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Breaking Cuckoo Hash: Black Box Attacks

Pedro Reviriego! and Daniel Ting?

Abstract—Introduced less than twenty years ago, cuckoo hashing has
a number of attractive features like a constant worst case number
of memory accesses for queries and close to full memory utilization.
Cuckoo hashing has been widely adopted to perform exact matching of
an incoming key with a set of stored (key, value) pairs in both software
and hardware implementations. This widespread adoption makes it
important to consider the security of cuckoo hashing. Most hash based
data structures can be attacked by generating collisions that reduce
their performance. In fact, for cuckoo hashing collisions could lead to
insertion failures which in some systems would lead to a system failure.
For example, if cuckoo hashing is used to perform Ethernet lookup and
a given MAC address cannot be added to the cuckoo hash, the switch
would not be able to correctly forward frames to that address. Previous
works have shown that this can be done when the attacker knows the
hash functions used in the implementation. However, in many cases the
attacker would not have that information and would only have access to
the cuckoo hash operations to perform insertions, removals or queries.

This paper considers the security of a cuckoo hash to an attacker
that has only a black box access to it. The analysis shows that by
carefully performing user operations on the cuckoo hash, the attacker
can force insertion failures with a small set of elements. The proposed
attack has been implemented and tested for different configurations to
demonstrate its feasibility. The fact that cuckoo hash can be broken with
only access to its user functions should be taken into account when
implementing it in critical systems. The paper also discusses potential
approaches to mitigate this vulnerability.

Index Terms—Cuckoo hash, key value store, security, vulnerability.

1 INTRODUCTION

Many computing and networking applications need to
store a set of (key, value) pairs and check incoming keys
against those stored in order to retrieve or update the value
associated with a key [1], [2]. Cuckoo hashing [3] is a widely
used algorithm to implement key value store that has a low
and constant worst case number of memory accesses for
queries and that achieves close to full memory utilization
in practical configurations [3], [4]. Instead, insertions are
more complex and can take a large number of memory
accesses when occupancy is high. These features make
cuckoo hashing attractive for workloads on which queries or
updates dominate over insertions. This is, for example, the
case in most networking applications [5]. Another advan-
tage of cuckoo hashing is that it is amenable to hardware
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implementation, and in fact, it is widely used on both
FPGAs [2] and ASICs [6]. Software implementations are also
available for example for networking applications [5], [7].
For a software implementation, the cuckoo algorithm can
be optimized to try to place the most frequently used (key,
value) pairs on the hash tables that are accessed first, thus
reducing the average number of memory accesses needed
per query/update operation [8].

Security is one of the main requirements for key-value
stores [9]. The use of data structures in general, and of prob-
abilistic or hashing based algorithms in particular, poses
some security risks when an attacker tries to disrupt the
system [10]. For example, attacks on Bloom filters where
the adversarial tries to degrade the false positive rate or
to create false positives for specific elements have been
widely studied [11], [12], [13]. The security of HyperLogLog,
a commonly used data structure for cardinality estimation
has also been recently considered in [14]. In the case of
hash tables, it has been shown that if the attacker has
access to the hash functions used, he can disrupt their
functionality in different ways [15] and techniques to try
to identify the hash function used have been presented
[16]. In particular, for cuckoo hashing or cuckoo filters an
attacker can create a small set of elements which creates an
insertion failure when added to the tables [15], [17]. This
failure can have different effects depending on the cuckoo
hash implementation and on the application for which it is
used. For example, in a software implementation the tables
may be resized to accommodate more elements or rebuilt
using other hash functions. This requires a non negligible
amount of time during which the functionality is degraded.
In many hardware implementations, the table sizes are
fixed and rebuilding the tables cannot be easily done. As
for the application, when cuckoo hashing is used in high
performance switches [6], an insertion failure can create a
functional failure where the switch can no longer ensure a
correct processing of all packets. For example, when cuckoo
hashing is used to retrieve the output port of a frame based
on its destination address [7], the switch would not be able
to find a matching entry for it, if that address cannot be
inserted into the cuckoo hash. In other cases, an insertion
failure may just lead to a performance degradation.

In many cases, the attacker will not have access to the
hash functions used in the cuckoo hash implementation and
thus cannot force an insertion failure using the attacks de-
scribed in existing works. For the cuckoo filter, recent work
gives an insertion attack which can be done even when the
hash functions are unknown by the attacker by using false
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positives to detect colliding elements [17]. However, this
attack cannot be applied to cuckoo hashing as it produces
no false positives.

This paper considers the case where an attacker that can
only use the cuckoo hash as a black box and perform inser-
tion, removal and query operations. This is a much weaker
assumption than knowledge of the hash functions used for
implementation. In fact, any user of the cuckoo hashing
would have access to those operations. For this more general
adversarial model, it is shown that insertion failures can
also be created with a complexity that is similar to that
of existing attacks that assume the knowledge of the hash
functions [15]. This is worrying as cuckoo hashes are widely
used in many modern systems. Exposing this vulnerability
of cuckoo hashing motivates the need for having security
as a design requirement in cuckoo hashing. The paper also
discusses potential schemes to mitigate or avoid the attack
and suggests some directions for future work.

The rest of the paper is organized as follows. Section 2
covers the preliminaries on both cuckoo hashing and attacks
on it. The proposed attack is presented and analyzed in
Section 3. Section 4 presents the evaluation of the proposed
attack in a cuckoo hash implementation and Section 5
provides some discussion on other types of attacks and
techniques that can be use to mitigate or avoid them. Finally,
the paper ends with the conclusion and some ideas for
future work on Section 6.

2 PRELIMINARIES

2.1 Cuckoo hash

In cuckoo hashing, each element z is mapped to d
positions in a table using a set of hash functions h;(x) [3].
Each position on the table is a bucket that has c cells (each
capable of storing an element). This is illustrated in Figure
1. The table has M buckets and thus can store a maximum
of § = M - c elements. The operations supported are: query,
update, insertion and removal.

To query for an element y, the hash functions h;(y) are
computed and the corresponding buckets are accessed. If
any of the stored elements is equal to y, there is a match
and the value stored in that cell is returned. The process
for updates and removals is similar but once the matching
element is found, its value is updated or the element is
removed. The most complex operation is insertion. To insert
an element y, the hash functions h;(y) are computed first.
The corresponding buckets are then checked to see if there
are empty cells, and if so, y is stored in one of them.
However, if all those buckets are full, y kicks out an element
z stored in one of those buckets, and an attempt to re-insert z
in its remaining buckets is made. Depending on the cuckoo
table’s occupancy, many such movements may be needed to
find an empty cell. In many implementations, a limit 7,
is set for the number of movements and when it is reached,
an insertion failure occurs.

Another option for cuckoo hashing is to have d tables
with the corresponding hash function h;(z) as shown in
Figure 2. In this case, up to S = M - d - ¢ elements can
be stored in the tables. This multiple table configuration is
well suited for hardware implementation. By mapping each
table to a different memory, queries can be completed in
a single memory access cycle [6]. Both alternatives, single
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Fig. 1: Cuckoo hash with a single table

and multiple tables, achieve a similar performance in terms
occupancy when the tables are large.
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Fig. 2: Cuckoo hash with multiple tables

The occupancy that can be achieved by cuckoo hashing
before an insertion failure occurs depends on the number
of tables d and the number of cells per bucket ¢ [4]. Two
widely used configurations are two tables with buckets of
four cells (d = 2, ¢ = 4) and four tables with single cell
buckets (d = 4, ¢ = 1), both achieve close to full occupancy.
The first one reduces the number of memory accesses in
software implementations [5] while the second minimizes
the amount of data accessed per query and is useful in
hardware implementations [6].

2.2 Attacks on cuckoo hash

Cuckoo hash tables can be attacked by forcing an inser-
tion failure. For hardware implementations which cannot be
resized, this puts the hash table into an incorrect state that
can disrupt the operation of a system and lead to a failure.
For resizable software implementations, this can make the
cuckoo hash tables larger than necessary. The security of
cuckoo hashing has been studied in [15] where it was
assumed that the attacker has access to the implementation
details. In particular, the attacker knows the hash functions
used h;(z). Then, the attacker can easily build an attack
set A = {a;}; by selecting the elements a,, to have the
same hash value in all d tables, that is h;(a,) = h;(an,) for
1 =1,2,...,d and all pairs of elements a,,, a,, in the set. If
the attack set A is large enough, namely if |A] > ¢-d + 1,
then inserting all elements in A would lead to an insertion
failure. This is because they map to the same d buckets in
the tables with each bucket containing c cells. Since at most
¢ - d elements can be placed in those buckets, trying to place
more elements necessarily leads to an insertion failure.

To construct the set, elements can be generated randomly
and their hash values checked. The expected number of
elements that need to be tested can be estimated as:
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T=(c-d+1) (M) 1)

where M is the number of buckets in each table, ¢ the
number of cells per bucket and d the number of tables. This
clearly shows that implementations that use more tables are
harder to attack. Therefore, considering the two commonly
used configurations: d = 2, ¢ = 4 and d = 4, ¢ = 1, the later
would be more robust.

3 PROPOSED ATTACK

In this section, the proposed attack is presented. First, the
adversarial model considered is discussed. Then the attack
is described and analyzed.

3.1 Adversarial model

In many scenarios, the attacker may not have access to
the cuckoo hash implementation details. However, in most
cases the attacker will be able to perform operations to
insert, remove or query for elements. That is, the attacker
can use the cuckoo hash as a black box and perform the
operations that a user or client would perform.

We consider the case where the cuckoo hash has fixed
size and an insertion failure is a soft failure, so that users
are alerted to insertion failures but are allowed to continue
using the cuckoo hash even after encountering an insertion
failure. We can assume the fixed size S is known, since
we also show that it can be inferred otherwise. Finally, it
is assumed that there are no restrictions on the number of
operations that can be done on the cuckoo hash. We show
that even without knowing the hash functions, an adversary
can still generate a small attack set that induces an insertion
failure with high probability.

3.2 Description

Like [15], our proposed attack forces an insertion fail-
ure by generating elements A = {aq,...,acq4+1} that are
mapped to the same d buckets spanning the d tables.
However, with only the ability to insert, remove, and query
items, an attacker has no easy way to check that items
belong to the same bucket, and it is unclear how such an
attack set can be generated. Our attack does so by isolating
a set of d buckets where every successful insertion maps
to the same d buckets. The ability to do so is based on the
following observation and hypothesis.

o Observation: when the cuckoo hash tables are all full
except for one cell, elements that map to that cell are
successfully inserted on that cell.

e Hypothesis: when the cuckoo hash tables are all full
except for one cell, it is likely that all new elements
that do not map to that cell will fail insertion.

The observation is obvious as the insertion for an el-
ement that maps to the last empty cell can always place
the element on that cell. The hypothesis is far from being
obvious, but let us assume for now that it is true. We will
later prove it is true with high probability for the basic
cuckoo hash with parameters d = 2 and ¢ = 1. Suppose
a cuckoo hash contains only one unoccupied cell as shown
in Figure 3. Then, from the observation and the hypothesis,
it follows that an element x is successfully inserted if and
only if it maps to that last empty cell. Consequently, if we try
insertions of elements until one such element x is found and
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after the successful insertion we remove it and repeat the
same procedure until another such element y is found, then
both z and y would map to the bucket where the last empty
cell is. More formally, this means that we can generate
elements = and y with hash values h;(z) = h;(y) for some
table i, and we can do so using only user operations and
without knowing the cuckoo hash implementation’s hash
function h;. We can extend this to finding elements that
map to the same d buckets in d tables by creating multiple
instances of cuckoo hashes where the last empty cell is on
different tables.

Cuckoo Tables

h(x) hli|p|@ ha(x) s v o | w
v | na|f / T g | f|é&
a | d| c z c | v |n|p
ble |y |k g|le |y

Fig. 3: Cuckoo hash with d = 2, ¢ = 4 filled except for one
cell with element x mapping to the bucket of the empty cell
on the second table

Before presenting the attack procedure in more detail,
we provide the intuition behind the hypothesis and prove
it in the case of a basic cuckoo hash where d = 2,¢ = 1.
An insertion into a cuckoo hash generates a chain of cuckoo
kickout and insertion operations that terminates when an
open cell is found. These potential kickout and insertions
link together two buckets and can be represented using a
graph. If an open cell is the end point of a long chain, then
inserting any element that appears along the chain may fill
in that open cell. In the basic cuckoo hash with d = 2,¢c =1,
it always fills in the open cell. Since each inserted item
randomly chooses d buckets uniformly, long chains with
more buckets are more likely to be selected, and the open
cell at the end of a long chain is likely to be filled early.
A cell that is part of a chain of length 0, in other words, a
cell where no other elements map to its bucket (except those
already in the bucket when ¢ > 1), is likely to be the one
of the last cells filled. The hypothesis holds precisely when
such a cell is the last open cell.

We now prove that not only is this a likely outcome but
it is the outcome with probability approaching 1 when d =
2,c = 1 and the table size M is large. Here, we use the single
table version of the cuckoo hash which chooses d buckets
from a single large table of size d - M and base our analysis
on the cuckoo graph.

The cuckoo graph is the graph on d - M buckets where
there is an edge drawn between two buckets whenever
an item is hashed to those two buckets. As noted by [18],
an item y can be successfully inserted if and only if the
cuckoo graph containing all items up to and including y, the
component containing y has at most 1 cycle. Since each edge
corresponds to an item, if a connected component contains
v buckets and at least v + 1 edges, then all buckets in the
component contain an item.
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Since all edges have equal probability of being chosen,
given the number of edges |E|, the cuckoo graph is a form of
Erdos-Rényi random graph I'sp, | with a fixed number of
edges [20]. As the number of edges in an Erdos-Rényi graph
increases to |E| &~ M log2M, the graph becomes one large
connected component plus a few isolated vertices. Since for
large M, the large connected component has M log2M >
2(M — 1) edges, it follows that the corresponding cuckoo
hash table consists of filled buckets plus a few buckets that
have no items mapped to it. In particular, the last empty
bucket will have no items mapped to it.

Theorem 1. Consider a sequence of cuckoo hash tables with
2M — oo entries, d = 2 choices of bucket per item, and c = 1
cells for bucket. Let To s denote the number of items inserted to
fill up completely the table of size 2M. Then, for € > 0,

|Tonr — M log 2M| = o, (log®** M) )

or equivalently, P(|Tans — Mlog2M| < log®t* M) — 0 as
M — oo. Furthermore, let Dapy denote the number of items
hashed to the last empty entry when only Topnr — 1 items are
inserted. Then,

P(DQ[\/IZO)—)I as M — oo. (3)

Proof. Here o, is the probabilistic analog to little-o no-
tation. In other words, X,, = Y, + 0,(Z,) means that
(X, — Y3)/Zn 5 1 converges in probability. The proof is
a formalization of the argument given above that addresses
a few technical issues: the possible duplication of edges
that does not arise in Erd6s-Rényi graphs and handling the
problem where the number of added edges is a random
process with a stopping condition. Equation 2 is almost an
immediate consequence of theorem 4 in [20]. The primary
difference between items inserted and edges in the cuckoo
graph is that some items may result in duplicate edges. By
showing the number of duplicate edges is not too large,
it follows that they can be ignored. The expected number

of duplicate edges from v items is 232 =7 ]&((”];[17)1)

the usual birthday paradox calculation. Thus, the number
of duplicate edges from M log2M + o(log>** M) items is
log? 2M + o(log® 2M). The result on Tsy; follows from
theorem 4 in [20] and Markov’s inequality.

To handle the problem of there being some random
number of edges until there is only one empty bucket,
we first add a sufficiently large constant number of edges
so that existing results imply that the graph becomes a
giant connected component plus isolated buckets with high
probability. By continuing to add edges, we find that the last
empty bucket is isolated with high probability.

By theorem 2 in [20], we may choose a sequence
copy — —oo and |eap| < 1/2loglog M such that the
cuckoo graph with M log 2M + capr log 2M edges consists
of a giant connected component and Ksj isolated buckets
with probability converging to 1 as M — oco. Furthermore,

from

the number of isolated buckets Koys 2 Poisson(\) where
A = e 2%M < log M. The probability that any newly
inserted item will connect two isolated buckets is thus
less than log? M/M?. Probability the cuckoo graph will be
fully connected after M log'*2M converges to 1 almost
surely, a union bound gives that the probability two isolated
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buckets will ever be connected is < log®t® /M — 0, and
P(DQ]\,{ = 0) — 1. O

Therefore, the hypothesis is true with high probability
for d = 2, ¢ = 1. Unfortunately, the general case seems
challenging to prove and is left for future work. For other
parameter settings, we check by simulation that the hypoth-
esis remains true with high probability in Section 4.

3.3 Attack

Given the validity of the hypothesis, we exploit it to
generate elements that collide in one of the tables. Let us
now describe the proposed attack using the case where d =
2, ¢ =4 as an example.

Figure 4 shows the process used for the attack. The first
step is to create two cuckoo hash instances using the same
hash functions which we denote by a) and b). These are
filled with different sets of random elements, stopping when
one empty cell remains or, equivalently, when S—1 elements
have been successfully inserted. Examples of instances a)
and b) are shown in Figure 5. In the Top one, the empty
cell on instance a) is on the first table and the empty cell
on instance b) on the second table. For d = 2, these empty
cells appear on separate tables with probability 1/2. If the
hypothesis is valid on both instances, a successfully inserted
element maps to precisely these two buckets with empty
cells. Although the attacker does not know which two buck-
ets these are, by successively inserting into these buckets
and removing them immediately, one generates a set of
items that map to the same two buckets, quickly leading
to an insertion failure. We also generate a third cuckoo hash
instance c) using the same hash functions and use it to test
the validity of an attack set by ensuring the items that are
generated using a) and b) generate an insertion failure. In
more detail, a random element ¢ is generated and insertion
is tried on the a) instance; if the insertion fails, a new element
is generated and the process starts again. If insertion is
successful, the element t is removed and insertion is tried
on instance b). Again, if the insertion fails, a new element is
generated and the process starts again. If the element can be
inserted, then it is removed and inserted on a third cuckoo
hash instance c). If insertion fails, then the elements stored
in instance c) plus ¢ can be used for an attack.

The procedure tries to ensure that the elements inserted
on instance c¢) map to the same buckets on the two tables
as discussed before. In fact, this would be the case when
the hypothesis holds and the empty cells on a) and b) are on
different tables. In that scenario, for the example considered,
d = 2, ¢c = 4, once the number of elements on instance c)
reaches d - ¢ = 8, the next insertion will fail and thus the
construction of the attack set is complete.

For the multiple table implementation considered, an
attempt to build an attack set may fail. This occurs if the
empty cell falls on the same table on instances a) and b)
as for example, in the Bottom of Figure 5. In that case, it
is not possible for an element to be successfully inserted
on instances a) and b) as it would have to map to two
different buckets on the first table. Assuming that the empty
cell is randomly placed on each table, the probability of this
happening would be approximately 50%. Instead, for a sin-
gle table implementation (see Figure 1), this cannot happen
as all buckets are mapped to just one table. Therefore, for
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discussed in the previous subsection. The main difference
is that now, d cuckoo instances are used.

3.4 Cuckoo hash table size inference

If the capacity of the cuckoo hash tables S is unknown,
we must first infer the size. By inserting items until one
is confident filter is full and the failure probability equals
1, one can estimate the size by the number of successful
insertions I. A simple procedure inserts until the number
of consecutive failed insertions sufficiently outnumber the
number of successful insertions: F' > ¢ I for some constant
c> 1

One can take ¢ = —log p where p € (0, 1) controls the
probability that the filter is mistakenly considered full, and I
is used as the estimated size of the filter. To see this, note that
the probability of a successful insertion is at least J/M when
there are J buckets with empty entries. Thus, when the filter
is not full, the probability of observing [’ failed insertions in
arow is < (1 — J/M)¥ ~ exp(—J F/M) < exp(—J F/S).
This gives there is less than a probability p chance that
Fy = %logp consecutive insertion failures are observed
given J, S. Approximating the number of non-filled buckets
J with the number of empty entries S — I and noting that
I'+12>8/(S~1) gives F:=1Tlogp ~ (I+1)logp >
% logp ~ Fpy. Thus, p is an approximate upper bound
on the probability that the filter is full when £ consecutive
insertion failures are observed.

3.5 Analysis

The two primary concerns for an attacker running the
algorithm are the cost of an attack and the probability it is
successful. We first analyze the cost for an attack on a cuckoo
hashing instance using d tables with M buckets each and
c entries per bucket. We then study the probability that an
attack fails for the multiple table implementation due to any
of the d cuckoo instances having the last empty cell on the
same table. For this case, the probability that all empty cells
on all instances map to different tables is computed.

Fig. 4: Flow diagram of the proposed attack for d =2, c = 4

Cuckoo Tables instance a) Cuckoo Tables instance b)

halx)

4

Y -
4

Top: Empty cells map to different tables

Cuckoo Tables instance a) Cuckoo Tables instance b)

hafx) Algorithm 1 Procedure to generate an attack set for an

implementation with d tables

: construct d instances of the cuckoo and fill them except for one cell.
: construct a test instance of the cuckoo that is empty.
: success < false

: AttackSet + {}

1
2
3
4
Bottom: Empty cells map to the same table 5: while success == false and not time out do
6
7
8
9

generate a test element ¢
isCandidate « true
fori=1toddo
if insert(¢) on cuckoo instance 7 == true then

Fig. 5: Examples of instances a) and b) for d = 2, ¢ = 4. The
empty cells fall on different tables (Top). The empty cells fall

on the same table (Bottom) 10: remove(t) on cuckoo instance ¢
11: else
12: isCandidate < false
13: break for

a single table implementation, if the hypothesis holds, the 14: end if

procedure described will always find a set of elements for }g ‘efn'dCford’d e th
N . o . : 11 1sCanadidate en
the attack if a sufficient large number of elements is tested. . AttackSet < AttackSet U}

Thls means that the multlple table implementation iS the 18: if jnsert(t) on cuckoo test instance == false then
worst case for an attacker and thus is the one that will be 19 set success = true
considered in the rest of the paper unless otherwise noted. g(l) en. de?fd if

The proposed attack procedure can be generalized for a  55. end while
d table implementation by using d cuckoo hash instances 23: return AttackSet
that are almost full and testing elements for insertion. The
general algorithm is shown in Algorithm 1. It can be seen There are two main parts in the algorithm, the first one
that the basic procedure is the same as in the example is to build the d cuckoo hash instances that are almost full
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and the second is to test elements by inserting them on those
instances. The complexity of the construction of the cuckoo
hash instances is mostly due to the number of elements
that have to be inserted to fill all the cells except one. This
can be estimated by the number of elements needed to fill
a single hash table with M buckets of ¢ cells. This is a
coupon collector problem for which there is a widely used
approximation [19]:

I.=M - (log(M)+ (¢ —1)-log(log(M)) + O(M). (4)

that can be simplified when the number of cells per
bucket is one (c = 1) to:

I, = M - (log(M) + 0.577) ®)

These estimates are lower bounds on the expected num-
ber of elements needed to completely fill the cuckoo hash,
but Table 1 shows the estimates are accurate when the tables
are large. Corresponding upper bounds can be obtained by
treating the d tables as a single hash table with dM entries
and replacing M with d- M in the equations above. Further-
more, theorem 1 shows that in the special case where d =
2, ¢ = 1, the number of insertions needed can be computed
and is approximately M - log(2M) ~ M - (log(M) + 0.693)
which is extremely close to the lower bound given above.

The complexity of the second part of the algorithm can
be estimated by the number of elements that need to be
tested to build the set of elements used in the attack. On
average, the number of elements would be:

T=(M? (c-d+1) 6)

From which it can be seen that the effort needed by the
attacker grows exponentially with the number of tables d as
discussed in [15].

For the multiple table implementation, an attack fails
when the last empty cell of different cuckoo instances fall
on the same table. The probability that each of the d cuckoo
instances have the last empty cell on different tables and
thus that the attack can be successful can be estimated by:

A (d—1)!

as the first cuckoo instance can have its empty cell on
any of the d tables, the second on the remaining d — 1, and
so on. This again suggests that configurations with larger
number of tables would be harder to attack.

4 EVALUATION

To validate the proposed attack, it has been implemented
in C++ for two of the most widely used cuckoo hash
configurations: two tables with buckets of four cells (d =
2, ¢ = 4) and four tables with single cell buckets (d = 4, ¢
=1). These two configurations achieve close to full memory
utilization with the minimum number of tables and cells per
bucket respectively [4].

In a first experiment, the cuckoo hash tables were filled
with randomly generated elements until all cells except one
were occupied. The number of elements on which insertion
was tried to reach that point was recorded. The number of
elements that mapped to the empty cell were also logged.
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The maximum number of cuckoo movements per insertion
was set to 100. The simulations were run on a computer
with an Intel Core 17 running Windows 10.

The results over 1000 runs are summarized in Tables 1,
2. Looking at the number of insertions needed to almost fill
the tables, it can be seen that they match reasonably well the
theoretical estimates discussed in the previous section when
the number of cells S is large. For small values of .S, the
deviations are larger and the theoretical estimate becomes
even lower than .S in some cases.

The results for the percentage of runs in which less than
¢ elements mapped to the empty cell is also consistent
with the reasoning of the previous section showing that
this occurs with high probability when M is large. It can
be observed that the percentage increases with the table
size which is again expected as the number of insertions
grows more than linearly with table size as discussed before.
This first experiment validates the hypothesis for configu-
rations other than d = 2, ¢ = 1, and shows the feasibility
of constraining the location of an element when inserting
it on the cuckoo hash tables with no knowledge of the
implementation details.

The second experiment simulates the full attack. The
same table and bucket configurations were used. The per-
centage of runs for which the algorithm produced a small
set of elements that caused an insertion failure was logged.
A run was considered successful when a set of 15 or less
elements that caused and insertion failure was obtained.
For the successful runs, the average number of elements
tested to build the set was also logged, again randomly
generated elements where used in the simulations. The
results over 1000 runs are summarized in Tables 3, 4 for
small tables values. For larger tables, it was not practical
to run 1000 iterations and the attack was only tested until
it was successful. The time for the run that was able to
build the colliding elements is reported in Table 5 to give
an indication of the practical complexity of the attack.

From the tables, it can be seen that the number of suc-
cessful runs is close to the values predicted by the theoretical
estimates presented in the previous section except when
the tables are very small. This can be explained as for
small tables, the percentage of cases on which there are no
elements on other buckets that map to the bucket of the
empty cell is lower as shown in Table 2. In those cases, the
proposed procedure cannot ensure that the elements that are
successfully inserted will be placed on a single bucket and
thus an attacking set may not be found or it may be large.

As for the number of elements tested to build the set,
the average over all the runs matches well the theoretical
estimates of equation 6. This means that the time values can
also be extrapolated to larger table sizes using Equation 6.
For example, in switching ASICs, it is common to use d = 4
and tables of a few thousand entries [6], [21]. For tables of
size 2048, extrapolating from Table 5 predicts that roughly
one year will be needed to build the attack set which does
not seem practical. However it is important to note that
several copies of the first instance in Algorithm 1 can be
run in parallel testing insertions. Most of the insertions (on
average %) would not be successful. Therefore, all the
copies can send their results to a single copy of the rest of the
instances in Algorithm 1. This would enable an acceleration
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TABLE 1: Average number of insertions to fill the cuckoo tables except for one cell

Number ofcells d=4,c=1 d=4,c=1 d=2,c=4 d=2,c=4
(S) Simulated Equation (5) Simulated Equation (4)
128 147 129 139 93
512 753 695 639 540
2048 3698 3489 3056 2735
8192 17531 16797 13926 13045
32768 81581 78544 63153 60100
131072 371641 359603 278370 270691
524288 1674598 1620116 1224575 1199871

TABLE 2: Percentage of runs on which only ¢ — 1 elements map to the empty cell

Numberofcells(S) d=4,c=1 d=2,c=4
128 81.6% 64.1%
512 96.2% 90.6%
2048 98.3% 96.9%
8192 99.1% 98.3%
32768 99.7% 99.2%
131072 99.3% 99.2%
524288 99.7% 99.6%

by a factor of up to M by using M copies of the first instance
running on M different cores or processors. Coming back to
the previous example, using a few hundred cores would
reduce the time from one year to one day or less. There-
fore, designers should not rely solely on the computational
complexity of the attack to protect their implementations.

In summary, the experiments demonstrate the feasibility
of the attack and the theoretical analysis. The proposed
procedure may require a very large amount of computations
when the number of tables d is large. Therefore, in those
configurations, it may not be practical.

5 DiscuUssION

In previous sections, it has been shown that an insertion
failure on cuckoo hashing can be created with a small set
of elements even when the attacker has no knowledge of
the implementation details. The analysis and evaluation also
show that the attack may not be computationally practical
when the number of tables d is large. However, even in
that scenario, the attacker may be able to degrade system
performance. For example, the attacker may generate a
single cuckoo instance filled except for one cell and test
insertion of elements on it. Then a set of elements that pass
insertion would collide on one of the tables. This means that
if the cuckoo is filled with those elements, that table would
only have elements on one bucket while the rest are empty.
Therefore, the cuckoo hash would behave effectively as one
with d — 1 tables. This reduces the number of elements that
can be placed by a factor of % due to the unused table
but there is also an additional reduction as the remaining
tables can achieve a lower occupancy as there are less
choices to place an element [4]. More generally, an attacker
can generate sets that collide on an arbitrary number of
tables and thus trade the computational complexity for the
disruption in capacity introduced in the cuckoo hash. The
detailed study of these partial attacks is left for future work.

An interesting question that stems from exposing the
vulnerability of cuckoo hashing is what can a designer do
to mitigate or avoid the attack. The first thing that can
be done is to use randomized or “salted” hash functions
so that each instance of the cuckoo uses different hash
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functions [22]. This would force the attacker to use the
cuckoo hash instance that will be attacked for all the tests in
the attack procedure, making it unpractical in many cases
as the large number of insertions and deletions can easily
be detected as an anomaly. For configurations on which the
proposed procedure can be run on the instance under attack,
a possible mitigation strategy is to return an insertion failure
when the occupancy of the cuckoo tables reaches a given
threshold that is below full occupancy regardless of whether
the new element can be placed on the cuckoo tables. This
would reduce the ability of the attacker to create collisions
as now the tables cannot be filled beyond the threshold. This
however comes at the cost of a reduction on the cuckoo hash
capacity. The study of this potential strategy is left for future
work. Finally, if an insertion failure does occur, the hash
tables could be rebuilt using different hash functions. This
however has a significant cost and may not be an option
in systems that have to be operational at all times or that
do not have memory or hash functions available to perform
the rehashing. In any case, it seems that the designer should
take security as one of the design considerations for cuckoo
hashing, specially if it is used in systems that are critical for
the operation of services or networks.

6 CONCLUSION AND FUTURE WORK

This paper has shown that cuckoo hash is vulnerable to
an attacker that has no knowledge of its implementation
details. In particular, it has been shown that an attacker
can create a small set of elements that when inserted on
the cuckoo hash would create an insertion failure. For some
systems, this would lead to a reconfiguration of the cuckoo
using different hash functions or enlarging the memory
allocated. This would disrupt the system operation for
a non negligible amount of time. Instead, for hardware
based implementations it may not be possible to allocate
more memory or to change the hash functions and thus
the insertion failure could lead to a functional failure of
the system. This is worrying as cuckoo hash is widely
adopted to implement key value store in many computing
and networking applications. The analysis and evaluation
presented shows that implementations that use more tables
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TABLE 3: Percentage of runs that built an attack set

Number ofcells d=4,c=1 d=4,c=1 d=2,c=4 d=2,c=4
(S) Simulated Equation (7) Simulated Equation (7)

128 12.7% 9.4% 22.4% 50.0%

512 - 9.4% 45.0% 50.0%

2048 - 9.4% 49.5% 50.0%

8192 - 9.4% 48.4% 50.0%

TABLE 4: Average number elements tested to build the attack set

Numberofcells d=4,c=1 d=4,c=1 d=2,c=4 d=2,c=4
(S) Simulated Equation (6) Simulated Equation (6)
128 3011758 5242880 2174 2304
512 - 1.34 -10° 37002 36864
2048 - 343 -1011 598691 589824
8192 - 8.80 -1013 8648690 9437184

TABLE 5: Run time in seconds of a successful attack

Numberofcells (S) d=4,c=1 d=2,c=4
128 646 0
512 124066 2
2048 - 38
8192 - 562
32768 - 8671
131072 - 156994
524288 - -

in the cuckoo or larger tables are harder to attack but even
in those cases, partial attacks can be performed. Therefore,
designers that use cuckoo hash in their systems should be
aware of this vulnerability and take actions to mitigate it if
needed. Among those, the use of randomized hash functions
that are different for each instance seems a simple solution.
The analysis and evaluation of partial attacks for cuckoo
hash implementations that use a large number of tables
seems an interesting topic to extend the ideas presented in
this paper. Another area for future work is the theoretical
analysis of the probability that there are no elements on
other buckets that map to the bucket where the empty cell
is for configurations with d > 2 or ¢ > 1. More generally,
developing efficient mitigation techniques to address the
cuckoo hash vulnerabilities has a practical interest to make
implementations robust against potential attacks.
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