IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

3329

SEAR: Secure and Efficient Aggregation for
Byzantine-Robust Federated Learning

Lingchen Zhao™, Jianlin Jiang
Chao Shen

, Bo Feng
,and Qi Li

, Qian Wang ™, Senior Member, IEEE,
, Senior Member, IEEE

Abstract—Federated learning facilitates the collaborative training of a global model among distributed clients without sharing their
training data. Secure aggregation, a new security primitive for federated learning, aims to preserve the confidentiality of both local
models and training data. Unfortunately, existing secure aggregation solutions fail to defend against Byzantine failures that are
common in distributed computing systems. In this work, we propose a new secure and efficient aggregation framework, SEAR, for
Byzantine-robust federated learning. Relying on the trusted execution environment, i.e., Intel SGX, SEAR protects clients’ private
models while enabling Byzantine resilience. Considering the limitation of the current Intel SGX’s architecture (i.e., the limited trusted
memory), we propose two data storage modes to efficiently implement aggregation algorithms efficiently in SGX. Moreover, to balance
the efficiency and performance of aggregation, we propose a sampling-based method to efficiently detect Byzantine failures without
degrading the global model’s performance. We implement and evaluate SEAR in a LAN environment, and the experiment results show
that SEAR is computationally efficient and robust to Byzantine adversaries. Compared to the previous practical secure aggregation
framework, SEAR improves aggregation efficiency by 4-6 times while supporting Byzantine resilience at the same time.

Index Terms—~Federated learning, secure aggregation, trusted execution environment

1 INTRODUCTION

ECENTLY federated learning is introduced to train a shared
Rglobal model with massively distributed clients [1]. The
learning process consists of multiple training round. In
every training round, an aggregation server distributes the
current global model to a set of randomly selected clients.
Then the clients train the machine learning model locally
and return the updated model to the server. Finally, the
server aggregates the models to obtain a new global model.

To protect clients’ private information, the server by design
has no visibility into clients” training processes and local data.
Only trained models are revealed to the server. Nevertheless,
recent works have shown that gradient information can be
used to infer the private content about clients’ training data.
For instance, the server can recover the distribution of the

o Lingchen Zhao and Qian Wang are with the Key Laboratory of Aerospace
Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University, Wuhan,
Hubei 430072, China. E-mail: {Iczhaocs, qianwang}@whu.edu.cn.

o Jianlin Jiang is with the School of Computer Science, Wuhan University,
Withan, Hubei 430072, China. E-mail: jianlinjiang@whu.edu.cn.

o Bo Feng is with the Khoury College of Computer Sciences, Northeastern
University, Boston, MA 02115 USA. E-mail: feng.bo@northeastern.edu.

o Chao Shen is with the MOE Key Laboratory for Intelligent Networks and
Network Security, School of Cyber Science and Engineering, Xi'an [iao-
tong University, Xi’an, Shaanxi 710049, China. E-mail: chaoshen@mail.
xjtu.edu.cn.

e Qi Li is with the Institute for Network Sciences and Cyberspace and Bei-
jing National Research Centre for Information Science and Technology
(BNRist), Tsinghua University, Beijing 100084, China.

E-mail: qli01@tsinghua.edu.cn.

Manuscript received 11 Mar. 2021; revised 19 June 2021; accepted 24 June 2021.
Date of publication 30 June 2021; date of current version 2 Sept. 2022.
(Corresponding authors: Bo Feng and Qian Wang.)

Digital Object Identifier no. 10.1109/TDSC.2021.3093711

training data through a generative adversarial network
(GAN) [2] or pixel-wise accurate images by using gra-
dients [3]. To address this issue, recent secure aggregation sol-
utions aim to protect models by using cryptographic
techniques [4], [5]. The key idea is to prevent the server from
knowing the specific result uploaded by each client.

Meanwhile, in federated learning, robustness issues arise
from the Byzantine [6] adversaries who may behave abnor-
mally or even maliciously to compromise the entire perfor-
mance and the convergence of the global model. In order to
mitigate the Byzantine attack, different Byzantine-robust fed-
erated learning algorithms have been proposed in the litera-
ture [7], [8], [9]. However, all these methods rely on the fact
that the aggregation server can observe clients’ models
directly, which provides a weak privacy guarantee. This is
obviously opposite to the principle of the secure aggregation
solutions.

Besides, from the perspective of efficiency, it is hard to
extend existing secure aggregation solutions to support those
Byzantine-resilient algorithms. The used cryptographic primi-
tives such as homomorphic encryption (HE) and secure multi-
party computation (MPC) only support simple operations
over encrypted data and usually incur expensive computation
and communication costs. Existing Byzantine-resilient aggre-
gation algorithms usually require multiple comparison opera-
tions and distance computations. It is very time-consuming to
implement these operations by using HE or MPC, making it
impractical to apply these techniques in Byzantine-robust fed-
erated learning is not practical. Therefore, it remains unclear
how to efficiently mitigate Byzantine faults while protecting
clients’ privacy models in federated learning.

To tackle these problems, in this work, we propose SEAR,
a secure and efficient aggregation framework for Byzantine-
robust federated learning. Instead of using cryptographic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1700-3836
https://orcid.org/0000-0002-1700-3836
https://orcid.org/0000-0002-1700-3836
https://orcid.org/0000-0002-1700-3836
https://orcid.org/0000-0002-1700-3836
https://orcid.org/0000-0002-3531-1429
https://orcid.org/0000-0002-3531-1429
https://orcid.org/0000-0002-3531-1429
https://orcid.org/0000-0002-3531-1429
https://orcid.org/0000-0002-3531-1429
https://orcid.org/0000-0001-9764-7457
https://orcid.org/0000-0001-9764-7457
https://orcid.org/0000-0001-9764-7457
https://orcid.org/0000-0001-9764-7457
https://orcid.org/0000-0001-9764-7457
https://orcid.org/0000-0002-8967-8525
https://orcid.org/0000-0002-8967-8525
https://orcid.org/0000-0002-8967-8525
https://orcid.org/0000-0002-8967-8525
https://orcid.org/0000-0002-8967-8525
https://orcid.org/0000-0002-6959-0569
https://orcid.org/0000-0002-6959-0569
https://orcid.org/0000-0002-6959-0569
https://orcid.org/0000-0002-6959-0569
https://orcid.org/0000-0002-6959-0569
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0001-8776-8730
mailto:lczhaocs@whu.edu.cn
mailto:qianwang@whu.edu.cn
mailto:jianlinjiang@whu.edu.cn
mailto:feng.bo@northeastern.edu
mailto:chaoshen@mail.xjtu.edu.cn
mailto:chaoshen@mail.xjtu.edu.cn
mailto:qli01@tsinghua.edu.cn

3330

tools, SEAR uses a hardware-based trusted execution envi-
ronment (i.e., Intel SGX [10]) to protect the private models.
SEAR first utilizes SGX primitives (e.g., remote attestation)
to upload models to the aggregation server equipped with
SGX securely. The models are encrypted, and only the
trusted execution environment called the enclave has the cor-
responding keys to recover them. The private information
will never be revealed to the aggregation. Then various com-
putation jobs, including detecting abnormal models, can be
implemented inside the enclave.

Existing methods for defending Byzantine failures can be
roughly divided into two categories: distance-based (p—norm)
aggregation [7], [8], [11] and median-based aggregation [9],
[12]. However, distance-based aggregation methods like
Krum are not suitable for SEAR since they are time-consuming
due to the time complexity; median-based methods do not per-
form well when the adversaries collude to make the aggrega-
tion results deviate from the correct ones. Besides, the physical
trusted memory is limited to 128 MB in current CPUs (explic-
itly explained in Section 2.2). Therefore, it is unclear how to
aggregate hundreds of machine learning models in the trusted
memory efficiently. Considering these problems, we propose
two data storage modes that are suitable for different types of
aggregation algorithms inside the enclave.

On this basis, we propose a sampling-based detection
method to detect Byzantine adversaries” models more effec-
tively: a part of elements in each model are randomly
selected for computing the euclidean distance, and then the
adversaries’” models might be filtered. After removing a
part of adversaries’” models, we compute the coordinate-
wise median of the rest models to guarantee the correctness
of the aggregation result.

In summary, we make the following contributions.

e We propose SEAR, a new secure aggregation frame-
work for Byzantine-robust federated learning, by
using the trusted hardware Intel SGX to provide the
privacy guarantee and aggregation efficiency at the
same time. Based on SGX primitives, we propose a
remote attestation protocol that allows the aggregation
server to attest to multiple clients simultaneously.

e Considering the limitation of SGX, we propose two
data storage modes that help aggregate a large num-
ber of models inside the trusted execution environ-
ment. Different aggregation algorithms can benefit
from choosing appropriate modes in efficiency.

e We propose a sampling-based detection method that
allows SEAR to aggregate models more efficiently
while achieving high global model accuracy. We
prove the correctness and analyze the convergence
rate of the aggregation rule.

e We implement SEAR and evaluate it in a LAN envi-
ronment. We perform two federated learning tasks
on the MNIST and CIFAR-10 datasets [13]. The
results show that SEAR is computationally efficient
and robust to Byzantine adversaries.

2 PROBLEM STATEMENT

In this section, we review the main concepts of federated
learning and the trusted execution environment. Then we

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

describe the threat model and the system architecture of
SEAR.

2.1 Federated Learning

Federated learning [1] aims to utilize large-scale distributed
data while protecting the privacy training data simulta-
neously. The machine learning model is trained locally by
clients and aggregated iteratively into a joint global model.
In this paper, we assume that there are IV clients, and each
owns a private dataset D;. At each round r, an aggregation
server randomly selects n (n < N) clients and sends them
the current global model G". Each chosen client ¢ updates
the model using its dataset as follows:

W™ =G" - nVF(G", D), 1)

where W/ ™! denotes the updated local model of client i, F is
the loss function, and 7 is the local learning rate. After
updating the local model, the selected clients send their
updated models to the aggregation server, who performs
the aggregation using the Fed Avg [1] algorithm

‘ n Di n
G =Z%WE“7M=ZID¢|- 2)
i=1

i=1

2.2 Trusted Execution Environment

The trusted execution environment (TEE) is a secure area of
the central processor. Confidentiality and integrity of the
code and data loaded into TEE can be well preserved. There
are two widely used TEEs based on different processor
architectures: ARM TrustZone and Intel Software Guard
Extensions (5GX). Arm TrustZone technology is an efficient,
system-wide approach to security with hardware-enforced
isolation built into the CPU [14]. It provides the perfect
starting point for establishing a device root of trust based on
Platform Security Architecture (PSA) guidelines. Intel SGX
is a hardware-assisted TEE for Intel’s CPUs and generally
provides nice functionality and performance. In this work,
we use SGX to perform the secure aggregation because the
x86 architecture has been widely used in cloud computing
servers. The trusted part in SGX is called enclave, and the
protected memory region is called Processor Reserved Mem-
ory range (PRM). Both of them cannot be accessed by the
code outside the enclave. An important way to strengthen
SGX enclave trust is remote attestation [15] that allows a
hardware entity (SGX-equipped) to gain the trust of a
remote party. We will give the detailed construction of our
remote attestation protocol in Section 3.1.

Though SGX can provide a trusted execution environ-
ment, it has some limitations. First, the size of the physical
memory of PRM is limited to 128 MB for current Intel
CPUs. Once the memory usage exceeds this size, prohibitive
time overhead would occur due to the enclave page cache
(EPC) paging [16]. Second, an SGX application is divided
into trusted and untrusted parts. The trusted codes are
called through the ecall operation. Transmitting data
between the two parts will produce a noticeable overhead
caused by additional encryption/decryption operations.
Unfortunately, the machine learning models used in feder-
ated learning usually contain millions of parameters. Due to

ZHAO ET AL.: SEAR: SECURE AND EFFICIENT AGGREGATION FOR BYZANTINE-ROBUST FEDERATED LEARNING

the above two limitations, it is challenging to design and
implement an efficient aggregation scheme using SGX for
federated learning. Hence, we propose two data storage
modes for SGX.

Another weakness of SGX is the side-channel attacks. In
this work, we consider these attacks, e.g., power consump-
tion [17], rollback attacks [18], or other timing attacks [19]
out of scope. In general, these works did not demonstrate
anything new or unexpected about Intel SGX architec-
ture [20]. We consider preventing side-channel information
leakage as more of a matter for enclave developers. Besides,
some patches have been published to mitigate these attacks,
and some solutions [21] can be integrated into our
framework.

2.3 Threat Model

Like prior federated learning work [4], we consider an hon-
est-but-curious aggregation server that honestly completes
data aggregation jobs as pre-defined but tries to infer sensi-
tive information from the uploaded models. Existing works
have shown that the models without proper protection can
reveal the privacy of clients’ data. Meanwhile, we consider
Byzantine adversaries, who attempt to upload arbitrary
parameters to prevent the global model from converging.
Similar to [7], we assume that n clients are selected to
upload the model in each round while f of them are mali-
cious. The number of malicious clients holds the condition
f < n/2 —1. Moreover, Byzantine adversaries can collude
together to maximize their impact on the aggregation result
in the face of existing robust aggregation algorithms. Specif-
ically, the adversaries can replace the same dimensions of
their models with similar values to make the aggregation
results deviate from the optimal ones as much as possible.
Note that as we take full advantage of SGX to protect the
privacy of clients, we think SGX is trusted and do not con-
sider the side-channel information leakage as discussed in
Section 2.2.

In our threat model, both the aggregation server and the
clients are not fully trusted. Therefore, our aim is to protect
clients’” privacy and mitigate Byzantine failures at the same
time.

3 PRELIMINARIES

3.1 Intel SGX Remote Attestation

A remote enclave can attest to clients that its identity and
the software running inside it are correct. Sightly different
from the Intel’s remote attestation example [22] where a sin-
gle SGX-equipped client attests to a service provider, we
design and implement a new remote attestation protocol,
which is suitable for the aggregation server to attest to mul-
tiple clients at the same time. We utilize the Intel SGX attes-
tation service (IAS) that uses Enhanced Privacy ID (Intel
EPID) [23] for remote attestation.

Fig. 1 shows the main idea of the remote attestation pro-
tocol. First, a client i generates an elliptic curve key pair
(pk', sk') and sends the public key pk' with the challenge
message to the aggregation server. The server generates a
universally unique identifier (uuid), and the enclave initial-
izes a remote attestation context for the client. The uuid and
the context are saved as a key-value pair. Then the uuid and

3331
Aggregation server
IAS Client i Untrusted Enclave
| | Lo Pk T .
! ! ! pk',sk' — uuid_gen(i) 1 pk! sgx_l[lnt(pk) !
1 1 1 1 1 - 1 1 =
: : : i uuid : ma:l?:'iert :cognitéext: Fone o E
1 . 1 . 1 1 % 1 . 1 1]
198tSigRL gid . uuid Lﬂl(uuid, context), i :
¢ Qe ! uuid | :] :
o b isigrLs 1 SigRL1 map[uuid] | sgx_get_msgl1,
! SigRL —— i g ! icontext; (context) |
| | 1 1 | context — 1
1 1 1 s i 1 1 1 1 kS 1
: P PR e ! Lokl T :
1 1 1 e — 1
1 1 1 SS 1 1 1 1 1
1 1 1 1 1 1 1 1 1
| i | smk | | ; ‘ i
| i | Pk Ipk® | i i i |
| | o skt | jcontext; |
: b 122 wid | | type | :
1 1 1 {3 P | 1 1 1 Cmac 1 1
pki||t||Sig: type | map[uuid]
E E E usmki Cmaci E SigRL Eng—prfl’C—mngi
1 | , Cmac —— context —_— .]
: : : :mgg3: : msg3 : 9 :
' S s — :
1 1 1
| quote —— quote | i i ' i
1 1 1 1 1 1 1 1
| report —— check ! ! !] 1
1
v v v v v v v v

Fig. 1. The main idea of remote attestation.

a supported EPID group id are sent back to the client. Sec-
ond, the client sends a query to the IAS to retrieve the Signa-
ture Revocation List (SigRL) for the group id. When the
client received the SigRL, the server calls an ecall to generate
the session key pair and sends the public key pk*® to the cli-
ent. Third, client ¢ computes the shared secret using its pri-
vate key sk’ and the server’s public key pk®. The shared
secret is used to derive the shared message key (smk) fol-
lowing [22]. At last, the server calls SGX’s API to verify the
integrity of the message and the client’s identity using the
cipher-based message authentication code. If the message is
validated, a quote which includes a cryptographic hash of
the current running enclave signed with the platform’s
EPID key is generated. The client calls IAS’s API function to
verify attestation evidence (i.e., validating the signing certif-
icate received in the report and validating the report’s sig-
nature using the signing certificate). If the quote is
successfully validated, the client examines the properties of
the enclave, such as identity, security version and debug
attribute, etc. According to the result, the client can choose
to trust the enclave or not.

As the mapping of clients’” uuids and remote attestation
contexts is saved in a hash table, the server can process mul-
tiple remote attestation requests simultaneously. Different
clients under various steps of remote attestation do not
affect each other. Note that the above is the main idea of our
remote attestation protocol, and the details of the data struc-
ture and implementation can refer to [22].

3.2 Federated Learning With Byzantine Adversaries
As mentioned in Section 2.3, the Byzantine adversaries in
federated learning try to compromise the global model
through uploading arbitrary models. In this section, we
introduce the Byzantine failure and counter methods in
detail.

3332
TABLE 1
Notations
Notation Description
W; The client i’s model.
G The global model.
V; The vector of client ¢’s flattened model.
Vil. The vector encrypted by key k.
\% The sampled vector.
d The dimension of vector.
m Number of randomly sampled dimensions.
b Number of abnormal values in malicious
vector.
n Number of all selected clients.
f Number of Byzantine attackers in selected
clients.
Enc(V;, k) Encrypt V; using the key k.
Dec([V:], k) Decrypt [V;] using the key .
Vi — V] The euclidean Distance between V; and V.

CM{V,,...,V;} Coordinate-wise median of {V;,...,V;}.

First, we define the Byzantine model as Definition 1. V; is
the vector which contains the parameters of the model
uploaded by client i. The definition is similar to [24].

Definition 1. The vectors from the Byzantine adversaries are
defined as

vi,={
th

where [V;]; denotes the j

[Vi]; ~ [G];, correct j" dimension, 3)
arbitrary, abnormal dimensions,

dimension of vector V.

In order to compromise the global model, the Byzantine
adversaries usually replace the model parameters with arbi-
trary values which are obviously different from the normal
ones. As shown in the prior work [7], only one Byzantine
attacker is enough to achieve a successful attack. Neverthe-
less, the adversaries would collude to replace the same
dimension of the vectors with similar abnormal values to
make the most significant impact on the aggregation result.

Different defense methods towards Byzantine attack
have been proposed, including distance-based (p-norm)
aggregation [7], [8], [11], median-based aggregation [9],
[12], and adaptive aggregation [25]. The distance-based
methods introduce high time complexity (O(n?)) and
become time-consuming when more clients participate in
one aggregation round. The colluded adversaries might
influence the median-based aggregation methods. Specifi-
cally, collusion may introduce bias to median aggregation
and lead to poor model performance. Besides, as all these
methods need the aggregation server to observe clients’
models directly, the privacy of the clients might be revealed
to the server. The backdoor attack is another type of attack
often mentioned in federated learning. As the goal of the
backdoor attack is different from the Byzantine failure
attack, we will discuss these attacks in the Section 7.

3.3 Notations

Table 1 summarizes the notations used in this paper.
Besides, AES-GCM is used to encrypt and decrypt model
parameters for confidentiality and integrity protection.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Aggregation Server
Untrusted (File System)

Trusted (Enclave)
[(pk®, sk%) [smikcy, smky, ..., smhky]} | ;
i wl w2 - wn ; |E]|smk1 |@|smk2 """]E”smk" :
i (® aggregation w' i(@load data into enclave and decrypt

® encrypt and publish key k W |§]| k

[

H remote attestation

'
1
1
'
|
1
'
1
|

® upload encrypted weights
shared message key (smk;)

(kaI,Skﬂ)
@ locally train and encrypt

it — & 5% |E s,

data model ciphertext

Client 1

(pkcn’ SkCTl)
@ locally train and encrypt

it — &) % B,

data model ciphertext
Client n

Fig. 2. System architecture.

4 OUR APPROACH

In this section, we will demonstrate the constructions of
SEAR.

4.1 An Overview of SEAR

To protect clients” private models, SEAR makes full use of
SGX to aggregate the models securely. In this section, we
introduce the system model and the detailed designs of
SEAR. As shown in Fig. 2, our system model consists of the
following phases:

e Remote attestation and key agreement: The clients uti-
lize remote attestation [15] to verify the enclave’s cor-
rectness (i.e., the code and data loaded into the
enclave are not been tampered). After the remote
attestation, a shared message key (smk) for encrypt-
ing model weights is generated between the clients
and the enclave.

e Local training and model uploading: Clients train the
machine learning models with their local datasets
and encrypt the models using their respective smk.
The encrypted models are uploaded to the aggrega-
tion server and saved as files in the untrusted region.

e Secure and Robust Aggregation: After receiving all cli-
ents’ models, the aggregation server loads the
encrypted models into the trusted enclave. Since the
shared message keys are stored in the enclave, the
models can be decrypted and aggregated in a trusted
manner. The aggregation results are also encrypted
and sent to the clients for the next iteration.

First, each client ¢ carries out remote attestation to verify
that the aggregation enclave is running correctly as shown
in Section 3.1. Then, the models are encrypted by the shared
key and uploaded to the aggregation server. The informa-
tion of the clients” models won't be leaked to the semi-hon-
est server because only the trusted enclave has the
corresponding keys for decryption.

However, due to the limited memory of the enclave and
the time-consuming paging operation, designing and imple-
menting an efficient aggregation scheme to process extensive
data inside the enclave is not straightforward. For example, a
machine learning model with 1 million parameters takes
about 3.8 MB memory (each parameter is represented as float
taking 4 bytes). If hundreds of clients attend one aggregation

ZHAO ET AL.: SEAR: SECURE AND EFFICIENT AGGREGATION FOR BYZANTINE-ROBUST FEDERATED LEARNING

round, the limited memory will be consumed immediately.
To avoid the frequent enclave paging operations as much as
possible, we process one layer of the models at one time. As
the machine learning model usually contains multiple layers,
the aggregation is independent of each layer. Moreover, we
note that the layer containing a large number of parameters
may also have the same trouble. In this situation, performing
EPC paging is unavoidable, but choosing appropriate data
storage modes presented in Section 4.3 can help to reduce
the overhead as much as possible.

Algorithm 1. The Detailed Procedures of SEAR in Round

Input: Local datasets {D;, D, ..., D,}.
Output: Global model G™™.
Uploading models:
Client i: do remote attestation with the aggregation
enclave.
if the enclave is trustworthy then
Local training. W/t = G" — nVF(G", D;).
for layer in W/ ™ do
V; = flatten(layer).
[Vilgi, = Enc(Vi, smk;).
Send [Vi],,, to the server.
end for
10: endif
11: Server: receive the encrypted models and save as files.
12: Loading models into the enclave and aggregating:
13: Enclave: generate a random key dk.
14: forlayer in models do
15: fori € [1,n| do

N —

0

16: Loading [V;],,,,, into the enclave.
17: Vi = Dec([Vi] s, smki).
18: end for

19: V = aggregation(Vy, Vo, ..., V).

20: [V] = Enc(V,dk), save [V],, to the untrusted part.

21: end for

22: Result publishing;:

23: Enclave:

24: fori € [1,n] do

25: [dk],.s, = Enc(dk, smk;).

26: send [dk],,,;. and each layer vector [V],, to client i.

27: end for I

28: Client i

29: dk = Dec([dk],,,,, smki)

30: decrypt each layer vector V = Dec([V],,dk) and get
GT+1.

Since the bandwidth and computing power for different
clients vary greatly, their time in training and transmitting
the model might be significantly different. We emphasize
that the clients do not need to waste time waiting for others
to upload. The aggregation server stores each layer in an
independent file when it receives a new model. The aggre-
gation program starts to load models into the enclave when
all clients” data are received. Algorithm 1 shows the data
processing procedure in SEAR. Note that the aggregation
operation (step 19 in Algorithm 1) can be implemented in
any aggregation algorithms since the vectors are stored in
plaintext in the enclave. We will evaluate the computing
efficiency of different implementations in Section 6.

SEAR utilizes an efficient and robust aggregation algo-
rithm presented in Section 4.2. After completing the

3333

aggregation, the enclave publishes the aggregated model to
all clients. According to the threat model in Section 2.3, the
aggregation result should also be encrypted before it leaves
the enclave. SEAR utilizes a simple envelope principle to
reduce the number of encryption from » to 1. In each round,
the enclave generates a random key dk to encrypt the aggre-
gated model and uses each smk to encrypt dk. The
encrypted key [dk],,, . is sent to each client along with the
encrypted aggregation result. Then, each client has the cor-
responding smk to open the envelope and recover the
aggregation result.

Algorithm 2. Efficient and Robust Aggregation

Input: Vectors of the flattened models {V;,V,,...,V,}.

Output: Result vector V.

1: Randomly sample m € [1,d] elements from V; denoted as V.

2: fori € [1,n] do

3: Foranyi# j, i — j denotes the fact that V) belongs to the

n — f — 2 closest vectors to V.

4: Compute the score (i) = >

5: end for

6: Select k =n — yf vectors V; with the smallest scores s to
constitute the subset S ={V;,...,V;}, y is a coefficient
defined in Eq. (7).

8: Return V

2
[V = ViII™.

g

4.2 Efficient and Robust Aggregation

In this section, we demonstrate our efficient aggregation
scheme that ensures the robustness of the aggregation result
when facing adversaries in detail.

The main drawback of running existing robust aggrega-
tion methods such as Krum [7] and trimmed-mean [9] in
the enclave is the inefficiency because of the limited trusted
memory. To tackle this problem, we propose a sampling
scheme to reduce the computing overhead. Specifically, the
key idea is to calculate the euclidean Distance between the
sampled vectors as a metric to measure the probability that
the client comes from an adversary. The models with large
distances from others are likely to be malicious from the
Byzantine adversaries.

Since the sampled vectors cannot fully represent the
entire model, there is a trade-off between efficiency and
accuracy determined by the sampling rate. To find a bal-
ance, we only calculate the coordinate-wise median of a
part of models from clients who are honest with high proba-
bilities. Compared to directly use the median as the aggre-
gation result [9], the advantage of our method is that after
eliminating partial malicious updates, the median of the
rest part can represent the optimal model better. The experi-
ment results will show that our method performs much bet-
ter than the original median aggregation method when
Byzantine attackers collude. Algorithm 2 gives a complete
description of the proposed efficient and robust aggregation
scheme, and Fig. 3 provides an illustrative example of it.

To reduce the needed encryption operations, we ran-
domly sample m elements of V; to get the sampled vectors
V! (step 1). The elements in the sampled vectors come from
the same dimensions. SEAR calculates the euclidean

3334

. m

g

ample
IIII g --
th
" f+l " f+l

Fig. 3. Anillustrative example of SEAR.

v 1‘*" 2th | 3th|

vy 1th

score & sort

Dcorrect . abnormal

a, a,
=3 3
[}
Q
=

Distances between every pair of V/, (step 2-5). For each sam-
pled vector Vi, we use score to denote the sum of the distan-
ces of the n— f—2 closest sampled vectors. Then, the
n — yf vectors with the smallest scores are selected to con-
struct the subset S (step 6). As those vectors are probably
close to each other, they can be treated as potential correct
ones. Hence, the coordinate-wise median (denoted as CM)
of selected vectors can be used as the aggregation result
(step 7).

4.3 Data Storage Modes

In this section, we introduce two data storage modes for
accelerating different kinds of aggregation algorithms. As
mentioned in Section 2.2, an efficient aggregation imple-
mentation should avoid causing too much EPC paging and
passing large-scale parameters to the enclave in one ecall.
Therefore, the data should be passed into the enclave in
batches, and the data blocks are organized as a linked list.!
As shown in Fig. 4, the SGX PRM only has 128 MB memory.
As a result, EPC paging maps the trusted pages in PRM to
the untrusted but larger memory when the memory usage
exceeds the limitation. The relation between the SGX PRM
and the untrusted memory is similar to that between physi-
cal and virtual memory in the operating system.

Nevertheless, as the memory is untrusted, EPC paging is
more time-consuming than the usual paging between physi-
cal and virtual memory because cryptographic operations
are incurred to protect the trusted pages. Hence, the core
idea of making aggregation more efficient is to reduce the
times of changing the data accessing context. Figs. 4 and 5
show the two proposed data organization ways, i.e., the
row-major and column-major data storage model.

In the row-major data storage model, the parameters
uploaded by a client are stored in a contiguous chunk of
memory. Therefore, it is suitable for the aggregation algo-
rithm implemented by accessing each client’s vector once.
For example, we can use a temporary vector that stores the
sum of each dimension of clients’ vectors. The average
aggregation can be achieved by traversing each vector only
once. However, the aggregation algorithms which need to
access every dimension multiple times will waste much
time in EPC paging if the parameters are stored in the row-
major model. To explain this, we assume that PRM holds
half of all models. For example, it holds 50 models while the
total number of models is 100. As the left 50 parameters
needed for median aggregation are encrypted and stored in
the untrusted memory, EPC paging frequently happens to

1. The maximum size of a block used in our experiment is 32KB.
This value is determined by the number of parameters in a model.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

SGX PRM Heap
client_1 weights i Wil Wy iy
client_2 weights Hlwy wy wy W

client_3 weights

client_:n weights

Physical Memory (128MB)
—— pointer

data block

Fig. 4. Row-major data storage model.

SGX PRM

w; array

w, array

w, array

Physical Memory (128MB)

—— pointer data block

Fig. 5. Column-major data storage model.

load those encrypted parameters into the enclave for aggre-
gation, and this step brings prohibitive performance penal-
ties. What is worse, since the parameters used in once
aggregation are not contiguous in the memory, CPU cache
misses frequently happens when accessing every element.
Due to the integrity check and encryption/decryption oper-
ations in transferring data between the cache and system
memory, these cache misses will cause more unnecessary
overheads.

To address these drawbacks, we propose a column-major
mode, as shown in Fig. 5. It stores the parameters in the
same dimensions in a contiguous array. In this way, PRM
can store more dimensions without changing the total mem-
ory usage. This model is suitable for aggregation algorithms
that access every dimension of the parameter vectors many
times, such as median and Krum. As the parameters used
for once aggregation are already stored in PRM, EPC paging
only happens when most dimensions have been aggregated.
Besides, due to the contiguous storage form, a part of the
required data can be stored in CPU caches, and the time of
cache miss decreases considerably. However, the column-
major mode spends more time in context changing when
traveling all the parameters in the lists because the number
of parameters is much larger than that of clients. Therefore,
there is a trade-off between the number of parameters and
clients when adapting this mode. It is efficient when a large
number of clients participate in aggregation.

In a word, the two data storage models are universal for
applying SGX to federated learning, and choosing the
appropriate storage mode can help to improve the efficiency
significantly. Specifically, choosing which storage mode
depends on the aggregation algorithm that the server uses.
The experimental results, which are tested under 100 cli-
ents, suggest the server choose row-major mode when it

ZHAO ET AL.: SEAR: SECURE AND EFFICIENT AGGREGATION FOR BYZANTINE-ROBUST FEDERATED LEARNING

adapts median or trimmed mean for aggregation. Besides, it
is better to save the data in column-major mode when the
aggregation algorithms need to compute the distances
between two clients (e.g., Krum and Algorithm 2). Note that
the computing overhead is also related to the number of cli-
ents. For example, in our experimental setting, when the
number of clients is much more than 100, the column-major
mode is a better choice for the median aggregation.

5 PROOF oF SEAR

In this section, we demonstrate how SEAR works towards
Byzantine adversaries.

5.1 Proof of Correctness

First, we define the correctness of aggregation rules as
Definition 2.

Definition 2 (The correctness of aggregation rule Aggr).
Let {V1,...,V,_¢} be any honestly trained model parameter
vectors in R?, and {Vo_ft1,..., Vy} be any random vectors in
RY from the Byzantine adversaries. W denotes the result of
Aggr. Aggr is said to be correct if, for any j € [1,d], [W]; comes

from {[V1];, ..., [Vogl;}-

According to the definition of Byzantine adversaries’ vec-
tors (Definition 1), we concern that the adversaries replace
b e [l,d] elements of their vectors with random values,
which may be significantly different from the correct ones.
The abnormal values will be definitely selected by SEAR
sampling. As a result, the vectors provided by the adversar-
ies are discarded according to Algorithm 2 since the vectors
are far from others in the euclidean space. Following this
thought, now we provide rigorous analysis about the cor-
rectness of SEAR.

SEAR randomly selects m elements from the d-dimen-
sional vector, and the probability of k£ abnormal elements
being selected in the m-dimensional sampled vectors is rep-
resented as

by (d—b
where the random variable X denotes the number of chosen
abnormal elements. The random variable X follows the hyper-
geometric distribution written as X ~ Hypergeometric(d, b, m).

Hence, the expectation of the random variable X can be
obtained as follows:

b
E(X]=Y k- Pr(X=k)="b. ()
k=0 d

It means that there are % b abnormal elements in the sam-
pled vector on average. Since the abnormal elements are
distinctly different from the correct ones, we assume once
an abnormal value is selected, the corresponding vector will
be discarded. This assumption is used for simplifying the
analysis. Now we show it is not necessary for SEAR.

The probability that the sampled vectors from adversar-
ies don’t contain any abnormal elements follows Eq. (6)
when d — m > b holds, otherwise e = 0

3335

(%)

e=Pr(X=0)=-2t
0=

(d=m)(d—m—-1)...(d—m—b+1)

= d—b+)d-b+2)...d ©

Eq. (6) provides the error probability for a single adversary.
As mentioned in Section 2.3, SEAR should be robust regard-
less of the adversaries collude or not. We define y as the
probability of removing the adversary’s vector (i.e., there is
at least one abnormal value in the adversary’s vector be
selected by the random sampling)

-

In the following discussions, we assume that d —m > b
holds. Otherwise, the adversary’s vector will always be
removed.

1—¢,d—m >0,

1,d—m < b. ™

5.1.1 Byzantine Adversaries Without Collusion

In this situation, the adversaries do not know any infor-
mation about others, and they replace random dimen-
sions of the vectors with abnormal values as shown in
Fig. 6. The event that every adversary’s vector is
removed is independent. Let the random variable Y be
the number of removed vectors, and the probability of
removing k adversaries’ vectors in f independent Ber-
noulli trials is given by:

Pr(Y — k) @ (1=), ®
for k=0,1,2,..., f. Y is a binomially distributed random

variable, and the expected value of Y is

f
B =Yk ()0 -n = ©
T

=0

5.1.2 Byzantine Adversaries With Collusion

As shown in Fig. 7, rational adversaries would collude to
replace the same dimensions in their vectors to increase the
effect to the aggregation result. For example, if there are
enough abnormal elements in one dimension of the vectors,
the adversaries would introduce bias into the median-based
aggregation result. In this case, the probability y of remov-
ing one of the adversarys’ vectors is the same as removing a
single adversary’s vector.

Let the random variable Y be the number of the
adversaries’ vectors removed by SEAR, and Y is a discrete
random variable taking two possible values: Y = f with a
probability of P(Y = f) = y and Y = 0 with a probability of
P(Y =0) =1 — y. The expectation of Y can be calculated as
follows:

E(Y)=0-P(Y =0)+ f-P(Y = f) = yf. (10)

In both cases, there are yf abnormal vectors being
removed by SEAR on average. Then, SEAR aggregates the

3336

Vn—f+1

12th] 13th| 14th]

gth| 10thf 11th 13

=
)
=
w
B
o
B
5
—
5!
5

D correct . abnormal

Fig. 6. The Byzantine adversaries’s vectors when they do not collude.

2]
o)
H

D correct . abnormal

Fig. 7. The Byzantine adversaries’s vectors when they collude.

qth

w

w
HEEA

th
Voris 14 d

w
=3
=3

14th

=

= = =
g 3 3

. d

HREIB
=
5

k=n—yf vectors with the smallest scores through
the coordinate-wise median. As shown in Fig. 6, when
the abnormal elements are randomly distributed, the
adversaries have little influence on the median of each
dimension. Therefore, we are going to prove that SEAR
satisfies the Definition 2 when the adversaries collude.

Proposition 1. Under the condition of d—m >b, 1) if f <
n/3, any sampling rate m can make the result of aggregating
k =n — fvectors correct; ii) if n/3 < f < n/2 — 1 holds, and
the sampling rate m satisfies m < (n —2f)d/ [, the result of
aggregating k = n — y f vectors is correct.

Proof. If d—m >b holds, the abnormal elements in
adversaries’ vector have the chance to evade being sam-
pled by SEAR. As a result, the adversaries would set as
few abnormal elements (b = 1) as possible in their vectors
so that their vectors might not be removed in median
aggregation. The prior works have confirmed that only
one abnormal element in the vectors is enough to compro-
mise the global model aggregated by the standard feder-
ated learning algorithm FedAvg [1]. Besides, as the
aggregation server does not know the number of abnor-
mal elements in the vectors, SEAR should guarantee the
correctness of the aggregation result when b = 1 holds. In
this situation, the error probability can be written as € =
&m depending on the sampling rate m. To analyze
SEAR’s correctness in the worst case, we assume that the
adversaries’ vectors appear in the subset S, but the abnor-
mal elements are not sampled. Note that the real number
of adversaries’” vectors in S is mostly fewer than that we
assumed.

To guarantee the correctness of the median’s result,
the size of the subset S defined in Algorithm 1 should
satisfy |S| > 2f. When 3f —n < 0 holds, SEAR com-
putes the median of n — f models so thatn — f > 2f can
be guaranteed even if the worst case happens, f abnor-
mal elements appearing in S. It meets the condition () in
Proposition 1.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

If n/3 < f < n/2—1 holds, SEAR aggregates n — yf
models, and we have

d—m

n—yf>2fén—(L"ir>f>2f

1n

It means that if the sampling rate m satisfies Inequal-
ity (11), SEAR is correct because the number of abnormal
elements is fewer than half of |S|. It proves the condition
(77) in Proposition 1. Therefore, Proposition 1 demon-
strates that SEAR can ensure the correctness of the aggre-
gation result through adjusting m even if the proportion
of malicious clients is high (i.e., the number of malicious
clients is close to n/2 — 1). This conclusion guides us to
choose an appropriate sampling rate m for achieving
aggregation. Specifically, the more elements SEAR sam-
ples, the higher probability of removing abnormal vectors
SEAR has. Hence, aggregating a small amount of vectors
is enough to guarantee the correctness of the result.
However, in the extreme case (i.e.,, b = 1), though a
large sampling rate is used in SEAR, it is still possible for
the adversaries’ vectors to escape from being removed. If
the proportion of adversaries is high and all their vectors
escape the detection, aggregating a small number of vec-
tors may get an incorrect result. Inequality (11) gives the
upper bound of the sampling rate, which can remove the
only abnormal vector. Choosing a lower sampling rate
and aggregating more vectors through the median can
help to guarantee the correctness of the result. It also
explains why the assumption that a vector with selected
abnormal values is removed is not necessary for SEAR.
Even if the adversaries’ vectors appear in S, Proposition 1
ensures that the number of adversaries’ vectors is always
smaller than half of the |S]. O

In the real world, the server should predefine a threat
model about the number of adversaries. If the condition (4)
in Proposition 1 holds, the server can choose a sampling
rate m = 0.1d for maintaining the high computation effi-
ciency. In the other case, the sampling rate should follow
Inequality (11).

Besides, we prove that SEAR satisfies («, f)-Byzantine
Resilience which was proposed in [7].

Proposition 2. Let {Vy,...,V,_¢} be any independent and
identically distributed d-dimensional vectors s.t. V; ~ G, with
E[G] = g and E[||G — g||*] = do®. Let {V,_j1,...,V,} be
the vectors from the Byzantine participants following Defini-
tion 1. When SEAR selects m elements from each vector, if
2f+2<n and n(n, f)Vd-o < |gl, where n(n,f)=
/n =1 f, then SEAR is (e, f)-Byzantine resilient where 0 <

n(n.f)Vdo

a < m/2is defined by sina = "5

Proof. 1 We need to prove that SEAR satisfies the two condi-
tions of («, f)-Byzantine resilience following Definition 1
in [7].

Condition (i):

ZHAO ET AL.: SEAR: SECURE AND EFFICIENT AGGREGATION FOR BYZANTINE-ROBUST FEDERATED LEARNING

Without loss of generality, we assume that for any
dimension j € [1,d}, E[((G]; - [g],)"] = o, E[IG — gII’] =
E[7 (G~ [8])") = X5y o) = do”.

Let I(P) = 1if the predicate P is true, and 0 otherwise.
We analyze the worst case that the Byzantine adversaries
collude to replace the same elements of their vectors. For
the j'" dimension of V; € S, Py denotes that {[V;] ;}areall
correct values, and P denotes that {[V;];} contain f
abnormal elements. |S| = n — yf is the size of the subset
S. According to Proposition 1, when m satisfies Inequal-
ity (11), SEAR can ensure that every dimension of the
result is chosen from the correct vectors. For the j*
dimension of W, >~ means summing up the correct ele-
ments in {[V;],}, then we have

E[(W], — [g],"] = B[(CM({[Vi), Vi €) ~ [g],)]

<E[1R) YV~ + I Y (Mf [g}jﬂ

=1(R)) E[([Vi);~[8],)"]+1(P1)) E[([Vi];~18)))’]
=L(Ry)(n—yf)o; + 1(P)(n — yf = flo;.
(12)
The last equation in Eq. (12) holds because [V7]27 ~ [G];
for correct V;. Then, we can bound ||E[W]— g||” as fol.

lows:

IE[W] — g||*> <E[|W — g||*] (Jensen inequality)
B[S0 (W), — (], = >0 EI(W], — [g],)’]
S R~ 7)o + L)~ vf — flo

J=

(o
(=YD ey @+ = 7f = f)z]fff
(TL y‘f)(Zje[d\b + Z/E fZIE
=()

n—yf)do® — foo’ = ((n—yf)d—fb)

where j€[d \ b] means that the j'" dimension of the vec-
tors makes P, true, and j € [b] means that the 4" dimen-
sion of the vectors makes P; true. Eq. (13) is a decreasing
function of b € [1,d]. Thus, we have

IN

(13)

IE[W] — g||> < (n—%f)daQ—fa2 < (n—%f)dcr?

(14)

compared to d and fo?, f is very small and can be
ignored. According to the prior assumption, n(n, f) =
Vn—=2F and n(n, f)Vdo < |g|, ie, E[W] belongs to a
ball centered at g with radius \/(n — f)do. It implies

(15)

(E[W],g) > (1~ sin’a)||g|* > (1 - sina)||g]?,

where sina = n(n, f)v/do/||g||. Thus, condition (i) of the
Byzantine resilience definition holds. The angle between
the result and the right model will be smaller when
SEAR samples more element. The value of m is a tradeoff
between the model performance and detection efficiency.

Condition (ii):

Utilizing the equivalence of norms in finite dimension,
c; is a constant value, and we have

3337

_ d 2 d 9

||W|| - \/ZJZI[W]] S \/2‘711 Zcorrect 1[VL]]
- Zcorre(:t i ||V7H2 S ‘- Zcorrect i ||V7|| (16)

Let {Vi,...,V,_;} be correct and independent vectors.
There exists a constant ¢, such that
WIT<es 30 IVl Vg an
'r'1+“~+7‘n,f:r

We finally obtain that E[||W||"] is bounded above by a lin-
ear combination of terms of the form E[|Vy]|"] - -E
Vaesl™) = EIGI)- - EIGI™] with ri+---+
rn—y = 7. It satisfies the condition (ii) of the Byzantine
resilience definition. Then, the proof of Proposition 2
completes. O

5.2 Convergence Analysis

In this section, we analyze the convergence rate of SEAR.
We use Median to denote the directly coordinate-wise
median aggregation proposed in [9].

Normally, there are some key parameters in federated
learning, i.e., C, the proportion of clients selected to perform
the local training in each round; £, every client’s local
epoch; and B, the local batch size used in local training.
Under the condition of C =1, E = 1 and B = |D;|, federated
learning can be regarded as a classical distributed machine
learning algorithm. In this Case Median has been proved to
converge with an error rate (9 1) in [9], where 8
is the fraction of Byzantine ac{_ ersarles, and n is the total
number of clients. According to Proposition 1, the correct-
ness of SEAR is ensured by setting the size of the subset |S|
larger than 2f. As the convergence proof of SEAR is similar
to Median’s, we only analyze the convergence rate.

Proposition 3. On average, SEAR has a lower error rate than
Median.

Proof. As shown in Algorithm 1, SEAR will return the coor-
dinate-wise median of the subset S (|S|=n—y/).
Eq. (10) gives the expectation of the number of detected
abnormal vectors. The average number of abnormal vec-
tors in S can be denoted as f — yf. Then, we obtain an

(”fy }/\jf \/B(vlz — + %) error rate for SEAR. Since B is a
constant value in both methods, we analyze the relation

f=vf I _ =
betlweenf = nyr -— and ttme Let Gly) ==+

-1 ﬁ When n and [are fixed, for y € [0,1],
Zfﬁz is a decreasing function of y. Therefore, G(y) <

G(0) = 0 holds for any y € [0, 1]. It means that SEAR has a
lower convergence error rate than Median so that the
global model aggregated by SEAR converges faster. This
conclusion will be proved by our experimental results.
Moreover, we note that sampling more elements leads to
a lower error rate compared to Median. 0

6 EXPERIMENTS

Implementation. In our experiments, the aggregation server is
instantiated by a machine with a 2.80GHz Intel i5-8400 CPU,
which supports Intel SGX. The clients are simulated
through multi-thread programming on a workstation with

3338 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022
TABLE 2 TABLE 3
Statistics for the Two Models Time Cost Comparison With the Previous Work
Model Parameters Size Layers Maximum Minimum Nym. Clients Per client runtime Server runtime
layer size layer size (ms) (ms)

CNN 1663370 634MB 8 62MB 40B 141 SEAR 41 SEAR

ResNet-56 1,673,738 6.38MB 338 576KB 40B 500 13159 4312 14670 2325
1000 23497 4324 27855 6868

Server' time cost for three stages

6001 —&— Remote Attestation 59125

500 4 — Uploading models
—=— Aggregation (ResNet)
400 1 —A— Aggregation (CNN)

Aggregation time compared to 5 clients

—&— ResNet
—»%— CNN

30001 —=— Threoy

2000 q

Times

1000 A
10043.71

0.62
01

T T T T v T T T v
1 5 100 500 1000 5 100 500 1000
number of clients number of clients
(a) (b)

Fig. 8. (a) Server’s time cost for each stage. (b) Aggregation time cost
compared to that with 5 clients.

a 3.60GHz Intel Xeon CPU. The model training is carried
out on the workstation. We host the two machines on a
LAN environment with a 0.0235ms average network delay.
The remote attestation involves interactions with the Intel
Attestation Service on the client-side, and the average net-
work delay to IAS is about 19.3ms. The model training part
is implemented through Python, and the others are imple-
mented in C++. We utilize incubator-brpc [26] as the net-
work library in SEAR. Intel SGX Software Development Kit
(SDK) [27] helps us construct the trusted application inside
the enclave that aggregates clients’ models. The key length
is 128 bits for AES-GCM, and the NIST p-256 curve is used
in our implementation.

Evaluation. We perform our experimental evaluations on
two image classification tasks: 1) the handwritten digits clas-
sification task on the MNIST dataset using a CNN model,
which contains two 5 x 5 convolution layers, one fully con-
nected layer with 512 units and ReLu activation, and a final
softmax output layer; 2) the color images classification task
on the CIFAR-10 dataset using ResNet56 [28]. Both models
contain 1.6 million parameters (about 6MB). The detailed
comparison of the two models is summarized in Table 2.
Keras APIs [29] achieve model layers partitioning.

6.1 Efficiency Evaluation

We first evaluate the time cost of different stages in SEAR
with the different number of clients shown in Fig. 8a. The
maximum amount of clients in our experiments is 1000,
which is the same as the setting in [4]. We believe the set-
ting that selecting thousands of clients in one round meets
the requirements of the real-world federated learning sce-
narios. Remote attestation, model transmission, and aggre-
gation are three main stages on the server-side. In our
implementation, the server can serve multiple clients to exe-
cute remote attestation and transmit models simulta-
neously. During the remote attestation, the client interacts
with IAS twice, so the time cost mainly depends on the net-
work environment. The aggregation involves reading the
encrypted models from the files, loading them into the

enclave, decrypting and aggregating them. It is evaluated
under the condition of row-major storage mode and average
aggregation algorithm.

As shown in Fig. 8b, the spent time of the server is much
more than the theoretical value when the number of clients
increases. It is caused by the frequent EPC paging when the
memory usage exceeds 128MB. It also explains why aggre-
gating 100 CNN models take about 15 times longer than
that for ResNet models. Though the two models contain
almost the same number of parameters, aggregating the
largest layers in the CNN models takes about 620MB mem-
ory with 100 clients, while only 56MB is used for ResNet
models. Moreover, a client takes about 3.7s to do remote
attestation and 0.6s to upload a 6MB model.

[4] is a practical secure aggregation framework proposed
by Google, and it has been applied in real-world applica-
tions. To make a fair comparison with this work, we evalu-
ate SEAR under the same condition, i.e., aggregating a
756KB model without dropout. The results are shown in
Table 3. We can see that the runtime per client (involving
remote attestation and model transmission) is unrelated to
the number of clients. The time cost of SEAR on the server-
side is 4-6 times less than [4]. Besides, SEAR supports imple-
menting robust aggregation algorithms, which is hard
for [4] to extend to them.

Then, we show the performance of the two data storage
modes. We implement several Byzantine robust aggregation
algorithms such as coordinate-wise median, trimmed
mean [9], Krum [7] and the sampling-based algorithm. As
we mentioned in Section 4, the two storage modes are suit-
able for different algorithms. The experiment results (i.e.,
Fig. 9) show that the row-major storage mode is efficient for
average, median, and trimmed median because the model
parameters are much more than the number of clients. By
contrast, adopting the column-major storage modes can
save much time for Krum and SEAR due to the frequent
access of the same dimension of the data. Besides, SEAR is
also more efficient than Krum due to the sampling-based
method. It makes SEAR more practical in real-world feder-
ated learning scenarios.

6.2 Convergence Evaluation

In this section, we evaluate different aggregation methods
with Byzantine adversaries on the two tasks. We set the
batch size B = 32, the learning rate n = 0.01 for MNIST and
B =128, n =0.001 for CIFAR-10 and the local epoch F =1
for both datasets. We shuffle the training sets and divide
them into multiple sub-datasets to assign to the clients. We
set the number of clients n = 100 in total and the number of
adversaries f = 20.

ZHAO ET AL.: SEAR: SECURE AND EFFICIENT AGGREGATION FOR BYZANTINE-ROBUST FEDERATED LEARNING

Num. clients = 500
183U C3

Num. clients = 100

70 - Row-Major 1750 1 === Row-Major i=
604 ®@= Column-Major 1500 mmw Column-Major I
D |
CER 21250 | W 12270
% 0] 8 m .
] S 1000 A 1 il
@ 30 o .|]]
_E 21.69 22.80 E 750 I= ==
204 500
' a I=321 47 il
104 6.67 250 4 5 y |
4.35 3 142.71
ol ==id W o Lsowm i yd I E !

MedianTrimmed Mean Krum
Aggregation algorithms

MedianTrimmed Mean Krum SEAR
Aggregation algorithms

Fig. 9. Time cost of the two data storage modes with different aggrega-
tion algorithms.

3339

MNIST CNN CIFAR-10 ResNet
100% {_N_ 80%
70% 4
> 80%- >
9 95.00% - 0 60%
e o e
1 % -
§ 60% 1 90.00% § 50%
< ——- Average[1] < 40% - —-—- Average[1]
E 40% —e— Median[9] E 30% 4 —e— Median[9]
[—%— Trimmed median[9] —*— Trimmed median[9]
209% 4 —&— Krum([7] 20% —=— Krum([7]
__________ —A— SEAR 10% —A— SEAR
0 50 100 150 200 0 100 200 300 400 500
Rounds Rounds

Fig. 12. Performance of aggregation algorithms when Byzantine adver-
saries collude.

MNIST CNN CIFAR-10 ResNet MNIST CNN CIFAR-10 ResNet
9
100% 80% 80% -
98% 70% 98% { 70%
> >
T 96% g 60% §96% 2 6o% 1 80.00% 1
S 949 NS - S S 77.50% 1
3 94% 99.20% a7~ 3 50% 3 945 | 3 50% 1 [et
o [¥} [} ° [*} T T
< 929 ——- Average[1] < 40% ——- Average[1] < < 40% 300 400 500]
g —e— Median[9] . —o— Median[9] g 92% &
J % 4
= 90%1 & —e Trimmed medianf9] | = 39% —— Trimmed median[9] [= 30% —— b=d
a8% 1 —=— Krum(7] 20% A —=— Krum(7] 90% 1 20% | —— b=0.5d
| —4— SEAR 10% —~— SEAR o5% | 10%4 —4— b=1
86% +— T
0 50 100 150 200 0 100 200 300 400 500 0 50 100 150 200 0 100 200 300 400 500
Rounds Rounds Rounds Rounds

Fig. 10. Performance of aggregation algorithms without Byzantine
adversaries.

MNIST CNN CIFAR-10 ResNet
100% 80% 1
g 4 ff 9900% >‘70%<
%
] 98.00% 3 60:“
§ 60% §50A, g,
< —-—- Average[1] < 40% —-—- Average[1]
ﬁ 40% 4 —&— Median(9] E 30% 4 —e— Median(9]
[—%— Trimmed median[9] —%— Trimmed median[9]
20% 4 . ~F Kum[7] 20% 4 —&— Krum([7]
SN NNV —A— SEAR 10% - B A——anmm e —A— SEAR
T v T T T T T T T T T
0 50 100 150 200 0 100 200 300 400 500
Rounds Rounds

Fig. 11. Performance of aggregation algorithms when Byzantine adver-
saries don’t collude.

6.2.1 Performance Without Byzantine Adversaries

We first evaluate SEAR without involving Byzantine adver-
saries. As the server does not know the number of adversar-
ies in advance, it assumes that there exist 20 Byzantine
adversaries while aggregating the models. In these experi-
ments, we set m = 0.1d and k =n — f = 80. As shown in
Fig. 10, for both tasks, the algorithms except Krum have
similar convergence performance. The convergence of
Krum is unstable because it selects only one model with the
smallest distance. Its variance called Multi-Krum [7] that
computes the mean of several models has more stable
performance.

6.2.2 Performance With Byzantine Adversaries

We first concern the simple case that the Byzantine adver-
saries do not collude. We assume that they upload vectors
drawn from a Gaussian distribution with mean zero and
isotropic covariance matrix with standard deviation 200 [7].
We can see from Fig. 11 that coordinate-wise median,
trimmed-mean, Krum, and SEAR are all robust when facing
the adversaries, and the global model aggregated by Krum
converges slower than the other three algorithms.

In the more complex case where the Byzantine adversar-
ies collude to go against the robust aggregation algorithms,
we simulate the adversaries by setting all their elements to

Fig. 13. Performance of SEAR with different number of abnormal ele-
ments in adversaries’ vector.

10000. Hence, they are significantly larger than the normal
parameters. Fig. 12 shows that median and trimmed mean
are influenced by the adversaries while SEAR still performs
well.

Then, we conduct the experiments under different condi-
tions to evaluate SEAR’s performance thoroughly. As we
discussed in Section 5.1, the Byzantine adversaries may use
less abnormal elements in their vectors to escape from
SEAR'’s sampling scheme. Fig. 13 shows that the number of
abnormal elements b has little influence to SEAR as long as
the sampling rate satisfies the condition in Proposition 1.
Moreover, the results show that SEAR is still robust in the
worst case (b=1). As a result, the Byzantine adversaries
have no way to compromise the global model when SEAR
is used for aggregation.

We use an example to explain the difference among the
algorithms in Fig. 15. The result of median and trimmed
mean deviates from the optimal model due to the attack.
For example, if a sorted vector includes 10 parameters, and
the last three are extremely large values. The optimal result
should be the center of the first 7 normal values (i.e., the 4th
element in the vector). However, the median aggregation
returns the average of the 5th element and the 6th element.
The trimmed mean aggregation removes the first three ele-
ments and the last three elements and returns the mean of
the rest elements. By contrast, both Krum and SEAR can
exclude the last three abnormal elements basing on the dis-
tances. Specifically, Krum selects a model in the rest part
according to the calculated distance while SEAR returns the
median. Both of the results are closer to the theoretical
optimum.

6.2.3 Non-iid Data Distribution

We also evaluate the aggregation algorithms when the train-
ing data is non-iid distributed. According to [30], we divide
the data into 200 shards according to their labels, and each
client is assigned 2 shards. The results are shown in Fig. 14.

3340
MNIST CNN CIFAR-10 ResNet
100% 1 50% A A
EV VA TAY
99.25% v \
a 80% A 99.00% 3407
o 98.75% ®
5 5
O 60% S 30%
< --- Average[1] < /
g —e— Median[9] E 4| —e— Median[9]
 40% — Trimmed median[9] | + 20% —+ Trimmed median[9]
—&— Krum[7] —&— Krum(7]
20% —— SEAR 10%d e —— SEAR
) 50 100 150 200 0 100 200 300 400 500

Rounds Rounds

Fig. 14. Performance of aggregation algorithms with non-iid data
distribution.

All the aggregation algorithms have a much slower conver-
gence rate compared to the iid setting. As a result, extra
strategies should be adopted to accelerate convergence.
Recently, lots of works [31], [32], [33] are studying federated
learning with non-iid data, and we are going to integrate
appropriate strategies into SEAR in future work.

7 RELATED WORK

Backdoor Attack. Backdoor attack is proposed in recent
works [34], [35], [36]. The adversaries have different goals
from the Byzantine adversaries we discussed in this work.
The backdoor attack is a type of data poisoning attack aiming
to inject backdoors into the global model through manipulat-
ing a subset of training data [37]. The global model is vulnera-
ble to the dataset with trigger while performs well in the main
tasks. The previous works [34], [35] have shown that there are
two kinds of backdoor attacks: multi-shot attack and single-
shot attack. About the former, the models uploaded by the
adversaries are similar to other normal models, but the back-
door would be aggregated into the global model after many
rounds. This attack is not practical because it is hard to select
adversaries’ models in every round among thousands of cli-
ents. The latter can achieve a successful attack in only one
round through model replacement [34]. However, the param-
eters are scaled many times, which causes them to be signifi-
cantly different from the normal ones. SEAR is robust to the
single-shot backdoor attack but has only a little mitigating
effect on the multi-shot backdoor attack. Some existing
works [38], [39] propose the method to prune the “backdoor
neurons”, which can mitigate this attack. Nevertheless, these
methods cannot be applied to federated learning scenarios
because they need access to the training data. Recently, [40]
propose a novel way to mitigate the backdoor attacks through
client-side detection and uses differential privacy to protect
the privacy of clients’ models. There is another efficient back-
door attack that inserts a backdoor component directly into a
stationary model [41]. However, it may not work in federated
learning because the adversary cannot manipulate the aggre-
gated result directly. A novel attack model that jointly opti-
mizes adversarial inputs and poisoned models [42] has been
proposed recently. It takes a solid step towards achieving the
two attacks within a unified framework. Even though it may
also not work under the federated learning scenario as the
adversary’s model cannot be selected in every aggregation
round. Besides, it is hard for the adversary to affect the clients’
local inference process.

Secure Aggregation. Secure aggregation is the functionality
for many clients and a server that enables every client to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

LenTTTT s Median calculation
o ialiay telolalatalis siatebatat |
ol O :
ST O |
:l : O‘ M O |
O Oy O O
[Q:-l O
S i !
} . .
¥ O-1-M-- ,Q,/;Medlanca\culatlon !
O o o
! /
i\ »HQ””L”JMeancalculahon i
. The optimal model ' Median result
@ Trimmed Mean result
(O The normal models
@ Krum result
OThe models from adversaries @ SEARresult

Fig. 15. An illustrative example for the aggregation algorithms.

submit a private value (trained models in federated learning),
such that the server only learns the aggregated results of the
clients” values, typically the sum [30]. Secure aggregation can
be achieved through different primitives, such as pairwise
additive masking [4], threshold homomorphic encryption [43],
[44], and generic secure multi-party computation [45]. How-
ever, it is hard to extend these methods to existing Byzantine-
Robust aggregation algorithms. In order to prevent any client
from reconstructing other clients” private data from the global
model, some works proposed to utilize differential privacy to
protect the aggregated result [46], [47], [48]. The main idea is to
add random noise to the aggregated global model to hide any
single client’s model. It can be integrated into SEAR: each cli-
ent locally adds a certain amount of differentially private noise
after local gradient descent steps and submits the model to the
SGX enclave.

Applying the trusted execution environment to machine
learning for privacy and integrity protection has been pro-
posed in recent works [48], [49], [50]. Nevertheless, the effi-
ciency gap still exists due to the current hardware
architecture. Intel SGX2 supporting dynamic memory allo-
cation inside an enclave and larger physical protected mem-
ory [51] will improve the efficiency of SGX applications
when faced with large-scale data.

8 CONCLUSION

In this paper, we proposed SEAR, a novel secure aggrega-
tion framework for federated learning based on the trust
execution environment (i.e., Intel SGX) to protect models’
privacy and maintain Byzantine resilience simultaneously.
We presented two data storage modes inside the enclave
which are suitable for different kinds of computations. To
improve the efficiency, we designed a sampling-based
detection algorithm that applies to secure aggregation. The
effectiveness of our method was demonstrated through
both theoretical analysis and experimental results.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2020AAA0107701, in part by
the NSFC under Grants U20B2049, 61822207, 61822309,
61773310, and U1736205, in part by BNRist under Grant
BNR2020RC0101, and in part by the Fundamental Research
Funds for Central Universities under Grant 2042021gf0006.
Lingchen Zhao and Jianlin Jiang contributed equally.

ZHAO ET AL.: SEAR: SECURE AND EFFICIENT AGGREGATION FOR BYZANTINE-ROBUST FEDERATED LEARNING

REFERENCES

[1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273-1282.

B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the
GAN: Information leakage from collaborative deep learning,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 603—618.
L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in
Proc. Neural Inf. Process. Syst., 2019, pp. 14747-14784.

K. Bonawitz et al., “Practical secure aggregation for privacy-pre-
serving machine learning,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 1175-1191.

S. Truex et al., “A hybrid approach to privacy-preserving feder-
ated learning,” in Proc. ACM Workshop Artif. Intell. Secur., 2019,
pp- 1-11.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382401,
1982.

P. Blanchard et al., “Machine learning with adversaries: Byzantine
tolerant gradient descent,” in Proc. Neural Inf. Process. Syst., 2017,
pp- 118-128.

Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” in Proc. ACM
Meas. Anal. Comput. Syst., 2017, vol. 1, no. 2, pp. 1-25.

D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 5650-5659.

F. McKeen et al. “Innovative instructions and software model for
isolated execution,” in Proc. Int. Workshop Hardware Architectural
Support Secur. Privacy, vol. 10, no. 1, 2013, Art. no. 10.

L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzan-
tine-robust stochastic aggregation methods for distributed learn-
ing from heterogeneous datasets,” in Proc. AAAI Conf. Artif. Intell.,
2019, pp. 1544-1551.

D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gra-
dient descent,” in Proc. Neural Inf. Process. Syst., 2018,
pp- 4613-4623.

A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” 2009. [Online]. Available: https://www.cs.toronto.
edu/kriz/learning-features-2009-TR.pdf

TrustZone, “Arm trustzone technology,” 2021. Accessed: Jun. 2021.
[Online]. Available: https://developer.arm.com/ip-products/
security-ip/trustzone

I. Anati and S. Gueron, “Innovative technology for CPU based
attestation and sealing,” in Proc. HASP’13, 2013.

S. Arnautov et al., “SCONE: Secure linux containers with Intel
SGX,” in Proc. USENIX Symp. Oper. Syst. Des. Implementation,
2016, pp. 689-703.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure: SGX cache attacks
are practical,” in Proc. USENIX Conf. Offensive Technol., 2017.

A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How
SGX amplifies the power of cache attacks,” in Proc. Cryptographic
Hardware Embedded Syst., 2017, pp. 69-90.

M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,”
in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assess-
ment, 2017, pp. 3-24.

P.J. Simon, “Intel® SGX and side-channels,” 2018. [Online]. Avail-
able: https:/ /software.intel.com/content/ www /us/en/develop/
articles/intel-sgx-and-side-channels.html

W. Zheng et al., “A survey of Intel SGX and its applications,”
Front. Comput. Sci., vol. 15, no. 3, pp. 1-15, 2021.

P. M. John, “Code sample: Intel software guard extensions
remote attestation end-to-end example,” 2018. [Online]. Available:
https:/ /software.intel.com/content/www/cn/zh/develop/
articles/code-sample-intelsoftware-guard-extensions-remote-
attestation/end-to-end-example.html

S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen,
“Intel® software guard extensions: Epid provisioning and attes-
tation services,” vol. 1, no. 1-10, 2016, Art. no. 119.

C. Xie, O. Koyejo, and I. Gupta, “Generalized byzantine-tolerant
SGD,” 2018, arXiv:1802.10116.

L. Munoz-Gonzalez, K. T. Co, and E. C. Lupu, “Byzantine-robust
federated machine learning through adaptive model averaging,”
2019, arXiv:1909.05125.

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

3341

T. A. S. Foundation, “Apache brpc is an industrial-grade rpc
framework for building reliable and high-performance services,”
2016. [Online]. Available: https:/ /brpc.apache.org/

Intel, “Intel® platform developer kit for SGX,” 2021. [Online].
Available: https:/ /software.intel.com/content/www /us/en/
develop/topics/software-guard-extensions /sdk.html

K. He, X. Zhang, S. Ren, and]. Sun, “Identity mappings in deep
residual networks,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 630-645.

F. Chollet et al., “Keras,” 2015. [Online]. Available: https:/ /keras.
io

P. Kairouz et al., “Advances and open problems in federated
learning,” 2019, arXiv:1912.04977

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra,
“Federated learning with non-11D data,” 2018,
arXiv:1806.00582.

F. Sattler, S. Wiedemann, K.-R. Muller, and W. Samek, “Robust
and communication-efficient federated learning from non-IID
data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9,
pp- 3400-3413, Sep. 2020.

H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated
learning on non-IID data with reinforcement learning,” in Proc.
IEEE Conf. Comput. Commun., 2020, pp. 1698-1707.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov,
“How to backdoor federated learning,” in Proc. Int. Conf. Artif.
Intell. Statist., 2020, pp. 2938-2948.

C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed back-
door attacks against federated learning,” in Proc. Int. Conf. Learn.
Representations, 2020.

A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing
federated learning through an adversarial lens,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 634-643.

T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access,
vol. 7, pp. 47230-47244, 2019.

K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in Proc.
Int. Symp. Res. Attacks, Intrusions Defenses, 2018, pp. 273-294.

B. Wang et al., “Neural cleanse: Identifying and mitigating back-
door attacks in neural networks,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2019, pp. 707-723.

L. Zhao et al. “Shielding collaborative learning: Mitigating poison-
ing attacks through client-side detection,” IEEE Trans. Dependable
Secure Comput., early access, Apr. 14, 2020, doi: 10.1109/
TDSC.2020.2986205.

Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang, “Model-reuse attacks on
deep learning systems,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2018, pp. 349-363.

R. Pang et al., “A tale of evil twins: Adversarial inputs versus poi-
soned models,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2020, pp. 85-99.

E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-pre-
serving aggregation of time-series data,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2011, pp. 1-17.

T.-H. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream
aggregation with fault tolerance,” in Proc. Int. Conf. Financial
Cryptogr. Data Secur., 2012, pp. 200-214.

M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “Sepia:
Privacy-preserving aggregation of multi-domain network events
and statistics,” in Proc. USENIX Secur. Symp., 2010, pp. 223-240.
H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially ~private recurrent language models,” 2017,
arXiv:1710.06963.

A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized
and private peer-to-peer machine learning,” in Proc. Int. Conf. Artif.
Intell. Statist., 2018, pp. 473-481.

L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen, “Privacy-pre-
serving collaborative deep learning with unreliable participants,”
IEEE Trans. Inf. Forensics Secur., vol. 15, no. 1, pp. 1486-1500, 2020.
R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C.
Fetzer, “Tensorscone: A secure tensorflow framework using Intel
SGX,” 2019, arXiv:1902.04413.

F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private exe-
cution of neural networks in trusted hardware,” 2018,
arXiv:1806.03287.

F. McKeen et al., “Intel® software guard extensions (intel® SGX)
support for dynamic memory management inside an enclave,” in
Proc. Hardware Architect. Support Secur. Privacy, 2016, pp. 1-9.

https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html
https://software.intel.com/content/www/cn/zh/develop/articles/code-sample-intelsoftware-guard-extensions-remote-attestation/end-to-end-example.html
https://software.intel.com/content/www/cn/zh/develop/articles/code-sample-intelsoftware-guard-extensions-remote-attestation/end-to-end-example.html
https://software.intel.com/content/www/cn/zh/develop/articles/code-sample-intelsoftware-guard-extensions-remote-attestation/end-to-end-example.html
https://brpc.apache.org/
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions/sdk.html
https://keras.io
https://keras.io
http://dx.doi.org/10.1109/TDSC.2020.2986205
http://dx.doi.org/10.1109/TDSC.2020.2986205

3342

Lingcheng Zhao received the BS degree from
the College of Information Science and Engineer-
ing, Central South University, China, in 2016. He
is currently working toward the PhD degree with
the School of Cyber Science and Engineering,
Wuhan University, China. His research interests
include applied cryptography and data security.

Jianlin Jiang received the BS degree from the
School of Computer Science and Technology,
Wuhan University of Technology, China, in 2018.
He is currently working toward the master’s
degree with the School of Computer Science,
Wuhan University, China. His research interests
include applied cryptography and privacy pre-
serving machine learning.

Bo Feng received the bachelor's degree in com-
puter science from Wuhan University, China, in
2015. He is currently working toward the PhD
degree in computer science with Northeastern Uni-
versity, USA. His research interests include loT
security, system security, and applied cryptography.

Qian Wang (Senior Member, IEEE) received the
PhD degree from the lllinois Institute of Technol-
ogy, USA. He is currently a professor with the
School of Cyber Science and Engineering, Wuhan
University. His research interests include Al secu-
rity, data storage, search and computation out-
sourcing, security and privacy, wireless systems
security, big data security and privacy, and applied
cryptography. He was the recipient of National Sci-
ence Fund for Excellent Young Scholars of China
in 2018, 2018 IEEE TCSC Award for Excellence in
Scalable Computing (Early Career Researcher), and the 2016 IEEE Asia-
Pacific Outstanding Young Researcher Award. He is also an expert under
National 1000 Young Talents Program of China. He was also corecipient
of several Best Paper and best student paper awards from IEEE DSC’19,
IEEE ICDCS’17, IEEE TrustCom’16, WAIM’14, and IEEE ICNP’11. He is
an associate editor for the IEEE Transactions on Dependable and Secure
Computing, IEEE Transactions on Information Forensics and Security,
and the IEEE Internet of Things Journal. He is a member of the ACM.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

Chao Shen is currently a professor with the
School of Electronic and Information Engineer-
ing, Xi'an Jiaotong University, China. He is the
associate dean with the School of Cyber Security,
Xi'an Jiaotong University. He is also with the Min-
istry of Education, Key Lab for Intelligent Net-
works and Network Security. From 2011 to 2013,
he was a research scholar with Carnegie Mellon
University. His research interests include network
security, human computer interaction, insider
detection, and behavioral biometrics.

Qi Li (Senior Member, IEEE) received the PhD
degree from Tsinghua University. He is currently
an associate professor with the Institute for Net-
work Sciences and Cyberspace, Tsinghua Uni-
versity. His research interests include network
and system security, particularly in Internet and
cloud security, mobile security, and big data secu-
rity. He is currently an editorial board member
with the IEEE Transactions on Dependable and
Secure Computing and the ACM Transactions on
Applied Perception.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

