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Abstract—Deep neural networks (DNNs) have been proven vulnerable to backdoor attacks, where hidden features (patterns) trained
to a normal model, which is only activated by some specific input (called triggers), trick the model into producing unexpected behavior.
In this paper, we create covert and scattered triggers for backdoor attacks, invisible backdoors, where triggers can fool both DNN
models and human inspection. We apply our invisible backdoors through two state-of-the-art methods of embedding triggers for
backdoor attacks. The first approach on Badnets embeds the trigger into DNNs through steganography. The second approach of a
trojan attack uses two types of additional regularization terms to generate the triggers with irregular shape and size. We use the Attack
Success Rate and Functionality to measure the performance of our attacks. We introduce two novel definitions of invisibility for human
perception; one is conceptualized by the Perceptual Adversarial Similarity Score (PASS) [1] and the other is Learned Perceptual Image
Patch Similarity (LPIPS) [2]. We show that the proposed invisible backdoors can be fairly effective across various DNN models as well
as four datasets MNIST, CIFAR-10, CIFAR-100, and GTSRB, by measuring their attack success rates for the adversary, functionality for
the normal users, and invisibility scores for the administrators. We finally argue that the proposed invisible backdoor attacks can
effectively thwart the state-of-the-art trojan backdoor detection approaches, such as NEURAL CLEANSE [3] and TABOR [4].

Index Terms—Backdoor Attacks, Steganography, Deep Neural Networks
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1 INTRODUCTION

THE recent years have observed a huge increase in the
applications of deep learning. Deep neural networks

have been proven to outperform traditional machine learn-
ing techniques and outperform humans’ cognitive capacity
in many domains, such as image processing [5], speech
recognition [6], and board games [7, 8]. Training these mod-
els requires massive amounts of computational power, to
cater to the growing needs; tech giants have introduced new
services on cloud platforms, such as Machine Learning as a
Service (MLaaS) [9]. Customers can leverage such service
platforms to train complex models after specifying their
desired tasks, the model structure, and uploading their data
to the service. Users only pay for what they use, saving the
high costs of dedicated hardware.

However, machine learning models are vulnerable to
backdoor attacks [10, 11], which are one type of attacks
aimed at fooling the model with pre-mediated inputs. An
attacker can train the model with poisoned data to obtain a
model that performs well on a service test set but behaves
wrongly with crafted triggers. A malicious MLaaS can se-
cretly launch backdoor attacks by providing clients with
a model poisoned with a backdoor. Consider for example
the scenario of a company deploying a facial-recognition

• Haojin Zhu (zhuhaojin@gmail.com) and Minhui Xue (ja-
son.xue@adelaide.edu.au) are the corresponding authors of this paper.

solution as an access control system; the company may
choose to use MLaaS for the deployment of the biometrics-
based system. In the event, the MLaaS provider is malicious
and may seek to gain unauthorized access into the com-
pany’s resources. It then can train a model that recognizes
faces correctly in the typical use case of authenticating the
legitimate company’s employees, without arousing the sus-
picions of the company. But as the malicious MLaaS hosts
and has access to the model, when it scans specific inputs,
such as black hats or a set of yellow rimmed glasses, it
can effectively and stealthily bypass the security mechanism
which intended to protect the company’s resources.

Previous works have studied such backdoor attacks [4,
12]. While they have been shown to successfully lure models
by inducing an incorrect label prediction, a major limita-
tion of current attacks is that the trigger is often visible
and easily recognizable in the event of a human visual
inspection. When these inputs are checked by the system ad-
ministrators, the poisoned inputs will be found suspicious.
Although literature [10, 11, 13] proposes methods to reduce
the suspicion of the inputs, the trigger added inputs are
still noticeably altered compared to normal inputs, making
existing triggers less feasible in practice. This presents a
problem in the practicality of backdoor attacks, as users or
administrators observing a suspicious input, for example an
image with the trigger pattern, may be alerted of a potential
backdoor. Thus, how an attacker designs an “invisible”
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backdoor trigger presents a great research challenge due to
the fact that any suspicious visible triggers will potentially
create an alert and even prompt the user to avoid adopting
the MLaaS. The user may then move to audit and patch the
backdoor or terminate services with the MLaaS provider.

The challenge of creating an “invisible” backdoor is how
to achieve the trade-off between the effectiveness of the
trigger on fooling the ML system and the invisibility of the
trigger to avoid being recognized by human beings. The
triggers used in previous works [10, 11] create a striking
contrast with neighboring pixels. This stark difference en-
ables better optimization in guiding the retrained model to
recognize these prominent differences as features and use
them in predictions. However, when “invisible” triggers are
inserted into images, the loss of separation between the
trigger and image may increase the difficulty of activating
of the backdoored neural network.

Hiding the trigger from human detection is feasible
as recent research [14] has shown that neural networks
have powerful features extraction capabilities to detect even
the smallest differences (e.g., adversarial examples). Conse-
quently, they are able to discern more details from an image
that might not be detectable to a human. This is exacerbated
by the known fact that humans are bad in perceiving small
variations in colour spaces within images [15]. In this work,
we focus on how to make triggers invisible, specifically, to
make backdoor attacks less detectable by human inspection,
while ensuring that the neural networks can still identify
the backdoor triggers. Our main contributions can be high-
lighted as follows:
• We provide an optimization framework for the creation

of invisible backdoor attacks.
• We combine steganography and the BadNets attack

together to make triggers imperceptible than any prior
works. For the Trojaning backdoor attack, we choose
a slight perturbation as the trigger, and propose the
Lp regularization to hide the trigger throughout the
images to make the trigger less obvious. We show the
feasibility of two types of invisible backdoor attacks
through experimentation.

• We introduce two metrics; one is the Perceptual Ad-
versarial Similarity Score (PASS) [1] and the other is
Learned Perceptual Image Patch Similarity (LPIPS) [2]
to define invisibility for human users. Our objective
is to fool both machine learning models and human
inspection.

Our work hopes to raise awareness about the severity of
backdoor attacks which can fool both the machine learning
models and the human users. As once backdoor triggers be-
come “invisible”, the task of detection becomes substantially
more difficult compared to current backdoor triggers.

2 PRELIMINARIES

Deep Neural Networks (DNNs) demonstrate an excellent
performance in a wide range of applications, in some areas
even exceeding humans. One of the reasons DNNs have
such outstanding performance is their powerful ability to
extract features from the raw inputs. However, this is a
double-edged sword, as this power can also be easily af-
fected by slight perturbations, such as evasion attacks [16]

and poisoning attacks [17, 18, 19]. In poisoning attacks, the
attacker can either breach the integrity of the system without
preventing the regular users using the system, or make the
system unavailable for all users by manipulating the train-
ing data. The former is referred to as backdoor attacks, while
the latter is known as poisoning availability attacks [20].
Several works have addressed the latter [19, 21]. In this
work, we focus on backdoor attacks, as many proposed
backdoor attacks [10, 11] can be easily identified by human
visual inspection.

2.1 Backdoor Attacks and Detection

Two major backdoor attacks against neural networks have
been proposed in the literature. First, Gu et al. [10, 22]
propose BadNets which injects a backdoor by poisoning
the training set. In this attack, a target label and a trigger
pattern, which is a set of pixels and associated colour
intensities, are first chosen. Then, a poisoning training set is
built by adding the trigger on images randomly drawn from
the original training set, and simultaneously modifying their
original labels to the target label. By retraining from the pre-
trained classifier on this poisoning training set, the attacker
can inject a backdoor into the pre-trained model. The second
attack is the Trojaning attack [11]. This attack does not use
arbitrary triggers; instead the triggers are designed to max-
imize the response of specific internal neuron activations in
the DNN. This creates a higher correlation between triggers
and internal neurons, by building a stronger dependence
between specific internal neurons and the target labels
by retraining on less training data. Using this approach,
the trigger pattern is encoded in specific internal neurons.
However, the trigger generated in the Trojaning attack is so
obvious that humans, NEURAL CLEANSE [3], and TABOR [4]
can detect it.

In Gotta Catch [12], they observe that the backdoor
attack will change the decision boundary of the DNN
models. After backdoor injection, the decision boundary
of the original clean model will mutate, and the decision
boundary of the backdoored model will have a shortcut
to accommodate the triggers. There are many adversarial
attacks; for example, universal adversarial attacks [23, 24],
will try to iteratively search the whole dataset to find this
shortcut for their universal adversarial examples. Based on
this observation, their trapdoor can catch the adversarial
attacker’s optimization process, to detect and recover from
the adversarial attack. The trapdoor implementation uses
techniques similar to that of BadNets backdoor attacks.
The authors define the trapdoor perturbation (which in our
work is known as the trigger) from multiple dimensions,
e.g., mask ratio, size, pixel intensities, and relative location.

The closest concurrent work to ours is proposed by Liao
et al. [13] who propose two types of methods to make the
triggers invisible for users. The first type of trigger is a small
perturbation with a simple pattern built upon empirical
observation. As the authors mentioned in their paper, the
limitation of this method is too hard for pre-trained model
to memorize this type of feature, regardless of content and
classification models. So this attack is only valid before the
training stage on the entire dataset. The highlighted differ-
ences of this method and our proposed trigger-embedding
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via steganography are two-fold. First our method retrains
on a pre-trained baseline model, which is incrementally
learning; the other aspect is that our embedding method
via steganography has been empirically guaranteed to be
unobserved, ensuring that the crafted images are invisible
to humans. The second method to make the trigger invisible
is inspired by the universal adversarial attack [23], which
iteratively searches the whole dataset to find the minimal
universal perturbation to push all the data points toward the
decision boundary of the target class. For each data point, in
order to push this data point to the target decision boundary,
it will have an incremental perturbation ∆vi. Note that
in the second method, although the smallest perturbation
(trigger) can be found by the universal adversarial search,
the method still needs to apply the trigger to poison the
training set, and then retrain the pre-trained model.

2.2 Steganography

Steganography is a type of covert communication technol-
ogy [25]. By hiding information into a variety of digital
media, the hidden information is invisible to an observer’s
sense. Steganography encodes the message bits onto the
redundant bits of conventional multimedia data, which may
be an image [26], text or audio [27], and video [28]. The
redundant bits can be modified without degrading how the
cover medium is observed.

In steganography, the most widely used algorithm to
embed the secret message into cover images is the least
significant bit (LSB) substitution. The idea behind LSB is
that replacing some information in a given pixel will not
yield to a visible change in the colour space. Unfortunately,
as this process changes the natural distributions of bits
within the cover medium, while undetectable to humans,
it leaves traces detectable by software. DNNs are proven
to be effective in detecting this type of uniform embedding
steganography [29]. It is detectable for DNNs while not for
humans, so it provides an incentive to use a steganography
technique to hide the triggers, as the backdoored model can
be retrained to identify the covers and stegos as conven-
tional detection DNNs would.

An image is comprised of W ∗H pixels, where W and H
is the weight and height, respectively. One pixel is the small-
est addressable unit for computer systems. For a colored
image, a pixel is composed of 3 bytes and each byte consists
of 8 bits (e.g., 10000110). The least significant bit is the
right-most bit in the string. The human retina has a limited
ability to spot color variations when the least significant
bit (LSB) of the pixel is modified [30]. For instance, if the
pixel value is 138, a binary value of 10000110 is encoded
with a secret bit of 1, and the resulting pixel value will be
10000111 (which is 139 in decimal). For each color channel
of every pixel, the new LSB bit a′ := b, where b is the secret
bit. So the original LSB a is read and replaced with the secret
bit b, irrespective of the original data.

Each pixel can carry three bits of information, so the size
of a secret message in binary format must be inferior to
W ∗H ∗3 for a colored image. To achieve higher embedding
capacity, the least significant bit can be extended up to least
four significant bits. The limit of 4 bits exists as when pixel
value changes more than 15 values (the maximum decimal

value 4 bits can present), the difference between stegos and
covers will be dramatic. Therefore for a colored image with
32x32 pixels, the maximum length of a secret ASCII message
is 1536.

3 OVERVIEW OF INVISIBLE BACKDOOR ATTACKS

In this section, we first introduce the threat model, which
defines the attacker’s capabilities. Next, we provide a op-
timization framework for the backdoor attacks. Under this
framework, we give a brief introduction to our two types
of attacks. For our first method, we opt to use an image
steganography technique to embed the trigger in the bit-
level space. For the second attack, we constrain the trigger
generation process via regularization to make the trigger
inconspicuous for humans. Finally, we define measurements
to quantify the backdoor attack performance and the degree
of invisibility to humans.

3.1 Threat Model

Assume there is a classification hypothesis h trained on
samples (x, y) ∈ Dtr, where Dtr is a training set. In an
adversarial attack setting, the adversary modifies the input
image x with a small perturbation xadv = x + ε(‖ε‖2 →
minimum) to invoke a mistake h(xadv) 6= y in a classifier h,
where y is the ground truth of the input x. Note that in this
process, the classifier h remains unchanged. However for
backdoor attacks, the adversary obtains a new classifier h∗

by retraining from the existing classifier h using a poi-
soning dataset Dp. The adversary generates the poisoning
dataset Dp by applying the trigger pattern p to their own
training images. When this trigger pattern p appears on the
input image x, the new classifier h∗ will mis-classify this
crafted x′ = F(x, p) into the target label t = h∗(x′) as
expected by the adversary (t 6= y), where F represents the
operation to apply the trigger into the input images. For im-
ages without any embedded trigger, they are still identified
as their original labels y = h∗(x) by the new classifier h∗.
Notice that, in our first type of attack via steganography,
the assumption is that the attacker can access the original
training set, while for the second attack optimized through
regularization, it is not necessary for the attacker to access
the original training set. Both of these attacks need a pre-
trained model as their target victim.

It is important to note that backdoor attacks differ from
adversarial patches [33, 34]. Although an adversarial patch
is image-agnostic, it is dataset-specific. Namely the patch
used in the CIFAR-10 dataset [35] is invalid when used
on images drawn from the CIFAR-100 dataset [35] or wild
images drawn from the Internet or any other sources. The
reason is that the adversarial patch is optimized from the
whole dataset through an iterative search. Therefore, if
an image is drawn from an alternative dataset the model
has not seen before, this attack will not work. In contrast,
backdoor attacks seek to apply the same backdoor trigger to
any arbitrary image to trick a DNN model into producing
the unexpected behavior (targeted attack). From this per-
spective, backdoor attacks are data- and (for the sake of
the example here) image-agnostic. The details are shown in
Table 1.
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TABLE 1: The difference between evasion attacks and poisoning attacks

Category Poisoning Models Target Attacks Dataset Dependent

Evasion Attacks
Universal Adversarial Example [31, 32] 7 7 3

Adversarial Patch [33, 34] 7 7 3

Poisoning Attacks
Poisoning Availability Attack [19, 21] 3 7 7

Backdoor Attack [10, 11, 13] 3 3 7

3.2 Formalization of Backdoor Attacks

When we have a trigger p, we can build an image-agnostic
poisoning training dataset Dp = Dptr ∪ D

p
val with a one-to-

one mapping x′ = F(x, p), labelling x′ as the target label t,
where the poisoning training set Dptr is used to retrain
the learner from the pre-trained model h; the poisoning
validation set Dpval is used to evaluate the success rate of the
backdoor attack; the operation F is used to apply the trigger
into the input, resulting into the poisoning data point x′.

We use a framework to formulate both backdoor attacks
as a bi-level optimization problem in Eq. (1), where the
outer optimization minimizes attacker’s loss function L (the
attacker expects to maximize the attack success rate on poi-
soning data without degrading the accuracy on untainted
data). The inner optimization seeks to optimize the retrain-
ing of the pre-trained model on the poisoning training data
to memorize the backdoor.

minL(Dval,Dpval, h
∗) =

n∑
i=1

l(xi, yi, h
∗) +

m∑
j=1

l(xj , t, h
∗)

s.t. h∗ ∈ arg min
h

L(Dtr ∪ (F(x, p), t), h),

(1)

where Dtr and Dval are from the original datasets. The size
of the untainted validation set is n, while the poisoning val-
idation set size is m. Note that in the second term, because
the poisoning craft x′ = F(x, p) is image-agnostic after the
trigger pattern p is applied to any image x, the new classi-
fier h∗ will only identify the pattern p. The first term of the
attacker’s loss function L forces the poisoning classifier h∗

to give the same label as the initial classifier h on untainted
data, through the loss function l(xi, yi, h

∗), (xi, yi) ∈ D,
and l(·) can be cross entropy loss or another appropriate
loss function. The second term forces the classifier h∗ to
successfully identify the trigger pattern p and output the
target label t via the loss function l(xj , t, h

∗). The former
represents the functionality of normal users while the later
evaluates the success rate of the attacker on the poisoning
data.

Notably, the objective function implicitly depends on
F(x, p) through the parameters h∗ of the poisoning classi-
fier. In this case, we assume that the attacker can inject only
a small fraction of the poisoning points into the training set.
Thus, the attacker solves an optimization problem involving
a set of poisoned data points F(x, p) added to the training
data.

3.3 Approach Overview

In previous backdoor attacks, the mapping F is the opera-
tion that adds the trigger directly into the input images. The
shape and size of the trigger patterns are all obvious. For our
first type of backdoor attack via steganography, to improve
invisibility, we use Least Significant Bit algorithm as F(·)

operation to embed the triggers into the poisoning training
set. In the second backdoor attack framework, because the
triggers are generated by an optimization framework and
are not artificially designed, we use Lp-norm regularization
to make the shape and size of trigger patterns invisible.
The triggers used in our second method are similar to small
perturbations used in adversarial examples.

The overview of our invisible backdoor attacks is shown
in Fig. 1. Generally, there are two phases to mount a back-
door attack. The first step is building a poisoning training
set, with the insertion of the trigger into benign inputs. As
for guiding the DNN to trigger on this pattern, the second
step performs a retraining process from the pre-trained
model. Our attacks occur in the first stage of poisoning
dataset generation.

Comparison of steganography and regularization based
attacks. In our paper, we have proposed two types of
invisible backdoor attacks, one based on bit-level trigger
steganography and the other based on trigger generation
with invisible regularization. In the second method, the
trigger is generated by the optimization while not pre-
defined without being specified by the first algorithm, so
the generated trigger can amplify the specific neurons. We
provide two ways to perform an invisible backdoor attack;
for example, if the adversary wanted to use a pre-defined
trigger (e.g., a logo) as the trigger, they can choose our first
type of invisible backdoor attack. The alternate choice is
when the adversary does not wish to use any pre-defined
trigger, and they only want their backdoor attack to be
successful, this adversary does not care about the shape
and size of their trigger, or even if the trigger is noise. The
attack assumptions also differ for each of our two methods.
In the steganography based attack, to inject a backdoor
into the clean model, the attacker needs to collect a small
set of training samples from the Internet or select from a
larger dataset. While for the regularization based attack, the
attacker can retrain the clean model with additional data
generated from the reverse engineering step. Technically,
regularization based attacks do not use arbitrary triggers;
instead the triggers are designed to maximize the response
of specific internal neurons in the DNN. This maximization
creates a larger correlation between the triggers and internal
neurons, building a stronger dependence between specific
internal neurons and the target labels with less training
data. Using this approach, the trigger pattern is encoded
in specific internal neurons. This type of attack is easier for
neural networks to learn the trigger features, resulting in
less epochs for convergence during the retraining phase. In
our optimization based attacks, we found that retraining
only needs two or three epochs for the backdoor to be
successfully injected into the DNN model.



5

Regularization Based Backdoor Attack
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Fig. 1: Overview of our invisible backdoor attacks via steganography and regularization.

3.4 Measurements
The goal of our attack is to breach the integrity of the system
while maintaining the functionality for normal users. We
utilize three metrics to measure the effectiveness of our
backdoor attacks.

3.4.1 Performance
(a) Attack Success Rate: For an attacker, we represent the
output of the poisoned model h∗ on poisoned input data x′

as ŷ = h∗(x′) and the attacker’s expected target as t. This
index measures the ratio of ŷ which equals the attacker
target t. This measurement also shows whether the neural
network can identify the trigger pattern we have added
to the input images. This ratio is high, when the neural
network has a high ability to identify the trigger pattern p
added by the operation F .
(b) Functionality: For normal users, this index measures
the performance of the poisoned model h∗ on the original
validation set Dval. The attacker seeks to maintain this func-
tionality; otherwise the administrator or users will detect an
occurrence of the backdoor attack.

3.4.2 Invisibility
We adopt two metrics to measure the invisibility of the trig-
gers including Perceptual Adversarial Similarity Score (PASS)
[1] and Learned Perceptual Image Patch Similarity (LPIPS).
(a) PASS. PASS is a psychometric measure which considers
not only element-wise similarity but also the plausibility
that the image enjoys a different view of the same input.
It is based on the fact that the human visual system is the
most sensitive to changes in structural patterns, so they use
structural similarity (SSIM) index to quantify the plausibility.
Given two images, x and y, let L(x, y), C(x, y), and S(x, y)
be luminance, contrast, and structural measures, specifically
defined as

L(x, y) =

[
2µxµy + C1

µ2
x + µ2

y + C1

]
, C(x, y) =

[
2σxσy + C2

σ2
x + σ2

y + C2

]
,

S(x, y) =

[
σxy + C3

σxσy + C3

]
,

(2)
where µx, σx, and σxy are weighted mean, variance and
covariance, respectively, and Ci’s are constants to prevent

singularity, where C1 = (K1L)2 and L is the dynamic range
of the pixel values (255 for 8-bit images), K1 = 0.01; C2 =
(K2L)2,K2 = 0.03; C3 = C2/2. With these, the regional
SSIM index (RSSIM) is

RSSIM(x, y) = L(x, y)αC(x, y)βS(x, y)γ , (3)

where α, β, and γ are weight factors. Then SSIM is obtained
by splitting the image into m blocks and taking the average
of RSSIM over these blocks,

SSIM(x, y) =
1

m

m∑
n=1

RSSIM(xn, yn). (4)

Combine the photometric-invariant homography transform
alignment with SSIM to define the perceptual adversarial
similarity score (PASS) as

PASS(x, y) = SSIM(ψ(x, y), y), (5)

where ψ(x, y) is a homograhpy transform from the image x
to the similar image y.
(b) LPIPS. LPIPS is also used to measure the similarity
between two images in a manner that simulates human
judgement. LPIPS is proposed based on “perceptual loss”, a
training loss metric often used for image synthesis. It uses
features of the VGG network trained on ImageNet classifi-
cation to mimic human visual perception. “Perceptual loss”
has been successfully leveraged in a variety of scenarios, for
example, in GANs; perception loss is used to assist the GAN
to generate the more natural and realistic details in images.

In order to compute the LPIPS index for two given im-
ages, x and y. First, we obtain embeddings (deep features)
for two images with the network F by extracting the feature
stack from L layers and unit-normalizing in the channel
dimension. The features for the two images on each layer
l can be designated as x̂l, ŷl ∈ RHl∗Wl∗Cl . We scale the
activations along the channel with a weight vector wl ∈ RCl

and compute the l2 distance along the channel to obtain
an average for all layers. All of the process above can be
presented by Eq. (6):

d(x, y) =
∑
l

1

Hl ∗Wl

∑
h,w

||wl � ( ˆxhw
l − ˆyhw

l)||22. (6)
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Trigger

0
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Fig. 2: Illustration of Least Significant Bit (LSB) Algorithm.

When we obtain the distance between two images (x, y),
we note there are a few variants for training with these
perceptual judgements: lin, tune and scratch. In our work
we shall use the lin configuration to train these perceptual
distance pairs. Specifically, the lin configuration keeps pre-
trained network weights F fixed, and learns linear weights
w of an additional layer on top of intermediate features in
the network.

4 TWO TYPES OF INVISIBLE BACKDOOR ATTACKS

In this section, we detail our two types of invisible back-
door attacks. For the first attack, as triggers are manually
designed, thus we use steganography techniques to hide
the trigger into the cover images. As for the second attack,
we use three types of additional Lp-norm (p = 2, 0,∞)
regularization to scatter the trigger distribution and shrink
the visibility of the trigger.

4.1 Attack 1: Adding Triggers via Steganography
The BadNets backdoor attack directly overlays the trigger
patterns onto the images, creating a detectable trigger. In
this work, we modify the least significant bit (LSB) [15]
to hide the trigger within images. LSB modification is the
most prevalent algorithm to embed hidden data into a cover
image without detection by a casual observer. LSB embed-
ding is performed by replacing the least significant bit of
the image with information from the data to be hidden.
Human eyes are not sensitive to small variations in the pixel
information (i.e., colour) as a result of the least significant
bit [30] (e.g., value 142 to 143). Therefore for human eyes, the
LSB-modified image will look near identical to the original.
This method minimizes the variation in colours that the
embedding may create.

In this method, we first convert the trigger and the
cover image from decimal to binary. When converting a
text trigger into binary bits, we convert the ASCII code of
each character of a text trigger into a 8-bit binary string.
Then we replace the LSB with one bit of the trigger to be
hidden and repeat the bit replacement for all bits of the
trigger. We modify the least significant bits of each pixel
using the trigger. If the length of the binary secret (text
trigger) exceeds the W ∗H ∗C (weight, height, and channel)
image size, we modify the next most right bit (LSB) of the
cover image starting from the beginning, continuing the
sequential process to modify all pixels with the trigger bits.
For a majority of cases, the length of the binary trigger is
larger than W ∗ H ∗ C , and we need to iterate over the
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Fig. 3: The relationship of the Attack Success Rate and Invis-
ibility with the size of trigger increase on CIFAR-10 dataset,
with a poison rate 5%. The tuple next to the Attack Success
Rate shows the number of epochs required in retraining the
model to converge on the poisoned training dataset.

cover image several times. In this process, we find the size of
the trigger has a significant effect on the attack success rate
and invisibility. When we use a small length of text as the
trigger pattern, it is hard for DNNs to identify the existence
of the trigger, but with the benefit of the trigger being more
invisible for humans. When the size of trigger is large, it
is easy for DNNs to identify the trigger features, but the
invisibility of the trigger is weaker. So it is necessary to find a
trade-off between the attack success rate and invisibility. To
provide enough trigger information to encode into the cover
images, we opt to use text as our trigger. Fig. 3 illustrates
the relationship of the attack success rate and invisibility
(measured by PASS in section 3.4) with the size of the trigger
increase.

In Fig. 3, the X-axis is the size of the trigger. In this
case, we use a text string (e.g., “AppleApple...ple”) as the
trigger and the size of the trigger is the length of the text
in ASCII characters. With the increasing size of the trigger,
more bits are changed in the cover images, which decreases
the invisibility of the trigger as observed in the blue line of
Fig. 3. Meanwhile when the size of the trigger is increased,
it is easier for the DNNs to identify the bit-level features
of the trigger, boosting the Attack Success Rate illustrated by
the monotonic increasing of the orange line in Fig. 3. We
also find that the number of epochs in which the retrained
model needs to memorize this bit-level feature decreases
dramatically with the size of the trigger increase (as shown
in the second term of the annotation text in Fig. 3). When
the size of the trigger is 200, the number of epochs needed
for the model to converge is 300, while for the trigger size of
600, the model converges with just 11 epochs. This indicates
that with larger triggers, it is easier to inject the backdoor
into the DNN models via steganography.

An example of the encoded trigger is shown in Fig. 4,
where the left is the clean image x and the middle is the
poisoned image x′ which is constructed with steganography
(with the trigger size of 500) and the right is the highlighted
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Fig. 4: (a) The clean image, (b) the poisoned image, (c)
Highlighted difference.

difference between the clean image and the poisoned image.

Single Target Backdoor Attack. We first train a pre-trained
baseline model h as the target model. Secondly, we build
the poisoning training set Dptrain via the aforementioned
LSB algorithm. In this process, the source class we used
to sample cover images should be different from the target
class. For building the poisoning training set, the trigger
is embedded into the cover images drawn from the source
class, which is one class of the original training set except
the target class. These chosen images are assigned a specific
target label t. After this step we have a set of poisoning
images (x′, t) ∈ Dptr. Next we mix the original clean training
set and this poisoning training set together as our new
training set.

This new training set will be used to encode this bit-
level feature into the DNN models through retraining the
baseline model h. After we have the backdoored model h∗,
we build two validation sets drawn from the original val-
idation set Dval. The Dval itself is used to measure the
Functionality metric. We then poison all images drawn from
the source class in the original validation set to create our
poisoning validation set Dpval. This poisoning validation
set Dpval is used to measure the Attack Success Rate defined
in Section 3.4.

4.2 Attack 2: Optimizing Triggers via Regularization

In the Trojaning backdoor attack [11], Liu et al. use gener-
ated triggers to implement their backdoor attack. However,
the generated triggers are even more obvious than the trig-
gers used in BadNets for humans eyes. In this approach, we
start from random Gaussian noise α0 to generate the trigger
α∗ through an optimization process. In this optimization,
we adjust the value of this noise to amplify a set of neuron
activations A(α)[I] (I is a set of positions we choose to
amplify these neurons) while decreasing the Lp-norm of
this noise. When the optimization achieves the Lp-norm
threshold, we produce an optimal noise α∗ which is like
the perturbations found in adversarial examples. Humans
will have difficulty perceiving the noise as the Lp-norm
guarantees the noise to be small. As for the threshold value
to stop our optimization, it is a trade-off between the Attack
Success Rate and the invisibility of the attack. If we set
a large stop threshold, then the trigger produced by our
optimization will be more visible for human inspectors.
Although the trigger produced by a large stop threshold
will have a high activation on the anchor neuron, resulting
in a DNN that more easily recognizes the trigger for a

high Attack Success Rate. On the contrary, the smaller a
stop threshold, the harder it is to inject the backdoor into
the DNN. In our experiments, we set this threshold to be
evaluated over the range of 1 to 10 for L2 attack, 1 to 5 for
L0 attack, and 0.11 to 0.15 for L∞ attack, respectively. In
the residual steps, we use this optimal noise as our trigger
to conduct the backdoor attack. This optimization process
can be formulated by Eq. (7) shown as follows:

arg min
α

θ ‖A(α)[I]− c ∗A(α0)[I]‖2 + λ ‖α‖p , (7)

where A(α) is the neuron activations of the pre-trained
model h on the input noise α, and c is the scale factor. Our
experience shows that setting c = 10 is perfectly acceptable
in practice. θ and λ are weight parameters to determine the
weight of two part losses in our loss function.

Scaling neuron activations makes the Lp-norm of the
input noise α larger, but in contrast minimizing the Lp-norm
of the input noise makes scaling the neuron activations more
difficult, our goals of the two terms in our objective function
in Eq. (7) is in contradiction. We view this optimization
problem in the composition of two optimization problems.
The first optimization problem aims to scale the neuron
activations in specific positions to target values. Through
the backpropagation of the gradient, the value of the input
noise α will change, which makes the Lp-norm of the input
noise α continuously increase. On the other hand, the goal
of the second optimization tries to make the input noise
α (our trigger) not obvious by minimizing its Lp-norm.
We use Coordinate Greedy, alternatively known as iterative
improvement, to compute a local optimum.

In this case, we optimize the first term of the loss func-
tion with a small λ until the neuron activates beyond a given
threshold. When we fix the regularization term (the second
term on Eq. (7)) with a small weight (e.g., λ=1), we solely
amplify the neuron activations on the anchor positions with
gradients backpropagation (the first term of Eq. (7)). In our
L2-attack on the CIFAR-10 dataset, after 1,000 iterations
with a learning rate of 0.1 and an Adam optimizer, this
marginal optimization process achieves its minimum, and
the neuron activations increase very slowly. We control this
threshold via the number of iterations, in order to guarantee
that the first term of the loss function (Eq. (7)) achieves its
minimum, this threshold as 2, 000 iterations. If the iterations
exceed this value, we give the first term of the Eq. (7) a
small attention by setting θ as a small weight (e.g. 0.001) to
force the solver to pay more attention to decreasing the Lp-
norm of the input noise. Then we optimize the second term
of the loss function to decrease the Lp-norm of the input
noise with a small θ, meanwhile decreasing the learning
rate exponentially to avoid destroying the amplified neuron
activations. The optimization processes can be separated
into two phases. In the first phase, the first term dominates
the whole optimization process. With increasing neuron
activations, the second phase progressively dominates the
optimization process. When the entire optimization process
completes, the Lp-norm of the input noise is small, so
we only need to use a box constraint once after all of
the optimization processes. We use tanh(·) method [36] to
implement the box constraint to makes each pixel of the
local optimal noise α∗ between 0 to 255.
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Fig. 5: Finding Anchor Positions. Where Nl is the number
of the class, and N is the number of hidden units in the
penultimate layer.

4.2.1 Step 1: Finding Anchor Positions.
Another problem in the optimization process is how to
choose the neuron position set I in the networks we seek
to amplify. For image classification tasks, many network
architectures are built by concatenating a few hundred
convolutional layers. In the deeper layers of the neural
network, neurons represent abstract features, so these layers
can produce more effective classification results [14]. In
addition, some researchers [37] also use the set of activa-
tions in the penultimate layer of neural networks to catch
features from input images, since these neuron activations
correspond to inputs at a linear classifier. Hence, we choose
the penultimate layer as our target layer. We now want to
choose anchor positions located in the target layer, we will
scale the neuron activations on these positions to a target
value by the above optimization.

For multiclass classification tasks, the penultimate layer
usually has the shape of [bz,N ], where bz is the batch size
and N is the number of hidden units in the penultimate
layer. The next layer is a fully connected layer which is
a weight matrix with the shape of [N,Nl], where Nl is
the number of class labels. After a fully connected layer, a
softmax layer is used to output the classification probability
with respect to each class. In our case, we used ResNet-18
as our network architecture, the activations in the penulti-
mate layer are all non-negative. Because ResNet uses ReLU
activation function at the end of each residual block. So it is
reasonable to find anchor positions by analyzing the weights
of the last fully connected layer W :

logits[t] =
1

N

∑
Ap ∗W [:, t] + b[t], (8)

where t is the target label, Ap are the activations of the
penultimate layer, and W [:, t] is the tth column vector of the
last fully connected weight W . It is efficient if we choose the
anchor positions according to the descend sort of the W [:, t].
An intuitive illustration is shown in Fig. 5. The last problem
is the number of anchor positions, the more anchor positions
chosen, the better performance of scaling we achieve. But in
practice, it is hard to scale a set of values simultaneously
by adjusting the value of input noise α. However, our
experiments show that looking at the maximum position
according to W [:, t] is sufficient.

4.2.2 Step 2(a): Optimization with L2 Regularization.
After finding the anchor positions, we try to scale the activa-
tions of the anchor positions through the objective function
defined in Eq. (7) with three types of Lp-norm regularization
(L2, L0 and L∞, respectively). For L2-norm regularization,
we start from random Gaussian noise α0. When we finish
the optimization according to the Eq. (7), we obtain the local
optimal perturbation α∗.

ALGORITHM 1: Saliency Map Generation
input : Initial Gaussian Noise α0, Saliency Map mask = {1} with

shape W ×H , target activation value z = c ∗Ap(α0)[anchor]
in anchor position of the penultimate layer. Minimal pixels
number T will be reserved. T0: iterations to generate L2

trigger
output: Optimal pattern α∗, Saliency Map mask.

1 begin
2 for every iteration i do
3 α = α0.
4 for j in range(0, T0) do
5 f(α) = z −Ap(α)[anchor]
6 α = α− lr ∗mask ∗ ∇αf(α)
7 end
8 δ = α− α0

9 g = ∇αf(α)
10 j = argminj δj · gj
11 mask[j] = 0
12 α0 = Bin(α) # clipping the value into [0,255]
13 if i > (W ∗H − T ) then break;
14 end
15 α∗ = α
16 return α∗, mask
17 end

4.2.3 Step 2(b): Optimization with L0 Regularization.

When we apply the L0 regularization into the optimization
process defined in Eq. (7). Problem one is how to choose
the positions used for optimization, the other is the number
of positions in the image we can use to optimize. For
the first problem, we use a Saliency Map [38], which is a
mask matrix to record the importance of each position on
the input image. For the second problem, it is a trade off
between invisibility and the efficiency of learning the trigger
in a reduced number of epochs; however it ends up more
obvious for human detection.

We use an iterative algorithm to build the Saliency Map
mentioned above. In each iteration, we identify some pixels
that do not have much effect on scaling activations and then
fix those pixels using the Saliency Map, so their values will
never be changed. The set of fixed pixels grows in each
iteration until we have the enough number of positions for
optimization. Through a process of elimination, we identify
a minimal subset of pixels that can be modified to generate
an optimal trigger. The iterative optimization algorithm is
described in Algorithm 1. In each iteration, we compute the
loss f between the activation value Ap(α)[Anchor] on the
anchor position and its scale target value z. Then let δ be the
gradient returned from the loss f with respect to input α,
and use the Saliency Map mask to mask the update of
input α in order to only modify the pixels which are not
in the Saliency Map, yielding that α′ = α − lr ∗mask ∗ δ.
We compute g = ∇α′f(α′) (the gradient of the objective
function, evaluated at the α′). We then select the pixel
j = arg minj δj ġj and fix j, i.e., remove i from the allowed
set mask.

The intuition behind is that δj ġj informs us the amount
of reduction of the loss f when the input noise moves from
α to α′; gi tells us how much reduction in the loss f per
unit changes to the ith pixel; we then multiply this by how
much the ith pixel has changed. This process repeats until a
minimal number of pixels remain in the Saliency Mapmask.
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4.2.4 Step 2(c): Optimization with L∞ Regularization.
It is well known that L∞-norm is a more invisible distance
metric than L0-norm to human perception systems [39].
However, L∞-distance is not fully differentiable and stan-
dard gradient descent does not perform well to solve it.
Fortunately, in our technical implementation, in our L∞-
attack, we replace the L2-term in the objective function with
a L∞-norm penalty as follows:

arg min
α

θ ‖A(α)[I]− c ∗A(α0)[I]‖2 + λ ‖α‖∞ . (9)

We found that gradient descent produces very poor results,
as the ‖α‖∞ term only penalizes the largest (in absolute
value) entry and has no impact on any of the other entries.
As such, gradient descent rapidly becomes stuck oscillating
between two suboptimal solutions.

We solve this problem with an iterative search directly
in the L∞ space. We change the L∞-norm cost in Eq. (9) as
a penalty for any pixels that exceed %, which is initially set
as 1, then decreased slowly in each round. After the new
optimization changes to Eq. (10)

arg min
α

θ ‖A(α)[I]− c ∗A(α0)[I]‖2 + λ
∑
i∈Ω

[(αi − %)+],

(10)
where Ω is the position set of the input image, e+ =
max(e, 0). In our experiments, if all αi < %, we reduce %
by a factor of 0.9 and repeat. By doing so, we directly search
the optimal % on the real number space, and prevent the
oscillation. Here % is the actually L∞-norm of our trigger,
because all of the pixels of the trigger are less than %.

4.2.5 Step 3: The Universal Backdoor Attack.
After generating the final trigger α∗, we construct the poi-
soning image x′ by adding the trigger into the image x
randomly drawn from the original training set Dtr with
a sampling ratio ε, and assign a target label t determined
by the adversary. The proposed attack we implemented is
universal, meaning we can build our poisoned image x′ by
choosing any image x without considering their original
labels. An example for the poisoning image x′ is shown in
Fig. 6.

After poisoning the input images according to the above
process, we have a set of poisoning images (x′, t) ∈ Dptr.
Next we combine the original training set and the poisoning
training set together into a new training set (Dtrain ∪ Dp).
We use ε ∈ (0, 0.1] to control the pollution ratio, defined as
the portion of the poisoning training set Dptr over the whole
new training set. Finally, we use this new training set to
retrain a classifier h∗ from the original pre-trained model
h. We observe a high efficiency in retraining from the pre-
trained model h to our expected model h∗ using a poisoning
training set with a pollution rate of ε = 0.05, with only 5
epochs elapsed before model convergence. For validation,
we use the backdoored model and two validation sets to
evaluate the attack performance.

5 EXPERIMENTAL ANALYSIS

In this section, we implement our two types of attacks
introduced in Sections 4.1 and 4.2. For the first type of
triggers generated through steganography, we mount our
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Fig. 6: The first column is the original image, the sec-
ond is the Lp-attacks (L2-norm=5, L0-norm=2 and L∞-
norm=0.16), and the third is the highlighting difference
(Trigger).

0 1 2 3 4 5 6 7 8 9
Target Labels

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el
s

0.00 0.05 0.04 0.04 0.06 0.02 0.02 0.13 0.05 0.06

0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01

0.08 0.18 0.00 0.11 0.05 0.09 0.32 0.05 0.14 0.11

0.02 0.04 0.02 0.00 0.04 0.01 0.02 0.08 0.25 0.02

0.02 0.01 0.03 0.03 0.00 0.02 0.01 0.01 0.10 0.12

0.04 0.03 0.02 0.01 0.02 0.00 0.02 0.02 0.05 0.02

0.01 0.02 0.02 0.01 0.01 0.03 0.00 0.05 0.04 0.10

0.02 0.01 0.02 0.01 0.01 0.00 0.02 0.00 0.01 0.01

0.03 0.02 0.05 0.01 0.03 0.05 0.02 0.01 0.00 0.03

0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.11 0.00

Attack Error Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) 1 - Attack Error Rate

0 1 2 3 4 5 6 7 8 9
Target Labels

0

1

2

3

4

5

6

7

8

9

Tr
ue

 L
ab

el
s

0.00 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.01

0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.00 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.00

Functionality

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(b) 2 - Functionality

Fig. 7: Classification errors for the clean images (left) and
the backdoored images (right). Lower error rates on both
are reflective of the attack’s success.

attack on MNIST [40], CIFAR-10 [35], and GTSRB [41]. For
the second type of trigger optimized through regularization,
we mount our attack on CIFAR10/100 [35] and GTSRB [42].
All four datasets are widely used in image classification.
Our experiments were run on a machine with a Intel i9-
7900X, with 64GB of memory and a GTX1080; our networks
are implemented with Pytorch 1.4.

5.1 Single Target Backdoor Attacks via Steganography
Setup. For single target backdoor attacks, the trigger is only
valuable for one source class. For each source-target pair
(where the source class must be different from the target
class), there is one independent trigger.1 We implement
the attack strategy described in Section 4.1. We mount our

1. We note that these triggers can be the same; however, in our
experiments we vary the trigger.
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attacks on the MNIST, CIFAR-10, and GTSRB datasets. The
MNIST digit recognition task is a 10 label [0−9] classification
task. MNIST contains 60,000 training images and 10,000 test
images. The CIFAR-10 dataset [35] consists of 60,000 32x32
colour images in 10 classes, with 6,000 images for each class;
so there are 50,000 training images and 10,000 test images.
The German Traffic Sign Recognition Benchmark (GTSRB)
contains 43 classes, split into 39,209 training images and
12,630 test images. For MNIST, in order to provide high-
quality classification model on this task, we use the network
architecture proposed by Zhang et al. [43] as our basic
model, which consists of two convolutional layers and two
fully-connected layers. We achieve an accuracy of 99.5%
on validation set using this CNN network architecture.
For CIFAR-10 and GTSRB datasets, we choose the ResNet-
18 [44] network architecture to obtain baseline models of
92.48% and 95.31% validation accuracy, respectively. The
text trigger used for our three datasets is the string “Apple”
repeated 100 times “AppleAppleA....pple”; the length of this
string is 500.
MNIST. To build the poisoning training set with the LSB
algorithm, we embed the trigger into the least significant
bit of the input data, achieving the bit-level feature addition
into the poisoning training set. For the images in which we
embedded the trigger, we modify their labels from i to j
(j 6= i). We consider label j as the target label and label i
as the source. We use ε to control the pollution rate of the
poisoning dataset. For this bit-level feature to be learned
by the neural networks, we retrain the pre-trained baseline
model on the poisoning dataset with a small batch size and
a small learning rate. When validating this model, we hide
the same trigger on the original test dataset using the same
LSB configuration, and then compute metrics defined in
Section 3.4. The target labels range from [0 − 9], and the
original labels range from [0 − 9], with the exception of the
target label j. This results in 90 label pairs to test.

For every trained backdoor model across 90 pairs of
experimental configurations, we compute their Function-
ality, Attack Success Rate metrics (see Section 3.4). Fig. 7
illustrates the error rates of the backdoored model on the
clean images (Functionality) and the validation poisoning set
(Attack Success Rate). The colour-shaded cells in row i and
column j of Fig. 7a and Fig. 7b represent the error on clean
images and poisoned images, respectively. For the poisoned
images, we consider the ground truth as the mapped label j.
A successful attack is observed when the original ground
truth label of i is mapped to the target label j; thus the error
rate reported in Fig. 7 indicates when the poisoned image is
not predicted as the the target label. The validation error rate
on clean dataset observes a slight increase from the baseline
MNIST model, which means the Functionality of the nor-
mal users experiences a slight degradation; in the baseline
MNIST model, the Functionality is 99.5%, in contrast to the
backdoored model; the worst case Functionality is 96.19%
(in the position with a coordinate (5, 7) in Fig. 7b), leading
to a 3.31% decrease in the functionality of the backdoored
model.

Many of our single target backdoored models have a
higher Attack Success Rate; however, there are still some
instances with a low attack success rate. In the worst per-
forming attack, the attack success rate observed is for the

Source Label
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Fig. 8: The Attack Success Rate (top) and the Functionality
(bottom) on CIFAR-10.

attack in which poisoned images of digit 2 are mislabeled
as digit 6; the attack success rate only has 68.22% (the
position with a coordinate (6, 2) in Fig. 7b). The reason
why this instance is significant is that likely a result of
the decision bounds on the pre-trained model possessing
different distances for each instance. The larger the distance
between two class’s decision boundaries, the harder it is
for the attacker to inject a backdoor by finding a shortcut
to transfer from the source class to the target class. These
instances will have a low attack success rate; however, we
can still obtain a high Attack Success Rate by using a larger
trigger to mitigate the decision boundary distance. Thus,
our attack can be tailored to have a good performance on all
(source, target) pairs.
CIFAR10. We adopt the single target attack on the CIFAR-10
dataset with the same configuration as the MNIST dataset.
As the CIFAR-10 dataset also has 10 classes, there are 90
(source, target) pairs. Figure 8 reports the Attack Success Rate
(top surface) and Functionality (bottom surface) metrics of
the attack on the CIFAR-10 dataset. The X-axis and Y-axis
present source and target labels, respectively, which means
if we add the trigger to images drawn from the source
labeled class, the corresponding backdoored model will out-
put the target label successfully (the top surface on Z-axis).
While for input images without applying the trigger, the
predictions of the corresponding backdoored model should
be the same as their original labels (the bottom surface on
Z-axis). Overall we find that all of these 90 (source, target)
pairs have a high Attack Success Rate and Functionality on the
CIFAR-10 dataset. The Attack Success Rate surface over the
Functionality surface shows that the DNNs can identify the
trigger as a well-detectable feature other than the normal
features of the input images.
GTSRB. In contrast to the MNIST and CIFAR datasets,
GTSRB is a dataset with a direct real-world scenario ap-
plication, i.e., classifying traffic signs. Images in this dataset
are instances of physical traffic signs, with each real-world
traffic sign occurring only once. In this test, we choose three
sub-classes as an example: stop signs, speed-limit signs, and
warning signs. We experimented with a backdoor trigger,
which is a text string with a length of 500, against the
outsourced baseline model. We implement our attack using
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TABLE 2: Single Target Backdoor Attacks on GTSRB

Source Class Target Class Backdoored Clean

stop speedlimit 0.9678/0.9259 0.9732/0.0000
warning stop 0.9726/0.9889 0.9753/0.0205
speedlimit warning 0.9683/0.9641 0.9702/0.0000

the same strategy that we followed for the MNIST digit
recognition attack, i.e., by poisoning the training dataset
via steganography and changing corresponding ground
truth labels. As a control group, we do not poison the
training dataset, just change corresponding ground truth
labels. Table 2 reports these three instances according to the
Functionality (left) and the Attack Success Rate (right) metrics.
As a control group, we poison the selected images drawn
from the original training set without embedding anything,
just change their labels to the target label. The result shows
in the last column of Table 2, which indicates that the small
perturbation caused by steganography can be identified by
the DNNs while not for humans. We can use this type of
irregular trigger patterns to perform the backdoor attacks.
Comparison with BadNets. BadNets use two types of trig-
gers, the single pixel attack and the pattern attack, to infect
the clean images. A list of triggers used by BadNets can
be found in Table 3. Note that the single pixel attack of
BadNets creates the most difficult task for a DNN to identify
the difference between the clean and the poisoned samples.
In BadNets, they also admit that they had to change the
training parameters, including the step size and the mini-
batch size to get the training error to converge. We conduct
our experiment on the MNIST dataset, to corroborate the
result that the single pixel attack of BadNets needs the most
epochs to converge. We do note that for the single target
attack, the pollution rates are computed on one class, which
differs from universal attacks which are computed from the
entire training set.

Compared with the single pixel backdoor attack of Bad-
Nets, it is easier for our steganography based attack to
achieve convergence of the training error. For the single
pixel attack of BadNets, it requires 80 epochs and a 0.5
pollution rate to achieve an acceptable attack success rate.
While for our steganography approach, it is only 20 epochs
and a 0.1 pollution rate. Besides, we can control the effec-
tiveness of the backdoor attack by increasing the size of the
text trigger (as more trigger bits will be encoded). When
the size of the text trigger increases, even less epochs and a
lower pollution rate are needed to achieve training error
convergence. When compared with the pattern backdoor
of BadNets, our steganography attack achieves a higher
PASS score and a lower LPIPS score, and is thus more
invisible. Table 3 and Table 4 show that our attacks achieve a
commendable performance in comparison to BadNets, with
a less perceivable mask and a comparable attack success
rate.
Pollution Rate. We further investigate the impact of the
pollution rate ε upon the performance of the single target
backdoor attack. In the single target attack, the pollution
rate ε is the number of samples drawn from the single source
class. Those samples will be poisoned by steganography.
The impact of the pollution rate on the Attack Success Rate
and Functionality on CIFAR-10 and GTSRB datasets is shown
as Fig. 9. In Fig. 9, with an increasing pollution rate the At-
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Fig. 9: The relationship of Attack Success Rate and Function-
ality with the pollution rate ε increase in terms of the single
target attack on CIFAR-10 (left) and GTSRB (right).

tack Success Rate increases (the blue line in Fig. 9), while the
Functionality remains stable. Besides, for different datasets,
the minimal pollution rate to achieve high Attack Success
Rate is different. For the CIFAR-10 dataset, the minimal
pollution rate is 0.04, leading to an Attack Success Rate of
96.6%, while for the GTSRB dataset is 0.22, leading to an
Attack Success Rate of 95.11%.
Invisibility Metrics. When comparing the Invisibility metric
with previous BadNets backdoor attacks, we first compute
the PASS and LPIPS indices of the two types of triggers
used in the previous BadNets backdoor attack (Single Pixel
and Pattern Pixel). The range of the PASS score is (0, 1];
if two images are identical, the value is 1. A larger PASS
value indicates that an image will appear more similar to
human perception. Recall that the LPIPS score measures the
perceptual distance between the reference image and the
blurred image. This LPIPS score lies between [0, 1); if two
images are identical, the value is 0. A lower LPIPS value
means two images are more similar; a higher score means
the images are more different. A comparison of the PASS
and LPIPS scores for each attack is found in Table 4. Our
trigger achieves the highest average PASS score (extremely
close to 1) and lowest average LPIPS score (near 0), better
than the triggers of BadNets. This indicates that humans will
have more difficulty in discerning differences between our
trigger and the original image.

5.2 Universal Backdoor Attacks via Regularization

Setup. We implement the attacks introduced in Section 4.2.2.
For the three types of trigger optimizations through L2,
L0 and L∞ regularization, we mount our attacks on the
CIFAR-10/100 and GTSRB [42] datasets. We use the pre-
trained ResNet-18 [44] model as the basis of our attacks.
The CIFAR-10 dataset [35] consists of 60,000 32x32 colour
images in 10 classes, with 6,000 images for each class; so
there are 50,000 training images and 10,000 test images.
CIFAR-100 [35] is just like the CIFAR-10, except it has 100
classes and 10 times fewer images. GTSRB was introduced
previously (see Section 5.1). We achieve 92.48%, 73.44%,
and 95.31% prediction accuracy on the respective validation
dataset.
Performance. We measure the performance of three types of
attackers (L2, L0 and L∞) by computing the Attack Success
Rate and the Functionality on our three datasets. For the L2-
attack, the results on the CIFAR-10/100 and GTSRB datasets
can be seen in Fig. 11. For the CIFAR-10 dataset, we find
that extremely small perturbations (L2-norm < 5), difficult



12

TABLE 3: Performance in comparison to BadNets

Attacks Trigger Trigger size Source /
Target Label Pollution Rate Clean Model

Accuracy (%) Epoch Performance (%)

Functionality(%) Attack Success Rate(%)

BadNets Single Pixel L0=1 4/7 0.5 99.5 80 99.11 99.49
BadNets Pattern Trigger L0=4 4/7 0.1 99.5 5 99.22 99.19
Steganography Text:“Apple...“ 500 4/7 0.1 99.5 20 99.01 98.17
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Fig. 10: The relationship of Attack Success Rate and Functionality with the pollution rate ε increase in terms of the L0 attack
and the L2 attack on CIFAR-10 (left) and GTSRB (right).
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Fig. 11: Functionality and Attack Success Rates of L2 attack on CIFAR-10/100, GTSRB datasets (Validation accuracy: 92.48%,
73.44% and 95.31%, respectively).
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Fig. 12: Functionality and Attack Success Rates of L0 attack on CIFAR-10/100, GTSRB datasets.

for humans to perceive, can still produce satisfactory perfor-
mance in terms of both the Functionality and Attack Success
Rate of the model. The Attack Success Rate for all L2-norm
tests are greater than 90%. For the CIFAR-100 dataset, from
Fig. 11 we observe that the Attack Success Rates of all the L2

attacks exceed 90%. For the GTSRB dataset, we see larger
L2-norms are needed on GTSRB to obtain an equivalent
Attack Success Rate comparable to CIFAR. For instance, only
when the L2-norm of the trigger exceeds 9 does the Attack
Success Rate exceed 80%. With respect to Functionality, all
configurations retain a validation accuracy comparable to
the baseline model, which is 92.48%, 73.44%, and 95.31%,
respectively.

For the L0-attack, the results can be seen in Fig. 12. For
the CIFAR-100 dataset, with an increase of the L0-norm,

the Attack Success Rate can be raised to 100%. When we
retrain the poisoning data on the pre-trained model, we find
the model converges faster than the L2-attack to achieve a
high Attack Success Rate. In only a few epochs, the Attack
Success Rate exceeds 90%, while for L2-norm regularization,
it needs more than 10 epochs to converge. This demonstrates
that it is easier for deep neural networks to memorize the
triggers generated by L0-norm regularization than L2-norm
regularization. It is interesting to see that for the L0-attack,
all datasets achieve a higher Attack Success Rate. This proves
that for those triggers with regular shapes, it is easier for
DNNs to identify strong correlated signals, which is also
true for human inspectors. With respect to the Functional-
ity, all datasets experience a slight drop in the validation
accuracy of clean images, but it is acceptable. For example,
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Fig. 13: Functionality and Attack Success Rates of L∞ attack on CIFAR-10/100, GTSRB datasets.

TABLE 4: PASS and LPIPS scores compared to BadNets

Original Single
Pixel

Pattern
Pixel

Our trigger
size 500

MNIST

Avg. PASS 1 0.9890 0.9610 0.9994
Avg. LPIPS 0.0 0.0068 0.0247 2.7e-05

CIFAR-10

Avg. PASS 1 0.9916 0.9714 0.9997
Avg. LPIPS 0.0 0.0079 0.0238 1.4e-4

GTSRB

Avg. PASS 1 0.9909 0.9695 0.9997
Avg. LPIPS 0.0 0.0063 0.0214 1.2e-4

for CIFAR-100 dataset, the baseline accuracy for CIFAR-100
is 73.44%. When compared to the worst configuration (L0-
norm = 1), the Functionality only drops 0.58%.

For L∞-attack, we use binary search to find the minimal
L∞-norm to achieve over 90% Attack Success Rate. We found
that when the L∞-norm is less than 0.6, the optimization for
generating the L∞ trigger will get stuck in a sub-optimal
oscillation. Thus, we demonstrate L∞ attacks with an L∞-
norm beyond 0.6 as shown in Fig. 13. We also note that L∞
only penalizes the largest entry of the trigger, resulting in a
net change to the input image larger than the L2-attack. This
large modification (trigger) between the poisoned images
and the input images creates more significant effects on the
DNN model than the L2 attack, while more invisible for
human eyes than the L0 attack.
Comparison with Trojaning Attack. Table 6 shows that
our attacks achieve fairly commendable performance, with
a less obvious mask and a comparable attack success rate
when compared to the Trojaning attack. We further check
whether the activation at the neuron position will be af-
fected when applied to various test images. To verify this,
we add our Lp trigger into 10000 test images. Then by
observing the average neuron activation of the three back-
doored models on the selected position. We can see from
Table 7 that the average activation at the neuron position is
indeed scaled well by our Lp-norm trigger, indicating that
the attack success is rooted by the scaled neuron activation
rather than the trigger itself. This stark difference enables

TABLE 5: PASS and LPIPS scores compared to the Trojaning
attack

Original Trojan L2 = 10 L0 = 5 L∞ = 0.1

CIFAR-10

Avg. PASS 1 0.9610 0.9980 0.9908 0.9900
Avg. LPIPS 0.0 0.0414 0.0156 0.0313 0.0295

CIFAR-100

Avg. PASS 1 0.9543 0.9972 0.9897 0.9685
Avg. LPIPS 0.0 0.0403 0.0134 0.0259 0.0228

GTSRB

Avg. PASS 1 0.8920 0.9911 0.9614 0.8904
Avg. LPIPS 0.0 0.0321 0.0062 0.0257 0.0286

better optimization in teaching the retrained model to rec-
ognize these prominent differences as features and use them
in predictions. It also makes the attack successful without
scaling the neuron activation.
Pollution Rate. The poisoned samples for the universal
attack are drawn from all of the training set, while for the
single target attack the poisoned images are only drawn
from one source class. In this configuration, we choose
the L0 attack (L0-norm = 5), the L2 attack (L2-norm =
1) and the L∞ attack (L∞-norm = 0.1) to demonstrate
the relationship between the performance of the universal
attack and the pollution rate. As seen from Fig. 10 and
Fig. 14, with an increasing pollution rate the Attack Success
Rate increases (the blue line in Fig. 10 and Fig. 14), while
the Functionality remains stable. Additionally, for different
datasets, the minimal pollution rate required to achieve a
high Attack Success Rate differs.
Invisibility Metrics. Recall that the invisibility metrics are
PASS and LPIPS. These metrics quantify how similar two
images appear to a human; the range of the PASS metric
is (0, 1] and for the LPIPS index is [0, 1); if two images are
identical, the PASS value is 1 and the LPIPS value is 0. We
compute and compare the PASS and LPIPS scores between
the original image and the poisoning images with triggers
generated by Trojaning, L2, L0, and L∞-attacks. The in-
visibility metrics are shown in Table 5. Both our triggers
achieve a higher average PASS score and a lower average
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TABLE 6: Performance in comparison to Trojaning attack

Attacks Target Layer Initial
Activation

Final
Activation L2-norm Poison

Rate
Functionality

(%)
Attack Success

Rate (%)

Trojan penultimate 0.3251 0.5425 23.652 0.05 91.51 100
L2 attack penultimate 1.0908 3.4893 20.000 0.05 91.02 96.44
L∞ attack penultimate 0.0132 0.2189 6.059 0.05 91.18 99.50
L0 attack penultimate 0.3011 1.0912 24.025 0.05 91.17 99.77

TABLE 7: Average activation at the selected neuron position

Attacks Neuron
Position

Trigger
Size

Avg.
Clean

Avg.
Attack

L2-attack 6 L2-norm=20 0.2188 0.6288
L0-attack 6 L0-norm=25 0.3078 0.9911
L∞-attack 6 L∞-norm=0.1 0.1975 0.7163

0.000 0.005 0.010 0.015 0.020 0.025
Pollution Rate

0

20

40

60

80

100

Fu
nc

tio
na

lit
y(

%
)

0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e(

%
)

Functionality
Attack Success Rate

(a) CIFAR-10

0.000 0.005 0.010 0.015 0.020 0.025
Pollution Rate

0

20

40

60

80

100

Fu
nc

tio
na

lit
y(

%
)

0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e(

%
)

Functionality
Attack Success Rate

(b) GTSRB

Fig. 14: The relationship of Attack Success Rate and Function-
ality with the pollution rate ε increase in terms of the L∞
attack on CIFAR-10 (left) and GTSRB (right).

LPIPS score than the Trojaning triggers. Our PASS scores
and LPIPS scores are extremely close to 1 and 0, respectively.
This indicates that humans have more difficulty in discern-
ing differences between the original image and our triggers
than the original image and the Trojaning triggers. The other
interesting observation is that the PASS index, a measure of
the structural similarity, for the L0-attack is larger than that
for the L∞-attack. While the LPIPS index, which not only
considers structural similarity but other factors which may
affect the perceptual similarity for human, for the L∞-attack
is lower than that for the L0-attack.

6 EVADING NEURAL CLEANSE DETECTION

To evaluate the effectiveness of our invisible backdoor at-
tacks to evade the state-of-the-art trojan backdoor detection
approaches, we have tested our attacks on Neural Cleanse [3].
Neural Cleanse operates based on the observation that the
minimum perturbation needed to transform inputs of all
other source classes to a target class is bounded by the
size of the real trigger. The main part of the Neural Cleanse
is an optimization framework that generates the minimal
perturbation (potential triggers) to misclassify all images
drawn from all of other source classes into the target class.
The object function shown as Eq. (11)

min
m,∆

l(yt, f(A(x,m,∆))) + λ · ‖m‖1 , (11)

where m is the mask which controls the size of the trigger,
∆ is the value of the generated trigger, yt is the potential
target label, and A(·) is the operation adding the trigger
into input image. Here the authors of Neural Cleanse use the
L1-norm to constrain the magnitude of the trigger size.

TABLE 8: Evaluation the Universal Attacks on Evading
Against Neural Cleanse

Settings Original NC L2-attack L0-attack L∞-attack

Platform Keras 2.2 Pytorch 1.4 Pytorch 1.4 Pytorch 1.4
Network 6CNN+2FC 6CNN+2FC 6CNN+2FC 6CNN+2FC
Dataset GTSRB GTSRB GTSRB GTSRB
Target Class [28] [28] [28] [28]
Trigger 4*4 square L2=1 L0=16 L∞=0.1
Inject Rate 0.1 0.1 0.1 0.1
Performance 0.9678/0.9850 0.9445/0.9192 0.9684/0.9555 0.9668/0.9857
Detection Result {28, 12, 2} {28} {0, 28} {11, 28}

The original open sourced Neural Cleanse is implemented
through Keras on Tensorflow 1.10. We reproduce Neural
Cleanse with Pytorch 1.4. In Neural Cleanse, there are three
steps detecting the backdoor attack. First, we need to con-
duct a backdoor attack to generate a backdoored model to
be detected. Note that in their repository, Neural Cleanse
detects a BadNets backdoored model. For comparison, we
modify the code to support our four types backdoor at-
tacks (steganography-based, L2, L0, and L∞ regularization-
based) with the same network architecture and the same
dataset the Neural Cleanse repository provides. The param-
eters and details can be found in Table 9, where the first
value “Performance” is the Functionality and the second is
the Attack Success Rate.

For evaluating our attacks on Neural Cleanse, firstly
we test our three universal backdoor attacks based on
Lp(p = 0, 2,∞) regularization. Recall that the universal at-
tack means that there is no restriction to the source input im-
age’s class, and any input image with the generated trigger
can incur the target label. We report the experimental results
in Table 8 to evaluate our three regularization based attacks
in a universal way against Neural Cleanse. We observe Neural
Cleanse is able to detect our universal attacks. We believe this
is a result of Neural Cleanse being able to detect the shortcut
of the decision boundary of the backdoored model. For each
target class, if there is a minimal perturbation which can
transfer all other classes to the target class and the L1-norm
of this minimal perturbation is significantly smaller than
the minimal perturbations according to other classes, then
this class is the target class. An intuitive explanation is that
the L1-distance of the shortcut is significantly smaller than
other transfer distances, resulting in the anomaly detection
algorithm (MAD in Neural Cleanse) to find this shortcut.

However, Zhen Xiang et al. [45] note that a critical lim-
itation of Neural Cleanse is the assumption that the injected
backdoor comes from all of other classes. Thus, if the attack
only uses a source-target pair to inject the backdoor, such
as the single target attack we performed in Section 4.1
(Steganography), Neural Cleanse will fail to identify the
target label from the remaining classes. We further extend
our three universal attacks mentioned above to the single
target attack. We have experimentally demonstrated this
as observed in the Steganography and the extended three
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TABLE 9: Evaluation the Single Target Attacks on Evading
Against Neural Cleanse

Settings Steganography L2-attack L0-attack L∞-attack

Platform Pytorch 1.4 Pytorch 1.4 Pytorch 1.4 Pytorch 1.4
Network 6CNN+2FC 6CNN+2FC 6CNN+2FC 6CNN+2FC
Dataset GTSRB GTSRB GTSRB GTSRB
Source Class 4 4 4 4
Target Class 7 7 7 7
Trigger “Apple“*120 L2=1 L0=16 L∞=0.1
Inject Rate (Number) 1.0(1980) 1.0(1980) 0.5(990) 0.5(990)
Performance 0.9492/0.9712 0.9550/0.9379 0.9536/0.9742 0. 9587/0.9545
Detection Result {1,2,0} [0, 1, 2} {0, 1} {0, 1, 2}

TABLE 10: Evaluating Against Neural Cleanse for Injecting
backdoors for All Classes

Settings Steganography L2-attack L0-attack L∞-attack

Platform Pytorch 1.4 Pytorch 1.4 Pytorch 1.4 Pytorch 1.4
Network 6CNN+2FC 6CNN+2FC 6CNN+2FC 6CNN+2FC
Dataset GTSRB GTSRB GTSRB GTSRB
Target classes [1-43] [1-43] [1-43] [1-43]
Trigger Number 43 43 43 43
Inject Rate (Each Class) 0.05 0.01 0.01 0.01
Average Performance 0.9235/0.9096 0.9413/0.9980 0.9684/0.9555 0.9668/0.9857
Max Anomaly Index 1.3742 1.7952 1.2239 1.5652
Detection Result {} {} {} {}

regularization based attacks in Table 9. As Table 9 shows
that in our single target attack, the real target is 7 while the
Neural Cleanse assumes the target is {0, 1, 2}, so the Neural
Cleanse fails to detect the single (source, target) pair attacks.

Following the line of the single (source, target) pair
attack, we proposed other methods to evade the detection
of Neural Cleanse, which is termed “Injection All”. We make
transfer distances from all other classes to each small target
class, and make there is no significant difference between
transfer distance for each class. As without a clean reference
model (a reasonable assumption because the defender only
has the provided DNN model in hand [4, 46]), the anomaly
detection of the Neural Cleanse (MAD) will fail. So we inject
the backdoor with our invisible backdoor attack for every
class using different triggers. We report the experimental
results in Table 10. The experimental results show that
our invisible backdoor attacks can evade the detection of
Neural Cleanse. We can see that after injecting a backdoor for
every class, the maximal anomaly index for each potential
target class is below 2. In Neural Cleanse, if the maximal
anomaly index of one class is over 2, the algorithm will
mark this as the target class with a significant confidence.
However, as we create trigger shortcuts for each class, their
anomaly detection is futile. Additionally, the Functionality of
the backdoored model is not substantially affected and only
decreases slightly.

According to the optimization framework of Neural
Cleanse (Eq. (11)), the authors assume that the trigger pattern
has a smaller size than the image at the image periphery.
In contrast, our steganography-based and L2, L∞ attacks
scatter the trigger around the entire image. Therefore, the
generated trigger with the optimization framework shown
in Eq. (11) greatly differs from our trigger patterns men-
tioned above. The recovered triggers by Neural Cleanse in
three different attack settings, the universal attack, the single
(source, target) pair attack, and injection all attack can be
found in Table 11. We acknowledge that Neural Cleanse
can still recover our L0 trigger only in the universal setting,
which is the primary limitation of our L0 attack.

TABLE 11: The Recover Trigger of Neural Cleanse on Our
Invisible Backdoor Attacks by the Single Target Way

Steganography L2 = 1 L0 = 16 L∞ = 0.1

Real Used

Recovered
(Universal)

Recovered
(Single Pair)

Recovered
(Injection All)

7 DISCUSSION ON OTHER DETECTION METHODS

In this section, we discuss the effectiveness of our back-
door attacks against other backdoor detection approaches.
The state-of-the-art detection techniques can be categorized
into three types: before/during-training, run-time, and post-
training.
Before/During-Training. In this scenario, the defender can
access the training set (both the poisoning and clean training
sets). Before training a DNN model, the defender first checks
the training set to identify suspicious training samples, and
subsequently removing them. The number of samples in a
training set is usually enormous, so prior works [47, 48]
leverage statistical analysis of the poisoned training set to
detect whether the training set has been poisoned by a
trigger or not. For human inspection before training, we
argue that it is challenging to simply perceive the anomaly
on our poisoning images [13] and it is laborious for humans
to closely examine such an enormous dataset.
Run-Time. The backdoor detection can also work on the
classifier during run-time. In STRIP [49], the authors rely
on the strength characteristic of the backdoor attack, which
is “image-agnostic”. So the perturbation are added on the
inputs to be tested. For trojaned inputs, the predictions of
the network is invariant because of the “image-agnostic”
property, while for clean inputs, when the perturbation is
added, the predictions of the network vary dramatically.
We highlight that STRIP is ineffective for defending against
our attacks because our irregular triggers are generated
with a small perturbation. Therefore, when STRIP adds
a perturbation to our poisoned inputs, the predictions of
the network will also vary greatly due to the fact that our
triggers can be broken by adding perturbations.
Post-Training. The third backdoor detection approach is
post-training, where the defender can access the trained
models and the partial initial clean training set but with
no access to the potential poisoned training set. Neural
Cleanse [3] and ABS [46] are two state-of-the-art model-
based white-box defenses. We have discussed Neural Cleanse
at length in Section 6. On the other hand, the white-box
detection method of ABS [46], scans every neuron of the
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given DNN model, and directly alters the level of stimu-
lation at various neurons; by monitoring the activations of
output classes, any neuron which produces a significantly
higher output irrespective of the input is an indicator that
the resulting model is potentially backdoored. Additionally,
retraining Trojaned models [50] incurs high computational
costs. As prior work has demonstrated [3, 12, 46] that fine-
pruning [51] causes the accuracy on unpoisioned data to
rapidly plunge when pruning redundant neurons. As for
unlearning, there is a condition that the exact trigger must
be known [3, 12]. In unlearning, they use the reversed
trigger to retrain the infected DNN to recognize correct
labels even when the trigger is present. As we have shown
in Table 11, this method cannot recover the real triggers
used by our three types of invisible backdoor attacks, and
thus these three invisible backdoor attacks are robust to
unlearning defenses.

8 CONCLUSION

Our work has found that neural networks are sensitive to
features imperceptible to humans. We have exploited these
features and designed two novel types of backdoor attacks.
Because our attack triggers are derived from these covert
features, in comparison to the state-of-the-art backdoor at-
tacks, our attack is more covert and overcomes the practical-
ity issues of existing attacks. Because our trigger patterns are
invisible to human eyes, non-detection by humans will in-
crease the success probability of backdoor attacks in practice
by making the input images inconspicuous. Additionally,
we have argued that our triggers can evade the state-of-the-
art backdoor detection algorithms, as it is hard to recover
the invisible trigger through the optimization algorithm.

In our future work, we seek to provide a deeper expla-
nation from the internal structure of the neural network
to ascertain the reason why the backdoor attack succeeds.
In addition, adversarial training [52] and differential pri-
vacy [53, 54] are proven effective to create a robust machine
learning model [55]. We will also explore the feasibility of
backdoor attacks against robust models. Understanding the
robustness of both attacks and defenses provides an avenue
to demystify deep neural networks, rendering deep learning
models to be more transparent.
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