaked. To be precise, the residual
min entropy [28] of the n-bit response is given by Hmin =
−n · log2(max(b, 1−b))−(n−k) when the helper data
is public, where the PUF response bias—the probability of
a single PUF response being ‘0’— is b. Ideally, the bias b is
50%. However, as we have seen, PUF responses can display
a slight bias. Therefore to guarantee the (n− k)-bit entropy

15

leakage we employed the de-biasing method proposed in
Section.4.3.2.

As we use 8 blocks of BCH(31,16,3) code, we achieve
a key ski with 128-bit entropy—strictly, 127.6 bits entropy
considering the experimentally evaluated bias of 0.4990 post
our de-biasing method. Therefore, without knowledge of
ski, the probability of fooling the token T to update a
malicious firmware by A is no more than the brute-force
attack probability of 2−127.6.

Helper data manipulation attack. We are aware of helper
data manipulation attacks based on exposed helper data
reported in [29], [48]. However, both works acknowledge
that such an attack is error correction code dependent and
cannot be mounted on a linear code such as BCH employed
in SecuCode [29], [48]. Further, mounting such an attack on
SecuCode is difficult; in the first place, we notice that such a
helper data manipulation attack is very easy to be detected
by the prover P . The reasons are as follows:

1) The frequency of normal firmware updates is very
low in comparison with other services that are built
with reverse fuzzy extractors, such as authentication or
attestation services. However, helper data manipulation
attacks require a large number of queries. Recall, that
helper data is generated by the token T and then
sent to the prover P and the firmware update pro-
cess is initiated by the prover. Hence the opportunity
to mount a helper data attack is limited to the few
occasions during which a firmware update is required
by the prover. In a reverse fuzzy extractor attack, the
adversary is forced to perform a trial-and-error measure
by continually sending malicious helper data to the
resource-rich prover P . The prover can perceive such
malicious behavior and stop responding to a firmware
update session that is hijacked by an adversary.

2) There exists a built-in throttling and obfuscation mech-
anism that prevents rapid helper data submissions
needed for such an attack. Recall that in a man-in-the-
middle attack where the adversary is able to submit ma-
nipulated helper data, the success or failure is masked
by failure from external factors such as powering and
the determination of success or failure is only evident
at the near conclusion of the update session—this can
be 2-4 seconds.

3) Under tampered helper data queries, the failure rate
of reconstructing the key sk will significantly increase.
Thus, the prover P can detect such an abnormal failure
rate as a potential attack [49]. This can deem the target
CRFID as being compromised. Alternatively, detection
can also be achieved by extending the protocol to allow
a request to the token T to send back MAC(nonce‖hi,
ski) that the prover P can subsequently compare using
its computed ski from the securely stored response r′

and the provided helper data hi.
Modeling attack. We are also aware that modeling at-
tacks on the reverse fuzzy extractors have been shown
in [50], [51]. These attacks are applicable to arbiter PUFs
(APUFs) [19], mainly due to the fact that the responses from
APUFs are correlated. However, modeling attacks cannot
be mounted on SRAM PUFs [20] because PUF responses are
information-theoretically independent since each response

is derived from a spatially separate SRAM cell.

6 RELATED WORK AND DISCUSSION

For emerging battery-free computing devices such as CR-
FID platforms including WISP [9], MOO [10] and Farsens
Pyros [11], firmware updates are usually done with a wired
programming interface; for example by way of a JTAG [10]
interface or a Serial interface [55]. The main difficulties
that hinder CRFID platform to be reprogrammed using
a wireless method are: i) the transiently powered nature
where encountering power failures are highly likely [12]; ii)
reprogramming code memory such as FLASH that require
the device attaining an adequate voltage level from har-
vested power [15]; and ii) the lack of supervisory control of
an operating system for managing a devices’ tasks [52]. We
have seen recent efforts to bring wireless reprogramming
to CRFID transponders [12], [15], [52], [53], however, to
the best of our knowledge, SecuCode is the first work
to resolve the requirement for security for wireless code
dissemination for intermittently powered passive CRFID
devices. Therefore, in the following we review studies to: i)
develop a bootloader and modify application behavior; and
ii) progress towards developing on-the fly wireless firmware
update methods. We summarize the key characteristics of
these studies in Table 6 and provide benchmark results
for SecuCode with the non-secure wireless update method,
Wisent [12], in Appendix F.

6.1 In-application behavior modification

An early version of a bootloader for a CRFID platform,
Bootie was proposed by Ransford in [52]. Bootie was de-
signed to accept two (or more) firmware and cross-compile
them into one executable to be preloaded onto a CRFID
transponder. The compiled firmware was then downloaded
and tested on Olimex MSP430-H2131 minimum system
board. The author showed that Bootie could be used as a
basis for wireless firmware updates. However, as a proof-
of-concept, Bootie only enables the platform to execute pre-
loaded firmwares one-by-one and did not allow responding
to user demands nor operating conditions to determine the
switching between firmware.

The FirmSwitch scheme was later demonstrated in [53] to
offer firmware flexibility for CRFID transponders. This ap-
proach allowed a user to switch between pre-loaded firmware
instances on a CRFID platform using downstream com-
mands to the CRFID transponder. However, FirmSwitch
was not developed to support wireless firmware updates.

TABLE 3
Comparison Between Related Works

Protocol Passively
powered

In-application
behaviour

modification

Wireless
firmware
update

Broadcast
to multi-
CRFID

Security

Bootie [52] 8 8 8 8 8
FirmSwitch [53] 4 4 8 8 8
R2/R3 [15] 4 4 4 8 8
Wisent [12] 4 4 4 8 8
Stork [54] 4 4 4 4 8
MSPboot [17] 8 4 4 8 8
SecuCode 4 4 4 8 4

16

6.2 Wireless code dissemination
More recently, the Wisent method by Tan et al. [12], R2 and
R3 method by Wu et al. [13], [15] demonstrated a robust
wireless firmware update method for CRFID transponders
using WISP platforms. In particular, R3 was implemented
on three different types of CRFID transponders. Subse-
quently, in Stork, Aantjes et al. [54] proposed a fast Multi-
CRFID wireless firmware transfer protocol that involves
ignoring the RN16 handle sent from an RFID transponder
(i.e. the tags still save the downstream data even if their
handle does not match the one specified by the reader).
Stork enables an RFID Reader to simultaneously program
multiple CRFID devices in the field to reduce the time to
update multiple devices. Although these works achieved on
the fly wireless update of firmware along with a bootloader
design, none of wireless firmware update approaches ad-
dress the issue of security and the trustworthiness of the
prover, therefore, malicious firmware injection remains an
open issue.

In late 2016, Brown and Pier from Texas Instrument (TI)
presented an application port [17] extending TI’s previous
work, MSPBoot [56]. In this work, wireless updating was
demonstrated in two examples; using UART or SPI bus to
interconnect an MSP430 16-bit RISC microcontroller and a
CC1101 sub-1GHz RF transceiver. The enhanced bootloader
design supported: i) application validation; ii) redirecting
interrupt vectors; and iii) code sharing via preconfigured
callbacks. Additionally, a dual image failsafe mechanism is
introduced; here, before the application in executable area is
overwritten, the new image would be verified in a down-
load area. Therefore any interruption in communication
would not affect the function of the device. However, like
other bootloaders and wireless firmware update methods,
security is not considered.

7 CONCLUSION

We have presented the first secure wireless firmware update
scheme, SecuCode, for resource-constrained and intermit-
tently powered CRFID devices. We derived a volatile secret
key on demand and discard it after usage to remove the
difficulty of permanent secure key storage in NVM. Our Se-
cuCode protocol only allows an authorized party to perform
a wireless firmware update and does not require any hard-
ware modifications whilst being standards compliant. As
noted in [20], cryptographic engineering of a protocol must
consider the complex environment for physical devices,
such as noise and energy constraints, performance and cost
of protocol instantiations. To this end, we have successfully
addressed security and implementation challenges, realized
an end-to-end SecuCode implementation on the popular
CRFID transponder and extensively evaluated the cost and
performance of our realization, including an application
case study along with a complete public release of code and
experimental data.
Limitations: Our study is not without limitations. Since our
main focus is to develop a secure end-to-end solution for
wireless updates, we have only investigated an intermittent
execution model based on preventing power loss where we
used fixed intermittent operating settings (low power deep
sleep duration) for the FE.Gen and MAC functions. These

settings are determined when the bootloader is provisioned
and can, unnecessarily, slow down firmware updates at
short operating distances.

While we have addressed the problem of malicious
code injection attacks, the firmware is sent as plaintext and
privacy or intellectual property protection goals are not
addressed by SecuCode. Although Stork [14] provides a
method for simultaneous non-secure dissemination of code
to multiple CRIFD devices, as a first method, our approach
to securely update a large number of CRFID devices re-
quires the dissemination of code to each single device at
a time.
Future Work: Since our main focus in this paper is security,
we opted for an intentionally simple IEM approach where
we use a fixed intermittent operating setting for the two
security building blocks. Future work will investigate dy-
namic task scheduling where the intermittent operating set-
ting can be set optimally as in Dewdrop [41] to provide per-
formance improvements such as increasing the operational
range and the rate at which firmware can be transferred to
a CRFID device. Such a dynamic task scheduling approach
can investigate exploiting the decay of SRAM [57] to gather
time intervals between power loss events to determine
optimal task schedules. This could potentially provide an
attractive solution where SRAM intrinsic to the MCU is used
to determine task schedules.

Additionally, in future work, we will consider the prob-
lem of secure and simultaneous code dissemination to mul-
tiple RFID devices. While an approach that excludes the
requirement for key protection may provide a simpler code
dissemination problem, the use of a PUF in such a context
to benefit from the inherent key protection, is a challenging
problem.

REFERENCES

[1] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer,
M. Balazinska, and G. Borriello, “Building the internet of things
using RFID: the RFID ecosystem experience,” IEEE Internet Com-
put., vol. 13, no. 3, 2009.

[2] S. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak,
“The internet of things for health care: a comprehensive survey,”
IEEE Access, vol. 3, pp. 678–708, 2015.

[3] R. L. Shinmoto Torres, R. Visvanathan, D. Abbott, K. D. Hill, and
D. C. Ranasinghe, “A battery-less and wireless wearable sensor
system for identifying bed and chair exits in a pilot trial in
hospitalized older people,” PLOS ONE, vol. 12, no. 10, pp. 1–25,
2017.

[4] K. Yang, D. Forte, and M. M. Tehranipoor, “CDTA: A Com-
prehensive Solution for Counterfeit Detection, Traceability, and
Authentication in the IoT Supply Chain,” ACM Trans. on Design
Automation of Electronic Syst., vol. 22, no. 3, p. 42, 2017.

[5] C. Jin and M. van Dijk, “Secure and Efficient Initialization and
Authentication Protocols for SHIELD,” IEEE Trans. Depend. Secure.
Comput., 2017.

[6] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart
objects as building blocks for the internet of things,” IEEE Internet
Comput., vol. 14, no. 1, pp. 44–51, 2010.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of things for smart cities,” IEEE Internet of Things J., vol. 1,
no. 1, pp. 22–32, 2014.

[8] T. S. López, D. C. Ranasinghe, B. Patkai, and D. McFarlane,
“Taxonomy, technology and applications of smart objects,” Info.
Syst. Frontiers, vol. 13, no. 2, pp. 281–300, 2011.

[9] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith, “Design of an RFID-based battery-free programmable
sensing platform,” IEEE Trans. Instrum. Meas., vol. 57, no. 11, pp.
2608–2615, 2008.

17

[10] Z. Hong, G. Jeremy, R. Benjamin, and F. Kevin, “Moo: A
batteryless computational rfid and sensing platform,” 2011.
[Online]. Available: https://spqr.eecs.umich.edu/moo/

[11] Farsens. (2016) Pyros-0373. [Online]. Available: http:
//www.farsens.com/en/products/pyros-0373/

[12] J. Tan, P. Pawełczak, A. Parks, and J. R. Smith, “Wisent: Ro-
bust downstream communication and storage for computational
RFIDs,” in Proc. IEEE Int. conf. on Comput. Commun., 2016, pp. 1–9.

[13] D. Wu, L. Lu, M. J. Hussain, S. Li, M. Li, and F. Zhang, “R3:
Reliable Over-the-Air reprogramming on computational RFIDs,”
ACM Trans. Embedded Comput. Syst., vol. 17, no. 1, p. 9, 2017.

[14] Parks. (2016, mar) Welcome to the WISP 5 wiki! [Online].
Available: https://wisp5.wikispaces.com/WISP+Home

[15] D. Wu, M. J. Hussain, S. Li, and L. Lu, “R2: Over-the-air repro-
gramming on computational RFIDs,” in Proc. IEEE Int. conf. on
RFID, 2016, pp. 1–8.

[16] M. Akgün and M. U. Caglayan, “Weaknesses in a Recently
Proposed RFID Authentication Protocol,” IACR Cryptology ePrint
Archive, vol. 2013, p. 855, 2013.

[17] R. Brown and K. Pier. (2016, dec) MSP430FRBoot – Main Memory
Bootloader and Over-the-Air Updates for MSP430™ FRAM Large
Memory Model. [Online]. Available: http://www.ti.com/lit/an/
slaa721b/slaa721b.pdf

[18] M. Chesser. (2018) SecuCode GuitHub Repository. [Online].
Available: https://github.com/AdelaideAuto-IDLab/SecuCode

[19] G. E. Suh and S. Devadas, “Physical unclonable functions for
device authentication and secret key generation,” in Proc. ACM
annual Design Automation conf., 2007, pp. 9–14.

[20] A. Aysu, E. Gulcan, D. Moriyama, P. Schaumont, and M. Yung,
“End-to-end design of a PUF-based privacy preserving authenti-
cation protocol,” in Proc. Springer Int. Workshop on Cryptographic
Hardware and Embedded Syst., 2015, pp. 556–576.

[21] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R.
Sadeghi, I. Verbauwhede, and C. Wachsmann, “Reverse fuzzy
extractors: Enabling lightweight mutual authentication for PUF-
enabled RFIDs,” in Proc. Springer Int. conf. on Financial Cryptogra-
phy and Data Secur., 2012, pp. 374–389.

[22] Y. Gao, H. Ma, S. F. Al-Sarawi, D. Abbott, and D. C. Ranasinghe,
“Puf-fsm: A Controlled Strong PUF,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 5, pp. 1104–1108, 2018.

[23] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA in-
trinsic PUFs and their use for IP protection,” in Proc. Cryptographic
Hardware and Embedded Syst., vol. 4727, 2007, pp. 63–80.

[24] U. Rührmair, S. Devadas, and F. Koushanfar, “Security based on
physical unclonability and disorder,” in Introduction to Hardware
Secur. and Trust. Springer, 2012, pp. 65–102.

[25] D. E. Holcomb, W. P. Burleson, K. Fu et al., “Initial SRAM state as
a fingerprint and source of true random numbers for RFID tags,”
in Proc. The conf. on RFID Secur., vol. 7, 2007, p. 2.

[26] D. E. Holcomb, A. Rahmati, M. Salajegheh, W. P. Burleson, and
K. Fu, “DRV-fingerprinting: using data retention voltage of SRAM
cells for chip identification,” in Int. Workshop on RFID: Secur. and
Privacy Issues. Springer, 2012, pp. 165–179.

[27] X. Xu, A. Rahmati, D. E. Holcomb, K. Fu, and W. Burleson, “Re-
liable physical unclonable functions using data retention voltage
of SRAM cells,” IEEE Trans. Comput.-Aided Design of Integr. Circuits
and Syst., vol. 34, no. 6, pp. 903–914, 2015.

[28] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M.-D. M. Yu,
“Efficient fuzzy extraction of PUF-induced secrets: Theory and
applications,” in Proc. Springer Int. conf. on Cryptographic Hardware
and Embedded Syst., 2016, pp. 412–431.

[29] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper
data algorithms for PUF-based key generation: Overview and
analysis,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst,
vol. 34, no. 6, pp. 889–902, 2015.

[30] F. Kohnhäuser and S. Katzenbeisser, “Secure Code Updates for
Mesh Networked Commodity Low-End Embedded Devices,” in
Proc. Springer European Symp. on Research in Comput. Secur., 2016,
pp. 320–338.

[31] Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei, and D. Ab-
bott, “Memristive crypto primitive for building highly secure
physical unclonable functions,” Scientific reports, vol. 5, 2015.

[32] M. Hofer and C. Boehm, “An alternative to error correction for
SRAM-like pufs,” Cryptographic Hardware and Embedded Syst., pp.
335–350, 2010.

[33] C. Böhm and M. Hofer, “PUF with Preselection,” in Physical
Unclonable Functions in Theory and Practice. Springer, 2013, pp.
239–248.

[34] M. Cortez, A. Dargar, S. Hamdioui, and G.-J. Schrijen, “Modeling
SRAM start-up behavior for physical unclonable functions,” in
Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI and
Nanotechnology Syst., 2012, pp. 1–6.

[35] R. Maes, V. Leest, E. Sluis, and F. Willems, “Secure key generation
from biased pufs,” in Proc. Springer Int. Workshop on Cryptographic
Hardware and Embedded Syst., 2015, pp. 517–534.

[36] A. Aysu, Y. Wang, P. Schaumont, and M. Orshansky, “A new
maskless debiasing method for lightweight physical unclonable
functions,” in Proc. IEEE Int. Symp. on Hardware Oriented Secur. and
Trust, 2017, pp. 134–139.

[37] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution
without checkpoints,” Proc. ACM Program. Lang., vol. 1, pp. 96:1–
96:30, 2017.

[38] B. Ransford, J. Sorber, and K. Fu, “Mementos: system support
for long-running computation on rfid-scale devices,” in ACM
SIGARCH Comput. Architecture News, vol. 39, no. 1, 2011, pp. 159–
170.

[39] M. Salajegheh, S. Clark, B. Ransford, K. Fu, and A. Juels, “CCCP:
Secure remote storage for computational RFIDs,” in Proc. USENIX
Secur., 2009.

[40] M. Hicks, “Clank: Architectural support for intermittent computa-
tion,” in 2017 ACM/IEEE Int. Symp. on Comput. Architecture. IEEE,
2017, pp. 228–240.

[41] M. Buettner, B. Greenstein, and D. Wetherall, “Dewdrop: an
energy-aware runtime for computational rfid,” in Proc. USENIX
NSDI, 2011, pp. 197–210.

[42] T. Instruments. (2017, mar) MSP430FR59xx Datasheet.
[Online]. Available: http://www.ti.com/lit/ds/symlink/
msp430fr5969.pdf

[43] K. Pier, “Msp code protection features,” Dostopno na: http://www.
ti. com/lit/an/slaa685/slaa685. pdf (2015, pridobljeno 7. 9. 2018).

[44] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken, H. de Groot,
V. van der Leest, G.-J. Schrijen, M. van Hulst, and P. Tuyls,
“Evaluation of 90nm 6T-SRAM as Physical Unclonable Function
for secure key generation in wireless sensor nodes,” in Proc. IEEE
Int. Symp. on Circuits and Syst., 2011, pp. 567–570.

[45] T. Eisenbarth, S. Heyse, I. von Maurich, T. Poeppelmann, J. Rave,
C. Reuber, and A. Wild, “Evaluation of SHA-3 candidates for 8-bit
embedded processors,” in SHA-3 Candidate conf., 2010.

[46] L. Kusters, T. Ignatenko, F. M. Willems, R. Maes, E. van der Sluis,
and G. Selimis, “Security of helper data schemes for SRAM-PUF
in multiple enrollment scenarios,” in Proc. IEEE Int. Symp. on Info.
Theory, 2017, pp. 1803–1807.

[47] R. Maes, Physically unclonable functions. Springer, 2016.
[48] G. T. Becker, “Robust fuzzy extractors and helper data manipula-

tion attacks revisited: Theory versus practice,” IEEE Trans. Depend.
Secu. Comput., vol. 16, no. 5, pp. 783–795, Sep. 2019.

[49] Y. Gao, Y. Su, L. Xu, and D. C. Ranasinghe, “Lightweight (reverse)
fuzzy extractor with multiple reference PUF responses,” IEEE
TIFS, vol. 14, no. 7, pp. 1887–1901, 2019.

[50] G. T. Becker, “On the pitfalls of using arbiter-PUFs as building
blocks,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 8, pp. 1295–1307, 2015.

[51] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey
on lightweight entity authentication with strong PUFs,” ACM
Computing Surveys, vol. 48, no. 2, p. 26, 2015.

[52] R. Benjamin, “A rudimentary bootloader for computational
rfids,” Oct 2010. [Online]. Available: https://web.cs.umass.edu/
publication/details.php?id=2069

[53] W. Yang, D. Wu, M. J. Hussain, and L. Lu, “Wireless firmware
execution control in computational RFID systems,” in Proc. IEEE
Int. conf. on RFID, 2015, pp. 129–136.

[54] H. Aantjes, A. Y. Majid, P. Pawełczak, J. Tan, A. Parks, and J. R.
Smith, “Fast Downstream to Many (Computational) RFIDs,” in
Proc. IEEE Int. conf. on Comput. Commun., 2017.

[55] R. Prasad, M. Buettner, B. Greenstein, and D. Wetherall, “Wisp
monitoring and debugging,” in Wirelessly Powered Sens. Networks
and Computational RFID. Springer, 2013, pp. 157–172.

[56] L. Reynoso. (2013, jun) Mspboot – Main Memory Bootloader
for MSP430 ™ Microcontrollers. [Online]. Available: http:
//www.ti.com/lit/an/slaa600d/slaa600d.pdf

[57] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P. Burleson,
and K. Fu, “Tardis: Time and remanence decay in sram to imple-

https://spqr.eecs.umich.edu/moo/
http://www.farsens.com/en/products/pyros-0373/
http://www.farsens.com/en/products/pyros-0373/
https://wisp5.wikispaces.com/WISP+Home
http://www.ti.com/lit/an/slaa721b/slaa721b.pdf
http://www.ti.com/lit/an/slaa721b/slaa721b.pdf
https://github.com/AdelaideAuto-IDLab/SecuCode
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
https://web.cs.umass.edu/publication/details.php?id=2069
https://web.cs.umass.edu/publication/details.php?id=2069
http://www.ti.com/lit/an/slaa600d/slaa600d.pdf
http://www.ti.com/lit/an/slaa600d/slaa600d.pdf

18

ment secure protocols on embedded devices without clocks,” in
Proc.USENIX Secur. USENIX Association, 2012, pp. 36–36.

[58] C. O. Akash Patel. (2017, jan) Random Number Generation Using
MSP430FR59xx and MSP430FR69xx Microcontrollers. [Online].
Available: http://www.ti.com/lit/an/slaa725/slaa725.pdf

[59] E. B. Barker and J. M. Kelsey, “Recommendation
for random number generation using deterministic
random bit generators,” Nov 2018. [Online]. Available:
https://www.nist.gov/publications/recommendation-random-
number-generation-using-deterministic-random-bit-generators-2

[60] S. Callegari, R. Rovatti, and G. Setti, “Embeddable ADC-based
true random number generator for cryptographic applications
exploiting nonlinear signal processing and chaos,” IEEE Trans.
Signal Process., vol. 53, no. 2, pp. 793–805, 2005.

[61] B. Lampert, R. S. Wahby, S. Leonard, and P. Levis, “Robust, low-
cost, auditable random number generation for embedded system
security,” IACR Cryptology ePrint Archive, vol. 2016, p. 884, 2016.

[62] C. S. Petrie and J. A. Connelly, “A noise-based IC random number
generator for applications in cryptography,” IEEE Trans. Circuits
and Syst. I: Fundamental Theory and Applications, vol. 47, no. 5, pp.
615–621, 2000.

[63] Y. Shen, L. Tian, and H. Zou, “Practical quantum random number
generator based on measuring the shot noise of vacuum states,”
Physical Review A, vol. 81, no. 6, p. 063814, 2010.

[64] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo,
“A high-speed oscillator-based truly random number source for
cryptographic applications on a smart card IC,” IEEE Trans. Com-
put., vol. 52, no. 4, pp. 403–409, 2003.

[65] Y. Yan, E. Oswald, and T. Tryfonas, “Cryptographic randomness
on a CC2538: A case study,” in Proc. 2016 IEEE Int. Workshop on
Info. Forensics and Secur., 2016, pp. 1–6.

[66] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up sram state
as an identifying fingerprint and source of true random numbers,”
IEEE Trans. Comput., vol. 58, no. 9, pp. 1198–1210, 2009.

[67] D. Lemire and O. Kaser, “Faster 64-bit universal hashing using
carry-less multiplications,” Journal of Cryptographic Eng., vol. 6,
no. 3, pp. 171–185, 2016.

Yang Su (S’14) Yang Su received the B.Eng.
degree with first class Honours in Electrical and
Electronic Engineering from The University of
Adelaide, Australia in 2015. He worked as a Re-
search Associate at The University of Adelaide
from 2015-2016 and he is currently pursuing
the Ph.D. degree. His research interests include
hardware security, physical cryptography, em-
bedded systems and system security.

Yansong Gao received his M.Sc degree from
University of Electronic Science and Technology
of China in 2013 and Ph.D degree from the
School of Electrical and Electronic Engineering
in the University of Adelaide, Australia, in 2017.
He is now with School of Computer Science and
Engineering, NanJing University of Science and
Technology, China. His current research inter-
ests are hardware security and system security.

Michael Chesser received his B.Sc Advanced
degree in 2016 and his Honours (First Class)
degree in Computer Science in 2017 from The
University of Adelaide, Australia. Michael has
worked as a consultant at Chamonix Consult-
ing and, more recently, at the School of Com-
puter Science, The University of Adelaide as a
Research Associate. His research interests are
in compilers, embedded systems, security and
virtualization.

Omid Kavehei (S’05, M’12, SM’16) received his
Ph.D. degree in electronic engineering from The
University of Adelaide, Australia, in 2012. He is
currently a Senior Lecturer at The University of
Sydney, Australia. Dr. Kavehei was an executive
member of the South Australia IEEE student
chapter and the recipient of The University of
Adelaide’s 2013 postgraduate university alumni
medal and the South Australian Young Nan-
otechnology Ambassador award in 2011. His
research interests include emerging solid-state

memory devices, physical cryptography, novel computational paradigms
based on nanotechnology. He is a Senior Member of IEEE.

Alanson Sample received his Ph.D. in electrical
engineering from the University of Washington in
2011. He is currently an Associate Professor in
the computer science and engineering division
of the department of Electrical Engineering and
Computer Science at the University of Michi-
gan. Prior to returning to academia, he spent
the majority of his career working in academic
minded industry research labs. Most recently
Alanson was the Executive Lab Director of Dis-
ney Research in Los Angeles and before that the

Associate Lab Director and a Principal Research Scientist at Disney
Research, Pittsburgh. Prior to joining Disney, he worked as a Research
Scientist at Intel Labs in Hillsboro. He also held a postdoctoral research
position in the Department of Computer Science and Engineering at the
University of Washington. Throughout his academic studies he worked
fulltime at Intel Research, Seattle. Dr. Sample’s research interests lie
broadly in the areas of Human-Computer Interaction, wireless technol-
ogy, and embedded systems.

Damith C. Ranasinghe received the Ph.D. de-
gree in electrical and electronic engineering from
The University of Adelaide, Australia, in 2007.
From 2005 to 2006, he was a Visiting Scholar
with the Massachusetts Institute of Technology
and a Post-Doctoral Research Fellow with the
University of Cambridge from 2007 to 2009.
He joined The University of Adelaide in 2010,
and is currently an Associate Professor with the
School of Computer Science. His research inter-
ests include pervasive computing, autonomous

systems, deep learning, and security.

http://www.ti.com/lit/an/slaa725/slaa725.pdf
https://www.nist.gov/publications/recommendation-random-number-generation-using-deterministic-random-bit-generators-2
https://www.nist.gov/publications/recommendation-random-number-generation-using-deterministic-random-bit-generators-2

1

TABLE 4
Random Number Generator Comparison

Name Bits per
request

Time
overhead

Energy
con-

sumption

Hardware
require-

ment

CTR-DRBG 128 214 us 14.83 nJ AES ,FRAM
Thermal noise 16 27.2 us 2.69 nJ ADC
SRAM-TRNG 128 23.10 us 2.32 nJ –

Note: the calculations are based on the technical details obtained from
MSP430FR5969 datasheet for a 1 MHz MCLK and 3.3 V power supply.

APPENDIX A
RANDOM NUMBER GENERATOR COMPARISON

We provide a summary of the random number generator
methods we have evaluated.

CTR-DRBG: Texas Instrument has demonstrated a Counter
Mode Deterministic Random Byte Generator (CTR-DRBG)
in [58] to meet the needs of security mechanisms on MSP430
MCUs. The CTR-DRBG is developed by National Institute
of Standard and Technology (NIST) in NIST SP 800-90A [59]
and is built upon a block cipher algorithm (e.g., AES256).
The CTR-DRBG passes all NIST randomness test criteria;
implying that the CTR-DRBG has comparable performance
to a true random number generator.
Thermal noise: Thermal noise (Johnson–Nyquist noise) has
been exploited [60] [61] [62] as an entropy source for a
TRNG. Thermal noise results in unpredictable small voltage
fluctuations in resistive components at any temperature
above 0°K. The least significant bit (LSB) of sampled data
is significantly affected by thermal noise over other bits [63]
[64]. Therefore, random bits can be extracted by sampling
the LSB from a noisy sensor. Random number genera-
tors from this method has passed the NIST randomness
tests [65].
Noisy SRAM responses: The noisy SRAM PUF responses
can be used to generate true random numbers; this method
has been extensively studied, for example in [20], [66].
Sufficient entropy can be extracted through, e.g., XOR and
bit shift operations [20], [66] over a number of SRAM PUF
responses. Random bit streams from this method has passed
the NIST random number generator test suite [66].

APPENDIX B
SRAM PUF PRE-SELECTION EFFICIENCY

Efficiency evaluates the ratio of number of the selected
reliable bits in the CRP Blocks selected over the total number
of possible response bits (8,896 bits; obtained by deducting
2,048 bits reserved for the stack, 5,440 bits for the SRAM-
TRNG and static variables from 16,384 SRAM bits). We
tested 20 new MSP430FR5969 chips and one WISP5.1LRG.
The result are summarized in Table 5. The efficiency de-
pends on the noise level of the SRAM cells in the candidate
chip, if a chip cannot provide adequate number of CRP
Blocks, it should be excluded before deployment. Nonethe-
less, for 20 tested chips, at least two independent CRP-
blocks—each consisting of 248 bits—are obtained.

TABLE 5
CRP-Block efficiency

Chip ID Blocks
produced

Available
PUF bits Efficiency

1 4 992 11.2%
2 8 1984 22.3%
3 2 496 5.58%
4 2 496 5.58%
5 8 1984 22.3%
6 7 1736 19.5%
7 2 496 5.58%
8 5 1240 13.9%
9 3 744 8.36%
10 6 1488 16.7%
11 6 1488 16.7%
12 6 1488 16.7%
13 6 1488 16.7%
14 7 1736 19.5%
15 6 1488 16.7%
16 8 1984 22.3%
17 7 1736 19.5%
18 4 992 11.2%
19 6 1488 16.7%
20 6 1488 16.7%

WISP5.1 LRG 7 1736 19.5%

APPENDIX C
MAC FUNCTION EVALUATIONS

Notably, benchmarks of software implementations of MAC
function on desktop platforms are not suitable since these
implementations use specific CPU instructions, such as the
SSE instruction set [67], and advanced paradigms like out-
of-order execution, which are not supported on resource-
constrained embedded systems. Therefore, for the first time,
we benchmarked a set of MAC functions on MSP430FR5969.
Besides HWAES-GMAC, we also considered BLAKE2s as
competitor.

The MAC function tests were based on two WISP
firmwares; i) LED firmware (short string); and ii) 3-axis
accelerometer firmware (long string). Table 6, and 7 detail
our results. We selected HWAES-CMAC to obtain a 128 bit
MAC in our SecuCode implementation.

APPENDIX D
EPC GLOBAL C1G2V2 COMMAND ENCODING

The Impinj R420 RFID reader used in our experiments
does not yet support the recent EPC Gen2 protocol
changes, hence, we map the unsupported commands to
BlockWrite commands. The mapping for Authenticate
and SecureComm commands are detailed in Fig. 14
and Fig. 13, respectively. Similar to Authenticate, a
TagPrivilege command is mapped to a BlockWrite
command with WordPtr = 0x7E. Additionally, the Impinj
reader does not have complete support for a BlockWrite
command as outlined in the EPC Gen2 protocol speci-
fication. Internally, a BlockWrite command containing
more than 1 word (16 bits) is split into multiple smaller
BlockWrite commands; each of which needs to be ACKed
by the CRFID transponder. This is handled in the RFID
MAC layer on a CRFID device. In our experiments, we still
send multi-byte BlockWrite commands to the reader from

2

TABLE 6
MAC evaluation with LED firmware size = 153 bytes.

MAC Digest size (bits) Byte in digest Clock Cycles Cycle per message byte Code size (bytes) Internal state size (bytes)
BLAKE2s-256 256 32 81,036 530 4,964 238
BLAKE2s-128 128 16 79,276 518 4,961 238
HWAES-GMAC 128 16 432,337 2,826 3,538 268
HWAES-CMAC 128 16 15,876 104 3,198 58

TABLE 7
MAC evaluation of Accelerometer firmware size = 419 bytes.

MAC Digest size (bits) Byte in digest Clock Cycles Cycle per message byte Code size (bytes) Internal state size (bytes)
BLAKE2s-256 256 32 183,230 437 4,964 238
BLAKE2s-128 128 16 181,470 433 4,961 238
HWAES-GMAC 128 16 1,106,538 2,641 3,538 268
HWAES-CMAC 128 16 37,041 88 3,198 58

Command MemBank WordPtr WordCount RN CRC

Command RFU SenRep IncRepLen Length RN CRCCommand MemBank WordPtr WordCount Data

Data

SecureComm Headers

000011010101

Inner (encrypted) BlockWrite

11000111 11

BlockWrite

SecureComm

Fig. 13. SecureComm command encoding. SecureComm specification is defined to encapsulate an encrypted command. Instead of encrypting the
entire inner BlockWrite command, we encrypt the data field and restrict the WordPtr to only allow writing to the Download Area.

Command RFU SenRep IncRepLen CSI Length Message RN CRC

0000011010101 null

Command MemBank WordPtr WordCount Data RN CRC

13
(Authenticate)

0011000111

Authenticate

BlockWrite

Fig. 14. Authenticate command encoding. We use MemBank = 0 (Reserved) in the BlockWrite command to indicate that the message is not
a regular BlockWrite and WordPtr = 3 to indicate that the command should be processed as an Authenticate command. The 8-bit CSI field
is placed in the 16-bit Data field of the BlockWrite command, and the RN and CRC fields are as specified for the BlockWrite command.

the host running the SecuCode App as it reduces the reader-
to-host communication overhead by allowing the reader to
send the next BlockWrite as soon as an ACK is received.

APPENDIX E
EXPERIMENTAL METHODS

We devised a simple method to evaluate the success rate. We
used the ratio of the number of occurrences of backscatter
events immediately after a cold start for a fixed number of
cold-start attempts as the success rate. Each cold start attempt
was realized with an RFID reader interrogation signal; i.e.
conducting an inventory round using an RFID reader. In
order to mitigate the possible network delays in using
a networked RFID reader connected to host machine to
determine the delays, we employed two oscilloscope probes
directly connected to the CRFID device to measure reservoir
capacitor voltage and backscatter events to determine the
time at which the backscatter event is initiated as well as to
determine if the backscatter event immediately followed a
cold start.

In order to independently evaluate key derivation and
hash function execution, we created a second bootloader

instance where the physically obfuscated key derivation
code was replaced with the execution of a selected hash
function. This allowed us to use the same method described
to ascertain the success rate of the hash function execution
under wireless powering conditions.

The success rate and latency of both lightweight phys-
ically obfuscated key derivation method and hash func-
tion executions are evaluated using the experimental setup
shown in Fig.15. Two probes are connected to the CRFID
circuit board where the common ground (GND) is colored
in black in the figure. The backscatter signal probe lead is
colored in red, the regulated voltage (Vreg) is colored in
green. We define the time latency as the interval between
the Vreg reaching 2.0 V (t0) and the backscatter event (tb).
An operation is successful if a backscattering event occurs
before Vreg drops below 1.8 V—minimum operating voltage
of the MCU.

APPENDIX F
END-TO-END COMPARISON

3

Oscilloscope
WISP5.1LRG

reg

RFID Antenna

reg

Coaxial Cables

Experiment configuration

Probe connections

Laboratory setup

Oscilloscope capture

reg

Fig. 15. Experiment setup for measuring latency and success rate for PUF key derivation and MAC function executions.

We selected Wisent [12] as the non-secure protocol to
benchmark SecuCode against, because: i) Wisent focuses on
the dissemination of firmware, albeit non-secure, to a single
device, as we do; ii) both projects employ the the same CRID
device; and iii) Wisent code is publicly available. Notably, a
comparison of Wisent to Stork [14], capable of broadcasting
code to many CRFID devices, is found in [14] already.

It is difficult to make a direct comparison since the secure
and non-secure approaches have fundamentally different
goals and tradeoffs. For example: i) the write and check
method in Wisent vs. write all and validate method of
SecuCode; and ii) use of a custom bootloader in Wisent
vs. our bootloader design built on the MSPboot framework
of Texas Instruments for industry compliance. However,
to provide an understanding of the overhead the secure
method, we provide measurements for three performance
measures: i) mean latency to successfully transfer a given
firmware; ii) success rate; and iii) throughput (successful
firmware bytes written/time taken).

Both Wisent and SecuCode require a pre-installed boot-
loader which includes the WISP 5 base firmware (5600 to
5700 bytes). The Wisent bootloader requires an additional
608 bytes of code memory, while the SecuCode bootloader
requires 6024 bytes of code memory as a consequence of
additional security routines8. In Fig. E and in Fig. E, we
compare the end-to-end performance at three different oper-
ating distances. These results are obtained from evaluations
based on 100 repeated firmware update attempts. We used
two firmware sizes: i) Short (210 bytes); and ii) Long (376
bytes).

SecuCode and Wisent configure the reader to trans-
mit the same BlockWrite multiple times to increase
BlockWrite success rate without the overhead of checking
the result on the host. In addition Wisent includes a check-
sum for each block, if the checksum does not match then
Wisent re-sends the block. Notably, SecuCode only checks
that the BlockWrite command was ACKed by the tag.

Wisent is able achieve 100% success rate at 20 cm and 40

8. These values are dependent on optimization settings/compiler
versions and are only approximate.

cm, however the overhead of the per-block checksum and
message header decreases the throughput. SecuCode only
validates data integrity once the firmware has been com-
pletely transmitted; and refusing the firmware update if the
integrity check fails. Further, any power loss event causes
SecuCode to enter into a new firmware update sessions.
Consequently, the success rate for SecuCode varies between
73% and 89% and depends on firmware size. However, com-
pared to Wisent, SecuCode has better throughput. Notably,
Wisent attained only one successful firmware update out of
100 trails at 60 cm and the update took 178.1 seconds to
complete with a resulting throughput 1.18 byte per second.
While SecuCode ceased to complete the firmware update
successfully at 60 cm due to brownout.

4

0

5

10

15

20

20cm 40cm 60cm

0

25

50

75

100X
+

X X X

X X

Wisent

+
+

+

+ +

SecuCode

Distance

La
te

n
cy

 (
s)

Su
cc

e
ss

 R
at

e
(%

)

X X + +

...

Short Long Short Long
Latency

Success Rate

Firmware
Protocol

...

178.1 s

Fig. 16. Comparing latency and success rate of SecuCode and Wisent [12].

Distance

Th
ro

u
gh

p
u

t
(b

yt
e/

s)

0

50

100

150

20cm 40cm 60cm

Wisent SecuCode
Short Long PilotShort Long

Fig. 17. Comparing the throughput of SecuCode and Wisent [12].

	1 Introduction
	1.1 Problem
	1.2 Contributions

	2 Background
	2.1 An Overview of CRFID System Protocols
	2.2 Physically Obfuscated Key Derivation
	2.2.1 Physical Unclonable Functions
	2.2.2 Reverse Fuzzy Extractor

	3 SecuCode: Protocol Design
	3.1 Notations
	3.2 Adversary Model
	3.3 SecuCode Protocol
	3.3.1 Lightweight Physically Obfuscated Key Derivation
	3.3.2 Firmware Update

	4 Implementation
	4.1 Protocol Control-Flow on a Transponder
	4.2 Random Number Generator
	4.3 Lightweight Physically Obfuscated Key Derivation
	4.3.1 Enhancing Reliability
	4.3.2 De-biasing
	4.3.3 On-chip meta-data storage structure

	4.4 Message Authentication Code
	4.5 Intermittent Execution Model
	4.6 End-to-end Implementation

	5 Experimental Results and Analysis
	5.1 Physically Obfuscated Key Derivation
	5.2 SecuCode Implementation Footprint
	5.3 SecuCode Overhead and IEM Settings
	5.3.1 Physically obfuscated key derivation
	5.3.2 MAC Computation
	5.3.3 SecuCode Case Study

	5.4 Summary
	5.5 Security Analysis

	6 Related Work and Discussion
	6.1 In-application behavior modification
	6.2 Wireless code dissemination

	7 Conclusion
	References
	Biographies
	Yang Su
	Yansong Gao
	Michael Chesser
	Omid Kavehei
	Alanson Sample
	Damith C. Ranasinghe

	Appendix A: Random Number Generator Comparison
	Appendix B: SRAM PUF Pre-selection Efficiency
	Appendix C: MAC function evaluations
	Appendix D: EPC Global C1G2v2 command encoding
	Appendix E: Experimental Methods
	Appendix F: End-to-end Comparison

