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Abstract—The vigorous development of e-commerce breeds cybercrime. Online payment fraud detection, a challenge faced by online

service, plays an important role in rapidly evolving e-commerce. Behavior-basedmethods are recognized as a promisingmethod for online

payment fraud detection. However, it is a big challenge to build high-resolution behavioral models by using low-quality behavioral data.

In this work, wemainly address this problem from data enhancement for behavioral modeling.We extract fine-grained co-occurrence

relationships of transactional attributes by using a knowledge graph. Furthermore, we adopt the heterogeneous network embedding to

learn and improve representing comprehensive relationships. Particularly, we explore customized networkembedding schemes for

different types of behavioral models, such as the population-level models, individual-level models, and generalized-agent-based

models. The performance gain of our method is validated by the experiments over the real dataset from a commercial bank. It can help

representative behavioral models improve significantly the performance of online banking payment fraud detection. To the best of our

knowledge, this is the first work to realize data enhancement for diversified behavior models by implementing network embedding

algorithms on attribute-level co-occurrence relationships.

Index Terms—Online payment services, fraud detection, network embedding, user behavioral modeling

Ç

1 INTRODUCTION

ONLINE payment services have penetrated into people’s
lives. The increased convenience, though, comes with

inherent security risks [1]. The cybercrime involving online
payment services often has the characteristics of diversifica-
tion, specialization, industrialization, concealment, scenario,
and cross-region, which makes the security prevention and
control of online payment extremely challenging [2]. There is
an urgent need for realizing effective and comprehensive
online payment fraud detection.

The behavior-based method is recognized as an effective
paradigm for online payment fraud detection [3]. Generally,
its advantages can be summarized as follows: First, behav-
ior-based methods adopt the non-intrusion detection
scheme to guarantee the user experience without user oper-
ation in the implementation process. Second, it changes the
fraud detection pattern from one-time to continuous and
can verify each transaction. Third, even if the fraudster imi-
tates the daily operation habits of the victim, the fraudster
must deviate from the user behavior to gain the benefit of
the victim. The deviation can be detected by behavior-based
methods. Finally, this behavior-based method can be used

cooperatively as a second security line, rather than replac-
ing with other types of detection methods.

However, the effectiveness of behavior-based methods
often depends heavily on the sufficiency of user behavioral
data [4]. As a matter of fact, user behavioral data that can be
used for online payment fraud detection are often low-quality
or restricted due to the difficulty of data collection and user
privacy requirements [5]. In a word, the main challenge here
is to build a high-performance behavioral model by using
low-quality behavioral data. Then, this challenging problem
can naturally be solved in two ways: data enhancement and
model enhancement.

For behavioral model enhancement, a widely recognized
way is to build models from different aspects and integrate
them appropriately. For model classifications, one type is
based on the behavioral agent since it is a critical factor of
behavioral models. According to the granularity of agents,
behavioral models can be further divided into the individual-
level models [6], [7], [8], [9] and population-level models [10],
[11], [12], [13].

In this work, we focus on the other way, i.e., behav-
ioral data enhancement. As for this way, a basic princi-
ple is to deeply explore relationships underlying the
transaction data. The more fine-grained correlations can
possibly provide richer semantic information for generat-
ing high- performance behavioral models. Existing stud-
ies in data enhancement for behavioral modeling mainly
focus on mining and modelling the correlations (includ-
ing co-occurrences) between behavioral features and
labels [14]. To further improve data enhancement, a nat-
ural idea is to investigate and utilize the more fine-grained
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correlations in behavioral data, e.g., ones among behavioral
attributes.

As themain contribution of ourwork, we aim to effectively
model the co-occurrences among transactional attributes for
high-performance behavioral models. For this purpose, we
propose to adopt the heterogeneous relation network, a spe-
cial form of the knowledge graph [15], to represent the co-
occurrences effectively. Here, a network node (or say an
entity) corresponds to an attribute value in transactions, and
an edge corresponds to a heterogeneous association between
different attribute values. Although the relation network can
express the data more appropriately, it cannot finally solve
the data imperfection problem for behavioral modeling, that
is, it has no effect on enhancing the original low-quality data.

An effective data representation preserving these compre-
hensive relationships can act as an important mean of rela-
tional data enhancement. To this end, we introduce network
representation learning (NRL), which effectively capture
deep relationships [16]. Deep relationships make up for low-
quality data in fraud detection and improve the performance
of fraud detection models. By calculating the similarity
between embedding vectors, more potential relationships
could be inferred. It partly solves the data imperfection prob-
lem. In addition to data enhancement, NRL transforms the
traditional network analysis from the artificially defined fea-
ture to the automatic learned feature, which extracts deep
relationships from numerous transactions.

The final performance of behavioral modeling for online
fraud detection directly depends on the harmonious coopera-
tion of data enhancement and model enhancement. Different
types of behavioral models need matching network embed-
ding schemes to achieve excellent performance. This is one of
the significant technical problems in our work. We aim to
investigate the appropriate network embedding schemes for
population-level models, individual-level models, and mod-
els with different generalized behavioral agents. More specif-
ically, for population-level models, we design a label-free
heterogeneous network to reconstruct online transactions
and then feed the features generated in embedding space
into the state-of-the-art classifiers based on machine learning
to predict fraud risks; while, for individual-level models, we
turn to a label-aware heterogeneous network that distin-
guishes the relations between attributes of fraudulent trans-
action, and further design multiple naive individual-level
models that match the representations generated from the
label-aware network. Furthermore, we combine the popula-
tion-level and individual-level models to realize the comple-
mentary effects by overcoming each other’s weaknesses.

The main contributions can be summarized as follows:

� We propose a novel effective data enhancement
scheme for behavioral modeling by representing and
mining more fine-grained attribute-level co-occur-
rences. We adopt the heterogeneous relation net-
works to represent the attribute-level co-occurrences,
and extract those relationships by heterogeneous net-
work embedding algorithms in depth.

� We devise a unified interface between network
embedding algorithms and behavioral models by
customizing the preserved relationship networks
according to the classification of behavioral models.

� We implement the proposed methods on a real-
world online banking payment service scenario. It is
validated that our methods significantly outperform
the state-of-the-art classifiers in terms of a set of rep-
resentative metrics in online fraud detection.

The rest of this paper is organized as follows. We provide
a literature review in Section 2. Section 3 gives an overview
of our solution. Then, we present our method in detail in
Section 4 and make the validation in Section 5. Finally, we
conclude the paper and envisage future work in Section 6.

2 RELATED WORK

With the rapid development of online payment service,
fraud in online transactions is emerging in an endless stream.
Detecting fraud by behavioral models has become a widely
studied area and attractedmany researchers’ attention.

2.1 Composite Behavioral Modeling

In this section, we briefly review different behavior-based
fraud detection methods according to the types of behav-
ioral agents [5], [17], [18].

2.1.1 Individual-Level Model

Many researchers concentrated on individual-level behav-
ioral models to detect abnormal behavior which is quite dif-
ferent from individual historical behavior. These works
paid attention to user behavior which was almost impossi-
ble to forge at the terminal, or focused on user online busi-
ness behavior which had some different behavioral patterns
from normal ones.

Vedran et al. [19] explored the complex interaction
between social and geospatial behavior and demonstrated
that social behavior could be predicted with high precision.
Yin et al. [4] proposed a probabilistic generative model com-
bining use spatiotemporal data and semantic information to
predict user behavior. Naini et al. [7] studied the task of iden-
tifying the users by matching the histograms of their data in
the anonymous datasetwith the histograms from the original
dataset. Egele et al. [8] proposed a behavior-based method to
identify compromises of high-profile accounts. Ruan et al. [3]
conducted a study on online user behavior by collecting
and analyzing user clickstreams of a well known OSN.
Rzecki et al. [20] designed a data acquisition system to ana-
lyze the execution of single-finger gestures on a mobile
device screen and indicated the best classification method
for person recognition based on proposed surveys. Alzu-
baidi et al. [9] investigated the representative methods for
user authentication on smartphone devices in smartphone
authentication including seven types of behavioral biomet-
rics, which are handwaving, gait, touchscreen, keystroke,
voice, signature and general profiling.

2.1.2 Population-Level Model

These works mainly detected anomalous behaviors at the
population-level that are strongly different from other behav-
iors, while they did not consider that the individual-level
coherence of user behavioral patterns can be utilized to detect
online identity thieves. Mazzawi et al. [10] presented a novel
approach for detecting malicious user activity in databases by
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checking user’s self-consistency and global-consistency. Lee
and Kim [21] proposed a suspicious URL detection system to
recognize user anomalous behaviors on Twitter. Cao et al. [11]
designed and implemented amalicious account detection sys-
tem for detecting both fake and compromised real user
accounts. Zhou et al. [12] proposed an FRUI algorithm to
match users among multiple OSNs. Stringhini et al. [22]
designed a system named EVILCOHORT, which can detect
malicious accounts on any online service with the mapping
between an online account and an IP address. Meng et al. [23]
presented a static sentence-level attention model for text-
based speaker change detection by formulating it as a match-
ing problem of utterances before and after a certain decision
point. Rawat et al. [24] proposed three methodologies to cope
upwith suspicious and anomalous activities, such as continu-
ous creation of fake user accounts, hacking of accounts and
other illegitimate acts in social networks. VanDam et al. [25]
focused on studying compromised accounts in Twitter to
understandwhowere hackers, what type of content did hack-
ers tweet, and what features could help distinguish between
compromised tweets and normal tweets. They also showed
that extra meta-information could help improve the detection
of compromised accounts.

2.2 Customized Data Enhancement

To enhance the representation of data in behavioral models,
the researchers have focused on the deep relationships
under the data. In the following, we summarize the related
literature on previous researches.

Zhao et al. [26] proposed a semi-supervised network
embeddingmodel by adopting graph convolutional network
that is capable of capturing both local and global structure of
protein-protein interactions network even there is no any
information associatedwith each vertex. Li et al. [27] incorpo-
rated word semantic relations in the latent topic learning by
the word embedding method to solve that the Dirichlet Mul-
tinomial Mixture model does not have access to background
knowledge when modelling short texts. Baqueri et al. [28]
presented a framework tomodel residentsa�travel and activi-
ties outside the study area as part of the complete activity-
travel schedule by introducing the external travel to address
the distorted travel patterns. Chen et al. [29] proposed a col-
laborative and adversarial network (CAN), which explicitly
models the common features between two sentences for
enhancing sentence similarity modeling. Catolino et al. [30]
devised and evaluated the performance of a new change pre-
diction model that further exploit developer-related factors
(e.g., number of developers working on a class) as predictors
of change-proneness of classes. Liu et al. [31] proposed a
novel method for disaggregating the coarse-scale values of
the group-level features in the nested data to overcome the
limitation in terms of their predictive performance, espe-
cially the difficulty in identifying potential cross-scale inter-
actions between the local and group-level features when
applied to datasets with limited training examples.

3 OVERVIEW OF OUR SOLUTION

We focus on the fraud detection issue in a typical pattern of
online payment services, i.e., online Business-to-Customer

(B2C) payment transactions. Here, to acquire the victim’s
money, frauds usually differ from the victim’s daily behav-
ior. This is the fundamental assumption of the feasibility of
behavior-based fraud detection. Based on this assumption,
the research community is committed to designing behav-
ioral models to effectively distinguish the difference in
terms of behavioral patterns. The main challenge of this
problem is to build a high-quality behavioral model by
using low-quality behavioral data. Naturally, from both
aspects, there are two corresponding ways to solve this
problem: data enhancement and model enhancement.

In this work, we aim at devising the corresponding data
enhancement schemes for the state-of-the-art behavior mod-
els that act as the well-recognized approaches of model
enhancement [14]. More specifically, to realize data enhance-
ment for behavioral modeling effectively, we adopt the
relation graph and heterogeneous network embedding tech-
niques to represent and mine more fine-grained co-occur-
rences among transactional attributes. Then, based on the
enhanced data, the corresponding behavioral models (or
enhanced behavioralmodels) can be adopted to realize fraud
detection. Thereout, as illustrated in Fig. 2, the whole flow of
the data-driven fraud detection system consists of three
main parts: data representation, data enhancement and
model data enhancement.

Before describing the detailed methods, we summa-
rize the relevant conceptions and notations in Table 1 as
preparations.

3.1 Data Representation

Online payment transaction records are usually relational
data that consist of multiple entities representing the attrib-
utes in transactions. We employ a relation graph, which
express the data more appropriately in online payment
services, to reconstruct losslessly transaction record data,
including B2C and C2C transactions.

Lossless Native Graph. Every attribute of a transaction is
regarded as the entity. For each transaction, we establish
the relationships between each entity and its identifier,
e.g., the transaction number. Furthermore, we attach each
identifier a label to denote whether this transaction is
fraudulent or normal. According to the property of trans-
actions, the set of transactions, denoted by T , can be
divided into two disjointed subsets, i.e., the normal and
fraudulent transaction sets, denoted by T 0 and T 1. Since
an entity may appear in different transactions, we use the
co-occurrence relationship to further connect the graphs
formed by different transactions. Naturally, we call this
graph formed by relational data a native graph, as illus-
trated in the left part of Fig. 1.

Note that the data reconstruction by relation graph
merely acts as the initialization of our data enhancement
scheme, while it has no real effect on solving the insuffi-
ciency of behavioral data. The so-called data insufficiency
for behavioral modeling means that, for a given behavioral
agent, the existing data are not sufficient to reflect the
behavior pattern of this agent. For example, when some
accounts with low-frequency behavioral records are
regarded as the behavioral agents, their existing behavioral
data are possibly too sparse to effectively serve as a data
basis for behavioral modeling.
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3.2 Data Enhancement

In this work, we utilize network embedding techniques [16]
to realize the data enhancement for behavioral modeling.
Network embedding is outstanding in solving graph related
problems and effectively mines deep relationships. Then,
the network structure to be preserved should be determined
before a network embedding operation is launched. The
network embedding that preserves the network structure of
native graph cannot directly help behavioral modeling for
online payment fraud detection. The reasons can be summa-
rized as follows:

(1) Under the real-time requirement of online payment
fraud detection, it is intolerable to perform network
embedding operation for every new transaction due
to the response latency lead by large computing
overhead. Thus, the uniqueness of transaction num-
ber (i.e., identifier) directly destroys the possibility of
adopting network embedding online.

(2) There is no need to embed the identifier, say the
transaction number, into the vector space, since it’s
not a valid feature to represent user behavioral pat-
terns. We are interested in the co-occurrence rela-
tionships among different behavioral entities rather
than the relationship between a unique identifier
and its entities.

Therefore, we need generate a new derivative network of
transaction attributes based on the native graph, preparing
for the network embedding.

Customized Derivative Networks. In the data we collected,
there are both B2C and C2C transactions. The proportion of
frauds in C2C transactions is infinitesimal to that in B2C
transactions [32]. Moreover, the mechanism of C2C fraud
transactions is essentially different from that of B2C ones
[33]. Thus, we limit the scope of this work into online B2C
fraudulent transaction detection. We utilize C2C transac-
tions as supplementary (not necessary) information for
extracting the relationships among behavioral agents of
B2C transactions, i.e., account numbers, from the native
graph. Then, we adopt different methods to handle B2C
and C2C transactions in the native graph:

(1) For B2C transactions, we define two different verti-
ces, say u and v, that originally connect the same
unique identifier as a vertex pair, and view it as an
edge e ¼ ðu; vÞ. For example, a B2C transaction with
m attributes has mþ 1 vertices and m edges in the
native graph, while it correspondingly hasm vertices
andmðm� 1Þ=2 edges on the derivative network.

Fig. 1. An exemplary procedure from the native graph (left) to derivative
network (right), where B2C transaction contains 8 attributes and C2C
transaction contains 3 attributes.

TABLE 1
Notations of Parameters

Variable Description

T The set of transaction history records.
T 1 The set of fraudulent transaction history records.
T 0 The set of normal transaction history records.

T B The set of B2C transaction history records.
T C The set of C2C transaction history records.
ti A transaction with unique identifier i.
attrji A jth attribute of the transactionwith unique

identifier i.
’Pð�Þ The representationmapping function about the

label-free network.
’Ið�Þ The representation mapping function about the

label-aware network.
simð~X; ~Y Þ The similarity between vectors ~X and ~Y .
Ia
u The set of all identifiers involving with the agent gau.

Pgau The behavioral model with the agent gau.

raðiÞ The judgment of the a-type agent model on the
transaction with unique identifier i.

Fig. 2. Workflow of the fraud detection system.
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(2) For C2C transactions, we only choose a special attri-
bute pair that has at least one attribute appearing in
B2C transaction records as vertex, e.g., the pair of
account number and account number, and use other
attributes of their transactions to weight the edges
between the special attribute pair. We will analyze
the impact of C2C transactions on the model
and show the gains from C2C transactions in
Section 5.3.1.

We refer to such a denser network generated from the
native graph as a derivative network. An exemplar illustration
is provided in Fig. 1.

The specific structure of derivative networks depends on
the data requirements of specific behavioral models. We
also have tried to assign different derivative network struc-
ture. From the complete graph to the minimum connected
graph, we attempt to only consider the node pairs associ-
ated with account_number as edges. The results turn out to
be a great poorer than the complete graph structure, and we
analyze that special attribute, like account_number, may do
not necessarily play a decisive role. So we adopt a complete
graph structure including arbitrary node pairs in the
derivative network, and computed the similarity between
all node pairs.

Heterogeneous Network Embedding. The specific vector
spaces corresponding to the derivative networks are learned
by heterogeneous network embedding algorithms [34], [35],
[36], [37], [38]. For the behavioral models, we obtain the
mapping functions from vertices to vectors in specific vector
spaces, denoted by ’ð�Þ. To infer more potential relation-
ships, we calculate the metric simð~X; ~Y Þ as features for each
transaction, where the vectors ~X; ~Y stem from ’ð�Þ.

3.3 Model Enhancement

In this work, we classify user behavioral models into two
kinds according to the granularity of behavioral agents, i.e.,
the population-level model [13] and individual-level model [6].
Accordingly, we establish the population-level model and
individual-level model based on the customized derivative
network, respectively:

Population-Level Models. The population-level models
identify the fraud by detecting the population-level behav-
ioral anomalies, e.g., behavioral outlier detection [39] and
misuse detection [40]. The classifiers based on behavioral
data can act as this type of models. For data enhancement
for them, we need only data refactoring for classifiers by
preserving the co-occurrence frequency of behavioral attrib-
utes. To this end, we generate a derivative network where
the vertices are transaction attributes and the edges with
weights represent the co-occurrence frequency, taking no
account of transaction labels. We say such a derivative net-
work is label-free. Transaction labels just come into play in
the training process of models. By embedding the label-free
network, we get the mapping relationship ’Pð�Þ. Then, we
feed the features based on ’Pð�Þ into the machine learning
based classifiers [41].

Individual-Level Models. The individual-level models iden-
tify the fraud by detecting the behavioral anomalies of indi-
viduals. They are regarded as a promising paradigm of fraud
detection. The efficacy heavily depends on the sufficiency of
behavioral data. To build the individual-level regular/normal

behavioral models, we need represent the regularity and nor-
mality of transaction behavioral data. Then, we should take
the labels into account when generating the derivative net-
work. We extract positive relationships generated from T 0

and negative relationships generated from T 1. The positive
relationship enhances the correlation between the agents
involved,while the negative relationshipweakens the correla-
tion. We say such a derivative network is label-aware. By
applying the network embedding method to the label-aware
network, we get the mapping relationship ’Ið�Þ. Further, we
establish the individual-level models of probability in view of
’Ið�Þ [42].

Composite Behavioral Models. Learning from different
aspects model can lead to more reliable results. We adopt a
union approach to reconcile the judgments from different
individual models to improve reliability [43]. At the popula-
tion-level and individual-level, we utilize the intersection to
integrate judgments. That is, the fraud is determined only if
the judgments of both models are fraudulent. Our fraud
detection model consists of two levels of models and plays
a complementary role.

After employing the composite behavioral models, a
coming B2C transaction can be transformed into the high-
quality feature based on the learned vectors, and further be
predicted as either fraudulent or normal.

4 METHOD

4.1 Graph Representation of Transaction Records

First of all, our method needs to represent transactional data
in the form of a heterogeneous information network, and
applies the attribute vectors to subsequent tasks. These attri-
bute vectors are obtained from heterogeneous network
embedding in transactions. Next, we present the process of
generating heterogeneous native graph.

Denote a set of transaction history records

T ¼ T B [ T C;

where T B and T C represent the set of B2C and C2C transac-
tion history records, respectively. Let ti 2 T denote a trans-
action, where i is the unique identifier of ti. Transactions are
characterized by a sequence of attributes. We denote the jth
attribute of a transaction ti as attr

j
i . Usually, some attributes

have consecutive values, we need to discretize these values
and then naturally build a native graph based on the unique
identifier of transactions. We choose the value of attributes
and unique identifiers as vertices on the native graph. The
pair of ði; attrjiÞ appearing in a transaction is defined as the
edge in the native graph.

In this work, we execute our method on an online banking
payment datasetwhere a B2C transaction contains 8 attributes
and a C2C transaction contains 3 attributes. To reconstruct the
data losslessly, we build a native graph as illustrated in the
left of Fig. 1. Here, an attribute value appears in multiple dif-
ferent transactions, leaving only one vertex in the native
graph. Recall that we attach each identifier a label (0 or 1) to
divide all transaction history records into two disjointed sub-
sets, i.e., the normal and fraudulent transaction sets, denoted
by T 0 and T 1, respectively.
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4.2 Network Embedding

4.2.1 Derivative Network

A heterogeneous information network that reflects the
impact of transaction labels is what our model needs. We
focus on treating the relationships generating from normal
transactions or fraudulent transactions unequally in popula-
tion-level and individual-level models. For the population-
level model which learns the difference between normal
and fraudulent transactions from all transactions, we only
represent the transactions and leave the task of identifying
labels to the model. For the individual-level model which
establishes user behavioral patterns by normal transactions,
it is necessary to embody the label of transaction in the
derivative network. For that we set two hyperparameters, b
and g, for fraudulent transactions to distinguish other trans-
actions, and formulate a weight we of an edge e as

weðb; gÞ ¼
X
e!T 0

"e þ
X
e!T 1

ð�gÞb � "e; (1)

where the operator!means that a given edge in a derivative
network corresponds to the relation between two attributes
of the transactions in a specific transaction set; and "e > 0 is
the primary weight of edge e depending on its type: When
e ! T 0, the weight of e is equal to "e > 0, when e ! T 1, and
the weight of e is equal to ð�gÞb � "e with g � 0 and
b ¼ 0 or 1 cooperatively acting as the adjustment coefficient.

A larger weight of an edge indicates that its two vertices
(corresponding to two transaction attributes) are more
closely relevant. In this work, we simply divide the edges
into two kinds according to whether or not the edges are
directly relevant to account numbers. We set the primary
weights of the latter kind of edges by a proportion of those
of the former kind. For example, we set this proportion to
be 0.55, whose adjustment procedure will be introduced
later in Section 5.2.1.

We follow two principles in the process of constructing
derivative networks. The principle of relationship extrac-
tion, as in Equation (1), is that the more co-occurrences in
T 0, the greater weights of edges. The other one is to remove
corresponding vertices of transactional unique identifier on
native graph. For the transactions in T C, we retain the
attributes of transactional account number which appeared
in T B on the derivative network. For e ! T C, e merely con-
tains one type (account number, account number), and
other attributes are defined as the influence factor of the
edge’s weight. In the B2C scenario, we retain all other attrib-
utes except the unique identifier, and then define two differ-
ent vertices that connect the same unique identifier in the
native graph as a vertex pair, and view it as an edge in
derivative networks.

In the above description, we find that the weights of
edges generate a marked disproportion due to using the
summation in large datasets. For instance, the weight of an
edge is small between an account number and a transac-
tional time when there are very few transactions related to
the account number in a dataset. But the weight of an edge
is tremendous between the transactional type and transac-
tional time because it can appear in transactions with vari-
ous account numbers. This huge gap is not conducive to
reflect real relationships of different vertices in reality. We

introduce a mapping function to smooth the gap in the
weights of edges, and map the weight w to an interval [0,1],
that is

SðweÞ ¼
1

1þ expð� lnða� weÞ þ uÞ ; (2)

where the parameters a and u are important to change the
weight, and control how fast the gap reduces; the parameter
a controls the changing degree of weights; the parameter u
also controls the changing degree of weights, but it plays an
important role when w is relatively large. We set a to be a
low value in order to ensure that the ratio of two edges’
weight becomes smaller, and set u to be a high value for
ensuring that the ratio of two edges’ weight keeps as con-
stant as possible when w is relatively small.

In the dataset adopted in our work, we set a to 1.8 and u

to 5, whose adjustment procedures will be introduced later
in Section 5.2.1. This strategy encourages the gap moder-
ately reduces when the weight w is tremendous and the gap
changes as little as possible when it is a small value.

4.2.2 Heterogeneous Network Embedding

Heterogeneous network embedding is a specific kind of net-
work embedding. To transform networks from network
structure to vector space, the commonly usedmodels mainly
include random walk [34], matrix factorization [16], and
deep neural networks [37].

We use a well-recognized heterogeneous network embed-
ding algorithm called HIN2Vec [35] to represent the deriva-
tive networks. Compared with other similar algorithms,
HIN2Vec distinguishes the different relationships among
vertices, and treats them differently by learning the relation-
ship vectors together. Besides, it does not rely on artificially
defined meta-paths. The parameter settings in HIN2Vec
affect the representation learning and application perfor-
mance. We explain some main parameters in Table 2, which
shows the parameters of our experiments for reference. Note
that the settings are related to the size of the input network.
A small dimensionality is not sufficient to capture the infor-
mation embedded in relationships among nodes, but a large
value may lead to noises and cause overfitting. A larger net-
work might need a larger dimensionality to capture the
information embedded. The number and length of random
walks determine the number of sample data, that is, the
greater the value, the more the sample data. Generally,
the performance continues to improve and converge
when the values are large enough. Though a large length of

TABLE 2
Main Parameters

Attribute Value Explanation

Dimensionality 128 Dimensionality of node vectors.
Number of random walks 160 Number of randomwalks

starting from each node.
Length of random walks 10 Max length of each randomwalk.
Length of meta-paths 5 Max window length of context.
Negative sampling rate 5 Number of examples for

negative sampling.
Initial learning rate 0.025 Initial learning rate in stochastic

gradient descent.
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meta-path cannot possibly affect the performance signifi-
cantly, it is still helpful in capturing high-hop relationships.
The negative sampling rate determines the proportion of
negative samples in representation learning.

4.3 Fraud Detection Models

4.3.1 Fraud Detection in Population-Level Model

A heterogeneous information network that fully reflects all
transactions contains all the edges and vertices that have
appeared in the native graph. We treat the co-occurrence
relationships generated from T 0 or T 1 equally by setting
g ¼ 1 and b ¼ 0, that is, free to transactional label. In the
population-level model, we need draw a lesson from fraud-
ulent transactions, and learn the manifestations of fraudu-
lent and normal transactions by advanced classifiers. So we
select the label-free network as the input of the heteroge-
neous network embedding method. Then we get a mapping
function ’Pð�Þ, which is the vector representation of attrib-
utes in transactions. For an attribute attrji , ’

PðattrjiÞ is the
representation in vector space from the label-free network.

In the simplest case, we replace the attribute with a vector
representation in a transaction. Then a transaction with m
attributes is represented as a matrix of size d�m, where d is
the dimension size of the vector representation. But we
observe that this solution does not work well and takes up
plenty of computing and storage resources. What we need
are the features that can summarize a bunch of transactions,
so the features should be shared in similar transactions. To
this end, we choose to calculate the similarity of any two vec-
tor representations as new features based on the above
matrix. Specifically, we can get mðm� 1Þ=2 similarities to
represent a transaction record. The procedure of computing
the similarity is formalized as follows: Given a transaction
with m attributes and unique identifier i, ’Pðattr1i Þ;’P

ðattr2i Þ; . . . ;’Pðattrmi Þ, for ’Pð�Þ represents a d-dimensional
vector, for ’PðattrjiÞ;’Pðattrki Þwe have

simð~X; ~Y Þ ¼
Pm

s¼1ðxs � ysÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
s¼1 x

2
s

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
s¼1 y

2
s

p ; (3)

by using the Cosine similarity, where ~X; ~Y respectively rep-
resent ’PðattrjiÞ;’Pðattrki Þ and xs; ys respectively represent
the value on the sth dimension of the vector ~X; ~Y . The Cosine
similarity pays more attention to the difference between two
vectors in direction and is not sensitive in numerical value.
The population-level model fits well with the Cosine similar-
ity since it focuses on the tendency of most individuals. To
better represent a transaction, we also calculate similarities’
average and variance. We denote sim avgðiÞ; sim varðiÞ as
the average and variance of a transaction with unique identi-
fier i. For a transaction without missing values, they are cal-
culated as follows:

sim avgðiÞ ¼ 2

mðm� 1Þ
Xm�1

j¼1

Xm
k¼iþ1

simð’PðattrjiÞ;’Pðattrki ÞÞ;

sim varðiÞ ¼ 2

mðm� 1Þ
Xm�1

j¼1

Xm
k¼iþ1

vði; j; kÞ; (4)

where

vði; j; kÞ ¼ simð’PðattrjiÞ;’Pðattrki ÞÞ � sim avgðiÞ
� �2

:

In reality, a transaction may have some missing values, we
also consider its similarity as missing values. When calculat-
ing the average and variance, we do not consider the items
corresponding to those missing values. In this work, we
design the cosine similarity between vectors and their aver-
age and variance as new features. All the new features can
be quickly calculated, thus ensuring that our model can eas-
ily complete feature transformation based on network
embedding.

In the real online payment scenario, we divide training
samples and testing samples in time order to avoid time-
crossing problems [44]. Time-crossing means using some
information that has not yet occurred when a transaction is
tested. We use all the data from the training samples to build
a label-free network, and get the mapping function ’Pð�Þ by
heterogeneous network embedding. Then we complete fea-
ture transformation on all data, training and testing samples,
based on mapping function ’Pð�Þ. We get the population-
level model by fitting training samples on existing classifiers,
e.g., XGBoost. For an incoming transaction or testing sam-
ples, we input them into the population-level model after
feature engineering, and make a discriminant prediction to
obtain the probability of fraud in the transaction.

4.3.2 Fraud Detection in Individual-Level Models

In the individual-level model, the derivative network needs
to reflect the behavioral distribution of all normal transac-
tions without wasting information brought by fraudulent
transactions. Our idea is that the information on normal
transactions enhances the association of attribute vertices
in the derivative network. On the contrary, the information
brought by fraudulent transactions weakens its connection.
Therefore, we stipulate that an edge has a positive weight
value when it is generated from T 0, and an edge has a nega-
tive weight value when the relationship occurs in T 1 by set-
ting g ¼ 1 and b ¼ 1. The strategy effectively utilizes label
information, which is also the biggest difference from the
label-free network for the population-level models. In some
cases, the special relationship number in T 1 is much bigger
than ones in T 0, that causes the weight of some edges to
become negative or zero. Our solution is to remove these
edges in derivative networks. One reason is that these rela-
tionships reflected by edges are negligible in the behavioral
distribution of all normal transactions we want to get, when
the weight of an edge is negative or zero. The other reason
is, negative weights cannot be applied to the random walk
process of network embedding method we adopt. Similar to
the population-level model, we get a mapping function
’Ið�Þ, which is the vector representation of attributes in T .

Next, we discuss how to model behavioral models based
on network embedding. We denote the agent as the basic
unit in models, that is an agent is an individual and all trans-
actions sharing a common agent’s value reflect the agent’s
stable pattern. Taking our online transaction record as an
example, the attribute, account_number, is a common choice
as an agent. Under this agent, transactions are divided into
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different parts, so that all transactions in each part have the
same account number. We can detect anomalies by compar-
ing with behavioral models when we assume that an agent’s
behavioral pattern is stable. We discuss behavioral models
from the perspectives of single-agent and multi-agent,
respectively.

Single-Agent Behavioral Model. Similar to feature transfor-
mation on the population-level model, we choose to calcu-
late the similarity of any two vector representations based
on a size of d�m matrix, which is represented by a transac-
tion with m attributes. Here, d is the dimension size of vec-
tor ’Ið�Þ. One difference is that similarity is calculated
differently. Given vector ~X and ~Y , xs; ys respectively repre-
sent the value on the sth dimension of the vector ~X and ~Y .
We have

sim0ð~X; ~Y Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

s¼1
ðxs � ysÞ2

q
; (5)

by using the euclidean distance, which emphasizes the dif-
ference in numerical value and therefore appropriates to
characterize each individual. For the vectors ’IðattrjiÞ and
’Iðattrki Þ, we calculate the similarity sim0ð’IðattrjiÞ;’Iðattrki ÞÞ
according to Equation (5). We introduce cohesivity to express
the importance of a transaction in the behavioral model and
denote CðiÞ as the cohesivity of a transaction with unique
identifier i. The cohesivity CðiÞ can be computed in the fol-
lowing way:

CðiÞ ¼ 1

cm0þ
Pm�1

j¼1

Pm

k¼iþ1
cml�v0ði;j;kÞ

; (6)

where v0ði; j; kÞ ¼ sim0ð’IðattrjiÞ;’Iðattrki ÞÞ and l ¼ mðj�
1Þ þ k� 1. The value cml represents the lth value in the coef-
ficient matrix

cm0; cm1; cm2; . . . ; cmmðm�1Þ=2
� �

;

where cml, for l ¼ 0; 1; 2; . . . ;mðm� 1Þ=2, can be deter-
mined by adopting the method of linear regression. For all
samples without missing values, we calculate the similarity
as new features according to Equation (5), and then fit them
on linear regression to get the coefficient matrix. We can get
the regression coefficient and offset corresponding, corre-
sponding to cm1; cm2; . . . ; cmmðm�1Þ=2

� �
and cm0, respec-

tively. Denote an agent as gau, where a is the attribute type
corresponding to the agent, and u represents the value of
attribute a of the agent. Accordingly, we denote the set of
agents refer to a as Ga. Let Ia

u denote the set of all transac-
tional identifiers involving with gau. Furthermore, we define
Ia :¼

S
uIa

u. At this point, we formally denote the behav-
ioral model as follows. For a given agent gau 2 Ga, its behav-
ioral model is defined as Pgau

, which is a discrete probability
distribution function reflecting the normal transactional pat-
terns. For every possible transaction identifier i, we have its
corresponding probability pgauðiÞ of occurrence in Pgau .

The procedure of computing the corresponding probabil-
ity pgauðiÞ is formalized as follows:

pgauðiÞ ¼
sðCðiÞÞP

i
0 2Iau

sðCði0 ÞÞ ; (7)

where sðzÞ ¼ 1
1þexpðzÞ is the sigmoid function. In practice, the

size of Ia
u, denoted by jIa

uj, is dependent on the product of

the number of available values for all other attribute types

except the attribute of agent a. So our behavioral model is a

special case, discrete probability distribution, by calculating

the probability of each transaction in fraud detection. We

adopt the same method as the population-level model to
divide the training samples and test samples, and only use

the training samples to build the model.
For some u, jIa

uj is often a large value and the computa-
tional overhead of probability distribution will be unbear-
able. We use the clustering algorithm to overcome this
problem. For vectors referring to the same attribute type in
vector space, the vectors of the same cluster are represented
by cluster vectors, that is, similar vectors are treated as one
vector, which can quickly reduce the value of jIa

uj. In this
work, we choose the account number as the agent’s type. In
other words, we establish behavioral models for all account
number which appears in a label-aware network. We
observe that single-agent models based on account number
or other attributes are often hard to achieve an excellent per-
formance due to the absence of agents. An effective way to
solve the problem is modelling in multiple agents.

Multi-Agent Behavioral Model. To cope with insufficient or
missing historical transactions of the single agent, we prefer
to the models under different agents without acquiring
more complete and adequate historical transactions. This
part describes how we build the behavioral model to detect
a transaction better under multiple agents in case of insuffi-
cient transactions. Similar to the commonly-used agent, i.e.,
account number, some other attributes, e.g., merchant num-
ber and location number, can also act as the agents to build
behavioral models. Note that the value space of attribute
types that can act as agents should not be too small. That
will lead to a lack of advantage for the individual-level
behavioral model. Let A denote a set of attribute types that
can act as agents. For each attribute in A, we repeatedly
model the single-agent behavioral model and then add
those models to the final set F . We can detect the fraud
probability of a transaction under different agents with F .
The procedure of building multi-agent behavioral models is
described in Algorithm 1.

Algorithm 1. Building Multi-Agent Behavioral Models

Input: The set of attribute types A
Output: The set of multi-agent behavioral models F
1 Initialize F ;
2 foreach a 2 A do
3 foreach gau 2 Ga do
4 Initialize Pgau

;
5 foreach i 2 Ia

u do
6 Compute CðiÞ using Equation (6);
7 Compute pgauðiÞ using Equation (7);

8 Add i; pgauðiÞ into Pgau
;

9 end
10 Add Pgau

into F ;
11 end
12 end
13 Return the set of multi-agent behavioral models F
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We define the fraud detection problem in individual-level
behavioral models as follows: Given a transaction, its fraud
score rated by its corresponding probability in the single-
agent behavioral model determines whether the transaction
is fraud or not. This may include the following scenarios: (1)
the transaction provides complete information; (2) the trans-
action miss values in some attributes. For the former, we can
directly get its probability in behavioral models. Since all
attributes are required to calculate the fraud score of the
transaction in the behavior model, it is difficult to judge the
transaction with missing values. So in our model, we com-
pute the average possibility of all transactions, which are
related to existing attributes of the transaction with identifier
i, as the probability pgauðiÞ, and define the set of these transac-
tion identifiers as I 0

i. Then we get the behavioral model Pgau
corresponding to the agent pgauðiÞ, and denote the domain of
Pgau

as Pgau
. For a transaction identifier i, we get a new distri-

bution P
0
gau

by removing the I0
i from the domain of Pgau

, and
denote the domain of P

0
gau

as P0
gau
. Next, we calculate its score

scoregauðiÞ as described in Equation (8):

scoregauðiÞ ¼
pgau

ðiÞ�expð�Hgau
Þ

N0þ 1

jP0
gau

j
�
P

i
0 2P0

gau

pgau
ði0 Þ ; (8)

where

Hgau
¼ �

X
i2Pgau

pgauðiÞ � log 2pgauðiÞ; (9)

jP0
gau
j is the cardinality of P0

gau
, N0 is responsible for adjusting

the influence degree of transactions other than the transac-
tion ti in the behavioral model on the score. The larger N0

is, the lower the influence of other transactions on the score.
In our work, we setN0 ¼ 0.

We observe that there is a clear distinction between
fraudulent and normal transaction scores. For an attribute
type a 2 A, we set an interval Va and give the judgment
result according to Equation (10):

raðiÞ ¼ 1; scoregauðiÞ 2 Va

0; scoregauðiÞ =2 Va

�
: (10)

We denote fraudulent transactions by label 1 and normal
transactions by label 0. The upper and lower limits of the
interval Va depend on the scores distribution of training
samples.

4.3.3 Fraud Detection in Composite Models

A single-agent behavior model can only give a certain fraud
judgment. The normal judgment may not reliable due to the
release of transactions that cannot be checked. In this work,
we imitate the one-veto mechanism to synthesize the final
results returned by multi-agent models. That is only an
agent behavioral model returns a judgment marked as
fraud, the final result is marked fraud. This strategy ensures
that the multi-agent model is complementary enough to
capture as many fraudulent transactions as possible.

So far, we already have two different level ways to iden-
tify whether a transaction is fraudulent or not. These two
methods identify fraudulent transactions from different per-
spectives. Population-level models compare the similarity
between a transaction and the learned transactional patterns.

Individual-level models distinguish a transaction by con-
trasting the difference between its current and past patterns.
We compose these twomodels to further improve the perfor-
mance of ourmethods. The transaction is detected as fraudu-
lent transactions if and only if the result from both models
are judged as fraudulent transactions. The consistency of
judgment on fraudulent transactions reduces the probability
of misjudgment of normal transactions, and ensures that it
has better performance than a single-model, i.e., the popula-
tion model or individual model. For different performance
objectives, other combinations can be also tried, which will
be reserved for future research. The process of building a
fraud detectionmodel is described in Algorithm 2.

Algorithm 2. The Process of Fraud Detection

Input: The set of attribute types A, The set of transactional
identifiers I

Output: The set of judgment resultsR
1 InitializeR ¼ ;;
2 foreach i 2 I do
3 rðiÞ :¼ 0;
4 foreach a 2 A do
5 get raðiÞ using Equation (10);
6 rðiÞ :¼ rðiÞ _ raðiÞ;
7 end
8 get raðiÞ0 in Section 4.3.1;
9 rðiÞ :¼ rðiÞ ^ raðiÞ0;
10 Add rðiÞ intoR;
11 end
12 Return judgment resultR

5 EVALUATION

To evaluate the performance of the proposedmodels based on
co-occurrence relationships in transactions, we build hetero-
geneous information networks to represent these relation-
ships, and apply the vectors obtained by heterogeneous
network embedding to generate behavioral models. Through
the empirical evaluation of real-world transactions, we
mainly aim to answer the following three research questions:

RQ1: How do the key parameters affect the performance
of our models?

RQ2: How much gain does the data enhancement scheme
based on network embedding bring to the popula-
tion-level, individual-level models?

RQ3: How does the design of enhancement scheme affect
the performance of our models?

In what follows, we first introduce the experimental set-
tings, and then answer the above research questions in turn.

5.1 Experiment Settings

5.1.1 Datasets

To validate the performance of proposedmodels, the evalua-
tion is implemented on a real-world online banking payment
transaction dataset from one of the biggest commercial banks
in China, which contains three consecutive months of B2C
and C2C transaction records. The main statistics of the trans-
actions are summarized in Table 3. We use the dataset of
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April andMay 2017 as the training samples, and set the data-
set of June 2017 as the testing samples. We also utilize C2C
transactions of April andMay 2017, whenwe build heteroge-
neous information networks. All B2C transactions are
labelled either positive (fraudulent) or negative (normal),
respectively. The training samples contain 2,393,817 normal
transactions and 40,393 fraudulent transactions, and the test-
ing samples contain 1,003,539 normal transactions and
24,898 fraudulent transactions. In the original set of transac-
tions, each transaction is characterized by 64 attributes.
However, most of them have sparsely valid values (about 10
to 30 percent on average).We finally choose 8 attributes in all
to build our models, which are shown in Table 4. The attrib-
utes, time and amount, have continuous values, so we need
the further discretization treatment for these attributes. All
C2C transactions are represented by 3 attributes which are
shown in Table 5. Note that the attribute amount in C2C
transactions does not appear in the derivative network,
which only has an impact on theweights of incident edges.

We discretize the attribute time inspired by [45]. The time
of day can be divided into four time intervals. We set four
intervals of the hour: [0,3), [6,11), [15,24), and ½3; 6Þ [ ½11; 15Þ,
according to the time distribution in transactions. We further
divide the attribute time into 8 unique values by distinguish-
ing whether it is a weekday. We make different approaches
to discretize the amount attribute in B2C and C2C transac-
tions because of the different functions of attribute amount.
For B2C transactions, we discretize them into four different
values according to the following intervals, [0,60), [60,300),
[300,3600), and ½3600;þ1Þ. For C2C transactions, we assign
them different values, i.e., (1,1.5,2,2.5,3), by the following
intervals, [0,100), [100,1000), [1000,5000), [5000,50000), and
½50000;þ1Þ.

We also count the number of nodes with different attrib-
utes in the label-aware and label-free networks, which are
detailed in Table 6. Note that the difference between the

number of nodes with attributes account_number and mer-
chant_number is caused by the removal of edges and nodes
from label-free networks. In addition, we observe that the
size of individual models is 2; 406� 327� 8� 10� 2� 2�
11 when we choose the attribute account_number as the
agent. It is commonly too large to calculate. So we cluster
2,406 agents with attribute merchant_number and 327 agents
with attribute place_number into 11 and 5 categories, respec-
tively. Similarly, we cluster 190,268 agents with attribute
account_number into 5 categories when we choose the attri-
bute merchant_number or place_number as agents.

5.1.2 Metrics

To evaluate the performance of our methods, we choose five
representative and well-performed techniques as the bench-
marks: logistic regression (LR), random forest (RF), naive
bayes (NB), XGBoost (XGB), and convolutional neural net-
works (CNN). Normally, according to the industry require-
ment, 1 percent is the tolerable upper limit for FPR (False
Positive Rate). So an achieved TPR (True Positive Rate)with an
FPR higher than 1 percent makes no sense in this work. We
only focus on the meaningful part of the ROC curve without
considering the whole AUC (Area under The ROC Curve). In
this paper, we use Precision, Recall (TPR), Disturbance (FPR)
and F1-score to comprehensively evaluate ourmethods.

5.2 Parameter Sensitivity

In this set of experiments, we systematically evaluate the
parameter sensitivity of our method. Different from the
k-fold cross validations, we select the last 1=3 of the training
samples in time sequence as the validation samples, and the
other 2=3 to train the model during the parameters tune.
Dividing the verification set in time sequence avoids the
time-crossing problem and is more in line with the real
application scenario than randomly selecting the verifica-
tion set.

TABLE 3
The Transaction Information

Month 2017.04 2017.05 2017.06 Total

B2C Normal 1,217,101 1,176,680 1,003,461 3,397,242
B2C Fraudulent 13,271 27,122 24,898 65,291
C2C 166,356 205,614 n 371,970

TABLE 4
The Selected Attributes in B2C Transactions

Attribute Value Description

account_number discrete Each account_number represents a user’s
account.

merchant_number discrete Each merchant_number represents a
merchant in a B2C transaction.

place_number discrete Each place_number represents an issuing
area of banking cards used for transactions.

time continuous The exact time when the transaction
occurred.

amount continuous The amount of money transferred to the
merchant in a B2C transaction.

ip discrete Whether a commonly used ip or not in a
transaction.

last_result discrete Judgment of the last transaction in the
relevant account_number.

type discrete Each type represents a transaction of
different type.

TABLE 5
The Selected Attributes in C2C Transactions

Attribute Value Description

account1_number discrete The account1_number is the initiator of the
C2C transaction.

account2_number discrete The account2_number is the recipient of the
C2C transaction.

amount continuous The amount of money transferred to the
recipient in a C2C transaction.

TABLE 6
Attribute Details

Attribute Label-Aware Network Label-Free Network

account_number 221,040 190,268
merchant_number 2,419 2,406
place_number 327 327
time 8 8
amount 10 10
ip 2 2
last_result 2 2
type 11 11

310 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 1, JANUARY/FEBRUARY 2022



5.2.1 Network Parameters

Parameter settings in Equation (2) have a significant impact
on the weight of edges in derivative networks. In our work,
most of the edge weights are less than 1,000, and the larger
weights are only about 10,000. So we intend to make the
transformation of weights satisfy a set of ratios, where the
ratio is calculated by SðweÞ=Sð1Þ. The set of ratios satisfy the
following rules: When the weight is less than 25, the ratio is
close to we; when the weight is about 100, the ratio is close to
50; when the weight is very large, beyond 1,000, the ratio is
close to 100. To determine parameter settings, we examine
such changes in weights. We vary parameters a and u to
determine their impacts on weight changes. Except for the
parameters being tested, all other parameters assume default
values.We first examine different choices of the parameter a,
and choose values of a from 1 to 3. Theweight changes under
different a are shown in Fig. 3a, which shows that different a
slightly change the weight, but the overall trend remains
similar. Next, we examine different choices of parameter u,
and choose values of u from 3 to 7. Theweight changes under
different u are shown in Fig. 3a, which shows that different u
dramatically change the weight, especially if it’s a huge
value. Fig. 3 also shows that the parameter a is positively cor-
related with SðweÞ and the parameter u is negatively corre-
lated with SðweÞ. Finally, we observe that setting a and u at
1.8 and 5 respectively is an appropriate choice to reduce the
huge gap between different weight values.

From Table 6, we observe that nodes with the attribute
account_number far outnumber nodes with other attributes.
This imbalanced phenomenon leads to an imbalanced net-
work structure. So we further study the average degree of
these agents and find that the average degree of nodes with
the attribute merchant_number is similar to that with most
attributes, but is about 90 times than that with the attribute

account_number. Therefore, we introduce a scheme to bal-
ance the network structure. Facing the node with a special
attribute, which has q times average degree than the mini-
mum one, we set the weight of edges associated with the
special attribute is q� (q� ¼ 1� q=2� 0:01) times of the
weight corresponding to the minimum average degree. In
this work, we set the weights of edges associated with other
attributes are 0.55 (¼ 1� 90=2� 0:01) times of that with the
attribute account_number.

5.2.2 Embedding Parameters

Parameter settings in network embedding methods usually
make a difference to the performance of node representa-
tion for an application. To tune the appropriate settings, we
vary the values of important parameters to observe how the
performance changes under population-level models.

Dimensionality of Vector Space. First of all, Fig. 4a shows
the impact of setting different numbers of dimension d.
Generally, a small d is not sufficient to capture the informa-
tion embedded in relationships among nodes, but a large d
may lead to noises, and cause overfitting. In our work, the
best performance is achieved when d is 128. Generally, a
larger network might need a larger d to capture the informa-
tion embedded in relationships between nodes.

Length of RandomWalks.A longer randomwalk can gener-
ate more sample data. Fig. 4b manifests that the performance
continues to improve when the length of random walks l is
increased (then resulting in more sample data), and con-
verges when l is large enough. Meanwhile, the more sample
data, the more training time. When l is set as a great value, it
brings slight performance growth but dramatic time
increase. In our network, we set l to be 160, since it achieves a
balance between time-consuming and performance.

Length of Meta-Paths. Fig. 4c shows that the maximum
length of meta-paths has a significant impact on the perfor-
mance. Capturing meta-paths with larger v is crucial
because some long meta-paths have an important semantic
meaning. Note that a large v will bring in useless semantic
information to affect performance. Setting the number of v
to 4 or 5 is a good option in this work.

We verify the performance of different network embed-
ding schemes on the population-level model. Fig. 4d shows
the results of our experiment on the XGBoost classifier, and
explains why we propose a customized network to deal
with labeled transactions. By setting the hyperparameters b
and g, we adjust the ratio of the edge weights of fraudulent
transactions to normal transactions in the network at 1, 0,

Fig. 3. Parameter tuning in the derivative network with different parameter
pairs. We set a and u at 1.8 and 5, respectively when testing the other.

Fig. 4. Parameter tuning in network embedding with different parameter pairs. Figures (a), (b), and (c), respectively show the model performance of
different parameters d, l, and v, when we set d, l, and v at 128, 160, and 5, respectively in the process of testing others. Figure (d) shows the influ-
ence of different g and b on the population-level model.
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�1, �2, respectively. The ratio ‘1’ represents that fraudulent
and normal transactions are treated in the same way. That
is equivalent to label-free networks. The ratio ‘0’ represents
that we only use normal transactions to build the network
without fraudulent transactions. The ratios ‘�1’ and ‘�2’
represent the weights of edges generated by fraudulent
transactions are �1 or �2 times that of normal transactions,
respectively. We observe that the label-free network outper-
forms the label-aware network in the population-level mod-
els from Fig. 4d. We also observe that the ratios ‘�1’ and
‘�2’ have similar performance, which shows that small
changes in the ratio have little impact on the model when
the ratio is a negative value. In our naive individual-level
model, it learns the normal behavioral pattern from the user
historical pattern, and cannot exploit fraudulent transac-
tions in the process of building models. The label-aware net-
work integrates the information of fraudulent transactions
into the network structure, which is more suitable for indi-
vidual-level models than label-free networks.

5.3 The Gain of Network Embedding

5.3.1 Performance Gain for Population-Level Models

We compare the performance of five representative classifi-
cationmodels described in Section 5.1.2 with those under the
help of customized network embedding (NE) schemes.
We set the parameters of network embedding in Section 5.2.
The ROC curves of different classifiers are depicted in Fig. 5a.
We observe that the models cooperating with network
embedding, i.e., RF+NE, XGB+NE, LR+NE, NB+NE, and
CNN+NE, all outperform their counterparts without net-
work embedding. XGBoost gives the best results at different
FPR, followed by RF, CNN, LR, and NB with network
embedding. When the FPR is 0.001, XGBoost with network
embedding obtains a recall of 93.9 percent, whichmeans that
it can prevent about 94 percent of fraudulent transactions
when the fraudster begins to act, and just interfere 0.1 per-
cent legal transactions. Random forest performs the second
best, just slightly poorer than XGBoost when the FPR is small
than 0.002.Whenwe decrease the FPR to 0.0005, the perform-
ances ofmostmethods do not change stupendously despite a
partial drop in the TPR. It is worth noting that the perform-
ances of all models drop dramatically as the FPR decreases
to 0.0001. The TPR of XGBoost is slightly lower than 50 per-
cent. Except for the poor performance of NB and CNN, the
others have almost similar recalls when FPR¼ 0:0001.

Nowwe already have a basic understanding of the approx-
imate performance of all candidate classifiers. XGBoost is

outstanding in all candidate machine learning models when
we set the same FPR.

To explore how much gain C2C transactions can bring to
our model, we design the following four groups of experi-
ments: (1) ‘B+C’, both using B2C and C2C transactions on
our model; (2) ‘B2C’, only using B2C transactions on our
model; (3) ‘Ori’, applying original transactions directly to
the population-level model; (4) ‘Vec’, using B2C and C2C
transactions to build the label-free network and adopting
HIN2Vec method to get the embedding vectors, but detect-
ing fraud by feeding a vector matrix, which consists of rep-
resentations corresponding to attributes in a transaction,
into the population-level model. From Fig. 5b, we find that
our model is superior to other comparisons when the FPR is
less than 0.15 percent. When the FPR is greater than 0.15 per-
cent, the gain of our model decreases, and the performance
is gradually consistent with other comparisons. Note that
the poor performance on ‘Vec’ explains why we do not use
the representation directly but introduce simð~X; ~Y Þ for the
subsequent tasks. We also observe that the C2C transactions
are effectively utilized by our model. When the FPR is 0.75
percent, the gain of TPR reaches 2.5 percent.

5.3.2 Performance Gain of Individual-Level Models

In this part, we evaluate the performance of the individual-
level models in fraud detection with customized network
embedding. We present the performance of single-agent
behavioral models and discuss the improvements by the
multi-agent model compared with the single-agent models.
The improvements depend on the following two principles.

The first is the completeness principle of multi-agent
models. If a transaction has no historical data under a spe-
cific agent, then the single-agent model is impossible to
detect the transaction. To give a more straightforward sense,
we define a measure called check rate, which stands for the
proportion of transactions that can be checked with fraud
detection techniques under a given agent. The union of sub-
sets of transactions that can be checked by single-agent
models should be the complete set of transactions. That is,
the check rate of the final multi-agent model should be 1.

The second is the preferential principle of single-agent
models under the completeness principle. Before integrating
different single-agent models into the multi-agent model, we
need to evaluate the performance of every single-agent
model. If the performance of a single-agent model is too poor,
it will harm the performance of the finalmulti-agentmodel.

In the implementation of our proposed models, the
multi-agent model can apply to all transactions, and the
check rates under different single-agent models are shown in
Table 7. By calculating the Precision and Recall with differ-
ent fixed Disturbances, we investigate the performance of
proposed single-agent models under the verifiable dataset
as presented in Table 7. The Disturbances are fixed as
0.0010, 0.0015, 0.0020, 0.0050, 0.0075, and 0.0100, respec-
tively. It is evident from Table 7 that these single-agent
models have a stable and good performance in partial data
which can be checked.

When we compare the performance of multiple single-
agent models and the multi-agent model, we experiment
with all test transactions for all behavioral models. We focus
on the performance at different Disturbances between 0.001

Fig. 5. The ROC curves of population-level models. Figure (a) shows the
performance of different population-level models with or without NE.
Figure (b) shows the impacts of different features on population-level
models.
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and 0.0022. From Fig. 6, we can obtain three observations as
follows:

First, the performance of single-agent models have a
good performance in the partial data, but do not have a sta-
ble performance on the whole data. Achieving a good per-
formance in the partial data is a necessary but not sufficient
condition for that on the whole data. Then, it is worth con-
sidering that the adoption of a multi-agent model by com-
bining multiple complementary single-agent models.

Second, the check rate for the single-agent model of place_-
number has a very close to ‘1’, while the single-agent model
of place_number underperforms the multi-agent model in
terms of the Precision and Recall. The reason why the
multi-agent model is superior to the single-agent model of
place_number is that the former combines the advantages of
different single-agent models and has a more complete
judgment on detection transactions.

Third, we find that the merchant_number curve provides
the most stable precision and recall, regardless of the distur-
bance rate. From Table 7, we observe that except for the sin-
gle-agent model of merchant_number, which only has a check
rate of about 50 percent, the other two single-agent models
have a check rate of over 90 percent. In a real scenario, the
single-agent model of merchant_number can not be used
alone to implement anti-fraud tasks because of its low check
rate. In our work, the single-agent model can only detect
fraud, but can not ensure that non-fraud is normal. The
high performance of the merchant_number model comes
from its release of nearly half of transactions, so its perfor-
mance is not representative and credible. In online payment
services, the judgment results with high performance and
low credibility are not acceptable. By combining the judg-
ment of multiple single-agent models, we can make more
accurate judgment results with the same credibility.

5.4 Performance of Enhancement Scheme

5.4.1 Performance of Data Enhancement

The framework of the proposed data enhancement scheme
is compatible with most network embedding methods. We

compare the effects of the state-of-art network embedding
methods in the population-level model. Besides HIN2Vec,
we also investigate the performance of node2vec [46],
transE [47] and metapath2vec [48]. For similar parameters,
we use the same values as HIN2vec, and we use the default
values for the others. Fig. 7a shows the ROC curves of differ-
ent network embedding methods in the population-level
model. We observe that all models cooperating with differ-
ent network embedding methods have a similar per-
formance. HIN2Vec and metapath2Vec have a better
performance than node2vec and transE. The lower perfor-
mance of node2vec mainly stems from its inability to distin-
guish the types of nodes. In transE, the method focuses on
resolving relationships between different entities but taking
no account of the weight of relationships. Most embedding
methods are feasible as data enhancements, with only slight
differences in terms of performance.

We compare the performance of behavioral models
under different similarity calculations to illustrate the need
to treat two levels of behavioral models differently. Fig. 8
shows the advantages of proper similarity calculation. From
Fig. 8a, we observe that the population-level models of the
Cosine similarity have a better performance than that of the
euclidean distance in most cases except that the XGB# and
RF# curves provide a better performance when the false
positive rate exceeds 0.002. In reality, online payments ser-
vice pay attention to the low intervention for normal users,
so we tend to adopt the Cosine similarity which is stable in
cooperation with other classifiers. In Fig. 8b, the individual-
level models with the euclidean distance are better than that
of the Cosine similarity, especially when the disturbance is
low. It shows that the model of the euclidean distance can
better distinguish the characteristics of each individual.

5.4.2 Performance of Model Enhancement

We compare the composite models of different population-
level and individual-level models with the pure population-

TABLE 7
Performance of Single-Agent Models

Fig. 6. The performances of Precision (a) and Recall (b) under different
fixed Disturbances in behavioral models.

Fig. 7. The performance of data enhancement and model enhancement
in our model. Figure (a) shows the performance of different network
embedding methods as data enhancement in population-level model.
Figure (b) shows the performance of model enhancement by combining
the individual-level and population-level models.
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level models. Fig. 7b shows the ROC curves of five widely-
used population-level models, as described in Section 5.1.2,
cooperating with the individual-level model.

We observe that the individual-level model has a slight
complementary effect on the population-level models with
the highest performances, i.e., XGB and RF, than that with
the lower performances. When the Disturbance is in the
range of 0.002 to 0.005, the individual-level model can bring
about 1 percent Recall increase for XGB and RF. In addition
to XGB and RF, other population-level models have been
greatly improved, especially LR and NB almost have similar
performance to XGB and RF with the highest performances
when the Disturbance is greater than 0.002. Although CNN
cannot match other methods after cooperating with the indi-
vidual-level model, it has also achieved an obvious
improvement. That means that the individual-level model
can effectively improve the performance of population-level
models.

6 CONCLUSION AND FUTURE WORK

For behavioral models in online payment fraud detection,
we propose an effective data enhancement scheme by
modelling co-occurrence relationships of transactional
attributes. Accordingly, we design customized co-occur-
rence relation networks, and introduce the technique of het-
erogeneous network embedding to represent online
transaction data for different types of behavioral models,
e.g., the individual-level and population-level models. The
methods are validated by the implementation on a real-
world dataset. They outperform the state-of-the-art classi-
fiers with lightweight feature engineering methods. There-
fore, our methods can also serve as a feasible paradigm of
automatic feature engineering.

There are some interesting issues left to study: (1) An
interesting future work is to extend the data enhancement
scheme into other types of behavioral models, e.g., the
group-level models and generalized-agent-based models,
except the population-level and individual-level models
studied in this work. (2) It would be interesting to investigate
the dedicated enhancement schemes for more advanced
individual-level models, since the adopted naive individual-
level model does not fully capture the advantages of the pro-
posed data representation scheme based on the techniques
of heterogeneous network embedding. (3) It is anticipated to
demonstrate the generality of the proposed method by
applying it to different real-life application scenarios.
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