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Man-in-the-Middle Attacks against Machine
Learning Classifiers via Malicious Generative

Models
Derui (Derek) Wang, Chaoran Li, Sheng Wen, Surya Nepal, and Yang Xiang

Abstract—Deep Neural Networks (DNNs) are vulnerable to deliberately crafted adversarial examples. In the past few years, many
efforts have been spent on exploring query-optimisation attacks to find adversarial examples of either black-box or white-box DNN
models, as well as the defending countermeasures against those attacks. In this work, we explore vulnerabilities of DNN models under
the umbrella of Man-in-the-Middle (MitM) attacks, which has not been investigated before. From the perspective of an MitM adversary,
the aforementioned adversarial example attacks are not viable anymore. First, such attacks must acquire the outputs from the models
by multiple times before actually launching attacks, which is difficult for the MitM adversary in practice. Second, such attacks are
one-off and cannot be directly generalised onto new data examples, which decreases the rate of return for the attacker. In contrast,
using generative models to craft adversarial examples on the fly can mitigate the drawbacks. However, the adversarial capability of the
generative models, such as Variational Auto-Encoder (VAE), has not been extensively studied. Therefore, given a classifier, we
investigate using a VAE decoder to either transform benign inputs to their adversarial counterparts or decode outputs from benign VAE
encoders to be adversarial examples. The proposed method can endue more capability to MitM attackers. Based on our evaluation, the
proposed attack can achieve above 95% success rate on both MNIST and CIFAR10 datasets, which is better or comparable with
state-of-the-art query-optimisation attacks. At the meantime, the attack is 104 times faster than the query-optimisation attacks.

Index Terms—Deep neural network, adversarial example, security.
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1 INTRODUCTION

D eep Neural Networks (DNNs) are powerful tools for
Machine Learning (ML) tasks. However, compared

to other ML models, DNNs are more vulnerable towards
adversarial attacks such as adversarial examples [13] and
back-door attacks [17]. As one major threat to ML security,
the problem of adversarial example was first investigated
in [34]. Adversarial examples denote data examples that
are quasi-imperceptibly perturbed to achieve particular ad-
versarial objectives (e.g., misclassification of ML classifiers
and mis-detection of object detectors). Existing methods for
crafting adversarial examples are mostly based on a query-
optimised framework. Given a data example, an attacker
needs to query a target DNN model to calculate an adversar-
ial cost/fitness score. Based on the adversarial cost/fitness
score, the attacker can then adopt optimisation techniques
(e.g., gradient descent, or zeroth-order optimisation meth-
ods) to adjust the feature values of the data example to make
it an adversarial one.

On the other hand, Man-in-the-Middle (MitM) attack
is one of the most lethal cyber threats [10]. An attacker
stealthily alters the communication between two parties and
then deliver malicious payloads to the parties to achieve
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adversarial goals. In the field of machine learning, the vul-
nerability of DNN models has not been extensively studied
within the scope of MitM attacks. A typical ML task that
can be exploited by MitM attackers is classification/example
labelling. For instance, in the case of smart manufacturing,
camera-captured images are sent to either a local or an
online DNN classifier for classification. Based on the clas-
sification results, possible security issues or faulty products
can be detected and then resolved. ML applications taking
the same spirit can also be discovered in the systems such as
autonomous vehicles, and ML-as-a-service supported mo-
bile devices. In these applications, an adversary can stand in
between the collected data and the DNN classifier to launch
MitM attacks. The attacks aim to fool the DNN model by
stealthy manipulating the submitted data, such that the
model generates incorrect outputs which may satisfy the
malicious goal of the attacker.

For an MitM adversary, the aforementioned methods
for crafting adversarial examples are not practically sound.
First, these attacks are one-off, which means that the ad-
versarial perturbations or the learnt experience cannot be
directly applied on new examples to make them adversarial
(i.e., the attacks are not data-agnostic). Second, instead of
initialising cold-start attacks, these methods require the at-
tacker to query the victim model multiple times beforehand.
In practice, it might be impossible to query the victim model
without alerting defences [32]. There are attempts to craft
universal perturbations to address the problems [27]. Oth-
erwise, generative models such as Generative Adversarial
Networks (GANs) have been trained to produce adversarial
counterparts of benign inputs. Variational Auto-Encoder
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(VAE) is another important category of generative models.
So far, VAEs are less noticed for generating adversarial
examples. To our best knowledge, there are a few attacks
that manipulate the latent variables of VAEs to lead to mis-
generation of images [19]. However, VAE has not been used
for generating adversarial examples of DNN classifiers.

In spite of the success of GANs, VAEs have several
advantages compared to GANs. First, VAEs are much easier
to be trained than GANs [35]. Second, the latent variables
encoded/decoded by a VAE are set to follow normal dis-
tributions [5]. Consequently, it is easy to generate new
examples by using latent vectors sampled from the normal
distributions as the inputs of a VAEs. Additionally, VAEs can
easily control the characteristics of the generated examples
by latent vector arithmetic. Based on the advantages, a
malicious VAE can either transform a benign example to ad-
versarial or generate novel adversarial examples from sam-
pled latent variables. This flexibility can expand the attack
vectors and the capability of an MitM attacker. An investiga-
tion of generating adversarial examples using VAEs might
enhance the understanding towards adversarial examples.
It will also foster the process of amending vulnerabilities
of ML applications such that the applications become more
trustworthy and secure.

To study the above research questions, in this paper,
we design a Malicious Variational Decoder (MVD) which
can be concatenated to arbitrary VAE encoders to generate
adversarial examples of benign inputs of the VAE encoders.
The MVD is flexible as an MitM adversary. The MVD can
either be used together with a VAE encoder to generate
adversarial examples in real-time against DNN classifiers,
or it can replace the decoders in DNN-based systems with
a VAE-classifier structure (e.g. classifiers collecting data by
wireless sensor networks [23]) to maliciously decode the
output from benign VAE encoders. To the best of our knowl-
edge, we make the first attempt towards crafting adversarial
examples using VAEs. We summarise our contributions as
follows:

• We analyse the security properties of DNN classifiers from
a perspective of MitM attackers;

• We propose launching cold-start MitM attacks in real-
time by using VAEs to generate adversarial examples;

• We propose a method for training malicious variational de-
coder to generate adversarial examples on-the-fly, without
accessing the outputs from the victim classifier beforehand;

• The malicious decoder can decode outputs from benign
VAEs into adversarial examples;

• We discuss the possibility of extending the MitM attacks
against the real-world applications of machine learning
models.

The paper is organised as follows: Section 2 provides
background knowledge about adversarial examples and
VAE. Section 3 introduces related work in the areas of ad-
versarial example attacks. Section 4 formulates the problem
of MitM attacks and presents the threat models used in
this paper. Section 5 introduces the detailed methods for
building. In Section 6, we present the evaluation results. Sec-
tion 7 discusses the proposed attack and possible defences
towards the attack. Finally, Section 8 summarises the paper
and concludes our future work.

2 BACKGROUND

2.1 Adversarial examples for ML classifiers
Given a DNN classifier f , an adversarial example x̂ of
its counterpart benign example x aims at achieving the
following objective:

f(x̂) 6= f(x) (1)
s.t. ‖x̂− x‖p ≤ ε.

Herein, ‖ · ‖p = (
∑n
i=1 | ·i |p)

1
p is a p-norm measurement

on the distortion of the adversarial perturbation x̂−x, and ε
is a small value acting as an upper bound of the distortion.
ε is also called the budget of the adversarial perturbation.
The budget restricts the distortion on x̂ to make it quasi-
imperceptible for human. Directly optimising the objective
in Equation 1 is difficult. Alternatively, an attacker define
an adversarial loss function/fitness score J to measure the
progress towards having f(x̂) 6= f(x):

J(f(x̂), f(x)) (2)
s.t. ‖x̂− x‖p ≤ ε.

Gradient descent techniques can be used to optimise the
above objective in white-box settings. Otherwise, zeroth-
order optimisation techniques (e.g., particle swarm, genetic
algorithm, differential evolution, etc.) are employed for solv-
ing the optimisation in black-box settings.

2.2 Variational autoencoder
A VAE contains an encoder and a decoder parameterised
by φ and θ, respectively. Given a set X of data examples,
the VAE maximises the log-likelihood log p(x), x ∈ X based
on observations. The encoder portion of the VAE models
a posterior pφ(z|x) of latent variables z conditioning on x.
Suppose the real conditional probability of the latent vari-
able z obeys a distribution pd(z|x). The objective of the VAE
encoder is thus to minimise the distance between pφ(z|x)
and pd(z|x). The distance is measured by the Kullback-
Leibler (KL) divergence between pφ(z|x) and pd(z|x), that
is:

KL[pφ(z|x)||pd(z|x)] = −
∫
pφ(z|x) log

pd(z|x)
pφ(z|x)

dz ≥ 0.

(3)
Based on Bayes theorem, we can induce Inequality (3) to:

−
∫
pφ(z|x)[log

qθ(x|z)p(z)
pφ(z|x)

− log p(x)]dz ≥ 0, (4)

wherein, qθ(x|z) is actually modelled by the VAE decoder
parameterised by θ. We can further induce the above in-
equality to:

log p(x) ≥ −KL[pφ(z|x)||p(z)] +E∼pφ(z|x)log qθ(x|z). (5)

The right side of the above inequality is called the
Evidence Lower Bound (ELBO) of log p(x). Since p(x) =∫
p(x|z)p(z)dz is intractable, the VAE maximises the ELBO

instead of directly maximising the log-likelihood log p(x).
The first term of the ELBO measures the distance between
the conditional probability of the latent variables z modelled
by the encoder and the real latent distribution p(z), and
the second term is actually the reconstruction quality of
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the VAE. Herein, since p(z) is an arbitrary distribution, we
can define it as a standard Gaussian distribution N (0, 1)
for simplicity. Similarly, we can set pφ(z|x) as a Gaussian
distribution N (µ, δ). Therefore, we can compute the KL
divergence between pφ(z|x) and N (0, 1) as the first term
of the ELBO. We can re-parameterise the ELBO by µ and δ
as follows:

ELBO =
1

2
[1 + log(δ2)− δ2 − µ2] + E∼pφ(z|x)log qθ(x|z).

(6)
Hence, training the VAE is actually minimising the negative
of Equation (6). Given the dataset X , the objective cost
function to minimise can then be written as:

L =− 1

‖X‖
∑
x∈X

‖zx‖∑
j=1

1

2
[1 + log(δ2j )− δ2j − µ2

j ] (7)

− 1

‖X‖
∑
x∈X

E∼pφ(zx|x)log qθ(x|zx)}.

Notice that minimising the second term in the cost function
is actually minimising the reconstruction error of the VAE.
In practice, the VAE encoder determines the mean µ and
the variance δ2 of N (µ, δ), and the decoder takes latent
variables z sampled from N (µ, δ) and then generate data
examples.

3 RELATED WORK

Previous research about adversarial examples focuses on
attacks based on first-order information of DNNs. In white-
box settings, adversarial examples can be generated by
either gradient-based methods or forward-derivative-based
methods. The gradient-based methods compute adversarial
gradients based on adversarial objective functions and up-
date a data example according to the adversarial gradients,
such that the example becomes its adversarial counterpart
[7], [13], [20], [28], [34]. Forward-derivative-based attack
perturbs salient features based on the Jacobian between
the model inputs and outputs [31]. Additionally, there are
evolved attacks that use different distortion metrics to make
adversarial examples that are more imperceptible to human
eyes [12], [15]. Furthermore, there are methods crafting
adversarial examples of data that have discrete features (e.g.
text) [11], [14], [18].

However, accessing the first-order derivatives of the
target DNNs is less practical in real-world attacks. As an
enhancement, Zeroth-Order (ZO) optimisation techniques
can be used in attacks when the victim models are black-
boxes to an attacker. [16], [29], and [24] employed gradient
estimate techniques to find adversarial examples of black-
box classifiers. Particle swarm optimisation was used in
[33] to attack black-box face recognition models. Similarly,
[1] adopted genetic algorithm to attack DNN models. The
ZO attacks mainly focus on reducing query complexity
and minimising required information during the attacks.
However, the attacker still needs to obtain the output from
the DNN models. Moreover, the attack is not data-agnostic.

On the other hand, using generative models to craft ad-
versarial example can launch data-agnostic attacks without
accessing the output of the DNN models. Adversarial ex-
amples have not been extensively researched together with
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Fig. 1: Illustration of the problem definition and threat
models of MitM attacks in this paper. An adversary attacks
via manipulating the decoder in between a VAE encoder
and a classifier.

generative models. In recent research, adversarial images
that result in mis-generation of VAEs are studied in [19].
A GAN used to transform benign examples to adversarial
examples is proposed in [39].

4 PRIMER

4.1 Problem definition

In this study, we first study using VAE to transform benign
inputs into adversarial ones. Second, we consider MitM
attacks against applications that have a VAE-classifier struc-
ture. That is, a VAE is inserted between the raw input data
and a classifier. This structure can often be seen in applica-
tions such as data denoising [8], [38] anomaly detection [2],
and collaborative feature extraction [22]. To minimise the
changes that need to be made by the attacker, we suppose
that the attacker can only alter the parameters of the decoder
to result in misclassification of the classifier. The encoder eφ
parameterised by φ is kept benign, and it conventionally
encodes the inputs into the latent space.

Based on the clarification of the problem, we derive a
formal definition of the problem as follows:

Definition 1: Given a victim model f , a benign input example
x, the problem of man-in-the-middle attack can be interpreted as
f(gθ(x)) 6= f(x). Herein gθ is an adversarial transformation in
between the input and the model. Otherwise, the attacker cannot
alter x by any form of data injection. The attacker’s objective is
to find the best θ that results in the adversarial consequence (i.e.,
misclassification).

To investigate whether the defined problem is achiev-
able, we first need to bound the a priori knowledge of f and
x obtained by gθ . We thus model the problem in different
settings in the following section.

4.2 Threat models

In this section, we define the threat models of the ad-
versaries that launch man-in-the-middle attacks towards
machine learning models with the VAE-classifier structure.
As a generalisation, we model the threat in both black-box
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and white-box settings. Based on the settings of the VAE
encoder and the classifier, we propose four threat models in
total.

In the first threat model, the attacker gθ has every ac-
cess to the victim classifier f , the VAE encoder eφ and a
training dataset Ẍ that comes from a similar distribution
with the one modelled by the classifier. This defines a
double-white-box setting. In this setting, gθ can launch
attacks directly based on the latent distribution modelled by
the encoder eφ, and it optimise the parameters θ according
to the first-order information f ′(gθ(x)) of the victim classi-
fier f .

In a double-black-box setting, gθ can only query
f rather than accessing the gradients (i.e., the first-order
information) of f . Furthermore, the attacker does not have
the distribution of the latent variable beforehand, and the
attacker is not allowed to estimate the latent distribution by
querying the encoder. However, the attacker should have
access to the dimensionality of the VAE encoder output and
the dataset Ẍ . In this setting, first, the attacker is allowed to
train a shadow VAE encoder to estimate the latent distribu-
tion. Second, a shadow model f̈ can be training locally by
the attacker to estimate f . gθ can use the gradients f̈ ′gθ to
achieve an adversarial objective f̈(gθ(x)) 6= f̈(x)

If gθ in the double-black-box setting can access eφ as a
white-box, this defines a black-box-classifier setting.
In the contrast, if gθ can access the classifier as a white-
box, this is a black-box-encoder setting. As a conclusion,
we illustrate the problem definition along with the threat
models in Figure 1.

5 DESIGN OF THE ATTACK

In this section, we first resolve the problem of launching
attacks in the double-black-box setting. Subsequently, we
derive the adversarial loss functions and the optimisation
techniques for training a malicious variational decoder. At
last, we propose a general framework for training the mali-
cious variational decoder.

5.1 Calibrating black-box attacks

The definition of launching double-black-box MitM attacks
against VAE encoders and DNN classifiers is twofold: 1) the
attacker can attack black-box classifiers, and 2) the attacker
can launch attacks without knowing the parameters of the
victim VAE encoders. Herein, the second case actually mod-
els an MitM attack against VAE-classifier structured models.
When the victim classifier is a black-box to the attacker,
a commonly adopted practice is to train a shadow model
that estimates the victim classifier. Later on, the shadow
model can be connected to the MVD to provide estimated
adversarial gradients of the victim model. Therefore, the
remaining question is, whether the MVD can attack black-
box VAE encoders?

Given any arbitrary VAE encoder that models a distribu-
tion p∗(z|x), the MVD attempts to reconstruct a adversarial
example x̂ that achieves the same consequence (i.e., resulting
in either non-targeted or targeted misclassification from f )
without exceeding the perturbation budget ε. Notice that

given a training dataset X , the optimised ELBO can be re-
written as follows:

− Ex∼XKL[pφ(z|x)||p(z)] + Ex∼XE∼p(z)log qθ(x|z) (8)

when pφ(z|x) is the same with p(z). In other words, this pos-
terior collapse property of VAEs suggests that, the generator
is encoder-agnostic if the encoder can perfectly model p(z).
Minimising the KL divergence between pφ(z|x) and p(z)
during training VAEs actually decreases the dependency
between VAE generators and VAE encoders.However, in
practice, the KL divergence should not be reduced to 0.
Otherwise, the VAE falls into a posterior collapse prob-
lem. That is, the VAE becomes inexpressive and cannot
reconstruct data examples. Therefore, in practice, the MVD
should estimate the mean and the variance of the encoded
distributions. Otherwise, the MVD cannot correctly decode
the output from black-box encoders.

To tackle this problem, we first calibrate the intake distri-
bution of the MVD to approximate the encoded distribution
from the attacked black-box VAE encoder. We query the
attacked encoder using X . We then pair the query outputs
Z with X to form the training set (z, x), z ∈ Z, x ∈ X .
Therefore, we can calibrate the MVD by training it to map
z back to x. We consider that the calibration is feasible on
the attacker side since the attacker launches the attack as an
insider. However, the minimal number of queries required
for the calibration is also investigated in the evaluation
section. After the calibration, the trained MVD can take in-
puts from they VAE encoder and then generate semantically
correct adversarial examples. Upon this stage, the attacker
can launch attacks in both the double-black-box setting and
the black-box-encoder setting.

5.2 Adversarial objective and optimisation
Given an input image x, a benign encoder e, and a victim
classifier f , the aim of the MVD is to find the parameters θ
that minimise an adversarial loss within a distortion budget
ε.

θ =argminLadv{f(gθ(e(x))), f(e(x))} (9)
s.t. ‖gθ(x)− x‖ ≤ ε.

In Equation 9, Ladv is a loss function which sets the ad-
versarial goal to be optimised towards. Optimising Equation
8 is difficult. Therefore, we convert the optimisation problem
to its relaxed form as follows:

θ = argmin c · Ladv{f(gθ(e(x))), f(e(x))}+ ‖gθ(x)− x‖p.
(10)

In the objective function, c is a constant that balances
the adversarial loss and the p-norm of the perturbation. In
order to make the objective function differentiable for the
later optimisation, we set p to 2 here. We set the adversarial
loss function Ladv as follows:

Ladv(θ) = max(max{Zi 6=tθ [e(x)]} − Ztθ[e(x)],−κ), (11)

wherein Z stands for the output logits of the classifier.
t is the target class of misclassification. κ is a parameter
controlling the attack strength. The MVD trained under
higher κ will produce adversarial examples with higher
confidence of misclassification.
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Fig. 2: The framework of training the MVD and launching attacks. We build the MVD via a two-step training process. We
first train a benign VAE following the standard subroutine in step one. In the second step, we first calibrate the decoder
such that it can decode from a black-box encoder. We then train the decoder to an MVD based on an adversarial loss
function. In the attacking phase, the attacker can insert the decoder in between an arbitrary VAE encoder and a victim
classifier to result in misclassification of the classifier.

5.3 Framework of MVD-based MitM attacks

We divide the framework of MVD-based MitM attacks into
three phases. In the first phase, we first calibrate the latent
distribution of the MVD. Specifically, we concatenate the
untrained MVD to a VAE encoder to form an untrained
VAE. The VAE is trained following the training subroutine
introduced in Section 2.2 to estimate target VAEs. Upon
trained, the trained VAE contains the encoder pφ(x|z) pa-
rameterised by φ and the MVD qθ(x|z) parameterised by
θ. The latent distribution of qθ(x|z) is now calibrated to
the vicinity of a standard normal distribution. Next, we
turn the MVD into an adversarial example generator. We
freeze the φ of the encoder and incrementally train the θ
to minimise Equation (10). We use Adam as the optimiser
during the first and the second phase. Compared to attacks
such as advGAN, the two-step training of MVD enables
rapid modification of adversarial objectives (e.g., switching
between non-targeted attack and targeted attacks).

In the third phase, the attacker can either build an adver-
sarial VAE between raw inputs and a classifier or insert the
MVD between an arbitrary VAE encoder and a victim classi-
fier to launch attacks. In this framework, the dimensionality
of the inputs/outputs of the VAE encoder/victim classifier
should be obtained by the attacker prior to launching the at-
tacks. Consider that the input/output information of DNN
models is commonly released to users, this prerequisite is
painless to fulfilled. As a conclusion, the framework of
building the malicious decoder is illustrated in Fig 2. We
also outline the critical steps of training MVD in Algorithm
1. In the algorithm, L is log loss.

6 EVALUATION

We present the evaluation of the MVD attack in this section.
We first summarise the experimental settings for the eval-
uation. Subsequently, we present the evaluation results of
the MVD attacks in the double-black-box setting, the black-
box-classifier setting, the black-box-encoder setting, and the

Algorithm 1: MVD attacks
Phase 1:
Input: X , f , vae iter, adv iter
Initialisation: θ, φ
for i in vae iter do

θ = θ −∇θEx∈XL(x, gθ(eφ(x)))
φ = φ−∇φEx∈X [KL(eφ(x)||N (0, 1)) + L(x, gθ(eφ(x)))]

if e is a black box then
for i in vae iter do

θ = θ −∇θEx∈XL(x, gθ(e(x)))

Phase 2:
for i in adv iter do

θ =
θ−∇θEx∈X{c ·Ladv [f(gθ(e(x))), f(e(x))]+‖gθ(x)−x‖p}

Output: θ.
Phase 3:
Input: θ, e(x), f
Output: f(gθ(e(x)))

double-white-box setting. In the evaluation, we compared
the MVD attack with another three state-of-the-art attacks,
namely Fast Gradient Sign (FGSM)1 [13], Calini&Wagner2

(C&W) [6], and advGAN3 [39]. FGSM and C&W are typical
query-and-optimised attacks, while advGAN is an adver-
sarial example generator that can attack on-the-fly. We also
compared the MVD with the three attacks on the computing
overhead and the magnitude of the adversarial perturba-
tions.

6.1 Experiment setups
We included MNIST dataset and CIFAR10 dataset in the
evaluation. For each dataset, we evaluated the performance
of the evaluated attacks in both black-box settings and
white-box settings. For the sake of comparison, we included
the double-black-box, black-box-classifier, and black-box-
encoder settings in the black-box evaluation of MVD attacks.

1 https://github.com/tensorflow/cleverhans
2 https://github.com/tensorflow/cleverhans
3 https://github.com/ctargon/AdvGAN-tf
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TABLE 1: Classifier Architectures

Shadow(MNIST) Victim(MNIST) Shadow(CIFAR10) Victim(CIFAR10)
Input 28×28×1 Input 28×28×1 Input 32×32×3 Input 32×32×3
Convo 32×3×3 Convo 32×3×3 Convo 32×3×3 Convo 32×3×3
Convo 32×3×3 Convo 32×3×3 Convo 32×3×3 Convo 32×3×3

MaxPooling 2×2 Dropout 0.2 MaxPooling 2×2 MaxPooling 2×2
Convo 64×3×3 FC 128 Dropout 0.2 Dropout 0.2
Convo 64×3×3 Dropout 0.2 Convo 64×3×3 Convo 64×3×3

MaxPooling 2×2 Softmax FC 10 Convo 64×3×3 Convo 64×3×3
FC 200 - MaxPooling 2×2 MaxPooling 2×2
FC 200 - Dropout 0.2 Dropout 0.2

Softmax FC 10 - Convo 128×3×3 Convo 128×3×3
- - Convo 128×3×3 Convo 128×3×3
- - MaxPooling 2×2 MaxPooling 2×2
- - Dropout 0.2 Dropout 0.2
- - FC 512 FC 200
- - Dropout 0.2 Softmax FC 10
- - Softmax FC 10 -

TABLE 2: VAE Encoder Architectures

Shadow(MNIST) Victim(MNIST) Shadow(CIFAR10) Victim(CIFAR10)
Input 784 Input 784 Input 32×32×3 Input 32×32×3

FC 512 FC 600 Convo 3×2×1 Convo 3×2×1
FC 10 FC 10 Convo 32×2×2 Convo 32×2×2

- - Convo 32×3×1 Convo 32×3×1
- - Convo 32×3×1 Convo 32×3×1
- - Flatten Flatten
- - FC 512 FC 1024
- - FC 128 FC 128

All experiments were running on a server with an RTX-
20180-ti GPU and 128G memory. We adopted the original
training-testing data split from MNIST and CIFAR10 during
training and testing the MVD. We adopted two different
MVD architectures to cope with the two datasets.

In the black-box setting, the MVD cannot access the
parameters of both the victim classifier and the victim
encoder. Therefore, we first train a shadow classifier to
approximate the victim. We then train the MVD based on
the trained shadow classifier. In the white-box setting, we
directly train the MVD based on the victim classifier. All
the classifiers achieved accuracy above 95% and 80% on the
MNIST examples and the CIFAR10 examples, respectively.
The architectures of the adopted classifiers are summarised
in Table 1. The architectures of the VAE encoders are in Table
2. The structures of the MVD is presented in Table 3. We
ran a grid search from {0.003, 0.01, 0.05, 0.1, 1} to select the
best constant c in the adversarial loss function 11. For other
attacks, we used the recommend hyper-parameters from
the original papers. As for advGAN, we did not adopt the
static/dynamic distillation process in our evaluation since
we wanted to set the attacks under the same prerequisites.
For the reference, the hyper-parameter settings of FGSM,
C&W, advGAN, and MVD during the comparisons are
summarised in Table 4. In the table, the hyper-parameters
with a superscript m were used in the evaluation on the
MNIST dataset, and those with a superscript c were used
for the CIFAR10 dataset.

We selected 1,000 MNIST examples and 1,000 CIFAR10
examples as our evaluation datasets. For making a fair com-
parison, we ablated the errors brought by the VAEs and the
classifiers during the evaluation. Specifically, the selected
examples in the evaluation dataset held the following two
attributes: 1) the examples can be correctly classified by
the classifier in individual evaluations, and 2) the classifier
can correctly classify their reconstructed counterparts from
the benign VAEs in individual evaluations. Otherwise, the

TABLE 3: MVD Architectures

MVD(MNIST) MVD(CIFAR10)
FC 10 FC 128
FC 512 FC 512
FC 784 FC 8192

- Reshape 16×16×32
- Deconvo 32×3×1
- Deconvo 32×3×1
- Deconvo 32×2×2
- Deconvo 3×1×1

TABLE 4: Hyper-parameters of the Attacks

Attack Hyper-Parameter
FGSM η = {0.3m, 0.1c}
C&W κ = 0m,c

advGAN c = {0.3m, 8c}
MVD c ∈ {0.01m, 0.003c}, κ = 0m,c

evaluation datasets were randomly drawn from the original
MNIST/CIFAR10 test dataset.

6.2 Attacks in black-box settings

We first evaluated the MitM attack in black-box settings. We
evaluated MVD attacks in the double-black-box and black-
box-classifier settings. For FGSM, C&W, and advGAN, we
considered that the classifier is a black-box. Hence, in the
MVD attacks, we first trained a shadow VAE composed of a
shadow VAE encoder and an MVD. We also trained another
VAE and used its encoder as the black-box encoder. Next,
we employed a shadow classifier trained to estimate the
victim model into the training process. The trained shadow
VAE was then concatenated to either the shadow classifier
for training the MVD to be malicious. We used the trained
MVDs to craft adversarial examples of both MNIST and
CIFAR10 data. Regarding to other attacks, we adopted them
to craft adversarial examples based on the same shadow
classifier. In the attacking stage, we applied the MVDs and
the other attacks to attack the same victim classifier. We
compared the success rate (i.e., ratio of the attacks that lead
to misclassification) of the attacks. We also compared the
precision, recall, and F1-score of the victim classifier under
attacks from the MVDs with that of the same classifier
attacked by FGSM, C&W, and advGAN. The comparisons
of the attacks are shown in Figure 3, 4, 5, and 6. In this stage,
all the attacks were non-targeted (i.e., without specifying a
misclassification target).

In the plots, MVD-bc notates the MVD in the black-box-
classifier setting, and MVD-db stands for the MVD in the
black-box-classifier setting. According to the plotted results,
we could observe that the MVD attacks outperformed C&W
and advGAN in terms of attack success rate, on both MNIST
and CIFAR10 datasets. As for C&W attacks, it may increase
the misclassification confidence to enhance its success rate.
However, the MVD attacks could also increase its misclas-
sification confidence. Also, there is a correlation between
the misclassification confidence and the perceptibility of the
C&W perturbations. Thus, here we only made the compar-
ison by applying a border misclassification confidence (i.e.,
κ = 0) to both the C&W and the MVD. Compared to the
performance on benign examples, the precision, recall, and
F1-score of the victim classifier were significantly reduced
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Fig. 3: Attack success rates of the non-targeted attacks in the
black-box setting.
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Fig. 4: Precision scores of the victim classifier against the
non-targeted attacks in the black-box setting.

by the MVD attacks. In most cases, compared to the other
attacks, the MVD attacks induced more loss of the classifier
performance.

To better understand the characteristics of the MVD dur-
ing targeted attacks, we trained ten MVDs, each of which is
trained to produce a unique misclassification target selected
from 0 to 9. We repeated this process for all the black-
box settings (i.e., black-box-classifier and double-black-box
settings). We recorded the attack success rates of the MVDs
on the victim classifier in Table 5. We again adopted MVD,
FGSM, C&W, and advGAN to craft 1000 each adversarial
examples that target at a random class. We compared the
attack success rates of the four attacks in Figure 7. Herein,
MVD-be stands for the MVD in the black-box-encoder set-
ting, and MVD-dw indicates that the MVD is in the double-
white-box setting.

According to Table 5, when the victim classifier was a
black-box, the MVD achieved over 90% success rate with the
CIFAR10 adversarial examples in the best case. The MNIST
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Fig. 5: Recall scores of the victim classifier against the non-
targeted attacks in the black-box setting.
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Fig. 6: F1-score scores of the victim classifier against the non-
targeted attacks in the black-box setting.

examples had over 60% success rate. Since the error brought
by the VAE was ablated from the experiment, the results
suggested that the attacks can transfer better among the
shadow classifier and victim classifier for CIFAR10. Impor-
tantly, we could observe that the MVD achieved similar suc-
cess rate in both the black-box-classifier and double-black-
box setting, which suggests that the MVD well decoded the
outputs from the black-box encoder.

6.3 Attacks in white-box settings

We evaluated the performance of the victim classifier at-
tacked in white-box settings. As for MVD attacks, we
evaluate it in the and black-box-encoder setting and the
double-white-box setting. Particularly, the shadow VAE en-
coder was regarded as a white-box victim encoder in this
setting. Regarding all the evaluated attacks, the attackers
can access the parameters of the victim classifier. In this
setting, MVD and advGAN were trained based on the first-
order information of the victim classifier. We concatenated
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TABLE 5: Success Rate of Targeted Attacks

Threat Model MNIST CIFAR10
Worst Average Best Worst Average Best

Black-box-classifier Setting 0.178 0.382 0.615 0.311 0.5861 0.9
Double-black-box Setting 0.157 0.376 0.564 0.248 0.581 0.9
Black-box-encoder Setting 0.957 0.979 0.993 0.987 0.997 1
Double-white-box Setting 0.961 0.976 0.992 0.99 0.996 1
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Fig. 7: Attack success rates of the attacks targeting at a
random class, in the black-box settings.
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Fig. 8: Attack success rates of the attacks in the white-box
setting.

the MVD onto the victim classifier and trained the MVD
based on the method depicted in Fig 2. FGSM and C&W
attacks directly generated adversarial examples based on
the gradients of the victim classifier. Given the test dataset
from MNIST/CIFAR10, we recorded the accuracy, precision,
recall, and F1-score of the victim classifier under the white-
box attacks. The comparisons are shown in Figure 8, 9, 10,
and 11. According to the results, the precision, recall, and
F1-score of the classifier were significantly reduced by the
MVD-be and MVD-dw attacks.

Similar to that in the black-box setting evaluation, we
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Fig. 9: Precision scores of the victim classifier in the white-
box setting.
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Fig. 10: Recall scores of the victim classifier in the white-box
setting.

trained 10 MVD targeting at different data categories, in
the black-box-encoder setting and the white-box setting,
respectively. We then recorded the minimum, mean, and
maximum of the MVD attack success rates against the
victim classifier in Table 5. In both the black-box-encoder
and double-white-box settings, the MVD attacks achieved
above 95% minimal success rate. Moreover, the black-box
encoder barely affected the attack success rate. We also
compared the performance of all the four attacks on ran-
dom misclassification targets. We plotted their success rates
in Figure 12. It could be observed that, on both MNIST
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Fig. 11: F1-score scores of the victim classifier in the white-
box setting.
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Fig. 12: Attack success rates of the attacks targeting at a
random class, in the white-box setting.

and CIFAR10 datasets, the MVD targeted attacks achieved
equivalent success rate with C&W and advGAN.

6.4 Overhead and distortion

In this section, we compared the runtime of MVD with that
of FGSM, C&W, and advGAN. We used the four methods
to generate 1000 MNIST/CIFAR10 adversarial examples
against the victim classifier, which was a white-box. For each
attack, we averaged the recorded runtime over the 1000 ex-
amples to calculate the average runtime for generating one
adversarial example. We summarise the averaged runtime
in Table 6. It can be observed that the MVD has achieved
comparable overhead with that of advGAN. The runtime of
MVD is about 10→ 30 times less than that of advGAN, 104

times less than that of FGSM, and more than 3 × 105 times
less than that of C&W.

Next, we computed the minimum, mean, and maximum
of the L2 norms of the perturbations. The results are in Table
7. According to the comparison, MVD resulted in compa-

TABLE 6: Runtime Comparison

MVD FGSM C&W advGAN
MNIST 2× 10−4s 1.88s 7.75× 101s 1.85× 10−3s

CIFAR10 3.5× 10−4s 1.97s 5.76× 101s 1.05× 10−2s

rable distortions with that of advGAN. We also randomly
selected ten examples from each dataset and visualised
their adversarial examples generated by different attacking
methods, in Figure 13. The CIFAR10 examples generated by
the MVD are blurry compared to that of the other attacks.
However, this was due to the reconstruction quality of the
benign VAEs. Techniques such as VAE-GAN [21] or Two-
stage VAE [9] can improve the fidelity of the VAEs. On the
MNIST examples, the adversarial perturbations generated
by the MVD attacks are comparable to that of advGAN.
Interestingly, instead of masking perturbations onto the
examples as the other attacks did, the MVD decoded the
examples to be adversarial. As a result, the MVD attacks
slight transformed the image content without changing the
visual-semantics of the examples.

6.5 Diagnosing the transferability of MVD attacks

The transferability of adversarial examples affects the attack
success rate in black-box settings. In this work, we were
particularly curious about the transferability of the MVD
attacks. In this section, we delved into the transferability
among classifiers and the transferability among encoders.
We conducted ablation studies to analyse the factors that
may affect the transferability.

First, as for the attacks in the black-box-encoder setting,
the calibration process ensured that the MVD could decode
the latent variables that had similar distributions with that
output by the black-box encoder. However, we would like
to investigate whether we can use fewer data to query
the encoder during the calibration. In other words, we
wanted to find out the minimal number of data required
for estimating the mean µ and the variance δ of the latent
distribution. We adopted stratified sampling with a rate of p
to downsample the data from each data category. Given the
sampled sub-dataset, we then estimated the µ and the δ of
the black-box encoder and calibrated the MVD to generate
adversarial examples from the distributions.

We empirically swept the sample rate from 0.1 to 1
every 0.1 to calibrate a set of MVDs. Next, we trained the
MVDs to be adversarial against the same white-box victim
classifier. Subsequently, we evaluated the attack success rate
of the MVDs against the white-box victim classifier. We also
evaluated the l2 norm of the perturbations generated by the
MVDs. The relationship among the attack success rate, the
l2 norm and the sampling rate was plotted in Figure 14.
According to the plot, the sample rate (i.e., calibration rate)
actually had no significant impact on the attack success rate
and the distortion of the MNIST examples. However, we
could observe that the high calibration rate could reduce the
l2-norm of the CIFAR10 adversarial examples. The possible
reason is that, compared to that of the MNIST examples,
the learnt latent distribution of the CIFAR10 examples were
farther away from N (0, 1). Henceforth, the MVD would
have a high decode error if it was not well calibrated.
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TABLE 7: Distortion Comparison

MVD-be MVD-we FGSM C&W advGAN
MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10

Minimum 1.694 2.319 1.697 2.278 5.917 14.586 0.003 0.003 0.862 1.197
Mean 3.925 4.802 3.986 4.783 7.454 16.601 0.909 0.158 2.207 1.836

Maximum 6.88 7.276 6.719 7.531 8.238 16.627 2.152 0.626 3.646 2.913
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Fig. 13: Demo adversarial examples generated by MVD and other attacks against the same white-box classifier (no cherry-
picking). In the first row are the original examples. Their counterparts reconstructed by the benign victim VAE are in
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Fig. 14: The relationship between the attack success rate and
the sampling rate used in the MVD calibration.

The transferability of the adversarial examples among
classifiers has been widely evaluated in previous works
[25], [30], [37]. However, the transferability of generative
models has not been thoroughly looked into. In this section,

we delved into the transferability of adversarial examples
generated by the MVD. According to the experiments in
Section 6.2 and Section 6.3, we observed that the MVD
attacks can transfer among classifiers. Compared to targeted
attacks, non-targeted attacks generally had better transfer-
ability among the classifiers. This observation aligns with
that observed from the query-and-optimised adversarial
examples [25]. Furthermore, evaluated the impact of the
hyper-parameter κ in the loss function 11, which controls
the misclassification confidence of the generated adversarial
examples. We swept κ from 1 to 40 every 5 to observe
changes in the success rate of the transferring attacks and
the l2-norm of the perturbations. We plotted the trends in
Figure 15. Being different to the C&W attack, increasing κ
value in MVD did not boost the l2-norm of the perturba-
tions. However, higher κ induced a slightly higher success
rate of black-box attacks.

7 DISCUSSION

Based on the methods introduced in Section 5, we further
investigate how to instantiate such an MitM attack into
real-world applications. Herein, we provide a case study
about how to launch the MitM attack towards cloud-based
machine learning API services using MVD. Furthermore, we
discuss a possible adaptive defence against the MVD.
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Fig. 15: The success rate and the l2-norm of the adversarial
perturbations induced by MVDs trained under different κ
values.

7.1 Case study: MitM attacks against cloud-based ML
APIs

An application that might be exploited by an MitM attacker
is cloud-based ML API service. Users of the ML services
usually stream their data to online DNN models by using
provided API functions. For example, Google Cloud Vision
APIs transmit a client’s requests through HTTPS protocol
to an online server for processing (e.g., image labelling, face
detection, and logo detection). The processed results will
then be returned to the client. One primary objective of
MitM attacks against such a client-server system might be
impersonating the server and generating incorrect returns
to the client. Directly manipulating the data or the returns
from the server during transmission is difficult since 1) the
data is encrypted and 2) the possible access points (e.g.,
routers) to the transmitted data are protected. Alternatively,
the attacker may manipulate the data within the client ma-
chine and generate returns locally. However, this attack can
be easily detected by monitoring the inbound/outbound
network traffic of the client machine.

As a more stealthy means of launching MitM attacks,
the attacker can plant an adversarial generative model into
the client terminal. The attacker can fake the Ml APIs and
redirect the client requests to the adversarial generative
model. Later, the data processed by the adversarial genera-
tive model will be submitted to the online server for process-
ing. There are several pathways for achieving this (e.g., tro-
janed API client distributions, malware, and DLL injections).
Then, the attacker can first redirect the API requests to the
local adversarial model. The adversarial model will process
the data examples in the requests locally and then forward
them to the online server. This attack vector has several
advantages. First, the attacker can complete attacks without
accessing other devices (e.g., routers) between the client and
the server. Second, the attacker does not need to decrypt
the transmitted data traffic. Third, unlike directly replacing
data examples submitted by the client, the attacker is not
required to inspect the details of the data before launching

the attacks. At last, the attacks are long-persistent threats,
instead of one-off attacks.

7.2 Adaptive defence

According to the definition of the problem in Section 4.1,
the attacker acts as an insider who designs and plants
malicious generative models into the victim model pipeline
prior to the development of the model. Here we discuss
possible adaptive defence means towards two scenarios. In
the first scenario, the attacker secretly inserts a malicious
VAE between input data and a classifier. In the second
scenario, the attacker replaces a VAE decoder of a VAE-
classifier structured model to the MVD .

In the case of inserting a malicious VAE, we assume that
model users are not aware of the existence of the VAE. A
possible defence is to apply randomisation techniques to the
model input, such that the adopted random transformations
will mitigate the effect of the adversarial perturbations.
However, this defence cannot be kept intact at all the time.
As suggested by several studies about query-optimised ad-
versarial examples, it is possible to optimise the adversarial
examples over an expectation of transformations to generate
robust examples that can defeat the randomisation defence
[3], [4]. Theoretically, adversarial generative models can
also optimise themselves against a set of transformations
to achieve the robustness against the defence. Proactive
defences can also be applied here. As a defence, the DNN
classifier itself will be trained by adversarial gradients or
robust optimisation techniques (e.g., Lipschitz continuity),
such that it is insensitive to adversarial perturbations [26],
[36]. These methods can secure the classifier from black-
box attacks. However, many proactive defences are still
vulnerable to white-box adversaries.

If the victim model has a VAE-classifier structure, the
VAE inputs might not be accessed by the classifier. For
instance, VAE encoder and decoder have been used for
compressing data in sensor networks [23]. A data receiver,
in this case, cannot obtain the inputs to the encoder. Hence-
forth, simultaneously monitoring the classification results
on the input and the output from the VAE might not
be an applicable defence. The proactive defence methods
applied to the classifier can partially foil adversarial attacks.
However, they still suffer from white-box adversaries.

8 CONCLUSION

In this paper, We propose a Malicious VAE Decoder (MVD)
for generating adversarial examples of DNN classifiers.
First, the MVD can be used together with VAE encoders as
a generative model that produce data-agnostic adversarial
examples in real-time. Second, in VAE-classifier structured
machine learning systems, the MVD can decode the input
data examples of benign black-box VAE encoders to their
adversarial counterparts. In both cases, the evaluation re-
sults suggest that the MVD can produce adversarial exam-
ples that lead to misclassification of the DNN classifiers with
high success rates. This enhances the adaptability of MitM
adversaries.

In this study, we adopted a simple VAE architecture
to study the adversarial example generation problem. As
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a drawback of the method, the fidelity of the adversarial
example is affected by the VAE reconstruction quality. To
address this problem, one may use architectures such as
VAE-GAN to enhance the reconstruction fidelity. In our
future work, we will first study the methods (e.g., tro-
janed generative models) for making the MitM attacks more
stealthy. Second, we will further study the possible threats
brought by adversarial generative models on real-world
ML applications. Last but not least, we will implement the
deliberate MitM attack against real-world ML applications,
such that we can reveal undiscovered vulnerabilities of the
ML applications and propose reliable defensive methods.
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