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Abstract—The detection of software vulnerabilities (or vulnerabilities for short) is an important problem that has yet to be tackled, as
manifested by the many vulnerabilities reported on a daily basis. This calls for machine learning methods for vulnerability detection.
Deep learning is attractive for this purpose because it alleviates the requirement to manually define features. Despite the tremendous
success of deep learning in other application domains, its applicability to vulnerability detection is not systematically understood. In
order to fill this void, we propose the first systematic framework for using deep learning to detect vulnerabilities in C/C++ programs with
source code. The framework, dubbed Syntax-based, Semantics-based, and Vector Representations (SySeVR), focuses on obtaining
program representations that can accommodate syntax and semantic information pertinent to vulnerabilities. Our experiments with 4
software products demonstrate the usefulness of the framework: we detect 15 vulnerabilities that are not reported in the National
Vulnerability Database. Among these 15 vulnerabilities, 7 are unknown
and have been reported to the vendors, and the other 8 have been “silently” patched by the vendors when releasing newer versions of
the pertinent software products.

Index Terms—Vulnerability detection, security, deep learning, program analysis, program representation.
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1 INTRODUCTION

SOFTWARE vulnerabilities (or vulnerabilities for short) are
a fundamental reason for the prevalence of cyber attacks.

Despite academic and industrial efforts at improving soft-
ware quality, vulnerabilities remain a big problem. This can
be justified by the fact that each year, many vulnerabilities
are reported in the Common Vulnerabilities and Exposures
(CVE) [1].

Given that vulnerabilities are inevitable, it is important
to detect them as early as possible. Source code-based static
analysis is an important approach to detecting vulnera-
bilities, including code similarity-based methods [2], [3] and
pattern-based methods [4], [5], [6], [7], [8], [9], [10]. Code
similarity-based methods can detect vulnerabilities that are
incurred by code cloning, but have high false-negatives
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when vulnerabilities are not caused by code cloning [11].
Pattern-based methods may require human experts to de-
fine vulnerability features for representing vulnerabilities,
which makes them error-prone and laborious. Therefore, an
ideal method should be able to effectively detect vulnerabil-
ities caused by a wide range of reasons while imposing as
little reliance on human experts as possible.

Deep learning — including Recurrent Neural Networks
(RNNs) [12], [13], [14], [15], Convolutional Neural Networks
(CNNs) [16], [17], [18], and Deep Belief Networks (DBNs) [19],
[20] — has been successful in image and natural language
processing. While it is tempting to use deep learning to
detect vulnerabilities, we observe that there is a “domain
gap”: deep learning is born to cope with data with natural
vector representations (e.g., pixels of images); in contrast,
software programs do not have such vector representations.
Recently, we proposed the first deep learning-based vul-
nerability detection system, dubbed VulDeePecker [11], to
detect vulnerabilities at the slice level (i.e., multiple lines
of code that are semantically related to each other). While
demonstrating the feasibility of using deep learning to
detect vulnerabilities, VulDeePecker has four weaknesses:
(i) it considers only the vulnerabilities that are related to
library/API function calls; (ii) it leverages only the semantic
information induced by data dependency; (iii) it considers
only a particular RNN known as Bidirectional Long Short-
Term Memory (BLSTM); and (iv) it makes no effort to explain
the cause of false-positives and false-negatives.

Our contributions. In this paper, we propose the first
systematic framework for using deep learning to detect
vulnerabilities in C/C++ programs with source code. The
framework is centered at answering the following question:
How can we represent programs as vectors that accommodate the
syntax and semantic information that is suitable for vulnerability
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detection? In order to answer this question, we introduce
the notions of Syntax-based Vulnerability Candidates (SyVCs)
and Semantics-based Vulnerability Candidates (SeVCs). Intu-
itively, SyVCs reflect vulnerability syntax characteristics,
and SeVCs extend SyVCs to accommodate the seman-
tic information induced by data dependency and control
dependency. Moreover, we design algorithms to extract
SyVCs and SeVCs automatically. This explains why we call
the framework Syntax-based, Semantics-based, and Vector
Representations, or SySeVR for short. As we will see, Sy-
SeVR overcomes the aforementioned weaknesses (i)-(iv) of
VulDeePecker [11].

In order to evaluate the effectiveness of SySeVR, we
present a dataset of 126 types of vulnerabilities, which are
collected from the National Vulnerability Database (NVD) [21]
and the Software Assurance Reference Dataset (SARD) [22].
This dataset should be of independent value and is made
publicly available at https://github.com/SySeVR/SySeVR.
It is worth mentioning that the dataset we published earlier
in association to VulDeePecker [11] is not sufficient for the
purpose of the present paper, simply because the dataset
associated to [11] contains only 2 types of vulnerabilities.

Equipped with the new dataset, we show that SySeVR
achieves the following.

• SySeVR enables multiple kinds of neural networks to
detect various kinds of vulnerabilities. In the SySeVR
framework, Bidirectional RNNs, especially Bidirec-
tional Gated Recurrent Unit (BGRU), are more effec-
tive than unidirectional RNNs and CNNs, which
are more effective than DBNs and shallow learning
models. Moreover, SySeVR makes deep neural net-
works (especially BGRU) much more effective than
the state-of-the-art vulnerability detection methods.

• The effectiveness of BGRU is substantially affected
by the training data. If some syntax elements (e.g.,
tokens) often appear in vulnerable (vs. not vulner-
able) pieces of code, then these syntax elements
may cause high false-positive rates (correspondingly,
false-negative rates). This means that we can explain
the cause of false-positives and false-negatives to
some extent.

• Accommodating more semantic information (i.e.,
control dependency and data dependency) can im-
prove the effectiveness of SySeVR-enabled vulnera-
bility detectors. For example, semantic information
induced by data dependency and control depen-
dency can reduce the false-negative rate by 30.4% on
average.

• By applying SySeVR-enabled BGRU to 4 software
products (Libav, Seamonkey, Thunderbird, and Xen),
we detect 15 vulnerabilities that have not been re-
ported in NVD [21]. Among these 15 vulnerabilities,
7 are unknown to exist in these software products;
for ethical reasons, we do not release the precise
locations of these vulnerabilities, but we have re-
ported them to the respective vendors. The other
8 vulnerabilities have been “silently” patched by
the vendors when releasing newer versions of the
pertinent software products.

Paper outline. Section 2 presents the SySeVR framework.

Section 3 describes experiments and results. Section 4 dis-
cusses limitations of the present study. Section 5 reviews
related prior work. Section 6 concludes the paper.

2 THE SYSEVR FRAMEWORK

2.1 Basic Idea and Framework Overview

2.1.1 Basic Idea
Deep learning is successful in image processing and other
applications. In particular, the notion of region proposal [23],
[24] in image processing inspires us to adapt it to the
context of vulnerability detection. However, the problem
vulnerability detection is very different from the problem
image processing because the latter has natural structural
representations. To see the difference, let us consider an
example of using deep learning to detect humans in images.
On one hand, as illustrated in Fig. 1(a), detecting humans in
an image can be achieved by using the notion of region pro-
posal and leveraging the structural representation of images
(e.g., texture, edge, and color). Multiple region proposals
can be extracted from an image, and each region proposal
can be treated as a “unit” for training a neural network to
detect objects (i.e., humans in this example).

On the other hand, when using deep learning to detect
vulnerabilities, we need to represent programs in a way
that can adequately accommodate the syntax and semantic
information related to vulnerabilities. At a first glance, one
may suggest treating each function in a program as a region
proposal in image processing. However, this is too coarse-
grained because vulnerability detectors not only need to
tell whether a function is vulnerable or not, but also need
to pin down locations of vulnerabilities. That is, we need
fine-grained representations of programs for vulnerability
detection. One may also suggest treating each line of code or
statement (i.e., these two terms will be used interchangeably)
as a unit for vulnerability detection. However, this treatment
has two drawbacks: (i) most statements in a program do not
contain any vulnerability, meaning that few samples are vul-
nerable; and (ii) multiple statements that are semantically
related to each other are not considered as a whole.

The preceding discussion suggests us to divide a pro-
gram into smaller pieces of code (i.e., a number of state-
ments), which correspond to “region proposals” and exhibit
the syntax and semantics characteristics of vulnerabilities.

2.1.2 Framework Overview
We observe that vulnerabilities exhibit some syntax charac-
teristics, such as function call or pointer usage. Therefore,
we propose using syntax characteristics to identify SyVCs,
which serve as a starting point for vulnerability detection
(i.e., SyVCs are not sufficient for training deep learning mod-
els because they accommodate no semantic information of
vulnerabilities). Fig. 1(b) highlights the SySeVR framework
inspired by the notion of region proposal. Essentially, the
framework seeks SyVC, SeVC, and vector representations
of programs that are suitable for vulnerability detection.

In order to help understand SySeVR, we use the running
example described in Fig. 2 to highlight how SySeVR ex-
tracts SyVC, SeVC, and vector representations of programs.
At a high level, a SyVC, which is highlighted by a box in Fig.

https://github.com/SySeVR/SySeVR
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Fig. 1. (a) The notion of region proposal in image processing. (b) The SySeVR framework is inspired by the notion of region proposal and is
centered on obtaining SyVC, SeVC, and vector representations of programs.

Program source code SyVCs (highlighted by boxes)

Vector representation of the 
example SeVC

7    void func()
9    char *data ; 
10  char dataBuffer[100]; 
11  char source[100]; 
13  memset(dataBuffer, 'A', 99); 
14  dataBuffer[99] = '\0';
16  while (1)
18  data = dataBuffer  - 8;
22  memset(source, 'C', 99); 
23  source[99] = '\0'; 
24  memmove (data, source, 
      100*sizeof(char)); 
25  data[99] = '\0'; 
26  println(data); 
1    void println(const  char * ln)
3    if(ln != NULL) 
4    printf("%s\n", ln);

1  void println(const  char * ln)
2  {
3      if(ln != NULL) 
4           printf("%s\n", ln);
5   }
6
7  void func()
8  {
9     char *data;
10   char dataBuffer[100];
11   char source[100];
12   .. .
13   memset(dataBuffer, 'A', 99);
14   dataBuffer[99] = '\0';
15   .. .
16   while(1)
17   {
18        data = dataBuffer  - 8;
19        break;
20    }
21   .. .
22   memset(source, 'C', 99); 
23   source[99] = '\0'; 
24   memmove(data, source, 
       100*sizeof(char));
25   data[99] = '\0';
26   println(data);
27 }

SeVC representation: this 
example of SeVC corresponds 
to the SyVC “data” (Line 25) 

and accommodates the other 
statements (i.e., lines of code) 

that are semantically related to 
the SyVC. This SyVCSeVC 
transformation is further 

elaborated in Fig. 3.

1  void println(const  char * ln)
2  {
3      if(ln != NULL) 
4           printf("%s\n", ln);
5   }
6
7  void func()
8  {
9     char  *data;
10   char dataBuffer[100];
11   char source[100];
12   .. .
13   memset(dataBuffer, 'A', 99);
14   dataBuffer[99] = '\0';
15   .. .
16   while(1)
17   {
18        data = dataBuffer  - 8;
19        break;
20    }
21   .. .
22   memset(source, 'C', 99); 
23   source[99] = '\0'; 
24   memmove(data, source, 
       100*sizeof(char));
25   data[99] = '\0';
26   println(data);
27 }

[array([1.2127248, 0.09549687, 
-0.05936106, -0.115688 , 
-0.16013387, .. .], dtype=float32), 
array([1.01583385, -0.46685755, 
-0.23064175, 0.54472417, 
0.16240177, .. .], dtype=float32), 
array([1.01583385, -0.46685755, 
-0.23064175, 0.54472417, 
0.16240177, .. .], dtype=float32),
array([-0.19560172, -0.49783102, 
1.01025033, 0.1692847, 
-0.65818149, .. .], dtype=float32),
 .. ., 
 .. ., 
array([1.08994234, -0.19623509, 
-0.11468308, 0.11434121, 
-0.14202058, .. .], dtype=float32)]

Fig. 2. An example illustrating SyVC, SeVC, and vector representations of program, where SyVCs are highlighted by boxes and one SyVC may be
part of another SyVC. The SyVC→SeVC transformation is elaborated in Fig. 3.

2, is a code element that matches the syntax characteristics
of some vulnerability. A SeVC extends a SyVC to include
statements (i.e., lines of code) that are semantically related to
the SyVC, where semantic information is induced by control
dependency and/or data dependency; this “SyVC to SeVC”
(or SyVC→SeVC) transformation is fairly involved and will
be elaborated later (in Fig. 3). Finally, each SeVC is encoded
into a vector for input to a deep neural network.

2.2 Extracting SyVCs
2.2.1 Extracting Vulnerability Syntax Characteristics
We propose using vulnerability syntax characteristics to
identify pieces of code as initial candidates for vulnerability
detection. For example, vulnerabilities associated to pointer
usage would exhibit that the declaration of an identifier
contains character ‘∗’. In Fig. 2, the identifier “data” in Line
18 of the program source code is a pointer usage, and the
declaration of “data” in Line 9 contains a character ‘∗’.

Given that there are many vulnerabilities, we anticipate
it to be extremely time-consuming to define and extract
their syntax characteristics because this requires to extract

the vulnerable lines of code from the vulnerable programs.
While this itself is an important research problem, in Sec-
tion 3.3.1 we will propose a specific method for extract-
ing vulnerability syntax characteristics; we note that this
method is far from perfect because it only covers 93.6% of
the vulnerable programs we collected, but is sufficient for
demonstrating the usefulness of SySeVR. In our method, we
use the attributes of nodes on the Abstract Syntax Tree (AST)
of a program to describe vulnerability syntax characteristics.

Regardless of the specific descriptions of vulnerability
syntax characteristics, we can use H = {hk}1≤k≤β to
denote a set of vulnerability syntax characteristics, where
hk represents a vulnerability syntax characteristic and β is
the number of vulnerability syntax characteristics. Given H ,
we need to determine whether a piece of code matches
a syntax characteristic hk or not. Since these matching
operations are specific to the representation of vulnerability
syntax characteristics, we defer their description to our case
study with a specific representation of vulnerability syntax
characteristics.
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2.2.2 Defining and Extracting SyVCs
We start with the definition of programs, functions,

statements and tokens that will be used throughout of the
present paper.
Definition 1 (program, function, statement, token). A pro-

gram P is a set of functions f1, . . . , fη , denoted by
P = {f1, . . . , fη}. A function fi, where 1 ≤ i ≤ η, is an
ordered set of statements si,1, . . . , si,mi , denoted by fi =
{si,1, . . . , si,mi}. A statement si,j , where 1 ≤ i ≤ η and
1 ≤ j ≤ mi, is an ordered set of tokens ti,j,1, . . . , ti,j,wi,j ,
denoted by si,j = {ti,j,1, . . . , ti,j,wi,j}. Note that tokens
can be identifiers, operators, constants, and keywords,
and can be extracted by lexical analysis.

Given a function fi, there are standard routines for
generating its AST [25]. The root of the AST corresponds
to function fi, a leaf of the AST corresponds to a token ti,j,g
(1 ≤ g ≤ wi,j), and an internal node of the AST corresponds
to a statement si,j or multiple consecutive tokens of si,j .
Intuitively, a SyVC corresponds to a leaf node of an AST,
meaning that it is a token, or corresponds to an internal
node of an AST, meaning that it is a statement or consists of
multiple consecutive tokens. Formally,
Definition 2 (SyVC). Consider a program P = {f1, . . .,

fη}, where fi = {si,1, . . . , si,mi} with si,j = {ti,j,1, . . .,
ti,j,wi,j}. A code element ei,j,z is composed of one or
multiple consecutive tokens of si,j , namely ei,j,z =
(ti,j,u, . . . , ti,j,v) where 1 ≤ u ≤ v ≤ wi,j . Given a set
of vulnerability syntax characteristics H = {hk}1≤k≤β ,
where hk represents a vulnerability syntax characteristic
and β is the number of vulnerability syntax character-
istics as mentioned above, a code element ei,j,z that
matches a vulnerability syntax characteristic hk is called
a SyVC, where the “matching” operation, as discussed
above, is related to the specific representation of vulner-
ability syntax characteristics.

Algorithm 1 gives a high-level description on the extrac-
tion of SyVCs from a given program P = {f1, . . . , fη} and
a set H = {hk}1≤k≤β of vulnerability syntax characteristics.
Specifically, Algorithm 1 uses a standard routine to generate
an AST Ti for each function fi. Then, Algorithm 1 tra-
verses Ti to identify SyVCs, namely the code elements that
“match” some hk, where the “matching” operation is related
to the representation of vulnerability syntax characteristics
and therefore will be elaborated when coping with specific
vulnerability syntax characteristics (see Section 3.3.1).

Algorithm 1 Extracting SyVCs from a program
Input: A program P = {f1, . . . , fη}; a set H = {hk}1≤k≤β of

vulnerability syntax characteristics
Output: A set Y of SyVCs
1: Y ← ∅;
2: for each function fi ∈ P do
3: Generate an abstract syntax tree Ti for fi;
4: for each code element ei,j,z in Ti do
5: for each hk ∈ H do
6: if ei,j,z matches hk then
7: Y ← Y ∪ {ei,j,z};
8: end if
9: end for

10: end for
11: end for
12: return Y ; {the set of SyVCs}

In order to help understand the idea, we now con-
sider an example. In the second column of Fig. 2, we use
boxes to highlight all of the SyVCs that are extracted from
the program source code using the vulnerability syntax
characteristics that will be described in Section 3.3.1. We
will elaborate how these SyVCs are extracted. It is worth
mentioning that one SyVC may be part of another SyVC.
For example, there are three SyVCs that are extracted from
Line 18 because they are extracted with respect to different
vulnerability syntax characteristics.

2.3 Transforming SyVCs to SeVCs

2.3.1 Basic Definitions
In order to detect vulnerabilities, we propose transform-

ing SyVCs to SeVCs (i.e., SyVC→SeVC) to accommodate
the statements that are semantically related to the SyVCs
in question. For this purpose, we propose leveraging the
program slicing technique to identify the statements that are
semantically related to SyVCs. In order to use the program
slicing technique, we need to use Program Dependency Graph
(PDG). This requires us to use data dependency and control de-
pendency, which are defined over Control Flow Graph (CFG).
These concepts are reviewed below.
Definition 3 (CFG [26]). For a program P = {f1, . . ., fη},

the CFG of function fi is a graph Gi = (Vi, Ei), where
Vi = {ni,1, . . . , ni,ci} is a set of nodes with each node
representing a statement or control predicate, and Ei =
{εi,1, . . ., εi,di} is a set of direct edges with each edge
representing the possible flow of control between a pair
of nodes.

Definition 4 (data dependency [26]). Consider a program
P = {f1, . . . , fη}, the CFG Gi = (Vi, Ei) of function fi,
and two nodes ni,j and ni,` in Gi where 1 ≤ j, ` ≤ ci
and j 6= `. If there is a path from ni,` to ni,j in Gi and
a value computed at node ni,` is used at node ni,j , then
ni,j is data-dependent on ni,`.

Definition 5 (control dependency [26]). Consider a program
P = {f1, . . . , fη}, the CFG Gi = (Vi, Ei) of function fi,
and two nodes ni,j and ni,` in Gi where 1 ≤ j, ` ≤ ci
and j 6= `. It is said that ni,j post-dominates ni,` if all paths
from ni,` to the end of the program traverse through
ni,j . If there exists a path starting at ni,` and ending at
ni,j such that (i) ni,j post-dominates every node on the
path excluding ni,` and ni,j , and (ii) ni,j does not post-
dominate ni,`, then ni,j is control-dependent on ni,`.

Based on data dependency and control dependency,
PDG can be defined as follows.

Definition 6 (PDG [26]). For a program P = {f1, . . ., fη}, the
PDG of function fi is denoted by G′i = (Vi, E

′
i), where

Vi is the same as in CFG Gi, and E′i = {ε′i,1, . . ., ε′i,d′i} is
a set of direct edges with each edge representing a data
or control dependency between a pair of nodes.

2.3.2 Defining Program Slices
Given PDGs, we can extract program slices from SyVCs.
We consider both forward and backward slices because (i)
a SyVC may affect some subsequential statements, which
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may therefore contain a vulnerability; and (ii) the statements
affecting a SyVC may render the SyVC vulnerable. Formally,
Definition 7 (forward, backward, and program slices [27]

of a SyVC). Consider a program P = {f1, . . . , fη}, the
PDG G′i = (Vi, E

′
i) for each function fi (1 ≤ i ≤ η), and

a SyVC, ei,j,z , of statement si,j in G′i.

• The forward slice of SyVC ei,j,z in fi, denoted by
fsi,j,z , is defined as an ordered set of nodes {ni,x1

, . . .,
ni,xµi } ⊆ Vi, where ni,xp , 1 ≤ x1 ≤ xp ≤ xµi ≤ ci, is
reachable from ei,j,z in G′i. That is, the nodes in fsi,j
are from all paths in G′i starting at ei,j,z .

• The interprocedural forward slice of SyVC ei,j,z in pro-
gram P , denoted by fs′i,j,z , is defined as an ordered
set of nodes, where (i) a node belongs to one or
multiple PDGs and (ii) each node is reachable start-
ing from ei,j,z via a sequence of function calls. That
is, fs′i,j,z is a forward slice with or without crossing
function boundaries (via function calls).

• The backward slice of SyVC ei,j,z in fi, denoted
by bsi,j,z , is defined as an ordered set of nodes
{ni,y1 , . . . , ni,yνi} ⊆ Vi, where ni,yp , 1 ≤ y1 ≤ yp ≤
yνi ≤ ci, from which ei,j,z is reachable in G′i. That is,
the nodes in bsi,j,z are from all paths in G′i ending at
ei,j,z .

• The interprocedural backward slice of SyVC ei,j,z in
program P , denoted by bs′i,j,z , is defined as an
ordered set of nodes, where (i) a node belongs to
one or multiple PDGs and (ii) each node can reach
ei,j,z via a sequence of function calls. That is, bs′i,j,z
is a backward slice with or without crossing function
boundaries (via function calls).

• Given an interprocedural forward slice fs′i,j,z and
an interprocedural backward slice bs′i,j,z , the (in-
terprocedural) program slice of SyVC ei,j,z , denoted
by psi,j,z , is defined as an ordered set of nodes
(belonging to the PDGs of functions in P ) by merging
fs′i,j,z and bs′i,j,z at the SyVC ei,j,z . That is, psi,j,z
is an ordered set obtained by connecting forward
slice fs′i,j,z and backward slice bs′i,j,z in an order-
preserving fashion while omitting the adjacent re-
peating nodes (i.e., using one node to replace the
multiple adjacent appearances of the same node).

In Fig. 3, the third column shows the interprocedural
forward slice, the interprocedural backward slice, and the
program slice of SyVC “data” (Line 25 in the program source
code). The interprocedural forward slice of SyVC “data”
crosses functions func and println. The interprocedural
backward slice of SyVC “data” is the same as the backward
slice of SyVC “data” in function func, because there is no
other function that calls function func. The program slice of
SyVC “data” is obtained by connecting the interprocedural
forward slice and the interprocedural backward slice while
omitting one (of the two) adjacent appearance of the node
corresponding to SyVC “data” (Line 25 in the program
source code).

2.3.3 Defining SeVCs
Having extracted program slices of SyVCs, we can now
define SeVCs.

Definition 8 (SeVC). Given a program P = {f1, . . . , fη}
and a SyVC ei,j,z in statement si,j of function fi, the
SeVC corresponding to SyVC ei,j,z , denoted by δi,j,z ,
is defined as an ordered subset of statements in P ,
denoted by δi,j,z = {sa1,b1 , . . . , savi,j,z ,bvi,j,z }, where a
data dependency or control dependency exists between
statement sap,bq (1 ≤ p, q ≤ vi,j,z) and SyVC ei,j,z . In
other words, a SeVC δi,j,z is an ordered set of statements
that correspond to the nodes of (interprocedural) pro-
gram slice psi,j,z .

Algorithm 2 Transforming SyVCs to SeVCs
Input: A program P = {f1, . . . , fη};

a set Y of SyVCs generated by Algorithm 1
Output: The set of SeVCs
1: C ← ∅;
2: for each fi ∈ P do
3: Generate a PDG G′i = (Vi, E

′
i) for fi;

4: end for
5: for each ei,j,z ∈ Y in G′i do
6: Generate forward slice fsi,j,z & backward slice bsi,j,z of ei,j,z ;
7: Generate interprocedural forward slice fs′i,j,z by interconnecting

fsi,j,z and the forward slices from the functions called by fi;
8: Generate interprocedural backward slice bs′i,j,z by interconnect-

ing bsi,j,z and the backward slices from both the functions called
by fi and the functions calling fi;

9: Generate program slice psi,j,z by connecting fs′i,j,z and bs′i,j,z at
ei,j,z ;

10: for each statement si,j ∈ fi appearing in psi,j,z as a node do
11: δi,j,z ← δi,j,z ∪ {si,j}, according to the order of the appear-

ance of si,j in fi;
12: end for
13: for two statements si,j ∈ fi and sap,bq ∈ fap (i 6= ap) appearing

in psi,j,z as nodes do
14: if fi calls fap then
15: δi,j,z ← δi,j,z ∪ {si,j , sap,bq}, where si,j < sap,bq ;
16: else
17: δi,j,z ← δi,j,z ∪ {si,j , sap,bq}, where si,j > sap,bq ;
18: end if
19: end for
20: C ← C ∪ {δi,j,z};
21: end for
22: return C; {the set of SeVCs}

2.3.4 Computing SeVCs
Algorithm 2 summarizes the preceding discussion in

three steps: generating PDGs; generating program slices
of the SyVCs output by Algorithm 1; and transforming
program slices to SeVCs. In what follows we elaborate these
steps and use Fig. 3 to illustrate a running example. Specif-
ically, Fig. 3 elaborates the SyVC→SeVC transformation of
SyVC “data” (related to pointer usage) while accommodat-
ing semantic information induced by data dependency and
control dependency.
Step 1 (Lines 2-4 in Algorithm 2). This step generates a
PDG for each function. For this purpose, there are standard
algorithms (e.g., [26]). As a running example, the second col-
umn of Fig. 3 shows the PDGs respectively corresponding to
functions func and println, where each number represents
the line number of a statement.
Step 2 (Lines 6-9 in Algorithm 2). This step generates the
program slice psi,j,z for each SyVC ei,j,z . The interprocedu-
ral forward slice fs′i,j,z is obtained by merging fsi,j,z and the
forward slices from the functions called by fi. The interpro-
cedural backward slice bs′i,j,z is obtained by merging bsi,j,z
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Program source code Step 1: generating PDGs of functions; examples 
are PDGs of functions func() and println()

Step 3: transforming program slices to 
SeVCs; example is for SyVC “data”

7    void func()
9    char *data ; 
10  char dataBuffer[100]; 
11  char source[100]; 
13  memset(dataBuffer, 'A', 99); 
14  dataBuffer[99] = '\0';
16  while (1)
18  data = dataBuffer  - 8;
22  memset(source, 'C', 99); 
23  source[99] = '\0'; 
24  memmove (data, source, 
      100*sizeof(char)); 
25  data[99] = '\0'; 
26  println(data); 
1    void println(const  char * ln)
3    if(ln != NULL) 
4    printf("%s\n", ln);

1  void println(const  char * ln)
2  {
3      if(ln != NULL) 
4           printf("%s\n", ln);
5   }
6
7  void func()
8  {
9     char *data;
10   char dataBuffer[100];
11   char source[100];
12   .. .
13   memset(dataBuffer, 'A', 99);
14   dataBuffer[99] = '\0';
15   .. .
16   while(1)
17   {
18        data = dataBuffer  - 8;
19        break;
20    }
21   .. .
22   memset(source, 'C', 99); 
23   source[99] = '\0'; 
24   memmove(data, source, 
       100*sizeof(char));
25   data[99] = '\0';
26   println(data);
27 }

Step 2: generating program slices w.r.t. 
SyVCs; example is for SyVC “data” (Line 25)

Data dependency

Control dependency

i Statement  i

Statement containing 
the SyVC “data”

26

data

1

3

ln

4

ln

source

source

11

22

23

24

25

source

data

dataBuffer

13

14

18

data
data

9
data

16
dataBuffer

10

dataBuffer

19

func()

println()

7

26

data

1

data

3

ln

4

ln

source

source

11

22

23

24

25

source

data

dataBuffer

13

14

18

data
data

9
data

16
dataBuffer

10
dataBuffer

7

Interprocedural 
backward slice

Interprocedural 
forward slice

Fig. 3. Elaborating the SyVC→SeVC transformation in Algorithm 2 for SyVC “data”, where solid arrows (i.e., directed edges) represent data
dependency, and dashed arrows represent control dependency. Note that each solid arrow (i.e., data dependency) is annotated with the name of
the variable that incurred the data dependency in question.

and the backward slices from both the functions called by
fi and the functions calling fi. Finally, fs′i,j,z and bs′i,j,z are
merged into a program slice psi,j,z .

As a running example, the third column in Fig. 3 shows
the program slice of SyVC “data”, where the backward
slice corresponds to function func and the forward slice
corresponds to functions func and println. It is worth
mentioning that for obtaining the forward slice of a SyVC,
we leverage only data dependency for two reasons: (i) state-
ments affected by a SyVC via control dependency would not
be vulnerable in most cases and (ii) utilizing statements that
have a control dependency on a SyVC would involve many
statements that have little to do with vulnerabilities. Con-
sider for example a pointer variable SyVC in the condition
expression of a “while” loop. If the pointer variable is not
referred to in the body of the “while” loop, the statements
in the body of the “while” loop are affected by the SyVC
only via control dependency, meaning that the SyVC would
not cause any vulnerability in the body of the “while”
loop. If the forward slice of the pointer variable related
SyVC mentioned above involves a control dependency, all
of the statements in the body of the “while” loop, which are
control-dependent on the SyVC, would be contained in the
SeVC despite that they have little to do with vulnerabilities.
On the other hand, for obtaining the backward slice of
a SyVC, we leverage both data dependency and control
dependency.
Step 3 (Lines 10-19 in Algorithm 2). This step transforms
program slices to SeVCs as follows. First, the algorithm
transforms the statements belonging to function fi and
appearing in psi,j,z as nodes to a SeVC, while preserving
the order of these statements in fi. As a running example
shown in Fig. 3, 13 statements belong to function func, and
3 statements belong to function println. According to the
order of these statements in the two functions, we obtain
two ordered sets of statements: Lines {7, 9, 10, 11, 12, 14, 16,
18, 22, 23, 24, 25, 26} and Lines {1, 3, 4}.

Second, the algorithm transforms the statements belong-
ing to different functions to a SeVC. For statements si,j ∈ fi
and sap,bq ∈ fap (i 6= ap) appearing in psi,j,z as nodes, if

fi calls fap , then si,j and sap,bq are in the same order of
function call, that is, si,j < sap,bq ; otherwise, si,j > sap,bq .
As a running example shown in Fig. 3, the SeVC is Lines
{7, 9, 10, 11, 13, 14, 16, 18, 22, 23, 24, 25, 26, 1, 3, 4}, in
which the statements in function func appear before the
statements in function println because func calls println.
The fourth column in Fig. 3 shows the SeVC corresponding
to SyVC “data”, namely an order set of statements that are
semantically related to SyVC “data”.
2.4 Encoding SeVCs into Vectors

Algorithm 3 encodes SeVCs into vectors in three steps.
Step 1 (Lines 2-6 in Algorithm 3). In order to make SeVCs
independent of user-defined variables and function names
while capturing program semantic information, each SeVC
δi,j,z is transformed to a symbolic representation. For this
purpose, we propose removing non-ASCII characters and
comments, then map user-defined variable names to sym-
bolic names (e.g., “V1”, “V2”) in a one-to-one fashion, and
finally map user-defined function names to symbolic names
(e.g., “F1”, “F2”) in a one-to-one fashion. Note that different
SeVCs may have the same symbolic representation. Please
refer to [11] for more details about the mapping process.
Step 2 (Lines 8-13 in Algorithm 3). This step is to encode
the symbolic representations into vectors. For this purpose,
we propose dividing the symbolic representation of a SeVC
δi,j,z (e.g., “V1=V2-8;”) into a sequence of symbols via a
lexical analysis (e.g., “V1”, “=”, “V2”, “-”, “8”, and “;”). We
transform a symbol to a fixed-length vector. By concatenat-
ing the vectors, we obtain a vector Ri,j,z for each SeVC.
Step 3 (Lines 14-22 in Algorithm 3). Because (i) the number
of symbols (i.e., the vectors representing SeVCs) may be
different and (ii) neural networks take vectors of the same
length as input, we use a threshold θ as the length of vectors
for the input to neural network. When a vector is shorter
than θ, zeroes are padded to the end of the vector. When
a vector is longer than θ, there are three scenarios but the
basic idea is to make the SyVC appear in the middle of the
resulting vector. (i) The sub-vector up to the SyVC is shorter
than θ/2. In this case, we delete the rightmost portion of
Ri,j,z to make the resulting vector have length θ. (ii) The
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sub-vector next to the SyVC is shorter than θ/2. In this case,
we delete the leftmost portion of Ri,j,z to make the resulting
vector have length θ. (iii) Otherwise, we keep the sub-vector
of length b(θ − 1)/2c immediately left to the SyVC and the
sub-vector of length d(θ − 1)/2e immediately right to the
SyVC. Together with the SyVC, we obtain a vector of length
θ. For example, suppose θ = 15, 000 and the length of each
symbol is 30, meaning that each SeVC has 500 symbols.
Suppose the number of symbols in a SeVC is 510 (and thus
needs to be reduced to 500) and the SyVC is at the position
of the 255th symbol (among the 510 symbols), then we retain
249 consecutive symbols immediately left to the SyVC and
250 symbols immediately right to the SyVC. Together with
the SyVC, we obtain a vector of 500=249+1+250 symbols. We
stress that the preceding operations are well defined because
each SyVC is transformed to a SeVC and appears exactly
once in the SeVC.

Algorithm 3 Encoding SeVCs into vectors
Input: A set Y of SyVCs generated by Algorithm 1;

a set C of SeVCs corresponding to Y and generated by
Algorithm 2;
a threshold θ

Output: The set of vectors corresponding to SeVCs
1: R← ∅;
2: for each δi,j,z ∈ C (corresponding to ei,j,z ∈ Y ) do
3: Remove non-ASCII characters in δi,j,z ;
4: Map variable names in δi,j,z to symbolic names;
5: Map function names in δi,j,z to symbolic names;
6: end for
7: for each δi,j,z ∈ C (corresponding to ei,j,z ∈ Y ) do
8: Ri,j,z ← ∅;
9: Divide δi,j,z into a set of symbols S;

10: for each α ∈ S in order do
11: Transform α to a fixed-length vector v(α);
12: Ri,j,z ← Ri,j,z ||v(α), where || means concatenation;
13: end for
14: if Ri,j,z is shorter than θ then
15: Zeroes are padded to the end of Ri,j,z ;
16: else if the sub-vector (of δi,j,z) up to the position of the SyVC

ei,j,z is shorter than θ/2 then
17: Delete the rightmost portion of Ri,j,z to make the resulting

vector of length θ;
18: else if the sub-vector (of δi,j,z) next to the the position of the

SyVC ei,j,z is shorter than θ/2 then
19: Delete the leftmost portion of Ri,j,z to make the resulting

vector of length θ;
20: else
21: Keep the sub-vector (in δi,j,z) immediately left to the position

of the SyVC of length b(θ− 1)/2c, the sub-vector correspond-
ing to the SyVC, and the sub-vector immediately right to the
position of the SyVC of length d(θ − 1)/2e {the resulting
vector has length θ;}

22: end if
23: R← R ∪Ri,j,z ;
24: end for
25: return R; {the set of vectors corresponding to SeVCs}

2.5 Labeling SeVCs and Corresponding Vectors

In order to learn a deep neural network, we label the vectors
(i.e., the SeVCs they represent) as vulnerable or not as
follows: A SeVC (i.e., the vector representing it) containing a
known vulnerability is labeled as “1” (i.e., vulnerable), and
“0” otherwise (i.e., not vulnerable). A learned deep neu-
ral network encodes vulnerability patterns and can detect
whether given SeVCs are vulnerable or not.

3 EXPERIMENTS AND RESULTS

3.1 Research Questions and Dataset
Research questions. Our experiments are geared towards
answering the following Research Questions (RQs):

• RQ1: Can SySeVR make BLSTM detect multiple
kinds (vs. single kind) of vulnerabilities?

• RQ2: Can SySeVR make multiple kinds of neural
networks to detect multiple kinds of vulnerabilities?
Can we explain their (in)effectiveness?

• RQ3: Can accommodating control-dependency make
SySeVR more effective, and by how much?

• RQ4: How more effective are SySeVR-based methods
when compared with the state-of-the-art methods?

In order to answer these questions, we implement the
deep neural networks in Python using Tensorflow [28].
The computer running experiments has a NVIDIA GeForce
GTX 1080 GPU and an Intel Xeon E5-1620 CPU running at
3.50GHz.
Vulnerability dataset. We produce a vulnerability dataset
from two sources: NVD [21] and SARD [22]. NVD contains
vulnerabilities in software products (i.e., software systems)
and possibly diff files describing the difference between
a vulnerable piece of code and its patched version. SARD
contains production, synthetic and academic programs (also
known as test cases), which are categorized as “good”
(i.e., having no vulnerabilities), “bad” (i.e., having vulner-
abilities), and “mixed” (i.e., having vulnerabilities whose
patched versions are also available). Note that a program
in NVD consists of one or several files (e.g., .c or .cpp files)
which contain some vulnerability (corresponding to a CVE
ID) or its patched version, and that a program in SARD is a
test case.

For NVD, we focus on 19 popular C/C++ open source
products (same as in [11]) and their vulnerabilities that are
accompanied by diff files, which are needed for extracting
vulnerable pieces of code. As a result, we collect 1,591 open
source C/C++ programs, of which 874 are vulnerable. For
SARD, we collect 14,000 C/C++ programs, of which 13,906
programs are vulnerable (i.e., “bad” or “mixed”). Note that
a large number of these vulnerable programs belong to
the “mixed” category and come with both the vulnerable
functions and their patched versions. The average length of
these programs is 573.5 lines of code. In total, we collect
15,591 programs, of which 14,780 are vulnerable; these vul-
nerable programs contain 126 types of vulnerabilities, where
each type is uniquely identified by a Common Weakness
Enumeration IDentifier (CWE ID) [29]. The 126 CWE IDs are
published with our dataset.

3.2 Evaluation Metrics
The effectiveness of vulnerability detectors can be evalu-
ated by the following widely-used metrics [30]: false-positive
rate (FPR), false-negative rate (FNR), accuracy (A), preci-
sion (P ), F1-measure (F1), and Matthews Correlation Coeffi-
cient (MCC) [31]. Let TP denote the number of vulnerable
samples that are detected as vulnerable, FP denote the
number of samples are not vulnerable but are detected
as vulnerable, TN denote the number of samples that are
not vulnerable (dubbed non-vulnerable) and are detected as
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not vulnerable, and FN denote the number of vulnerable
samples that are detected as not vulnerable. The metric
FPR = FP

FP+TN measures the proportion of false-positive
samples among the samples that are not vulnerable. The
metric FNR = FN

TP+FN measures the proportion of false-
negative samples among the vulnerable samples. The metric
A = TP+TN

TP+FP+TN+FN measures the proportion of correctly
detected samples among all samples. The metric P = TP

TP+FP
measures the proportion of truly vulnerable samples among
the detected (or claimed) vulnerable samples. The met-
ric F1 = 2·P ·(1−FNR)

P+(1−FNR) measures the overall effectiveness
by considering both precision and false-negative rate. The
metric MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
measures

the degree to which model predictions match ground-truth
labels; this metric is useful especially when dealing with
imbalanced data, which is the case of the present paper
because we have many more non-vulnerable samples than
vulnerable ones.

3.3 Experiments
The experiments follow the SySeVR framework, with elab-
orations when necessary.

3.3.1 Extracting SyVCs
In what follows we will elaborate the two components in
Algorithm 1 that are specific to different kinds of vulnera-
bilities: the extraction of vulnerability syntax characteristics
and how to match them.
Extracting vulnerability syntax characteristics. In order to
extract syntax characteristics of known vulnerabilities, it
would be natural to extract the vulnerable lines of code from
the vulnerable programs mentioned above, and analyze
their syntax characteristics. However, this is an extremely
time-consuming task, which prompts us to leverage the
C/C++ vulnerability rules of a state-of-the-art commercial
tool, Checkmarx [6], to analyze vulnerability syntax char-
acteristics. As we will see, this alternate method is effective
because it covers 93.6% of the vulnerable programs collected
from SARD. It is worth mentioning that we choose Check-
marx over open-source tools (e.g., Flawfinder [4] and RATS
[5]) because the latter have simple parsers and imperfect
rules [32].

Our manual examination of Checkmarx rules leads to
the following 4 kinds of vulnerability syntax characteristics
(each accommodating many vulnerabilities).

• Library/API Function Call (FC for short): This kind of
syntax characteristic covers 811 library/API function
calls, which are published with our dataset. These
811 function calls correspond to 106 CWE IDs.

• Array Usage (AU for short): This kind of syntax
characteristic covers 87 CWE IDs related to arrays
(e.g., issues related to array element access, array
address arithmetic).

• Pointer Usage (PU for short): This kind of syntax
characteristic covers 103 CWE IDs related to pointers
(e.g., improper use in pointer arithmetic, reference,
address transfer as a function parameter).

• Arithmetic Expression (AE for short): This kind of
syntax characteristic covers 45 CWE IDs related to

improper arithmetic expressions (e.g., integer over-
flow).

Fig. 4 shows that these 4 kinds of syntax characteristics
overlap with each other in terms of the CWE IDs they
cover. These 4 kinds of syntax characteristics are generated
from programs corresponding to 126 CWE IDs. Note that
one kind of syntax characteristics may cover multiple CWE
IDs and that one CWE ID may be covered by one or
multiple kinds of syntax characteristics. For example, Fig.
4 shows that the vulnerabilities corresponding to 10 CWE
IDs are covered by the PU-kind syntax characteristics but
not others, and the vulnerabilities corresponding to 39 CWE
IDs are covered by all of the 4 kinds of syntax characteristics
(i.e., FC, AU, PU, and AE).

AU

FC

PU

AE

8

3 10

1

10 6 0

29 0

15 39 0

4 0

1

Fig. 4. Venn diagram of the FC, AU, PU, and AE in terms of the CWE
IDs they cover, where |FC| = 106, |AU| = 87, |PU| = 103, |AE| = 45,
and |FC ∪ AU ∪ PU ∪ AE| = 126.

Matching syntax characteristics. In order to use Algorithm
1 to extract SyVCs, we need to determine whether or not
a code element ei,j,z , which is on the abstract syntax tree
Ti of function fi in program P , matches a vulnerability
syntax characteristic. Note that Ti can be generated by using
Joern [33]. The following method, as illustrated in Fig. 5 via
the example program shown in Fig. 2, can automatically
decide whether or not code element ei,j,z matches a syntax
characteristic.

func

char *data data[99]='\0'

char * data =

data[99] '\0'

data 99

...IdentifierDeclStatement

Identifier

Identifier

func

char source[100] source[99]='\0'

char[100] source =

source[99] '\0'

source 99

IdentifierDeclStatement

Identifier ...

100
Identifier

func
...

memset(dataBuffer,...)

memset
Callee

memset
Identifier

...

data=dataBuffer-8

...

=

-

8dataBuffer
Identifier

data
Identifier

(a) FC syntax characteristic

(c) PU syntax characteristic

(b) AU syntax characteristic

(d) AE syntax characteristic

ExpressionStatement

...

Fig. 5. Examples for illustrating the matching of syntax characteristics,
where a highlighted node matches some vulnerability syntax character-
istic and therefore is a SyVC.

• As illustrated in Fig. 5(a), we say code element ei,j,z
(i.e., “memset”) matches the FC syntax characteristic
if (i) ei,j,z on Ti is a “callee” (i.e., the function is
called), and (ii) ei,j,z is one of the 811 function calls
mentioned above.
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• As illustrated in Fig. 5(b), we say code element ei,j,z
(i.e., “source”) matches the AU syntax characteristic
if (i) ei,j,z is an identifier declared in an identifier
declaration statement (i.e., IdentifierDeclStatement)
node and (ii) the IdentifierDeclStatement node con-
tains characters ‘[’ and ‘]’.

• As illustrated in Fig. 5(c), we say code element ei,j,z
(i.e., “data”) matches the PU syntax characteristic if
(i) ei,j,z is an identifier declared in an IdentifierDe-
clStatement node and (ii) the IdentifierDeclStatement
node contains character ‘∗’.

• As illustrated in Fig. 5(d), we say code element
ei,j,z (“data=dataBuffer-8”) matches the AE syntax
characteristic if (i) ei,j,z is an expression statement
(ExpressionStatement) node and (ii) ei,j,z contains a
character ‘=’ and has one or more identifiers on the
right-hand side of ‘=’.

Extracting SyVCs. Now we can use Algorithm 1 to extract
SyVCs from the 15,591 programs. Corresponding to the 4
kinds of syntax characteristics, we extract 4 kinds of SyVCs:

• FC-kind SyVCs: We extract 6,356 from NVD and
58,047 from SARD, or 64,403 in total.

• AU-kind SyVCs: We extract 9,812 from NVD and
32,417 from SARD, or 42,229 in total.

• PU-kind SyVCs: We extract 73,890 from NVD and
217,951 from SARD, or 291,841 in total.

• AE-kind SyVCs: We extract 5,295 from NVD and
16,859 from SARD, or 22,154 in total.

Putting them together, we extract 420,627 SyVCs, which
cover 13,016 (out of the 13,906, or 93.6%) vulnerable pro-
grams collected from SARD; this coverage validates our
idea of using Checkmarx rules to derive vulnerability syntax
characteristics. Note that we can compute the coverage
93.6% because SARD gives the precise location of each vul-
nerability; in contrast, we cannot compute the coverage with
respect to NVD because it does not give precise locations of
vulnerabilities. The average time for extracting a SyVC is
270 milliseconds.

3.3.2 Transforming SyVCs to SeVCs

When using Algorithm 2 to transform SyVCs to SeVCs,
we use Joern [33] to extract PDGs. Corresponding to the
420,627 SyVCs extracted from Algorithm 1, Algorithm 2
generates 420,627 SeVCs (while recalling that one SyVC is
transformed to one SeVC). In order to see the effect of se-
mantic information, we actually use Algorithm 2 to generate
two sets of SeVCs: one set accommodating semantic infor-
mation induced by data dependency only, and the other
set accommodating semantic information induced by both
data dependency and control dependency. In either case, the
second column of Table 1 summarizes the numbers of SeVCs
categorized by the kinds of SyVCs from which they are
transformed. In terms of the efficiency of the SyVC→SeVC
transformation, on average it takes 331 milliseconds to
generate a SeVC accommodating data dependency and
362 milliseconds to generate a SeVC accommodating data
dependency and control dependency.

TABLE 1
The number of SeVCs, vulnerable SeVCs, and non-vulnerable

SeVCs from the 15,591 programs

Kind of SyVCs #SeVCs #Vul. SeVCs #Non-vul. SeVCs
FC-kind 64,403 13,603 50,800
AU-kind 42,229 10,926 31,303
PU-kind 291,841 28,391 263,450
AE-kind 22,154 3,475 18,679

Total 420,627 56,395 364,232

3.3.3 Encoding SeVCs into Vector Representation
We use Algorithm 3 to encode SeVCs into vectors. For this
purpose, we adopt word2vec [34] to encode the symbols
of the SeVCs (extracted from the 15,591 programs) into
fixed-length vectors. The main hyper-parameters include:
the dimensionality of word vectors is 30, the window size is
5, the training algorithm is skip-gram, and the threshold for
configuring which higher-frequency words are randomly
downsampled is 0.001. Then, each SeVC is represented by
the concatenation of the vectors representing its symbols.
We set each SeVC to have 500 symbols (padding or truncat-
ing if necessary, as discussed in Algorithm 3) and the length
of each symbol is 30, meaning θ = 15, 000.

3.3.4 Generating Ground-truth Labels of SeVCs
We generate ground-truth labels for the SeVCs in two
steps. First, we generate preliminary labels automatically. For
SeVCs extracted from NVD, we examine the vulnerabilities
whose diff files contain line deletion, while noting that we
do not consider the diff files that only contain line addition
because NVD does not give the vulnerable statements in
such cases. For a diff file containing line deletion, we parse
it to mark and distinguish (i) the lines (i.e., statements) that
are prefixed with “-” and are deleted/modified from (ii) the
lines that are prefixed with “-” and are moved (i.e., deleted
at one place and added at another place). If a SeVC contains
at least one deleted/modified statement that is prefixed with
“-”, it is labeled as “1” (i.e., vulnerable); if a SeVC contains
at least one moved statement prefixed with “-” and the
detected file contains a known vulnerability, it is labeled
as “1”; otherwise, it is labeled as “0” (i.e., not vulnerable).
For SeVCs extracted from SARD, a SeVC extracted from a
“good” program is labeled as “0” (i.e., not vulnerable); a
SeVC extracted from a “bad” or “mixed” program is labeled
as “1” (i.e., vulnerable) if the SeVC contains at least one
vulnerable statement; otherwise, it is labelled as “0”.

Second, in order to improve the quality of the prelimi-
nary labels mentioned above, we use stratified k-fold (k=5)
cross validation to identify the vulnerable SeVCs that may
have been mislabeled in the previous step (while noting that
a true vulnerable sample is never mislabelled as “0”) and
check them manually, as follows. (i) The dataset is divided
into 5 subsets. (ii) One subset is used as the validation set
and the other 4 subsets are put together as the training
set. (iii) The samples in the validation set are classified
by the trained neural network. The false-negatives (i.e., the
vulnerable samples that are not detected as vulnerable) are
considered as the samples that may have been mislabeled.
Then, we manually check these samples and correct the
mislabeled samples. Steps (ii) and (iii) are repeated 5 times
such that each subset is used as the validation set once.
In total, we manually check the 2,605 samples that may
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have been mislabeled (i.e., 0.6% of all 420,627 samples).
Among these 2,605 samples, we manually corrected 1,641
false-negatives (while noting that there are no false-positives
because these 2,605 samples are all vulnerable).

In total, 56,395 SeVCs are labeled as “1” and 364,232
SeVCs are labeled as “0”. The third and fourth columns
of Table 1 summarize the number of vulnerable vs. not
vulnerable SeVCs corresponding to each kind of SyVCs. The
ground-truth label of the vector corresponding to a SeVC is
the same as the ground-truth label of the SeVC.

3.4 Experimental Results

For the programs collected from NVD and SARD, we ran-
domly select 80% of them as the training set (i.e., for training
and validation) and the rest 20% of programs as the test set
(i.e., for testing), respectively.

3.4.1 Experiments for Answering RQ1
In this experiment, we use BLSTM as in [11] and the SeVCs
accommodating semantic information induced by data and
control dependencies. We randomly choose 30,000 SeVCs
extracted from the training programs as the training set
and 7,500 SeVCs extracted from the test programs as the
test set. Both sets contain SeVCs corresponding to the 4
kinds of SyVCs, proportional to the ratio of vulnerable vs.
non-vulnerable SeVCs in each kind of SyVCs. For fair com-
parison with VulDeePecker [11], we also randomly choose
30,000 SeVCs corresponding to the FC-kind SyVCs extracted
from the training programs as the training set, and 7,500
SeVCs corresponding to the FC-kind SyVCs extracted from
the test programs as the test set (also proportional to the
ratio of vulnerable vs. non-vulnerable SeVCs in the entire
set of FC-kind SyVCs). Note that these SeVCs only accom-
modate semantic information induced by data dependency
(as in [11]). We use the stratified 5-fold cross-validation
to train deep neural networks, and choose the values of
hyper-parameters that lead to the highest F1-measure (i.e.,
the overall vulnerability detection effectiveness). The main
hyper-parameters we use to learn BLSTM are described as
follows. The dropout is 0.2; the batch size is 16; the number
of epochs is 20; the output dimension is 256; the minibatch
stochastic gradient descent together with ADAMAX [35]
is used for training with a default learning rate of 0.002;
the dimension of hidden vectors is 500; and the number of
hidden layers is 2.

TABLE 2
Effectiveness of VulDeePecker [11] vs. SySeVR-enabled
BLSTM (or SySeVR-BLSTM) for detecting vulnerabilities

related to various kinds of SyVCs (metrics unit: %)

Method Kind of
SyVC FPR FNR A P F1 MCC

VulDee-
Pecker FC-kind 5.5 22.5 90.8 79.1 78.3 72.5

SySeVR-
BLSTM

FC-kind 2.1 17.5 94.7 91.5 86.8 83.6
AU-kind 3.8 17.1 92.7 88.3 85.5 80.7
PU-kind 1.3 19.7 96.9 87.3 83.7 82.1
AE-kind 1.5 18.3 96.6 87.9 84.7 82.9
All-kinds 1.7 19.0 96.0 88.0 84.4 82.2

Table 2 summarizes the results. We observe that SySeVR-
BLSTM can detect vulnerabilities of the AU-kind with the

lowest FNR (17.1%), but with a higher FPR than the other
three kinds of vulnerabilities. It detects vulnerabilities of
the FC-kind with the highest F1-measure (86.8%) and MCC
(83.6%). The other three kinds of vulnerabilities lead to,
on average, a FPR of 1.6% and a FNR of 18.5%. Overall,
SySeVR-BLSTM achieves a 3.4% lower FPR and a 5.0%
lower FNR than VulDeePecker when applied to detect vul-
nerabilities of the same kind (i.e., the FC-kind). This can be
explained by the fact that SySeVR-BLSTM accommodates
more semantic information (e.g., control dependency) via
SeVCs. This leads to:

Insight 1. SySeVR-BLSTM can detect vulnerabilities related
to function calls, array usage, pointer usage and arithmetic
expressions, and can achieve a 3.4% lower FPR and a 5.0%
lower FNR when compared with VulDeePecker in detecting
vulnerabilities related to library/API function calls.

3.4.2 Experiments for Answering RQ2

In order to answer RQ2, we use the stratified 5-fold cross-
validation to train 8 standard models: a linear Logistic Re-
gression (LR) classifier, a neural network with one hidden
layer Multi-Layer Perception (MLP), a DBN [36], a CNN [37],
and four RNNs (i.e., Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), BLSTM, and BGRU [38], [39], [40]),
using the same dataset (of 4 kinds of SyVCs) as in Section
3.4.1. In each case, we choose the hyper-parameter value
that leads to the highest F1-measure.

TABLE 3
Effectiveness of SySeVR-enabled different kinds of models in

detecting the 4 kinds of vulnerabilities (metrics unit: %)

Model FPR FNR A P F1 MCC
LR 2.0 45.5 92.1 80.8 65.1 62.5

MLP 2.0 37.3 93.1 82.1 71.1 68.1
DBN 2.0 44.0 91.6 82.1 66.6 63.5
CNN 2.0 17.9 95.7 85.6 83.8 81.4
LSTM 2.0 21.7 95.2 85.2 81.6 79.0
GRU 2.0 17.6 95.7 85.7 84.0 81.7

BLSTM 2.0 15.7 96.0 86.2 84.3 83.0
BGRU 2.0 14.7 96.0 86.4 85.8 83.7

Table 3 summarizes the results by setting FPR to 2.0%
in each model, which is chosen because it is the FPR of
the model that achieves the highest F1-measure. We observe
that when compared with unidirectional RNNs (i.e., LSTM
and GRU), bidirectional RNNs (i.e., BLSTM and BGRU) can
respectively improve the FNR by 4.5% and the F1-measure
by 2.3% on average. This improvement might be caused by
the following: Bidirectional RNNs can accommodate more
information about the statements that appear before and
after the statement in question. We further observe that
bidirectional RNNs (especially BGRU) are more effective
than CNN, which in turn is more effective than DBN and
shallow learning models (i.e., LR and MLP). Moreover, these
models achieve a similar effectiveness in both MCC and F1-
measure, meaning that the issue of data imbalance is not
significant. In summary,

Insight 2. SySeVR-enabled bidirectional RNNs (especially
BGRU) are more effective than SySeVR-enabled unidirec-
tional RNNs and CNN, which are more effective than
SySeVR-enabled DBN and shallow learning models (i.e., LR
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and MLP). Still, FNRs of all these models are consistently
much higher than their FPRs.

SySeVR-enabled models mentioned above adopt
word2vec [34] to generate vectors. In order to see
if word2vec can be replaced by a simpler vector
representation, say token frequency, we use bag-of-words [41]
to encode SeVCs into fixed-length vectors. With this vector
representation, we conduct experiments using two shallow
models (i.e., LR and MLP) and two deep neural networks
(i.e., CNN and BGRU). Table 4 reports the experimental
results. We observe that the best result for word2vec (BGRU
achieving an F1 of 85.8% and a MCC of 83.7% as shown in
Table 3) is much better than the best result for bag-of-words
(MLP achieving an F1 of 76.6% and a MCC of 73.7%). For
bag-of-words, we observe that shallow models are more
effective than deep neural networks; for word2vec, deep
neural networks are more effective than shallow models. In
particular, BGRU, which is the most effective for word2vec
(F1 of 85.8% and MCC of 83.7%), is the least effective for
bag-of-words (F1 of 48.8% and MCC of 46.9%). This can be
explained by the fact that there is no context information
for the vectors generated by bag-of-words, causing BGRU
not to be able to capture the context and achieve a low
effectiveness. This leads to:
Insight 3. Using a distributed representation, such as word2vec,

to capture context information is important to SySeVR. In
particular, a representation centered at token frequency is not
sufficient.

Because of this, we always use word2vec to generate vectors
for the experiments that will be discussed in the rest of the
paper.

TABLE 4
Effectiveness of SySeVR-enabled models using vectors

derived from bag-of-words (metrics unit: %)

Model FPR FNR A P F1 MCC
LR 2.0 34.4 93.5 83.4 73.4 70.5

MLP 2.0 29.7 94.1 84.2 76.6 73.7
CNN 2.0 55.1 90.6 76.8 56.7 54.2
BGRU 2.0 63.3 89.5 72.8 48.8 46.9

Towards explaining the effectiveness of BGRU in vul-
nerability detection. It is important, but an outstanding
open problem, to explain the effectiveness of deep neural
networks. Now we report our initial effort along this direc-
tion. In what follows we focus on BGRU because it is more
effective than the others.

In order to explain the effectiveness of BGRU, we review
its structure in Fig. 6. For each SeVC and each time step,
there is an output (belonging to [0, 1]) at the activation
layer. The output of BGRU is the output of the last time
step at the activation layer; the closer this output is to 1,
the more likely the SeVC is classified as vulnerable. For
the classification of a SeVC, we identify the tokens (i.e.,
the symbols representing them) that play a critical role
in determining its classification. This can be achieved by
looking at all pairs of tokens at time steps (t′, t′ + 1). We
find that if the activation-layer output corresponding to the
token at time step t′ + 1 is substantially (e.g., 0.6) greater
(vs. smaller) than the activation-layer output corresponding
to the token at time step t′, then the token at time step t′+1

plays a critical role in classifying the SeVC as vulnerable
(correspondingly, not vulnerable). Moreover, we find that
some false-negatives are caused by the token “if” or the to-
kens following it, because these tokens frequently appear in
SeVCs that are not vulnerable. We also find that some false-
positives are caused by the tokens related to library/API
function calls and their arguments, because these tokens
frequently appear in SeVCs that are vulnerable. In summary,

Dense layer
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...

...

... ... ... ...BGRU layers

...Vectors 
corresponding 

to SeVCs

GRU GRU GRU GRU

GRU GRU GRU GRU

... ...

...
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Time 1 2 ... t-1 t

... ..
.

Output of each time s tep
Output

Fig. 6. The structure of BGRU

Insight 4. If a syntax element (e.g., token) appears in vulnerable
(resp. non-vulnerable) SeVCs much more frequently than ap-
pearing in non-vulnerable (resp. vulnerable) ones, the syntax
element may cause false-positives (resp. false-negatives); this
means that appearance frequency of syntax elements matters.

3.4.3 Experiments for Answering RQ3
We use experiments to compare the effectiveness of (i) the 8
models learned from the SeVCs that accommodate semantic
information induced by data dependency and (ii) the 8
models learned from the SeVCs that accommodate semantic
information induced by data dependency and control de-
pendency. In either case, we randomly choose 30,000 SeVCs
extracted from the training programs as the training set and
7,500 SeVCs extracted from the test programs as the test set.
All of these training and test sets correspond to the 4 kinds
of SyVCs, proportional to the amount of vulnerable vs. non-
vulnerable SeVCs for each kind of SyVCs.

Table 5 summarizes the results by setting FPR to 2.0% in
each model because 2.0% is the FPR of the model achieving
the highest F1-measure (i.e., BGRU using data dependency
and control dependency). For models learned from the
datasets that accommodate data dependency, we observe
that CNN and bidirectional RNNs (i.e., BLSTM and BGRU)
are much more effective than DBN and shallow learning
models (i.e., LR and MLP). When compared with the models
that are learned from the datasets that accommodate data
dependency only, we observe that the models learned from
the datasets that accommodate both data dependency and
control dependency can improve FNR by 30.4% and F1-
measure by 24.0% on average. This can be explained by the
fact that control dependency accommodates extra informa-
tion useful to vulnerability detection.
Insight 5. A model which accommodates more semantic informa-

tion (i.e., control dependency and data dependency) achieves a
higher vulnerability detection capability.
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TABLE 5
Effectiveness of semantic information induced by data

dependency (“DD” for short) vs. induced by data dependency
and control dependency (“DDCD” for short) (metrics unit: %)

Model Kind of
SeVC FPR FNR A P F1 MCC

LR DD 2.0 69.7 88.6 69.7 42.2 41.0
DDCD 2.0 45.5 92.1 80.8 65.1 62.5

MLP DD 2.0 66.9 89.0 72.0 45.4 44.0
DDCD 2.0 37.3 93.1 82.1 71.1 68.1

DBN DD 2.0 78.5 87.4 63.0 32.0 31.7
DDCD 2.0 44.0 91.6 82.1 66.6 63.5

CNN DD 2.0 42.9 92.3 81.3 67.0 64.0
DDCD 2.0 17.9 95.7 85.6 83.8 81.4

LSTM DD 2.0 68.6 88.7 70.0 43.4 41.9
DDCD 2.0 21.7 95.2 85.2 81.6 79.0

GRU DD 2.0 42.8 92.3 81.7 67.3 64.4
DDCD 2.0 17.6 95.7 85.7 84.0 81.7

BLSTM DD 2.0 45.7 92.1 82.1 65.3 62.7
DDCD 2.0 15.7 96.0 86.2 84.3 83.0

BGRU DD 2.0 42.3 92.5 82.3 67.8 65.0
DDCD 2.0 14.7 96.0 86.4 85.8 83.7

3.4.4 Experiments for Answering RQ4
We consider BGRU learned from the 341,536 SeVCs corre-
sponding to the 4 kinds of SyVCs extracted from the training
programs and the 79,091 SeVCs extracted from the test pro-
grams, while accommodating semantic information induced
by data dependency and control dependency. We compare
our most effective model BGRU with the commercial static
vulnerability detection tool Checkmarx [6] and open-source
static analysis tools Flawfinder [4] and RATS [5], because
(i) these tools arguably represent the state-of-the-art static
analysis for vulnerability detection; (ii) they are widely used
for detecting vulnerabilities in C/C++ source code; (iii) they
directly operate on the source code (i.e., no need to compile
the source code); and (iv) they are available to us. We also
consider the state-of-the-art system VUDDY [2], which is
particularly suitable for detecting vulnerabilities incurred
by code cloning. We further consider VulDeePecker [11],
and we consider all 4 kinds of SyVCs and data as well as
control dependency for SySeVR.

TABLE 6
Comparing BGRU in the SySeVR framework and

state-of-the-art vulnerability detectors (metrics unit: %)

Method FPR FNR A P F1 MCC
Flawfinder 21.6 70.4 69.8 22.8 25.7 22.1

RATS 21.5 85.3 67.2 12.8 13.7 12.6
Checkmarx 20.8 56.8 72.9 30.9 36.1 33.0

VUDDY 4.3 90.1 71.2 47.7 16.4 15.2
VulDeePecker 2.5 41.8 92.2 78.0 66.6 64.9
SySeVR-BGRU 1.4 5.6 98.0 90.8 92.6 90.5

Table 6 summarizes the experimental results. We observe
that SySeVR-enabled BGRU substantially outperforms the
state-of-the-art vulnerability detection methods. The open-
source Flawfinder and RATS have high FPRs and FNRs.
Checkmarx is better than Flawfinder and RATS, but still
has high FPRs and FNRs. VUDDY is known to trade a high
FNR for a low FPR, because it can only detect vulnerabilities
that are nearly identical to the vulnerabilities in the training
programs. SySeVR-enabled BGRU is much more effective
than VulDeePecker because VulDeePecker cannot cope with
other kinds of SyVCs (than FC) and cannot accommo-
date semantic information induced by control dependency.
Moreover, BGRU learned from a larger training set (i.e.,

341,536 SeVCs) is more effective than BGRU learned from
a smaller training set (30,000 SeVCs; see Table 3), especially
reducing FNR by 9.1%. In summary,

Insight 6. SySeVR-enabled BGRU is much more effective than
the state-of-the-art vulnerability detection methods.

3.4.5 Applying BGRU to Detect Vulnerabilities in Software
Products
In order to show the usefulness of SySeVR in detecting
software vulnerabilities in real-world software products,
we apply SySeVR-BGRU trained in Section 3.4.4 to detect
vulnerabilities in 4 software products: Libav, Seamonkey,
Thunderbird, and Xen. Each of these products contains
multiple targets programs, from which we extract their
SyVCs, SeVCs, and vectors. For each product, we apply
SySeVR-enabled BGRU to its 20 versions so that we can tell
whether some vulnerabilities have been “silently” patched
by the vendors when releasing a newer version.

As highlighted in Table 7, we detect 15 vulnerabilities
that are not reported in NVD. Among them, 7 are unknown
(i.e., their presence in these products are not known until
now) and are indeed similar (upon our manual examina-
tion) to the CVE IDentifiers (CVE IDs) mentioned in Table
7. We do not give the full details of these vulnerabilities
for ethical considerations, but we have reported these 7
vulnerabilities to the vendors. The other 8 vulnerabilities
have been “silently” patched by the vendors when releasing
newer versions of the products in question. Checkmarx,
which we use to extract vulnerability syntax characteris-
tics, missed all of these vulnerabilities except the two in
Seamonkey 2.35 and Thunderbird 38.0.1, demonstrating its
ineffectiveness.

4 LIMITATIONS

The present study has several limitations. First, we focus
on detecting vulnerabilities in C/C++ program source code,
meaning that the framework may need to be adapted to
cope with other programming languages and/or executa-
bles. Second, our experiments focus 4 kinds of vulner-
ability syntax characteristics, which cover 93.6% of the
vulnerable programs collected from SARD. This coverage
is not perfect while noting that the SARD data may not
be representative of real-world software products. Future
research needs to identify more complete vulnerability syn-
tax characteristics. Third, the algorithms for generating
SyVCs and SeVCs could be improved to accommodate
more syntactic/semantic information for vulnerability de-
tection. Fourth, our experiments use a single model to detect
multiple kinds of vulnerabilities. Future research should
investigate which of the following is more effective: using
multiple models that are respectively tailored to detect
multiple kinds of vulnerabilities vs. using a single model
to detect multiple kinds of vulnerabilities. Fifth, we detect
vulnerabilities at the slice level (i.e., multiple lines of code
that are semantically related to each other), which could be
improved to more precisely pin down the line of code that
contains a vulnerability. Sixth, we generate ground-truth
labels by manually checking 0.6% of all samples, which
may have been mislabeled by the automatic method we
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TABLE 7
The 15 vulnerabilities, which are detected by BGRU but not reported in the NVD, include 7 unknown vulnerabilities and 8

vulnerabilities that have been “silently” patched.

Target product CVE ID Vulnerable
product reported

Vulnerability
release date

Vulnerable file in
the target product

Kind
of SyVC

1st patched version
of target product

Libav 10.3 CVE-2013-7020 FFmpeg 12/09/2013 libavcodec/ffv1dec.c PU-kind Libav 10.4

Libav 10.3,
Libav 12.3

CVE-2013-**** FFmpeg **/**/2013 libavcodec/**.c AU-kind –
CVE-2013-**** FFmpeg **/**/2013 libavcodec/**.c PU-kind –
CVE-2014-**** FFmpeg **/**/2015 libavcodec/**.c PU-kind –
CVE-2014-**** FFmpeg **/**/2014 libavcodec/**.c PU-kind –

Libav 9.10 CVE-2014-9676 FFmpeg 02/27/2015 libavformat/segment.c PU-kind Libav 10.0
Seamonkey 2.32 CVE-2015-4511 Firefox 09/24/2015 .../src/nestegg.c AU-kind Seamonkey 2.38
Seamonkey 2.35 CVE-2015-**** Firefox **/**/2015 .../gonk/**.cpp FC-kind –

Thunderbird 38.0.1 CVE-2015-4511 Firefox 09/24/2015 .../src/nestegg.c AU-kind Thunderbird 43.0b1
CVE-2015-**** Firefox **/**/2015 .../gonk/**.cpp FC-kind –

Xen 4.4.2
CVE-2013-4149 Qemu 11/04/2014 .../net/virtio-net.c PU-kind Xen 4.4.3
CVE-2015-1779 Qemu 01/12/2016 ui/vnc-ws.c PU-kind Xen 4.5.5
CVE-2015-3456 Qemu 05/13/2015 .../block/fdc.c PU-kind Xen 4.5.1

Xen 4.7.4 CVE-2016-4453 Qemu 06/01/2016 .../display/vmware vga.c AE-kind Xen 4.8.0
Xen 4.8.2,
Xen 4.12.0 CVE-2016-**** Qemu **/**/2016 .../net/**.c PU-kind –

use (owing to the lack of ground-truth dataset). Future
research should investigate more effective automatic label-
ing methods; for this purpose, one may leverage the idea
of co-training [42]. Seventh, our experiments show some
deep neural networks are more effective than the state-of-
the-art vulnerability detection methods. Although we have
gained some insights into explaining the “why” part, more
investigations are needed to explain the success of deep
learning in this context and beyond.

5 RELATED WORK

Prior studies related to vulnerability detection. There
are two methods for source code-based static vulnerability
detection: code similarity-based vs. pattern-based. Since code
similarity-based detectors can only detect vulnerabilities
incurred by code cloning and SySeVR is a pattern-based
method, we only review prior studies in pattern-based
methods, which can be further divided into rule-based and
machine learning-based methods.

Rule-based methods use vulnerability patterns to detect
vulnerabilities, where patterns are manually generated by
human experts (e.g., Flawfinder [4], RATS [5], Checkmarx
[6]). These tools often incur high false-positive rates and/or
high false-negative rates [32], as also confirmed by our
experiments (Section 3.4.4). Vulnerability patterns can be
defined using, for example, code property graphs [33]. In
contrast, SySeVR uses vulnerability patterns that are learned
automatically and represented by deep neural networks.

Machine learning-based methods, as discussed else-
where [43], can be further divided into the following three
sub-categories. (i) Vulnerability prediction methods based
on software metrics: These methods are built on top of
software metrics (e.g., imports and function calls [8], com-
plexity [44], [45], code churn and developer activity [45],
[46]), but predict vulnerabilities at a coarse granularity
(e.g., component-level [8] or file-level [45]), meaning that
they cannot pin down the locations of vulnerabilities. (ii)
Anomaly detection methods: These methods find vulnera-
bilities via abnormal patterns in (for example) API usage
[47] or missing checks [9], [48], but cannot cope with rarely-
used but normal patterns. (iii) Vulnerable code pattern
recognition methods: These methods extract vulnerability

patterns related to (for example) ASTs [10], code property
graphs [49] or system calls [7], and use these patterns
to detect vulnerabilities. These methods demand human
experts to define features and use the traditional machine
learning models (e.g., support vector machine and k-nearest
neighbor) to detect vulnerabilities. Recently, deep learn-
ing has been leveraged for vulnerability detection, while
alleviating the problem of manual feature definition. Lin
et al. [15] presented a method for automatically learning
high-level representations of functions (i.e., coarse-grained).
VulDeePecker [11] is the first system showing the feasibility
of using deep learning to detect vulnerabilities at the slice
level, which is much finer than the function level. A more
recent development is µVulDeePecker [50], which extends
VulDeePecker to detect multiclass vulnerabilities. SySeVR
overcomes the weaknesses of VulDeePecker discussed in
Section 1, and is the first systematic framework for using
deep learning to detect vulnerabilities.
Prior studies related to deep learning. Deep learning has
been used for program analysis. CNN has been used for
software defect prediction [16] and locating buggy source
code [51]; DBN has been used for software defect prediction
[19], [20]; RNN has been used for vulnerability detection
[11], [15], [50], software traceability [12], code clone detec-
tion [13], and recognizing functions in binaries [14]. The
present study offers the first framework for using deep
learning to detect vulnerabilities.

6 CONCLUSION

We presented the SySeVR framework for using deep learn-
ing to detect vulnerabilities. Based on a large dataset of
vulnerability we collected, we drew a number of insights,
including an explanation on the effectiveness of deep learn-
ing in vulnerability detection. Moreover, we detected 15 vul-
nerabilities that were not reported in the NVD. Among these
15 vulnerabilities, 7 are unknown and have been reported to
the vendors, and the other 8 have been “silently” patched by
the vendors when releasing newer versions. There are many
open problems for future research. In addition to addressing
the limitations discussed in Section 4, it is important to
investigate the impact of code duplication [52] on SySeVR-
enabled models.
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